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Abstract

In the present work, a new class of finite elements (FEs) for the analysis of metallic and composite
plates is proposed. By making use of node-by-node variable plate theory assumptions, the new finite
element allows for the simultaneous analysis of different subregions of the problem domain with differ-
ent kinematics and accuracy, in a global/local sense. As a consequence, the computational costs can
be reduced drastically by assuming refined theories only in those zones/nodes of the structural domain
where the resulting strain and stress states present a complex distribution. On the contrary, computa-
tionally cheaper, low-order kinematic assumptions can be used in the remaining parts of the plate where
a localized detailed analysis is not necessary. The primary advantage of the present variable-kinematics
element and related global/local approach is that no ad-hoc techniques and mathematical artifices are
required to mix the fields coming from two different and kinematically incompatible adjacent elements,
because the plate structural theory varies within the finite element itself. In other words, the structural
theory of the plate element is a property of the FE node in this present approach, and the continuity
between two adjacent elements is ensured by adopting the same kinematics at the interface nodes. In
this paper, the novel variable-kinematics plate element is implemented by utilizing the Carrera Unified
Formulation (CUF), whose main advantage consists in the possibility of keeping the order of the expan-
sion of the state variables along the thickness of the plate as a free parameter of the model. According to
CUF, Taylor polynomial expansions are used to describe the through-the-thickness unknowns to develop
classical to higher-order Equivalent Single Layer (ESL) plate theories. Furthermore, the Mixed Inter-
polated Tensorial Components (MITC) method is employed to contrast the shear locking phenomenon.
Several numerical investigations are carried out to validate and demonstrate the accuracy and efficiency
of the present plate element, including comparison with various closed-form and FE solutions from the
literature.

1 Introduction

Plate structures have a predominant role in a variety of engineering applications. Nevertheless, the use
of new materials, such as composites layered materials, leads to increasingly complex structural designs
that require careful and detailed analysis. The analysis of layered composite structures is complicated
in practice. In some cases, structures may contain regions where three-dimensional (3D) stress fields
occur. To accurately capture these localized 3D stress states, solid models or higher-order theories are
necessary. However, the high computational costs represent the drawback of refined plate theories or
three-dimensional analyses.

The Finite Element Method (FEM) has a predominant role among the computational techniques
implemented for the analysis of layered structures. The majority of FEM theories available in the
literature are formulated by axiomatic-type theories. The conventional FEM plate model is the classical
Kirchhoff-Love theory, and some examples are given in [1, 2], whose extension to laminates is known to
as the Classical Lamination Theory (CLT) [3]. Another classical plate element is based on the First-
order Shear Deformation Theory (FSDT), which rely on the works by Reissner [4] and Mindlin [5]. To
overcome the limitations of classical theories, a large variety of plate finite element implementations of
higher-order theories (HOT) have been proposed in the last years. HOT-based C0 finite elements (C0

means that the continuity is required only for the unknown variables and not for their derivatives) were
discussed by Kant et al. [6] and Kant and Kommineni [7]. Many other papers are available in which
HOTs have been implemented for plates, and more details can be found in the books from Reddy [8]
and Palazotto and Dennis [9].

Although the enormous improvements and formulations of higher-order plate structural theories,
considerable work has been recently directed towards the implementation of innovative solutions for
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improving the analysis efficiency for complex geometries and assemblies, possibly in a global/local
scenario. In this manner, the limited computational resources can be distributed in an optimal manner
to study in detail only those parts of the structure that require an accurate analysis. In general, two
main approaches are available to deal with a global/local analysis: (1) refining the mesh or the FE
shape functions in correspondence with the critical domain; (2) formulating multi-model methods, in
which different subregions of the structure are analysed with different mathematical models. To couple
coarse and refined mesh discretizations of different subregions of a structure, adaptive techniques are
often used. The h-adaption method [10] is used when the structures subregions differ in mesh size,
whereas the p-adaption method [11] can be applied when the subregions vary in the polynomial order
of the shape functions. Moreover, the hp-adaption [12] can allow the implementation of subregions
differing in both mesh size and shape functions. The methods mentioned so far can be addressed as
single-theory or single-model methods.

In the case of multi-theory methods, in which different subregions of the structure are analysed with
different structural theories with kinematically incompatible elements, the compatibility of displace-
ments and equilibrium of stresses at the interface between dissimilar elements have to be achieved. A
wide variety of multiple model methods have been reported in the literature. In general, multi-theory
methods can be divided into sequential or multistep methods, and simultaneous methods. In a sequen-
tial multi-model, the global region is analysed with an adequate model with a cheap computational
cost to determine the displacement or force boundary conditions for a subsequent analysis at the local
level. The local region can be modeled with a more refined theory, or it can be modeled with 3-D finite
elements, see [13, 14, 15, 16]. The simultaneous multi-model methods are characterized by the analysis
of the entire structural domain, where different subregions are modeled with different mathematical
models and/or distinctly different levels of domain discretization, in a unique step. One of the simplest
type of simultaneous multi-model methods for composite laminates analysis, is the concept of selective
ply grouping or sublaminates [17, 18, 19]. In the literature, the local region (i.e., the region where
accurate stress analysis is desired) is generally modeled by using 3-D finite elements in the domain of
selective ply grouping method. Recently, the authors developed multi-model elements with variable
through-the-thickness approximation by using 2-D finite elements for both local and global regions
[20]. In this approach, the continuity of the primary variables between local and global regions was
straightforwardly satisfied by employing Legendre polynomials. In the work by Botshekanan Dehkordi
et al. [21], a variable description in the thickness direction for the static analysis of sandwich plates was
performed. That model was derived from the Reisnner-Mixed-Variational-Theorem (RMVT) in order
to describe a-priori the transverse shear and normal stresses. The same mixed approach was then used
in [22] for the nonlinear dynamic analysis of sandwich plates with flexible core and composite faces em-
bedded with shape memory alloy wires. Another well-known method to couple incompatible kinematics
in multi-model methods, is the use of Lagrange multipliers, which serve as additional equations to en-
force compatibility between adjacent subregions. In the three-field formulation by Brezzi and Marini
[23], an additional grid at the interface is introduced. The unknowns are represented independently in
each sub-domain and at the interface, where the matching is provided by suitable Lagrange multipliers.
This method was recently adopted by Carrera et al. [24, 25, 26] to couple beam elements of different
orders and, thus, to develop variable kinematic beam theories. Ben Dhia et al. [27, 28, 29, 30] proposed
the Arlequin method to couple different numerical models by means of a minimization procedure. This
method was adopted by Hu et al. [31, 32] for the linear and non-linear analysis of sandwich beams
modelled via one-dimensional and two-dimensional finite elements, and by Biscani et al. [33] for the
analysis of beams and by Biscani et al. [34] for the analysis of plates. Reddy and Robbins [35] and
Reddy [36] presented a multiple-model method on the basis of a variable kinematic theory and on
mesh superposition in the sense of Fish [37] and Fish and Markolefas [38]. Coupling was obtained by
linking the FSDT variables, which are present in all the considered models, without using Lagrangian
multipliers. The coupling of different kinematic models in the framework of composite beam structure
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was presented in [39] by using the extended variational formulation (XVF). In this paper, the sinus
model and classical kinematics were coupled into non-overlapping domains.

In Carrera et al. [40], a beam model with variable kinematics and global/local features was devised
by using the Carrera Unified Formulation (CUF), which was originally developed by Carrera for the
analysis multi-layered structures in [41, 42] and allows the automatic implementation of classical to
higher-order theories of structures through the use of fundamental nuclei. Similarly in the present
work, the hierarchical characteristics of CUF are used to develop a new simultaneous multiple-model
method for 2D elements with node-dependent kinematics. This node-variable capability given by CUF
enables one to vary the kinematic assumptions within the same finite plate element. The expansion
order of the plate element is, in fact, a property of the FE node in the present approach. Therefore,
between finite elements, the continuity is ensured by adopting the same expansion order in the nodes
at the element interface. In this manner, global/local models can be formulated without the use of
any mathematical artifice. As a consequence, computational costs can be reduced assuming refined
models only in those zones with a quasi-three-dimensional stress field, whereas computationally cheap,
low-order kinematic assumptions are used in the remaining parts of the plate structure.

In this paper, the governing equations of the CUF-based variable-kinematics plate element for the
linear static analysis of composite structures are derived from the Principle of Virtual Displacement
(PVD). Subsequently, FEM is adopted and the Mixed Interpolation of Tensorial Components (MITC)
method [43, 44, 45, 46] is used to contrast the shear locking. The developed methodology is, therefore,
assessed and used for the analysis of isotropic plates with simply-supported edges and loaded by a
uniform pressure, multilayered cantilevered plates with concentrated loads and cross-ply plates with
simply-supported edges and subjected to a localized pressure load. The results are compared with
various CUF-based theories and, whenever possible, with exact solutions available from the literature.

2 Classical, refined and hierarchical theories for plates

This work proposes a class of new finite elements which allows employing different kinematic assump-
tions in different subregions of the problem domain. To highlight the capabilities of the novel formu-
lation, a four-node plate elements with node-dependent kinematics is shown in Fig. 1. The element
proposed in this example makes use of the Kirchoff’s hypothesis at node 1. On the other hand, a second-
and a third-order refined theory are employed at node 2 and 3, respectively. Finally, a Reissner-Mindlin
plate theory is assumed at node 4. As it will be clear later in this paper, thanks to the hierarchical
capabilities of CUF, the choice of the nodal plate theory is arbitrary and variable-kinematics plate
elements will be used to implement multi-model methods for global-local analysis.

Figure 1: Example of plate element with node-dependent kinematics.
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Before discussing the present formulation, a brief overview of classical and higher-order plate theories
is given below or the sake of completeness. Plates are bi-dimensional structures in which one dimension
(in general the thickness in the z direction) is negligible with respect to the other two dimensions. The
geometry and the reference system that is adopted throughout the present work are shown in Fig. 2.

Figure 2: Reference system and geometry of a multilayered plate.

Kirchoff’s hypothesis. The simplest plate theory is based on the Kirchoff’s hypotheses, and, when ap-
plied to composite laminates, it is usually referred to as Classical Lamination Theory (CLT) [1, 2, 3]. In
CLT, both transverse shear strains and transverse normal strains are discarded, in usual applications
being negligible with respect to the in-plane ones. The displacement field of CLT is represented in
Eq. (1) and its geometrical representation is shown in Fig. 3.

Figure 3: Geometrical representation of the Kirchoff’s

assumptions.

u(x, y, z) = u0(x, y) − z
∂w0

∂x

v(x, y, z) = v0(x, y) − z
∂w0

∂y

w(x, y, z) = w0(x, y)

(1)

Reissner-Mindlin theory. Based on the works by Reissner [4] and Mindlin [5], the inclusion of trans-
verse shear strains leads to the plate theory best known as the First-order Shear Deformation Theory
(FSDT). The displacement field of the FSDT is represented in Eq. (2) and its geometrical representa-
tion is depicted in Fig. 4.

Figure 4: Geometrical rapresentation of the Reissner-

Mindlin theory.

u(x, y, z) = u0(x, y) + z u1(x, y)

v(x, y, z) = v0(x, y) + z v1(x, y)

w(x, y, z) = w0(x, y)

(2)

Due to the inconsistency demanded by discarding the transverse normal stress in the material con-
stitutive equations, both CLT and FSDT are no reliable when 3D local effects play a fundamental role,
and the correct analysis of the stress field within the structure is needed. To completely remove the
inconsistencies of classical plate theories, higher-order expansions of the unknowns with respect to the
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z coordinate can be employed.

Higher Order Theories. Classical plate models grant good results when small thickness, homogeneous
structures are considered. On the other hand, the analysis of thick plates and multilayered structures
may require more sophisticated theories to achieve sufficiently accurate results. As a general guideline,
it is clear that the richer the kinematics of the theory, the more accurate the 2D model becomes. In
order to overcome the limitations of classical theories, a large variety of plate higher-order theories
(HOT) have been proposed in the past and recent literature. Eventually, higher-order theories can be
expressed by making use of Taylor-like expansions of the generalized unknowns along the thickness.
In the case of generic expansions of N terms, HOT displacement field can be expressed as in Eq. (3).
Figure 5 pictorially shows the capabilities of HOT models, which can address complex kinematics in
the thickness direction.

Figure 5: Geometrical representation of the Higher

Order Theories.

u(x, y, z) = u0(x, y) + z u1(x, y) + ...+ zN uN (x, y)

v(x, y, z) = v0(x, y) + z v1(x, y) + ...+ zN vN (x, y)

w(x, y, z) = w0(x, y) + z w1(x, y) + ...+ zN wN (x, y)

(3)

The classical models comprising CLT and FSDT kinematics are particular cases of the full linear
expansion, which can be obtained from Eq. (3) by imposing N = 1. Nevertheless, the formulation
and implementation of classical plate theories as well as their derivation from the full linear model
are out of the scope of the present work. Interested readers can find more details on the argument in
[47]. However, for the sake of consistency, it should be clarified that the full linear model (N = 1 in
Eq. (3)) as well as classical theories are affected by the well-known Poisson locking phenomenon. To
remedy Poisson locking one may either adopt refined kinematics or use reduced material coefficients
in the constitutive relations, by imposing the out-of-plane normal stress to be null. Nevertheless, for
the sake of clarity and simplicity of the methodology introduced in this paper, the full linear expansion
kinematics (N = 1) is not corrected.

Higher Order Theories written in Unified Formulation framework. According to Carrera Unified For-
mulation (CUF) [47, 42, 48, 49], refined models can be formulated in a straightforward manner by
assuming an expansion of each of the primary variables by arbitrary functions in the thickness direc-
tion. Thus, each variable can be treated independently from the others, according to the required
accuracy. This procedure becomes extremely useful when multifield problems are investigated such as
thermoelastic and piezoelectric applications [50, 51, 52, 53]. In a displacement-based formulation, CUF
states, in fact, that the three-dimensional displacement field is the combination of through-the-thickness
functions weighted by the generalized unknown variables:

u(x, y, z) = F0(z)u0(x, y) + F1(z)u1(x, y) + ...+ FN (z)uN (x, y)

v(x, y, z) = F0(z) v0(x, y) + F1(z) v1(x, y) + ...+ FN (z) vN (x, y)

w(x, y, z) = F0(z)w0(x, y) + F1(z)w1(x, y) + ...+ FN (z)wN (x, y)

(4)

Similarly, in a compact form one has:

u(x, y, z) = Fs(z)us(x, y) s = 0, 1, ..., N (5)
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where u(x, y, z) is the three-dimensional displacement vector; Fs are the thickness functions depending
only on z; us is the generalized displacement vector of the variables; s is A sum index; and N is the
number of terms of the theory expansion. Depending on the choice of the thickness functions, Fs, and
the number of terms in the plate kinematics, N , various theories can be implemented.

Other theories. In this paper, Taylor-like thickness functions are used in the domain of CUF to formu-
late Equivalent Single Layer (ESL) models as in Eq. (3). ESL models, however, may not be sufficiently
accurate to describe adequately the multilayered structures in which, due to their intrinsic anisotropy,
the first derivative of the displacement variables in the z-direction is discontinuous. Nevertheless, it is
possible to reproduce the zig-zag effects in the CUF-based ESL models by modifying opportunely the
Fs functions, for example by adding the Murakami functions [54, 55]. On the other hand, plate models
with Layer-Wise (LW) capabilities can be implemented in the framework of CUF by describing the dis-
placement components at the layer level, possibly by using a combination of Lagrange and Legendre-like
polynomial as Fs thickness functions [56, 57]. It is important to clarify that the investigation of the
effectiveness of the various refined theories for the analysis of composite structures is out of the scope of
the present work and more details can be found in [58]. CUF is mainly used here to formulate refined
models with node-dependent kinematics to be used for efficient global/local analysis.

3 Finite elements with node-dependent kinematics

Thanks to CUF, FEM arrays of classical to higher-order plate theories can be formulated in a straightfor-
ward and unified manner by employing a recursive index notation. By utilizing an FEM approximation,
the generalized displacements of Eq. (5) can be expressed as a linear combination of the shape functions
to have

us(x, y) = Nj(x, y)usj j = 1, ..., (nodes per element) (6)

where usj is the vector of the generalized nodal unknowns and Nj can be the usual Lagrange shape
functions. j denotes a summation on the element nodes. Since the principle of virtual displacements
in used in this paper to obtain the elemental FE matrices, it is useful to introduce the finite element
approximation of the virtual variation of the generalized displacement vector δuτ ,

δuτ (x, y) = Ni(x, y)δuτi i = 1, ..., (nodes per element) (7)

In Eq. (7), δ denotes the virtual variation, whereas indexes τ and i are used instead of s and j,
respectively, for the sake of convenience.

In this work, and according to Eqs. (5), (6) and (7), the thickness functions Fs and Fτ , which
determine the plate theory order, are independent variables and may change for each node within the
plate element. Namely, the three-dimensional displacement field and the related virtual variation can
be expressed to address FE node-dependent plate kinematics as follows:

u(x, y, z) = F js (z)Nj(x, y)usj s = 0, 1, ..., N j j = 1, ..., (nodes per element)

δu(x, y, z) = F iτ (z)Ni(x, y)δuτi τ = 0, 1, ..., N i i = 1, ..., (nodes per element)
(8)

where the subscripts τ , s, i, and j denote summation. Superscripts i and j denote node dependency,
such that for example F iτ is the thickness expanding function and N i is the number of expansion terms
at node i, respectively.

For the sake of clarity, the displacement field of the variable kinematic plate element as discussed in
Fig. 1 is described in detail hereafter. The same plate element is represented in Fig. 6, which also shows
the though-the-thickness kinematics at the nodal level. The global displacement field of the element is
approximated as follows:
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• Node 1 Plate Theory = HOT with N 1 = 1 Eq. (3)

• Node 2 Plate Theory = HOT with N 2 = 2 Eq. (3)

• Node 3 Plate Theory = HOT with N 3 = 3 Eq. (3)

• Node 4 Plate Theory = FSDT Eq. (2)

In a CUF-based FE framework and according to Eq. (8), it is easy to verify that the displacements at
a generic point belonging to the plate element can be expressed as given in Eq. (9). In this equation,
only the displacement component along x-axis is given for simplicity reasons:

u(x, y, z) = (u01 + z u11) N1(x, y) +
(
u02 + z u12 + z2 u22

)
N2(x, y)

+
(
u03 + z u13 + z2 u23 + z3 u33

)
N3(x, y) + (u04 + z u14) N4(x, y)

(9)

It is intended that, due to node-variable expansion theory order, the assembling procedure of each finite
element increases in complexity with respect to classical mono-theory finite elements. In the present
FE approach, in fact, it is clear that both rectangular and square arrays are handled and opportunely
assembled for obtaining the final elemental matrices.

Figure 6: Displacement field at the nodal level. Plate element with node-dependent kinematics.

3.1 Fundamental nucleus of the stiffness matrix

Given CUF and FE approximation, the governing equations for the static response analysis of the multi-
layer plate structure can be obtained by using the principle of virtual displacements, which states:∫

Ω

∫
A

δεTσ dΩ dz = δLe (10)

where the term on the left-hand side represents the virtual variation of the strain energy; Ω and A
are the integration domains in the plane and the thickness direction, respectively; ε and σ are the
vector of the strain and stress components; and δLe is the virtual variation of the external loadings. By
substituting the constitutive equations for composite elastic materials, the linear geometrical relations

8



as well as Eq. (8) into Eq. (10), the linear algebraic system in the form of governing equations is
obtained in the following matrix expression:

δuτi : Kτsijusj = P sj (11)

where Kτsij and P sj are the element stiffness and load FE arrays written in the form of fundamental
nuclei. In particular, Kτsij is a 3 × 3 matrix whose components are given in the following:

Kτisj
xx =

∫
Ω

NiNj dΩ

∫
A

C55 F
i
τ,zF

j
s,z dz +

∫
Ω

Ni,yNj,y dΩ

∫
A

C66 F
i
τF

j
s dz +

∫
Ω

Ni,xNj,y dΩ

∫
A

C16 F
i
τF

j
s dz+

+

∫
Ω

Ni,yNj,x dΩ

∫
A

C16 F
i
τF

j
s dz +

∫
Ω

Ni,xNj,x dΩ

∫
A

C11 F
i
τF

j
s dz

Kτisj
xy =

∫
Ω

NiNj dΩ

∫
A

C45 F
i
τ,zF

j
s,z dz +

∫
Ω

Ni,yNj,y dΩ

∫
A

C26 F
i
τF

j
s dz +

∫
Ω

Ni,xNj,y dΩ

∫
A

C12 F
i
τF

j
s dz+

+

∫
Ω

Ni,yNj,x dΩ

∫
A

C66 F
i
τF

j
s dz +

∫
Ω

Ni,xNj,x dΩ

∫
A

C16 F
i
τF

j
s dz

Kτisj
xz =

∫
Ω

NiNj,y dΩ

∫
A

C45 F
i
τ,zF

j
s dz +

∫
Ω

NiNj,x dΩ

∫
A

C55 F
i
τ,zF

j
s dz +

∫
Ω

Ni,yNj dΩ

∫
A

C36 F
i
τF

j
s,z dz+

+

∫
Ω

Ni,xNj dΩ

∫
A

C13 F
i
τF

j
s,z dz

Kτisj
yx =

∫
Ω

NiNj dΩ

∫
A

C45 F
i
τ,zF

j
s,z dz +

∫
Ω

Ni,yNj,y dΩ

∫
A

C26 F
i
τF

j
s dz +

∫
Ω

Ni,xNj,y dΩ

∫
A

C66 F
i
τF

j
s dz+

+

∫
Ω

Ni,yNj,x dΩ

∫
A

C12 F
i
τF

j
s dz +

∫
Ω

Ni,xNj,x dΩ

∫
A

C16 F
i
τF

j
s dz

Kτisj
yy =

∫
Ω

NiNj dΩ

∫
A

C44 F
i
τ,zF

j
s,z dz +

∫
Ω

Ni,yNj,y dΩ

∫
A

C22 F
i
τF

j
s dz +

∫
Ω

Ni,xNj,y dΩ

∫
A

C26 F
i
τF

j
s dz+

+

∫
Ω

Ni,yNj,x dΩ

∫
A

C26 F
i
τF

j
s dz +

∫
Ω

Ni,xNj,x dΩ

∫
A

C66 F
i
τF

j
s dz

Kτisj
yz =

∫
Ω

NiNj,y dΩ

∫
A

C44 F
i
τ,zF

j
s dz +

∫
Ω

NiNj,x dΩ

∫
A

C45 F
i
τ,zF

j
s dz +

∫
Ω

Ni,yNj dΩ

∫
A

C23 F
i
τF

j
s,z dz+

+

∫
Ω

Ni,xNj dΩ

∫
A

C36 F
i
τF

j
s,z dz

Kτisj
zx =

∫
Ω

NiNj,y dΩ

∫
A

C36 F
i
τ,zF

j
s dz +

∫
Ω

NiNj,x dΩ

∫
A

C13 F
i
τ,zF

j
s dz +

∫
Ω

Ni,yNj dΩ

∫
A

C45 F
i
τF

j
s,z dz+

+

∫
Ω

Ni,xNj dΩ

∫
A

C55 F
i
τF

j
s,z dz

Kτisj
zy =

∫
Ω

NiNj,y dΩ

∫
A

C23 F
i
τ,zF

j
s dz +

∫
Ω

NiNj,x dΩ

∫
A

C36 F
i
τ,zF

j
s dz +

∫
Ω

Ni,yNj dΩ

∫
A

C44 F
i
τF

j
s,z dz+

+

∫
Ω

Ni,xNj dΩ

∫
A

C45 F
i
τF

j
s,z dz
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Kτisj
zz =

∫
Ω

NiNj dΩ

∫
A

C33 F
i
τ,zF

j
s,z dz +

∫
Ω

Ni,yNj,y dΩ

∫
A

C44 F
i
τF

j
s dz +

∫
Ω

Ni,xNj,y dΩ

∫
A

C45 F
i
τF

j
s dz+

+

∫
Ω

Ni,yNj,x dΩ

∫
A

C45 F
i
τF

j
s dz +

∫
Ω

Ni,xNj,x dΩ

∫
A

C55 F
i
τF

j
s dz

where comma denote partial derivatives and C11, C12, ..., C66 are the material coefficients for a
monoclinic lamina as defined in [59].

The fundamental nucleus as given above is the basic building block for the construction of the
element stiffness matrix of classical, refined and variable-kinematic theories. In fact, given these nine
components, element stiffness matrices of arbitrary plate models can be obtained in an automatic
manner by expanding the fundamental nucleus versus the indexes τ , s, i, and j. In the development of
ESL theories as in the case of this paper, the fundamental nucleus of the stiffness matrix is evaluated
at the layer level and then assembled as shown in Fig. 7. This figure, in particular, illustrates the
expansion of the fundamental nucleus in the case of a 9-node Lagrange finite element with node-by-
node variable kinematics, as in the case of this paper. It must be added that, in this work, an MITC
technique is used to overcome the shear locking phenomenon, see [53]. However, for more details about
the explicit formulation of the CUF fundamental nuclei, interested readers are referred to the recent
book by Carrera et al. [47].

Figure 7: Assembling scheme of a 9-node finite element with node-dependent kinematics. Highlights of
the influence of the cubic term of a 3rd order Taylor expansion model in the FE stiffness.
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4 Numerical results

Some problems have been considered to assess the capabilities of the proposed variable-kinematics plate
elements and related global/local analysis. These analysis cases comprise both metallic and composite
laminated plate structures with different boundary conditions and loadings. Whenever possible, the
proposed multi-theory models are compared to single-theory refined elements. According to CUF
terminology, the latter models are referred to as EDN , where E stands for Equivalent Single Layer
(ESL), D denotes the fact that displacement-based principle of virtual work is used for the formulation
of the governing equations, and N is the theory approximation order. Eventually, Layer-wise models
are used for comparison and, in this case, the letter L is used instead of E in the notation mentioned
above. If a Navier-type closed form solution is employed instead of FEM, the subscript (a) is used. On
the contrary, for the sake of clarity, multi-model theories are opportunely described for each numerical
case considered.

4.1 Simply-supported isotropic plate under localized pressure load

A simply-supported isotropic plate is analysed first. The geometrical dimensions are: a = 2m, b =
h = 0.2m. The employed material is isotropic with Young modulus equal to E = 75GPa and Poisson
ratio ν = 0.3. The plate is simply-supported along two opposite sides and free along the remaining
two edges. It undergoes a localised uniform pressure, P = 1Pa, acting on the 10% of the length and
centered at the mid-span, see Fig. 8(a). The transverse section of the proposed structure is shown
in Fig. 8(b), where the verification points at which displacement and stress components are measured
are also depicted. The results of the present methodology, in fact, are compared with some solutions
from the literature and with an MSC/NASTRAN solid model made of 8-node CHEXA elements. With
reference to Fig. 8(b), the in-plane displacements u and shear stress component σxz are evaluated at
x = 0, whereas the other two displacement components v and w and the normal stresses σxx and σzz
are evaluated at plate mid-span. The results are given in the following non-dimensional form:

(û, v̂, ŵ) =
Eh

a2P
(u, v, w) (σ̂xx, σ̂xz, σ̂zz) =

1

P
(σxx, σxz, σzz) (12)

(a) (b)

Figure 8: Reference system of the isotropic plate (a), and placement of the evaluation points on the
transverse section (b).

First, a convergence study is conducted. To serve this scope and as shown in Fig. 9, the plate
structure has been subdivided into 5 zones along the axis x, and they are numbered from 1 to 3
for symmetry reasons. The choice of dividing the structure in this manner was made for allowing
fair comparisons with other models from the literature [33, 24]. According to Table 1, which shows
the converge study of the single-theory ED4 CUF model for various mesh discretizations and related
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comparison with different solid models from MSC/NASTRAN, a non-uniform mesh grid of 20 × 4
elements is enough for ensuring good results. The same mesh is depicted in Fig. 9 and it is used in the
remaining analyses for the definition of the CUF-based single- and multi-theory models.

Figure 9: Subdivision zones for the isotropic plate, final mesh grid chosen after convergence study, and
graphical description of the multi-theory models.
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Table 1: Convergence study according to the ED4 model of the isotropic plate structure.

(−10) û (−102) v̂ (−1) ŵ (10−1) σ̂xx (−10) σ̂xz (−10) σ̂zz DOFs∗

Mesh 10 × 4
zone1 zone2 zone3 3.743 2.129 2.544 1.440 8.640 5.287 2835
2 × 4 2 × 4 2 × 4

Mesh 16 × 4
zone1 zone2 zone3 3.744 2.126 2.544 1.431 8.641 5.247 4455
3 × 4 3 × 4 4 × 4

Mesh 20 × 4
zone1 zone2 zone3 3.743 2.126 2.544 1.431 8.641 5.248 5535
4 × 4 4 × 4 4 × 4

Mesh 20 × 8
zone1 zone2 zone3 3.743 2.126 2.544 1.431 8.637 5.254 10455
4 × 8 4 × 8 4 × 8

Mesh 30 × 4
zone1 zone2 zone3 3.743 2.125 2.544 1.429 8.641 5.263 8235
6 × 4 6 × 4 6 × 4

Mesh 20 × 4
zone1 zone2 zone3 3.743 2.125 2.544 1.429 8.641 5.267 5535
3 × 4 3 × 4 8 × 4

8node SOLID 3.788 2.124 2.544 1.352 8.402 5.202 131859
Mesh 100 × 20 × 20

8node SOLID 3.667 2.124 2.544 1.389 8.502 5.216 502619
Mesh 100 × 40 × 40

8node SOLID 3.440 2.124 2.544 1.388 8.502 5.197 401759
Mesh 80 × 40 × 40

8node SOLID 3.776 2.124 2.544 1.402 8.533 5.221 1112579
Mesh 100 × 60 × 60

∗: Degrees of freedom of the whole plate structure

Table 2 shows the results for the present metallic plate from various single- and multi-theory CUF
models. Solutions from the literature [33, 24] are also given for comparison. Multi-theory models are
referred to as CaseA to CaseF , and they are defined according to Fig. 9. In particular, in CaseA,
lower-order kinematics is employed at the plate boundaries, whereas 4-th order plate theory is used
close to the loading. Vice-versa, in CaseB, refined approximation orders are utilized close to the
boundary. The present CaseA and CaseB multi-theory models are analogous to models ArlequinA

and ArlequinB from [33], where the Arlequin method was used to mix finite beam elements with
different kinematics at the interface, and LMA and LMB from [24], where Lagrange multipliers were
used along with 1D CUF to implement variable kinematic beam theories. Results from other original
global/local plate models referred to as CaseC to CaseF are also given in Table 2 and they are
graphically explained in Fig. 9. In this table, the present results are also compared to a 3D solid
solution and 1D mono-models, which are referred to as TE1 - TE4 and are CUF beam models based
on N-order Taylor expansions of the displacement field over the beam cross-section (see [24]). All the
multi-theory models in this paper have been implemented by making use of the node-by-node variable
kinematic formulation encompassed in the domain of CUF. In this methodology, structural domains
with lower- and higher-order theories are coupled by enforcing the same kinematics at the interface
nodes. In this manner, there is no information loss and no need to adopt any mathematical artifice,
such as Lagrange multipliers or overlapping regions.
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Table 2: Simply-supported metallic plate. Displacement and stress components from single-theory,
multi-theory and reference models.

(−10) û (−102) v̂ (−1) ŵ (10−1) σ̂xx (−10) σ̂xz (−10) σ̂zz DOFs∗

Reference solutions [33]

SOLID 3.776 2.124 2.544 1.402 8.533 5.221 558150
ArlequinA 3.729 2.116 2.537 1.424 5.000 5.217 1197
ArlequinB 3.716 -0.056 2.547 1.444 8.352 4.807 1197
LMA 3.699 2.116 2.524 1.420 5.000 6.001 1134
LMB 3.732 -0.080 2.550 1.419 8.429 4.395 1134
TE4 3.735 2.116 2.542 1.423 8.511 6.003 2745
TE3 3.735 2.092 2.542 1.425 8.462 6.063 1830
TE2 3.729 2.108 2.532 1.409 5.865 4.265 1098
TE1 3.736 -0.080 2.548 1.419 5.000 4.395 549

Present single- and multi-theory models

ED4 3.743 2.125 2.544 1.429 8.641 5.267 2835
ED3 3.742 2.139 2.544 1.434 8.641 5.286 2268
ED2 3.731 2.097 2.534 1.402 6.262 5.087 1701
ED1 3.402 2.688 2.323 1.414 6.265 4.594 1134

CaseA 3.562 2.125 2.460 1.429 6.265 5.267 2349
CaseB 3.587 2.688 2.413 1.414 8.708 4.594 1620
CaseC 3.561 2.125 2.460 1.429 6.256 5.275 2187
CaseD 3.731 2.125 2.537 1.429 6.263 5.276 2349
CaseE 3.704 2.125 2.532 1.429 6.358 5.276 2133
CaseF 3.591 2.125 2.465 1.429 6.154 5.275 2133

∗ : for a fair comparison with reference solutions, DOFs are given for half plate structure

Additional results in terms of transverse displacement w, in-plane stress σxx, transverse shear stress
σxz and transverse normal stress σzz along the thickness are represented in Fig. 10, 11, 12, and 13,
respectively. The following comments can be drawn from the analysis:

• Single-theory models with lower expansion order, i.e. ED1 and ED2, yield good results in terms
of displacements and in-plane stress, σxx. However, in order to accurately describe the shear
and normal transverse stresses σxz and σzz, higher-order theories, such as ED3 and ED4, are
required.

• Depending on the structural domain of interest, multi-theory models allow us to enrich the solution
in a smart and efficient manner. Nevertheless, accurate analysis may require attentive distribution
of the kinematics approximation through the problem domain. For example, although CaseE
and CaseF models have the same number of DOFs and according to Fig. 10, the distribution
of the transverse displacement w through the thickness can vary significantly. Contrarily, the
in-plane stress σxx is not sensitive to variable-kinematic modeling, see Fig. 11.

• As further guidelines, it is clear from Fig. 12 that, as far as the accuracy on the transverse shear
stress σxz is concerned, higher-order approximation theories must be placed close to the bound-
aries. This is the case of the CaseB model and mono-theory models ED3 and ED4. Contrarily,
if good approximation of the transverse normal stress σzz is needed, the model kinematic order
must be enriched in the loading zone. Except for CaseB configuration and mono-model ED1,
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all the other cases have a good behaviour in terms of σzz, see Fig. 13. It has to be noticed that
CaseA and CaseC to CaseF , have the same accuracy as the reference mono-theory model ED4.
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Figure 10: Transverse displacement
w(x; y) = w(a/2; b/2). Isotropic plate.
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Figure 11: In-plane stress σxx(x; y) =
σxx(a/2; b). Isotropic plate.
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Figure 12: Transverse shear stress
σxz(x; y) = σxz(0; b). Isotropic plate.

Figure 13: Transverse normal stress
σzz(x; y) = σzz(a/2; b). Isotropic plate.

For the sake of completeness, the distribution of transverse shear stress σxz, see Fig. 14, and
transverse normal stress σzz, see Fig. 15, along the in-plane x axis are given. The results demonstrate
that the CaseA model can represent the transverse shear stress σxz accurately only in the loading
zone. On the other hand, the same model gives an error of approximately 28% in the remaining
part of the domain with respect to CaseB and ED4 models. Regarding the transverse normal stress
σzz distribution along x, it is evident that higher-order models are required to describe the solution
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correctly. Even in this case, CaseA model can represent a correct behaviour in the loading zone only.
For consistency reasons, a convergence analysis with respect to the size of the transition elements is
made for the analysis cases discussed in Figs. 14 and 15. The convergence analysis is performed keeping
the same mesh of the original cases, but reducing the size of the transition elements in the x direction.
The original size of the transition zone is Elx = 0, 25 m, whereas in the convergence analysis proposed
in Fig. 16 transition zones as long as 0.03 m and 0.15 m are chosen. From the convergence analysis,
it is clear that, in the case of σxz stress component, increasing oscillations of the solution appear as
the size of the transition zone is reduced. On the contrary, the solution in terms of transverse normal
stress σzz is much smooth if short transition zones are employed. Nevertheless, it must be underlined
that the stress field within the inner local region of the analysis domain is not influenced by the choice
of the length of the transition zone.
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Figure 14: Transverse shear stress
σxz(y; z) = σxz(b; 0) along the beam axis.
Isotropic plate.
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(a) Transverse shear stress σxz(y; z) = σxz(b; 0)
along the beam axis.
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Figure 16: Convergence analysis of the transition elements for the transverse shear and normal stresses
along the beam axis.

Finally, in order to show the 3D capabilities of the proposed methodology, the three-dimensional
distribution of the shear stress σxz and the normal stress σzz are shown in Figs. 17 and 18, respectively,
where the results from a solid model by MSC/NASTRAN are compared with ED4 single-theory plate
model and CaseA and CaseB multi-theory models. From a comparison of the proposed variable-
kinematic models with respect to the ED4 plate model and the solid solution, it is possible to observe
a possible reduction of DOFs equal to 18% and 99%, respectively. Moreover, if accurate solutions are
needed only in localized zones of the structure, even more efficient models can be implemented with
the present approach.
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(a) MSC/NASTRAN 3D SOLID model (b) ED4

(c) CaseA multi-theory model (d) CaseB multi-theory model

Figure 17: Three-dimensional representation of the transverse shear stress σxz. Isotropic plate.
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(a) MSC/NASTRAN 3D SOLID model (b) ED4

(c) CaseA multi-theory model (d) CaseB multi-theory model

Figure 18: Three-dimensional representation of the transverse normal stress σzz. Isotropic plate.

4.2 Eight-layer cantilever plate

A cantilever eight-layer plate is analysed as the second example and it is shown in Fig. 19. The structure
is loaded at the free end with a concentrated load equal to Pz = −0.2N . The geometrical dimensions
are: a = 90mm, b = 1mm, h = 10mm. The mechanical properties of the material labeled with the
number 1 are: EL = 30GPa, ET = 1GPa, GLT = GTT = 0.5GPa, νLT = νTT = 0.25. On the
other hand, the mechanical properties of the material labeled with the number 2 are: EL = 5GPa,
ET = 1GPa, GLT = GTT = 0.5GPa, νLT = νTT = 0.25. As clear from Fig. 19, the material stacking
sequence is [1/2/1/2]s.

First, a convergence study on a single-theory plate model was performed. As far as an ED4 model
is concerned and as shown in Table 3, a mesh grid of 12 × 2 elements is enough to ensure convergent
results. Various node-variable kinematic CUF models have been used to perform the global/local
analysis of the proposed plate structure, and they are depicted in Fig. 20. These models are compared
in Table 4 with lower- to higher-order single-theory models as well as with various solutions from
the literature, including an analytical solution based on the 2D elasticity as presented in Lekhnitskii
[60]. It can be observed that mono-theory models with lower expansion order, ED1 and ED2, yield
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good results for the transverse displacements w and the in-plane stress σxx. However, in order to
accurately describe the shear transverse stresses σxz, higher-order mono-model theories, ED3 and
ED4, are required. Nevertheless, accurate solutions in localized regions/points can be obtained by
using variable kinematics, see CaseA to CaseC.

Figure 19: Reference system of
the eight-layer plate with con-
centrated loading. The mate-
rial lamination scheme is indi-
cated with label 1 and label 2.

Figure 20: Multi-theory models of the eight-layer plate by
finite plate elements with node-dependent kinematics.

Table 3: Convergence study versus the number of elements of the ED4 single-theory model of the
eight-layer cantilever plate. Transverse displacement w = −102 × w(a, b/2, 0), in-plane principal stress
σxx = 103 × σxx(a/2, b/2,+h/2), transverse shear stress σxz = 102 × σxz(a/2, b/2, 0).

Mesh 2 × 2 4 × 2 6 × 2 8 × 2 10 × 2 12 × 2

ED4
w 3.029 3.029 3.029 3.028 3.028 3.028
σxx 684 723 729 730 731 731
σxz 3.054 2.829 2.820 2.821 2.822 2.822
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Table 4: Eight-layer cantilever plate. Transverse displacement w = w(a, b/2, 0), in-plane normal stress
σxx = σxx(a/2, b/2,+h/2), transverse shear stress σxz = σxz(a/2, b/2, 0) by various single- and multi-
theory models.

(−102)w (103)σxx (102)σxz DOFs

Reference solutions

Nguyen and Surana [61] 3.031 720
Davalos et al. [62] 3.029 700

Xiaoshan [63] 3.060 750
Vo and Thai [64] 3.024
Lekhnitskii [60] 730 2.789

Present single- and multi-theory models

LD4 3.030 730 2.789 12375
ED4 3.028 731 2.822 1875
ED3 3.027 731 2.822 1500
ED2 2.980 731 2.005 1125
ED1 2.981 729 2.000 750

CaseA 3.004 867 2.248 1320
CaseB 3.010 737 2.781 1365
CaseC 3.002 731 2.030 1305

Some results in terms of transverse displacement w, transverse shear stress σxz and in-plane stress
σxx along the thickness are represented in Figs. 21, 22 and 23, respectively. Some more comments can
be made:

• As shown in Fig. 21, the through-the-thickness distribution of the transverse displacement w,
evaluated at the free tip of the plate, is correctly predicted by a third-order model. The same
accuracy cannot be reached by the proposed models with node-variable kinematics.

• Figure 22 shows that the transverse shear stress σxz, evaluated at the mid-span of the plate, is
very sensitive to the position of the transition variable-kinematic elements. CaseB model has
the same accuracy as mono-model ED3 and ED4. On the contrary, the CaseC configuration
has poor accuracy like mono-models ED1 and ED2. Finally, CaseA model presents a good
compromise between the other two multi-theory cases.

• The in-plane stress σxx is not sensitive to variable-kinematic modeling, except for the CaseA
configuration where the transition elements are acting at the evaluation position, see Fig. 23.

By the evaluation of the various node-variable kinematic models, it is clear that an accurate repre-
sentation of the stresses in localized zones is possible with DOFs reduction if an accurate distribution
of the higher-order kinematic capabilities is performed. On the contrary, the accuracy of the solution
in terms of displacements values depends on the global approximation over the whole structure. The
efficacy of the DOFs reduction in variable-kinematics and global/local models, thus, depends on the
characteristics of the problem under consideration as well as on the required analysis type.
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Figure 21: Transverse displacement
w(x; y) = w(a; b/2). Eight-layer compos-
ite plate.
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Figure 22: Transverse shear stress
σxz(x; y) = σxz(a/2; b/2). Eight-layer
composite plate.
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Figure 23: In-plane stress σxx(x; y) =
σxx(a/2; b/2). Eight-layer composite
plate.

4.3 Simply-supported cross-ply composite plates

A simply-supported composite plate is analysed as the final example. The geometrical dimensions are:
a = b = 0.1m, the side-thickness ratio is a/h = 10. Symmetric [0◦/90◦/0◦] and anti-symmetric [90◦/0◦]2
stacking sequences are considered. The material employed is orthotropic with he following properties:
EL = 132.5GPa, ET = 10.8GPa, GLT = 5.7GPa, GTT = 3.4GPa, νLT = 0.24, νTT = 0.49. The plate
is simply-supported and a localised uniform transverse pressure, P = 1MPa, is applied at top face on
a square region of side length equal to a/5 × b/5 and centered at the point (a/2, b/2), see Fig. 24.
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A convergence study versus the FE element size, i.e. the number of elements, is performed for the
models considered in this paper and the [0◦/90◦/0◦] lamination is considered. In order to compare the
results with other solutions present in literature [34], the mid-plane domain of the plane structure was
subdivided into five zones along the axes x and z and they are shown in Fig. 24. The results from
the convergence analysis are shown in Table. 5 and they are given in terms of transverse displacement
w and in-plane normal stresses σxx, σyy evaluated at (a/2, b/2,−h/2), and transverse shear stress σxz
evaluated at (5a/12, b/2, 0). As it is clear from this preliminary analysis, a non-uniform mesh grid of
20 × 20 elements ensures the convergence of the solution.

Figure 24: Cross-ply laminate subjected to localized pressure load and related FE mesh discretization
into 5 zones.
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Table 5: Convergence study with a ED4 plate element. Composite cross-ply symmetric plate with
(0◦/90◦/0◦) lamination.

(−105)w σxx σyy (−10)σxz DOFs

Mesh 10 × 10
zone1 zone2 zone3 1.661 12.493 2.187 5.977 6615
2 × 2 2 × 2 2 × 2

Mesh 16 × 16
zone1 zone2 zone3 1.660 12.057 2.025 5.754 16335
3 × 3 3 × 3 4 × 4

Mesh 20 × 20
zone1 zone2 zone3 1.660 12.058 2.026 5.756 25215
4 × 4 4 × 4 4 × 4

Mesh 12 × 12
zone1 zone2 zone3 1.660 12.054 2.024 5.744 9375
2 × 2 2 × 2 4 × 4

Mesh 16 × 16
zone1 zone2 zone3 1.660 11.972 2.012 5.853 16335
2 × 2 2 × 2 8 × 8

Mesh 20 × 20
zone1 zone2 zone3 1.660 11.956 2.008 5.847 25215
2 × 2 2 × 2 12 × 12

For the three-layer plate structure with [0◦/90◦/0◦] stacking sequence, mono-theory models are
compared with those from the present global/local approach in Table 6. The table shows that mono-
theory models with lower expansion order, ED1 and ED2, are not able to describe appropriately the
transverse displacements w and the in-plane stresses σxx and σyy. To accurately describe the shear
transverse stresses σxz, higher-order theories are required. Table 6 also show solutions from various
node-variable kinematic CUF models with global/local capabilities used to perform the analysis of the
proposed plate structure, and they are depicted in Fig. 25, where the mesh grid of a quarter of the plate
is analysed. The two cases named as CaseA and CaseB are equivalent to the models (ED1−ED4)A

and (ED3 − ED4)B taken from [34] and in which, via the Arlequin method and 4-node Lagrangian
plate elements, a fourth-order plate theory is used in correspondence of the loading and a first- and
third-order kinematics is used outside the loading zone, respectively.
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Table 6: Composite plate with [0◦/90◦/0◦] lamination. Transverse displacement w = w(a/2, b/2,−h/2),
in-plane normal stresses σxx = σxx(a/2, b/2,−h/2) and σyy = σyy(a/2, b/2,−h/2), and transverse shear
stress σxz = σxz(5a/12, b/2, 0) by various single- and multi-theory models.

(−105)w σxx σyy (−10)σxz DOFs∗

Reference solutions [34]

3D 1.674 11.94 2.019 6.524
LD4a 1.675 11.94 2.020 6.523 39
LD4 1.672 11.83 1.983 6.464 9984
ED4a 1.660 11.95 2.005 5.865 15
ED4 1.657 11.85 1.985 5.830 3840

(ED1 − ED4)A 1.609 11.92 1.962 5.848 2448
(ED3 − ED4)B 1.657 11.84 1.985 5.831 3936

Present single- and multi-theory models

ED4 1.660 11.96 2.008 5.847 6615
ED3 1.659 11.99 2.116 6.015 5292
ED2 1.562 10.19 1.794 3.852 3969
ED1 1.495 10.29 2.100 3.755 2646

CaseA 1.604 12.01 1.982 5.851 5247
CaseB 1.660 11.96 2.008 5.847 6159
CaseC 1.526 11.73 1.945 4.941 4167
CaseD 1.577 11.81 1.951 4.997 4983
CaseE 1.566 11.79 1.946 5.004 4527
CaseF 1.604 12.01 1.981 5.852 4887

∗ : for a fair comparison with reference solutions, DOFs are given for

one quarter of the plate structure

25



Figure 25: Graphical representation of the multi-theory models of the cross-ply plate structure.

Some results in terms of transverse displacement w, in-plane stress σxx and transverse shear stress
σxz along the thickness are represented in Figs. 26, 27, and 28. The following remarks can be made:

• The transverse displacement w behaviour can change sensitively depending on the distribution of
the kinematic enrichment within the structure plane. Table 6 and Fig. 26 show that CaseB has
the same accuracy as the full higher-order ED4 model with a 8% DOFs reduction. Moreover,
CaseF configuration has the same accuracy as CaseA with a 7% DOFs reduction. On the other
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hand, CaseD is not so accurate, even though it makes use of the same number of DOFs as
CaseF .

• All the model proposed provide good approximation as far as the in-plane stresses distributions
are concerned, see Fig. 27.

• For the evaluation of the transverse shear stress σxz, higher-order models are necessary in the
regions close to loading zone. In fact, configurations CaseA and CaseB have the same behaviour
as the mono-model theory ED4, meanwhile the other variable-kinematics configurations have a
loss in accuracy, see Fig. 28.
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Figure 26: Transverse displacement
w(x; y) = w(a/2; b/2). Composite 3 lay-
ered plate.
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Figure 27: In-plane stress σxx(x; y) =
σxx(a/2; b/2). Composite 3 layered plate.

27



-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

σ-xz

z

ED4
CaseA
CaseB
CaseC

CaseD
CaseE
CaseF

Figure 28: Transverse shear stress
σxz(x; y) = σxz(5a/12; b/2). Composite
3 layered plate.

Results in terms of transverse shear stress σxz and transverse normal stress σzz along the in-plane x
axis are represented in Figs. 29 and 30, respectively. It has to be noticed that for the transverse shear
stress σxz the CaseA and CaseC models are able to represent an accurate solution only in the loading
zone, but for the major part of the plate length there is a 47% error with respect to CaseB model
and mono-theory model ED4. For transverse normal stress σzz, all the modelling configurations lead
to accurate results which are close to the mono-model ED4 solution.
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Figure 29: Transverse shear stress
σxz(y; z) = σxz(b/2; 0) along the plate
axis x. Composite 3 layered plate.

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  10  20  30  40  50  60  70  80  90  100

σzz

x

ED4
Case A
Case B
Case C

Figure 30: Transverse normal stress
σzz(y; z) = σzz(b/2; 0) along the plate
axis x. Composite 3 layered plate.

Figures 31 and 32 show the three-dimensional distributions of the transverse shear stress σxz and
transverse normal stress σzz from the mono-theory model ED4 and the variable-kinematic CaseA
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configuration. Again, the results show the enhanced global/local capabilities of the CaseA model,
which is able to predict correctly the stress state in the loading zone.

(a) ED4 (b) CaseA multi-theory model

Figure 31: Transverse shear stress σxz. Composite 3 layered plate.
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(a) ED4 (b) CaseA multi-theory model

Figure 32: Transverse normal stress σzz. Composite 3 layered plate.

The anti-symmetric [90◦/0◦]2 plate structure is finally considered, and some results are listed in
Table 7. As in the previous analysis case, mono-model theories with lower expansion orders are not able
to characterize the transverse displacements w and the in-plane stresses σxx and σyy. The description
of the shear transverse stresses σxz at the interface between the second and third layers is not accurate
in the case of ESL models, despite the approximation order. In fact, a layer-wise approximation is
needed in this case to capture the complex three-dimensional behavior of the stress state. Nevertheless,
Table 7 also shows the solutions from various node-variable kinematic CUF models, and they are the
same as in the previous analysis case of the three-layer structures. Analogously as made in Table 6,
even in this case the solutions from the present approach are successfully compared with those from
[34], where the Arlequin method was used for global/local analysis.
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Table 7: Composite plate with [90◦/0◦/90◦/0◦] lamination. Transverse displacement w =
w(a/2, b/2,−h/2), in-plane normal stresses σxx = σxx(a/2, b/2,−h/2) and σyy = σyy(a/2, b/2,−h/2),

and transverse shear stress σ
L2/L3
xz = σxz(5a/12, b/2, 0+/−) by various single- and multi-theory models.

(−105)w σxx σyy (−10)σL2
xz (−10)σL3

xz DOFs

Reference solutions [34]

3D 1.719 11.28 1.823 6.104 6.104
LD4a 1.719 11.28 1.824 6.145 6.104 51
LD4 1.717 11.17 1.802 6.118 6.069 13056
ED4a 1.700 11.28 1.789 8.267 4.931 15
ED4 1.698 11.19 1.778 8.214 4.899 3840

(ED1 − ED4)A 1.746 10.95 1.750 8.262 4.928 2448
(ED2 − ED4)B 1.668 11.20 1.778 8.259 4.926 3192

Present single- and multi-theory models

ED4 1.700 11.29 1.793 8.237 4.913 6615
ED3 1.677 10.99 1.914 8.439 5.034 5292
ED2 1.602 9.574 1.505 5.746 3.427 3969
ED1 1.525 9.966 1.712 5.680 3.388 2646

CaseA 1.650 11.29 1.792 8.238 4.914 5247
CaseB 1.668 11.31 1.794 8.239 4.914 6159
CaseC 1.556 11.16 1.745 7.573 4.517 4167
CaseD 1.622 11.19 1.758 7.567 4.514 4983
CaseE 1.604 11.18 1.756 7.567 4.514 4527
CaseF 1.640 11.29 1.777 8.185 4.883 4887

∗ : for a fair comparison with reference solutions, DOFs are given for

one quarter of the plate structure

The distributions of the transverse displacement w and the transverse shear stress σxz along the
thickness are represented in Figs. 33 and 34. Moreover, three-dimensional representations of the stress
state components σxz and σzz are shown in Figs. 35 and 36, where a multi-theory model is compared
to the full ED4 model. All the results confirm the previous comments an the efficacy of the proposed
formulation.
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Figure 33: Transverse displacement
w(x; y) = w(a/2; b/2). Composite 4 lay-
ered plate.

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2  0.3  0.4  0.5

σ-xz

z

ED4
CaseA
CaseB
CaseC

CaseD
CaseE
CaseF

Figure 34: Transverse shear stress
σxz(x; y) = σxz(5a/12; b/2). Composite
4 layered plate.
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(a) ED4 (b) CaseA multi-theory model

Figure 35: Transverse shear stress σxz. Composite 4 layered plate.
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(a) ED4 (b) CaseA multi-theory model

Figure 36: Transverse normal stress σzz. Composite 4 layered plate.

5 Conclusions

A new methodology for global/local analysis of metallic and composite plate structure has been intro-
duced in this paper. This approach makes use of advanced finite plate elements with node-dependent
kinematics, which are formulated in the domain of the Carrera Unified Formulation (CUF). By em-
ploying CUF, in fact, the finite element arrays of the generic plate element are formulated in terms of
fundamental nuclei, which are invariants of the theory approximation order. In this manner, the plate
theory can vary within the same finite elements with no difficulties. Thus, given a finite element model,
the theory approximation accuracy can be enriched locally in a very straightforward manner by enforc-
ing the same kinematics at the interface nodes between kinematically incompatible plate elements. The
resulting global/local approach is very efficient because it does not employ any mathematical artifice
to enforce the displacement/stress continuity, such as those methods based on Lagrange multipliers or
overlapping regions. Thus, the stiffness matrix of the variable kinematics element preserves the impor-
tant numerical properties of the usual finite element arrays, is definite positive, and is rank sufficient
(i.e., it does not possess any zero-energy kinematic modes other than rigid body modes).

The proposed methodology has been widely assessed in this paper by analysing metallic and compos-
ite plates and by comparison with solutions from the literature and those from finite element commercial
tools. Future developments will deal with the extension of this global/local methodology to hierarchical
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shell theories and layer-wise methods.
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