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ANALYSIS OF NON-LINEARLY LOADED ANTENNAS AND SCATTERERS.

(+) (++)
C.NALDI , R.ZICH and F.FILICORI

ABSTRACT. A very efficient numerical technique for the analysis of non-line
arly loaded antennas and scatterers is proposed.It is based on a generaliza
tion of the pilecewise harmonic balance method, which overcomes the need to
examine the complete transient development in the time domain.The algorithm
enables the analysts of multiport nonlinearities expressed even in implicit
form and appears to be extremely useful even with strong nonlinearities.
This approach is found to be highly recommended for applications which only
require the steady-state responses such as co-operative targets and environ
mental measurement techniques. An example of application is given.

INTRODUCTION

At present there is considerable interest in developing effici-
ent methods for the analysis of non-linearly loaded antennas.This problemis
of importance since non-linear effects must be taken into account in systems
of antennas which include semiconductor components,integrated circuits and
voltage limiters with very strong incident fields such as those produced by
lightning or by NEMP (Nuclear ElectroMagnetic Pulse) [1] .Moreover,some field
measurement techniques such as the EDM (Energy Density Meter) now being deve
loped at the National Bureau of Standards [Z]Hmke use of short dipoles loa-
ded by a diode.It must also be noted that some radar applications with co-o
perative targets are based on the use of non-linearly ‘loaded scatterers [3].
Examples are provided by the transponders with frequency duplication, used
in anti-collision systems [4]in.order to distinguish between the required
signal and the clutter coming from the environment.

The behaviour of an antenna or a scatterer non-linearly loaded
can be determined either in a strictly theoretical way (expansion in the Vol
terra series) or directly using suitable numerical techniques. The first me-
thod is particularly useful when special kinds of non-linearities must be
handled, but the Volterra series, in its classic formulation, are of practi
cal use only when dealing with nonlinearities that are not too strong. On
the other hand the time domain direct integration of the differential equa-
tions of the system in the case of high frequency devices and with time con
stants much greater than the period of the signal can be found to be numeri
cally impracticable owing to the excessive time necessary. In some applica-
tions, such as some kinds of co-operative scatterers, where steady-state re
sponses are concerned, techniques that do not require the whole computation
of the transient can be applied. These techniques have been recently develo
ped in the field of power microwave devices.

Whichever method is used, it is necessary to accurately characte
rize the antenna on a very wide frequency range, in some cases up to sixteen
times the excitation frequency. This can be done if: i) a high number of ex
perimental data are available, ii) it is possible to define an accurate equi
valent circuit and iii) efficient numerical techniques for analyzing the
radiating structures exist.

The study of the behaviour of non-linearly loaded antennas can
be be described as an electric circuit analysis ptoblem with characteristics
of non-linearity and reactivity, and in periodic steady-state conditions.
The analysis techniques normally used are based on the numerical integration
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in the time domain of the non-linear differential equations describing the
network behaviour.In the case of strongly non-linear loads,such as a junction
diode with exponential characteristics and breakdown phenomena, and in the
case of microwave devices,where time constants may be present much longer
than the period of the signal, direct integration could be too expensive in
terms of computing time. In the applications where steady-state response is
required,techniques can be adopted that do not need the complete knowledge
of the transient phenomenon; namely shooting and extrapolation methods, me-
thods based on the Volterra series analysis and harmonic balance methods.

GENERALIZED FORMULATION OF HARMONIC BALANCE

In the framework of harmonic balance methods a more general
formulation can be defined which allows strongly non-linear multiports(which
can also be described through implicit equations) to be taken into account
and leads to numerical algorithms quite fast even with hard non-linear con-
straints.

The whole network is split so that a subnetwork
composed only of linear elements is connected to
other subnetworks which include all the non-line
LINEAR ar elements (fig.1). It should be noted that a
circuital model is not strictly indispensable,in
fact the partitioning can be directly effected
on the differential equations describing the sy-
stem. Let zjt) and i}t) be the vectors of the e-
lectrical variables at the connection ports and
T the period of the foundamental component of the
forcing terms represented by the equivalent gene
rators x(t). Let the non-linear subnetworks be described by a set of non-1li-
near equations in the form :

(r)

(t),_i_(t),i(t),..._i_(s)(t)] =0 (1)

Vt , O<t<T

£v(®),v(0),...y

Taking into account that the same variables could be used to represent the
linear part of the antenna circuit in the frequency domain,it is :

H(w) V(w) + K(w) I(w) = X(w) (2)
with : = [L(w),V(w),X(w)] =F [i(t),v(t),x(t)]

H(w) and K(w) being suitable network matrices. The analysis problem consists
of solving simultaneously the system of equations (1) and (2).

When the electrical variables in the non-linear equations (1)
are expressed as Fourier series, the linear equation can be used to elimina-
te one of the two types of variables (voltages or currents); the analysis pro
blem may thus be reduced to the search for the solution of a set of non-line
ar time-varying equations in the form :

g[I(w) ,X(w) ,t] = 0 ; V¥Vt , OKt<T (3)
As an example of a possible procedure in equation (3) the unknown variables
are the harmonic components I(w) of the currents at the interfaces with the
non-linear subnetwork. Taking into account that, under the hypothesis of a
steady state response, the time functions are periodic too and can be expres
sed as Fourier series, the system of eqns (3) takes the form :

G[I(w), X(w)] = 0 (4)

with G = 57[g] . If N is the maximum number of harmonics necessary to corre
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ctly represent the electrical variables(according to Shannon's theorem) and

,if M is the number of connecting ports (fig.l), the system of equations (4)

is made up of M(N+1) non-linear time-independent equations. The unknown va-

riables may be represented, for example, by the (N+1) harmonic components of

the currents at the M interfaces; the term X(w) can be considered as parame

ter of the system. The system can be solved ¢ efficiently by using, for instan
ce, the Newton-Raphson iterative technique which has a second order conver-

gence rate.

By using the algorithm :

= 5
. T 13] ij BIj (5)

(I"""-1I") =-G(I") with: 5} + [a, =

(3_9) k+1 _k k , ie aGi
9T / .k

and i,j = 1 + M(N+1), the problem is reduced to the search for the solution
of a sequence of linear systems such that the matrix of the coefficients can
be evaluated numerically or analytically, the unknowns being the differences
between the variables at two successive iterations (k and k+1). When expres-
sed in this form the method becomes essentially similar to the Volterra -se
ries iterative application method recently proposed by Benedetto and Blglle
ri [5] . There is in fact a close relation between the iterative process
which solves time varying linear systems and the successive linearizations
operated in the system (4) by applying the Newton-Raphson algorithm (5).
However, the method proposed here does have the advantage of greater genera
lity and flexibility since it is possible to deal with non-linear elements
described by equations in implicit form. It is also possible to reach a con
siderable degree of reliability of convergence by using a solution algorithm
which operates by gradually increasing the signal amplitude.

CONVERGENCE AND LOCAIL, MINIMA PROBLEMS

The algorithm (5) has a second order convergence rate provided that
an accurate starting-point for the iterative process is chosen. In the case
of strong non-linearities a choice of EP which is not close enough to the
rue value may easily lead iterative process towards undefined domains of G
(for instance, the "overflow" domain) or it may not converge. Moreover, if
the number of variables M(N+1) is high it is likely that the process will
stop at a local minimum which is not zero.

To overcome these difficulties the problem of solving system (5)
with the parameter X(w) can be transformed into a sequence of problems with
the same structure, but with different values of the signal amplitude, that
is, with the parameter:

X(w) = X (w) + o [ X (0 - xT(w)] 0 ag 1 (6)

where §F(w) and g?(w) are the initial and final values of the vector of the
forcing terms and 0 is a number ranging from_ O to 1.Usually a solution of
(5) is known for a particular value X(w) = X (w), for example, for zero si-
gnal amplitude. By starting from this value and increasing step-by-step the
value of o, the direct search for the solution of system (4) can be split
into a sequence of solutions of well-conditioned systems. In fact, every so
lution obtained with a particular signal amplitude (o =dg) is a good star
ting point for the system having a slightly higher signal ( & =o0g+Aa ) . In
this way convergence problems are eliminated and the whole process is spee-
ded up. The technique described can be refined by improving the prediction
of the correct starting point for the iterative process, using an extrapola
tion procedure on the solutions obtained for weaker signals. It should be no
ted that this procedure provides, as a further result, the responses of the
system for different values of the input signal amplitude.
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ANALYSIS OVER A GIVEN FREQUENCY RANGE

It is often necessary to know the behaviour of the system within a
frequency range. The hypothesis of a monochromatic signal, on which all the
methods proposed are based, makes it necessary to repeat the non-linear a-
nalysis for the frequency values required. The step-by-step procedure pro-
posed for the gradual modification of the signal amplitude can be generali
zed to allow for the analysis over an entire frequency range. In fact, each
function G in system (4) besides being a function of the vector of the un-
knowns I(w) and the vector of the impressed terms X(w) , is also a function
of a vector §_representing the state of the network, that is, the values of
the parameters of the network, the bias condition and the value of the fun-
damental angular frequency wgo , that is:

§ =61, X(w) ,E&]

If an analysis with variable frequency is required, let £=wo and
perform the_analysis of the network by means of the sequence (6), for a va
lue of w=wWw" corresponding to one end of the frequency range. When 0 =1 the
value of fundamental frequency is gradually modified:

I F
wo=wo+8(wo—w§) 0 <BK!1

where therarameter B may vary step-by-step until the other end of the ran
ge Wo =wWwp is reached. This second step of the analysis corresponds to a
sweeping of the signal frequency with the same amplitude. This procedure is
very efficient in terms of computing time because the problem of the non-1i
near analysis need not be solved starting from scratch for each new frequen

cy.

STRAIGHT-WIRE ANTENNA WITH A NON-LINEAR LOAD

As an example of application of the proposed method, a straight-wi
re antenna of length h and diameter 2a has been considered; the antenna is
conncted at center to a non-linear load (fig.2).

’ — -
i -f
2N S
' v v
U Fig.2

In this simple case, the linear subnetwork is given by the antenna itself
and the connecting section reduces to a single port, so that the network un
knowns are directly given by V(w) and I(w), that is the voltage and the cur
rent at the antenna and load terminals. Assuming a monochromatic incident
field al frequency fo = 100 MHz, the antenna circuit can be represented by a
Thévenin equivalent circuit as represented in fig.2 , where E(w) = X(w) =
57[Eosin(not] is the open-circuit voltage produced by the incident field.

In order to obtain numerical results, the network analysis program
has been interfaced with a program for the analysis of wire-antennas based
on the solution of the integral equation for the wire current via the mo-
ment's method [7] with triangular test and expansion functions. Since the
knowledge of the admittance is required over a large band, the number of the
triangular functions is depending upon the wavelength and the required pre
cision (segment basis <A/20). For convenience in examining the circuit be
haviour, the values of the network quantities, that is the real and imagi
nary part of the admittance Y(w) =G(w) +j X(w) are shown in fig.3 for an an
tenna with h=1.5m and a=0.0025m.
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The load is a backward diode with i=1i(v) given in fig.4 and with the non-1i
near transition capacitance C=C(v) of fig.4. A parallel inductance, included
in the linear part of the circuit together with the parasitic diode elements
has been introduced to assure the short circuit condition for the DC current.
The results are given in fig.5, which present the harmonic containt in terms
of back-radiated power versus the incident available power. The frequency ana
lysis algorithm has been used to investigate the circuit behaviour in the ran
ge 95+105 MHz for a given incident available power.
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