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The Importance of Worker Reputation Information
In Microtask-Based_rowd Work Systems

Alberto Tarable, Alessandro Nordio, Emilio Leonardi, Mar&jmone Marsan

Abstract—This paper presents the first systematic investigation
of the potential performance gains for crowd work systems,
deriving from available information at the requester about
individual worker reputation. In particular, we first forma lize
the optimal task assignment problem when workers’ reputaton
estimates are available, as the maximization of a monotoneyb-
modular) function subject to Matroid constraints. Then, being
the optimal problem NP-hard, we propose a simple but efficien
greedy heuristic task allocation algorithm. We also propos a
simple “maximum a-posteriori” decision rule and a decision
algorithm based on message passing. Finally, we test and cpare
different solutions, showing that system performance canrgatly
benefit from information about workers’ reputation. Our mai n
findings are that: i) even largely inaccurate estimates of wders’
reputation can be effectively exploited in the task assignent
to greatly improve system performance; ii) the performance
of the maximum a-posteriori decision rule quickly degrades
as worker reputation estimates become inaccurate; iii) whe
workers’ reputation estimates are significantly inaccurae, the
best performance can be obtained by combining our proposed
task assignment algorithm with the message-passing deasi
algorithm.

Index Terms—Human-centered computing, Human informa-
tion processing, Systems and Information Theory

|. INTRODUCTION

used to determine the correct tas#ution through adecision
rule. A well-known example of such systems is Amazon
Mechanical Turk(MTurk), which allows the employment of
large numbers ofow-wageworkers for tasks requiring human
intelligence (HIT — Human Intelligence Tasks). Examples of
HIT are image classification, annotation, rating and recom-
mendation, speech labeling, proofreading, etc. In the Amaz
Mechanical Turk, the workload submitted by the requester is
partitioned into severahicrotasks with a simple and strictly
specified structure, which are then assigned to (human)-work
ers. Since task execution is typically tedious, and the econ
reward for workers is pretty small, workers are not 100%
reliable, in the sense that they may provide incorrect arswe
Hence,in most practical caseshe same task is assigned in
parallel (replicated) to several workers, and then a migjori
decision rule is applied to their answers. A natural traffe-o
between reliability of the decision and cost arises; indégd
increasing the replication factor of every task, we gemeral
increase the reliability degree of the final decision abbet t
task solution, but we necessarily incur higher costs (arafo
given fixed cost, we obtain a lower task throughput). Althoug
the pool of workers in crowd work systems is normally large,
it can be abstracted as a finite set of shared resources,tso tha

Crowd work is a term often adopted to identify networkeéhe allocation of tasks to workers (or, equivalently, of kens
systems that can be used for the solution of a wide ranigetasks) is of key relevance to the system performance. Some
of Comp|ex prob|ems by integrating a |arge number of humé}elleve thatmicrotask-basedrowd work systems will prOVIde

and/or computer effort§ [1]. Alternative terms, each oneyea
ing its own specific nuance, to identify similar types of gyss
are: collective intelligence, human computation, masterker

a significant new type of work organization paradigm, and
will employ ever increasing[]2humbers of workers in the
future, provided that the main challenges in this new type of

computing, volunteer computing, serious games, votindp-proorganizations are correctly solved. (i [3] the authors idign

lems, peer production, citizen science (and otheks)entire
host of general-purpose or specialized online platformehs

as information-sharing platforms for recommendationg.(e.

a dozen such challenges, including i) workflow definition
and hierarchy, ii) task assignment, iii) real-time resmyng)
quality control and reputatiorAll these aspects can represent

Tripadvisor, Amazon), co-creation systems (e.g., Wikiped an interesting research subject and some of them have plread
Gnu project), social-purpose communities for urban mubili Stimulated a Iarg_e bulk of Iiteratur_e, as it will be detgilied _
(e.g., Waze), microtask-based crowd work systems, eto., dBe next subsection. However, this paper deals mainly with

be defined under these terms.

task assignment and with the quantitative assessment of the

In this paper, we specialize to microtask-based crowd wo@in (in terms of increased decision reliability for a given
systems.The key characteristic of these systems is that G®St) that a coarse knowledge of worker quality can offer.

requester structures his problem in a set tdsks, and then
assigns tasks taorkers that provideanswers, which are then
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Indirectly, thus, we deal also with worker reputation, aligh

we do not study mechanisms through which reputation is built
upon time. Indeed, we consider a one-shot approach in which
the requester has to assign a bunch of tasks to a pool of
workers that are statically divided intdasses according to
their probabilities of answering correctly. We highligimat

the way this division into classes is built is out of the scope
of this paper, although we will analyze the effect of errars i
this classification on the decision reliability.
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A. Previous work in the literature is weighted average, like, e.g.,[in/[10].

In current online platforms, task assignment is either im-
plemented through a simple first-comeffirst-served rule, or

according to more sophisticated approaches. In MTurk, theThere is a wide literature about workers’ motivation and
requester can specify the number of workers to be assignegdgutation. Regarding motivation, many studies reporteexp
each task. MTurk also gives requesters the possibility 8f diments conducted on MTurk as a paradigm of microtask-
missing low-quality answers, so that each experienced &vorlpased crowd work platform. Classical studies of offline work
is characterized by an approval rating. As a consequenee, gBveal that workers try to understand which activities are
requester is also allowed to prescribe a given qualificatigyetter rewarded and tend to prefer those, virtually exclud-
level for workers to be able to access her tasks. An analyfig others [[16]. However, in the context of crowdsourcing
of the correlation between MTurk approval rating and workejystems, mixed results have been shown about the effect of
quality is performed in[[4]. In the scientific community, theeconomic incentives on the quality of workers’ outplits [17]
task assignment in crowdsourcing systems has recently b¢gp]. These studies highlight the importance of intrinfica
formalized [5]-[8] as a resource allocation problem, urtfier non-economical motivations such as the feeling of contiriigu
assumption that both tasks and workers are indistinguishaliowards a greater good, non-financial awards and recogaitio
On the worker side, this assumption is motivated by the fagécomplishing tasks that appear meaningful. An attempt of a
that the implementation of reputation-tracing mechanifmns systematic model of crowdsourcing workers with respect to
workers may be challenging, because the workers’ pool is typhancial incentives is proposed Ky [23], in which experitsen
ically large and highly volatile. A step ahead has been rgencarried out on MTurk reveal that a monetary bonus is effectiv
made in [9], which proposes an adaptive online algorith@hen it is large enough compared to the base payment, while
to assign an appropriate number of workers to every tasksaves money with respect to a generalized increase of the
so as to meet a prefixed constraint on the problem solutiRfiter, for the same answers’ quality. Reputation mechasis
reliability. Like in this paper, in[[9] workers are partitied are an important tool for crowdsourcing systems amd are
in different classes, with workers within each class megtinctive already in many online platforms. For example, Upk\Vor
a specified reliability index. However, unlike this papéret implements a feedback system, which is bidirectional (wosk
allocation algorithm of [[9] is adaptive, i.e., it is based ORote requesters and vice versa). While Upwork distributes
previous answers on the same set of microtasks: an assumpii@ger and more complex tasks, in microtask-based plagprm
that, although certainly interesting, implies a time-aeming  feedback is more limited. As already said, MTurk charazesi
overall process of task accomplishment. The same adapiiMg workers with an approval rating. In the scientific litera,
approach is followed in [10], where a bandit-based algorith examples of algorithms that incorporate auditing processe
adopted to allocate heterogeneous tasks to workers wikh taip a sequence of task assignments for worker reputation
dependent skills. Given a pool efquestions[[111] investigates assessment can be found in[24]2[30]. [n][31], a dynamical
how k questions therefrom should be assigned to a workerreputation mechanisms is devised for a crowd composed of
Most real-world crowdsourcing systems typically implethree types of workers: altruistic, malicious and ratioral
ment a majority-based decision rule to obtain task solstioris shown in [[31] that, with a proper dimensioning of the
In the last few years, in the scientific literature, smartdinancial rewards and penalties, the probability of an audit
decision rules have been proposed to improve the performawhere the requester herself executes the task) tends @o zer
of crowdsourcing systems, for the case where no a-priddiore in general,[[32] studies the impact of malicious wosker
information about workers’ reputation is available (i.@rkers on the performance of crowdsourcing systems. It is recaghiz
are a-priori indistinguishable) while tasks are homogeisgo in [33] that the reputation of each worker must differergiat
difficult [5]—[B], [L2], [13]. Essentially the same decisio according to different types of task. In_[34], a task sinifiar
strategy was proposed inl![5].1[6] and! [8] for the case igraph is used to infer workers reliabilities for open tasks
which tasks require binary answers, and then recently deén based on their performance on completed tasks. An aspect
in [7] and, independently, in[[14], to the case in whicltlosely related to reputation is online workers’ qualityntol.
tasks require generic multiple-choice answers.[In [6], if7] Some systems, such as UpWork Worker Diary, make available
is shown that the improved decision rule can be efficienttp the requester periodic snapshots of workers’ computer
implemented employing a message-passing technique.|n [1&reens, to increase visibility on how the employed workers
an integrated estimation-allocation approach has been pame behaving. The impact of the so-called attention-check
sued with Bayesian inference and entropy reduction agyutiliquestions (trick questions inserted in a task in order tothes
function. Different methodologies based on the Expeatatioworker’s attention) is analyzed inl[4], where it is concldde
Maximization algorithm have been proposed[in|[18],/ [15]l Althat such questions are useful only for low-reliability wers
these algorithms exploit existing redundancy and coiiiat and may be counter-productive for high-reliability worker
in the pattern of answers returned from workers to infer aorkers’ quality control can be partly automated, and made
a-posteriori reliability estimate for every worker. Therided more effective by employing machine-learning techniqules |
estimates are then used to properly weigh workers’ answensinforcement learning [35][ [36]. Finally, regarding Wers’
When there is a-priori information about workers’ relidlyil organization,[[3[7] presents a comprehensive literatureesu
to the best of our knowledge, the only decision rule proposed human resource management in crowdsourcing systems.



B. Our contribution T1,T2,...,7r over{x1},i.e,,P{r, = +1} = % t=1,...,T.

Task assignment and reputation are central to this p‘.lelélryorder to o_btaln a reliable estimate of task outcomes, a
where we discuss optimal task assignment with approxim&fIUester assigns tasks to workers selected from a givan pop
information about the quality of answers generated by wsrkdation of sizeW, by querying each workev,,, w = 1,..., W
(with the term “worker reputation” we generally mean th@ Subset of tasks. . _
worker earnestness, i.e., the credibility of a worker'swaers _Each worker is modeled as a binary symmetric channel
for a given task, which we will quantify with an error proba{BSC) [39, p. 8]._ This means that worl_<erw, if qge_zned
bility). Our optimization aims at minimizing the probatyli about taskd,, provides a wrong answer with probabilipy.,,
of an incorrect task solution for a maximum number oftw € [0,1/2], and a correct answer with probability— p;.,.
tasks assigned to workers, thus providing an upper bouhBe error probabilitieg,,, are taken to be time-invariant and
to delay and a lower bound on throughput. A dual versid#enerally unknown to the requester.

of our .op.tir.nization is possible, by maximizi_ng throughpuhemark 1 In practice,p:, can be estimated by analyzing
(or minimizing delay) under an error probability constiain o \yorkers' performance during previous task assignments

!"ke in most analyses of crowd work syste_m_s_, WE assume ffyvever how to estimatg,,, is out of the scope of this work.
interdependence among tasks, but the definition of workflows

and hierarchies is an obvious next step. Both these isses @emark 2 We assume that the task allocation process works
dual problem and the interdependence among tasks) are iefone-shot. More precisely, at timethe allocation algorithm
for further work. submits all tasks to workers on the basis of the reputatien th
The goal of this paper is to provide the first systematitave at that time. Therefore, possible time variations ef th
analysis of the potential benefits deriving from some form aforkers’ reputation do not affect task allocation. Alsaskz
a-priori knowledge about the reputation of workers, exiegd are assumed to be evaluated by workers in a short amount
the results of our preliminary work [38]. With this goal inof time. Therefore workers’ error probabilitiegy,,, are not
mind, first we define and analyze the task assignment problerpected to significantly vary during the process. An anslys
when workers’ reputation estimates are availalrigarticular, of the system performance in the presence of time variabbns
we suppose that available workers are divided into classegrkers’ reputations would require models and algorithors f
each of which represents a different reliability level. @nthis building reputation on the basis of previously assigneistas
hypothesiswe show that in some cases, the task assignme#dwever, our scope is not to investigate how these repuistio
problem can be formalized as the maximization of a monotooan be built, rather to assess how reputation can be exgloite
submodular function subject to Matroid constraints. A gsee by task allocation and decision algorithms.
algorithm with performance guarantees is then devised. In ] ) ) )
addition, we propose a simple “maximum a-posteriori“ (MAP) BY m'akmg these assumptions, we avoid modeling the
decision rule, which is well known to be optimal when perfeddOrkers’ behaviour as driven by latent motivations, as in,
estimates of workers’ reputation are available. Moreower, €9~ [31]. In particular, we do not deal with malicious werk

introduce a message-passing decision algorithm, whichlés a(for whichpy,, = 1). As a matter of fact, a worker that always
to encompass a-priori information about workers' repotati outputs the wrong answer provides as much information to

thus improving upon the one described if [6]. Finally, Out,_he aware requester as a worker that answers correctlyeall th

proposed approach is tested in several scenarios, and cednpHMeS: We also assume tha,, depends on both the worker
to previous proposals. and the task, a fact thagflects the realistic consideration that

Our main findings are: tasks may have different levels of difficulty, that workeraym

. . ) . have different levels of accuracy, and may be more skilled in
o even largely inaccurate estimates of workers’ reputati

Q) )
. . ) . some tasks than in othef33].
can be effectively exploited in the task assignment to Similarly to [9], we asi;su]rne in this paper that, thanks to

greatly improve system performance; S : .
. . .. a-priori information, the requester can group workers into
« the performance of the maximum a-posteriori deCISIOI" e
. . . classes, each one composed of workers with similar accuracy
rule quickly degrades as worker reputation estimates ! )
. ) and skills. In practical crowd work systems, where workees a
become inaccurate;

. identified through authentication, such a-priori inforroatcan

« when workers’ reputation estimates are S|gq|f|cantly "be obtainedat no costby observing the results of previous
accurate, the best performance can be obtained by cani-

bining our proposed task assignment algorithm with t task assignmentshis is the case of the approval rating in

) . . . ATurk, for example More precisely, we suppose that each
message-passing decision algorithm presented in this
: worker belongs to one ofX classes,Cy,Cs,...,Cx, and
paper; . . :
; ' .that each class is characterized, for each task, by a ditfere
« there is no need for a large number of refined classes, i.e. . "
epresentativerror probability, known to the requester. L},

a coarse quantization of individual reputations alreacb/ . .
) d : P e therepresentativerror probability for clas€; and taskd,,
achieves most of the related gain.

k=1,....,K,t=1,...,T. In practice, classes may derive
from a quantization of estimated individual error probiei.
Il. SYSTEM ASSUMPTIONS The reason of dealing with classes, instead of individuals,
We considefl” binary task9),, 6, . .., 07, whose outcomes stems from the fact thap,, is estimated heuristically and

can be represented by i.i.d. uniform random variables (RV'thus it is affected by inaccuracy. Because of that, saariici



precision should not entail a major performance loss, whileLet an allocation be a s@ of assignments of tasks to

it simplifies the task allocation phase. This intuition wik workers. More formally, we can represents a generic allo-

confirmed in Sectiof V1. cation with a setG of pairs (¢t,w) with ¢ € {1,---,T}
Most times, in the following, we will deal with a case wher@nd w € {1,---, W}, where every elementt,w) € G

i IS the average error probability of workers belonging to corresponds to an individual task-worker assignment. @et

class k. This allows to abstract from the practical way irbe the complete allocation set, comprising every possible

which classes are builln particular our class characterizatiorindividual task-worker assignment (in other woxdss the set

encompasses two extreme scenarios: composed of all the possiblE - W pairs (¢, w)). Of course,

ﬁ)y construction, for any possible allocatigh we have that

worker belonging to clas§;, has error probability for G C 0. Hence, the set of all possible allocations corresponds

o
task 0, deterministically equal tor;;, and to the power set 0D, denoted ag™.

« a hammer-spammer (HS) mod&l [5], in which perfectly The setG can also be seen as the edge set of a bipartite
reliable and completely unreliable users coexists with@@Ph where the two node subsets represent tasks and workers
the same class. A fractiofir,, of workers in clas<’, and there is an edge connecting task noded worker node

when queried about task, has error probability equal @ if @nd only if (¢,w) € G. It will be sometimes useful in
to % (the spammers), while the remaining workers haJbe f_ollowmg to identify the a_lllocatlon W|th the bladja@n
error probability equal to zero (the hammenspte that matrix of such graph. Such binary matrix of sizex W will
this is an artificial scenario, where the variance within B8 denotedG(G) = {gw}, gi» € {0,1} and referred to as
single class is pushed to the limit, thus allowing to tedfi® @location matrix.

the robustness of our task assignment algorithm to a very!n this work, we suppose that the allocation is non-adaptive
unfavorable class composition in the sense that all assignments are made before any decisio
. . is attempted. With this hypothesis, the requester musidédeci
Suppose that clags; contains a total iV, workers, with the allocation only on the basis of the a-priori knowledge

_ K ;
W= > j—1 Wi. The first duty the requester has to carry OUt.'Sn worker classesBecause of this one-shot assumption,

the assignment of tasks to workers. We impose the followi
two constraints on possible assignments:

« full knowledge about the reliability of workers, i.e., eac

'Bdth individual and class error probabilities are consder

to be constant over time, as well as constant is the mapping

- a given taskd, can be assigned at most once to a givetietween workers and classesdaptive allocation strategies
worker w,,, and can be devised as well, in which, after a partial allocation,

« Nno more tham-,, tasks can be assigned to workey. a decision stage is performed, and gives, as a subproduct,

Notice that the second constraint arises from practicasicen refined a-posteriori information both on tasks and on warker
erations on the amount of load a single worker can tolerafccuracy. This information can then be used to optimizé&urt
We also suppose that each single assignment of a task tdsgignments. However, inl[6] it was shown that non-adaptive
worker has aost, which is independent of the worker's classallocations are order optimal in a single-class scenario.

In practicalmicrotask-basedrowdsourcing systems, such cost When all the workers’ answers are collected, the requester
represents thdow wages per task the requester pays tHarts deciding, using the received information. 14tg) =
worker, in order to obtain answers to his qudfiem this {aww} be aT x W random matrix containing the workers’
work, we assumethe same cost for all workers, althougtfnswers and having the same sparsity patter@@s). Pre-

it may appear more natural to differentiate wages amorsgsely, ax., is nonzero if and only ifg;,, is nonzero, in which
different classes, so as to incentivize workers to prope®@seat, = 7 With probability 1 — p;,, and az,, = —7 with
behave [[277],[[28]. Our choice, however, is mainly driven bprobability p.,. For every instance of the matriA(gG) the

the following two considerations: i) while it would be naalir output of the decision phase is an estimate ve6t(W) =

to differentiate wages according to the individual repiotabf  [71, 72, - . ., 7] for task values. In the following, for notation
workers, when the latter information is sufficiently acdara Simplicity we will drop the dependence of the matri¢gsand

it is much more questionable to differentiate them accardird and of the estimates on the allocation sef, except when

to only a collective reputation index, such ag., especially needed for clarity of presentation.

when workers with significantly different reputation cosixi  As a final justification of the model described in this section
within the same class; ii) since in this paper our main gowle describe here anodus operandi for a microtask-based

is to analyze the impact on system performance of a-prigfiowdsourcing system like MTurk, that would be well modeled
available information about the reputation of workers, wBy our assumptions. Suppose the platform first calls for a
need to compare the performance of such systems agaprequalification with respect to a given set of tasks. After
those of systems where the requester is completely unawt#re due number of workers have applied, this first phase
of workers’ reputation, under the same cost model. Finallg closed, and the crowd of potential workers is formed.
we wish to remark that both our problem formulation anth the second phase, such crowd is partitioned into classes

proposed algorithms naturally extend to the case in whislsco
are class-dependent. 2In the following, sets are denoted by calligraphic uppescksters and
families of sets are denoted by bold calligraphic upperdetters. Moreover,
vectors and matrices are represented by lowercase andcapperold letters,
1We suppose that is the requester has no possibility of refithie payment respectively. The matrid/ whose elements ane;; is also denoted bV =
for an executed task, whether successful or not. {mi;}.



according to reputation, and actual task assignment tolgesu cost, subject to a maximum admissible error probabilitis th
of) applicants takes place. Finally, answers are colleetedl alternative problem is left for future work.

decisions are taken. We now denote byF the family of all feasible allocations
(i.e. the collection of all the allocations respecting then-c
I1l. PROBLEM FORMULATION straints on the total cost and the worker loads). Observe tha

In this section, we formulate the problem of the optimd?y constructionF C 2€ is composed of all the allocatiors
allocation of tasks to workers, with different possible -peatisfying: i) [G| < C, and ii) [L(w,G)| < r, Vw, where
formance objectives. We formalize such problem under thgw, ) represents the set of individual assignmentsgin
assumption that each worker in clags has error probability associated tav.
for task 6, deterministically equal tor,,. By sorting the  Proposition 3.1: The family F forms a Matroid [4D]. Fur-

columns (workers) of the allocation mati, we can partition thermore F satisfies the following property. L8 C F be
it as the family of maximal sets i, theng = 2xees 19l _ 1
. . minges |G|
G =[G1,Gs,,...,Gg] (1) The proof is reported in the AppendiX A.

) . ) . ) 1) Computational complexity: the complexity of the above
whereG is a binary matrix of sizd" x W), representing the pntimal allocation problem heavily depends on the striectur
allocation of tasks to class-workers. _ of the objective function®(G) (which when specifying the

We defined;; as the weight (number of ones) in theh genendence on the allocation sét can be rewritten as
row of. matrix G, which represents the number of tlmesp(g))_ As a general property, observe that necessdrily) is
task ¢ is _aSS|gned to clasg—_workgrs. Such weights can bemonotonic, in the sense th@(G,)<®(G») wheneveig; C Go.
grouped into thel” x K matrix of integersD(G) = {di}.  However, in general, we cannot assume ti4g) satisfies

o . any other specific property (some possible definitionsiy)
R_emark. If the |n_d|V|duaI error probability of the_workers are given next). For a general monotonic objective fungtion
within one class is not known to the scheduler, it becom@ss optimal allocation of tasks to workers can be shown to
irrelevant which worker in a given class is assigned the.task, NP-hard, since it includes as a special case the problem
What only matters is actually how many workers of each clagf the maximization of a monotonic submodular function,
is assigned each task. Under this condition subject to a uniform Matroid constraint (see |[#0]When

1) any performance parameter to be optimized can Bgg) is submodular, the optimal allocation problem falls

expressed as a function of the weight matidx in the class of problems related to the maximization of a
2) any two allocation setg; and G, such thatD(G1) = monotonic submodular function subject to Matroid constisai

D(g:) show the same performance; For such problems, it has been proved that a greedy algorithm
3) by optimizing the weight matriP(G) we also optimize yjelds a 1/(1+)-approximation[[40] (where is defined as in

the set of allocationg. Propositiod 3.1). In the next subsections, we consideendifft

choices for the performance paramedgG).
A. Optimal allocation

We formulate the problem of optimal allocation of task®. Average task error probability
to workers as a combinatorial optimization problem for a
maximum overall cost. Let?(G) be a given performance
parameter to be maximized. We fix the maximum number
assignments (i.e., the maximum number of ones in m&dfx
to a valueC, and we seek the best allocatignas

A possible objective of the optimization, which is most
cjfosely related to typical performance measures in praictic
Q : o
crowd work systems, is the average task error probability,
which (except for the minus sign, which is due to the fact that
we need to minimize, rather than maximize, error probapilit

GP* = arg max ®(G) is defined as: .
g 1
s.t. OSdtkSWk’ t:17"'1T7 k:172,...7K, (I)l(g) - _TZPe7t (3)
T W t=1
Zdtk < Z Tw, k=1,..., K, where
=t w=WE=D 41 Pey =P{7 #7m} =P{7 # 1| = 1} 4)

is the error probability on task and where the second

dy < C @ equality in [4) follows from the fact that tasks are uni-

W
M=

=1 k=1 formly distributed in{£1}. Note that the probabilities. ;,
where d;;, are the (integer) elements d(G), W) = ¢ = 1,....T depend on the allocation s& through the
Zle W; and W(© = 0. The second constraint if](2)vector of task estimates. Of course, P, ; can be exactly

expresses the fact that, is the number of ones in the computed only when the true workers’ error probabilifigs
th row of Gy, the third constraint derives from the maximunare available; furthermore it heavily depends on the adbpte
number of tasks a given worker can be assigned, and the last

constraint fixes the maximum overall cost. 3A set functionf : 2© — R is said to be submodular i¥.4, B € 2© we

. . . . ._havef(AUB)+ f(ANB) < f(A)+ f(B). The problem of the maximization
Note that it could also be pOSSIble to define a dual Opnm'Z@Fa monotonic submodular function subject to a uniform Miatrconstraint

tion problem, in which the optimization aims at the minimunaorresponds to{max 4|< f(A) for K < |O| with f(-) submodulas
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decoding scheme. As a consequence, in genBralcan only a,b, H(alb) is the conditional entropy defined d@$(a|b) =
be approximately estimated by the requester by confusin@iE,;[logP(a|b)]. In what follows, we assume perfect
the actual worker error probability,,, (which is unknown) knowledge of worker reliabilities, i.e., we assume thatheac
with the corresponding average class error probabitify. classk worker has error probability with respect to task
Assuming a maximum-a-posteriori (MAP) decoding schemexactly equal tar,, remarking that in the more general case,
namely, 7:(a) = argmax,,c11 P{™z|]a; = a}, wherea; is the quantities we obtain by substituting,, with the corre-

the ¢t-th row of A and« is its observed value, we have sponding class averagey, can be regarded as computable
B B B approximations for the true uncomputable mutual infororati
Pep = Z Pla, = afn =1} ®) Since we have modeled all workers as BSCs, each single

alf{r=lla;=a}<1/2 answer is independent of everything else given the taskeyalu

It is easy to verify that the exact computation of this averago that
task error probability estimate requires a number of ojparat K
growing exponentially with the number of class&s Thus, H(a|) = Z H(ay|m) = ZdtkHb(ﬂ'tk)- (8)
when the number of classés is large, the evaluation of(5) — 1
can become critical.

To overcome this problem, we can compare the performanvt\:lgere.H?(p) = —plogp — (1 —p)log(l —p). For the second

. : . . . .—equality in [T),H () = 1 becausey is a uniform binary RV,

of different allocations on the basis of a simple pessimist]
estimate of the error probability, obtained by applying th@"
Chernoff bound to the random variable that is driving the H(r|a;) = Zp{at = a}H(rla; = «)
maximum-a-posteriori (MAP) decoding (details on a MAP o
decoding scheme are provided in the next section). We have:

ZP{at = a}Hy(P{r = 1]a; = a}) (9)
g dee (1 — 2mer) 2o o

B i (dikzn)? ) wherea runs over all possible values af. )

wherez;, = log(%). Thus, the performancc; meAtric associg, fr )é Sigz,m;t% f[(r)\;%{englg’? tiag{{;: - ga}ltan (;XP};{; 2

ated with an allocation becom@s (G) = — % 3", _, Pe¢. The lla, = &/} =1 —P{r; = 1|a, = a}. As a consequence, we

computation of®,(G) requires a number of operations thagan write

scales linearly with the produdt - K. However, in practical

Pe,tgﬁe,t:exp<

cases, we expect the number of classes to be sufficiently smél (7ila;) = 2 P{a=a}H,(P{r=1|a;=a})
(order of few units), so that the evaluation of (5) is not aues aP{r=1la;=a}<j
= Z(]P’{at:am:l}+P{at:a|Tt:—1}) .
C. Overall mutual information aP{r=1la,=a}<i
An alternative information-theoretic choice fé(G) is the Hy(P{r; = 1l]a; = a}) (10)
mutual information between the vector of RVs associatetd wi

}\Iotice the relationship of the above expression with (5). If
in (I0) we substituteH,(P{r; = 1|la; = a}) with P{r =
7 1la; = a}, thanks to Bayes’ rule, we obtaifl (5).
03(0) = I(A;7) =) I(as;m). (6)  An explicit computation off(A;7) can be found in Ap-
t=1 pendix[B. Like for the task error probability, the number
It is well known that a tight relation exists between the nalitu of elementary operations required to compiité; 7) grows
information and the achievable error probability, so thatax-  exponentially with the number of classés
imization of the former corresponds to a minimization of the An important property that mutual information satisfies is
latter. We remark, however, that, contrary to error proligbi submodularity. This property provides some guaranteestabo
mutual information is independent from the adopted de@dirhe performance of the greedy allocation algorithm desctib
scheme, because it refers to an optimal decoding schenpeSection TV-A.
This property makes the adoption of mutual information as Proposition 3.2 (Submodularity of the mutual information):
the objective function for the task assignment quite aitrac Let G be a generic allocation for task and leta(G) be
since it permits to abstract from the decoding scheme. Therandom vector of answers for tagk Then, the mutual
second equality in[{6) comes from the fact that tasks aiigformation I (a(G); 7) is a submodular function.
independent and workers are modeled as BSCs with known Proof: The proof is given in the AppendixIC. [ |
error probabilities, so that answers to a given task do not
provide any information about other tasks. By definition

taskst = (71, 72, ..., 7r) and the answer matriA(G), i.e.,

D. Max-min performance parameters

Iay;m) = H(ay) — H(ay|n) = H(n) — H(mila,)  (7)  The previous optimization objectives represent a sensible

where H (a) denotes the entropy of the RY, given byl choice whenever the target is to optimize theerage task

H(a) = —E,[logP(a)] and for any two random Variab|esperformance._However,_in_ a number of cases it can be
more appropriate to optimize the worst performance among
“4E, denotes the expectation with respect to RV all tasks, thus adopting a max-min optimization approach.



Along the same lines used in the definition of the previousdistinguishable) according to which a random regulaabip
optimization objectives, we can obtain three other possiliite graph is established between tasks and selected vsorker
choices of performance parameters to be used in the offfirery selected worker is assigned the same maximal number
mization problem defined ir[}2), namely, the maximum tassf tasks, i.er,, = r, Yw, except for rounding effects induced
error probability, 4(G) = —max;=1, 7 P.; the Chernoff by the constraint on the maximum total number of possible
bound on the maximum task error probabilitg;(G) = assignmentg.

,,,,, TPet and the minimum mutual information,

‘I’ﬁ(g) = mmt—w,---yT I(ag; 7). V. DECISION ALGORITHMS

IV. ALLOCATION STRATEGIES A Majority voting

Majority voting is the simplest possible task-decisionerul
and is currently implemented in all real-world crowd work
Systems. For every tagk, it simply consists in counting the
{+1} and the{—1} in a; and then taking;(a;) in accordance
q(the answer majority. More formally:

As we observed in Sectidnlll, the optimization problem
stated in [(R) is NP-hard, but the submodularity of the mu
tual information objective function over a Matroid, cougple
with a greedy algorithm yields a 1/2- apprOX|mat|-[40]e(se
Propositior3.11). We thus define in this section a greedy tas
assignment algorithm, to be coupled with the MAP decision A
rule which is discussed in the next section. 7i(ar) = sgn (Z atW> : (11)

A. Greedy task assignment l{\li)tle_it_qa}t wheny " a., = 0, 7(a;) is randomly chosen in

The task assignment we propose to approximate the optimal
performance is a simple greedy algorithm that starts from an
empty assignmeng(®) = 0)), and at every iteration adds to B- MAP decision for known workers’ reputation
G=1 the individual assignmertt,w)", so as to maximize  For the case where each cldssrorker has error probability
the objective function. In other words; with respect to taskr deterministically equal tor, the
optimal MAP decision rule can be derived analytically. lade

i i—1
(¢, w)® = (¢ j;foril;il) (I)(g( U {t:w)}) given an observed value af, the posterior log-likelihood ratio
(g“‘LUu{(t,w)})le (LLR) for task Tt is
The algorithm stops when no assignment can be further added LLR,(a;) = log P{r = l]as}
to G without violating some constraint. P{r, = —1|a;}
To execute this greedy algorithm, at stepfor every task B 1 Platw|m = 1} 12
t, we need to i) find, if any, the best performing worker to - Z g P{aww|m = —1} (12)

which taskt can be assigned without violating constraints, wiarw#0

and mark the assignmerit,w) as a candidate assignmentwhere the second equality comes from Bayes’ rule and the

ii) evaluate for every candidate assignment the performarfact that tasks are uniformly distributed ovei, and the third

index®(GU~YU(t, w)) Vt; iii) choose among all the candidateequality comes from modeling workers as BSCs. hg}; be

assignments the one that greedily optimizes performance. the number of 1" answers to task from classk workers.
Observe that, as a result, the computational complexity dhen

our algorithm isO(T? - W Z) whereZ represents the number K .

of operations needed to evaluakéG). LLR,(a;) Z (du — 2m) 1og t (13)
Note that in light of both Propositions_3.1 ahd13.2, the =1 Ttk

above greedy task assignment algorithm provides/a-  The MAP decision rule outputs the task solution estimate

approximation when the objective functidn (G) (i.e., mutual 7 — 1 jf LLR, > 0 and#, = —1 if LLR, < 0, that is,
information) is chosen. Furthermore, we wish to mentior tha

a better(1—1/e)-approximation can be obtained by cascading Ti(a) = sgn (LLR(ar)) - (14)
the above greedy algorithm with the special local search
optimization algorithm proposed iri_[40]; unfortunatelipet
corresponding cost in terms of computational complexity
rather severe, because the number of operations request
run the local search procedureG¥ (T - W)SZ)H

Observe that the computation df {13) has a complexity
growing only linearly withK', and that, according t&(1L4), each
sk solution is estimated separately. Note also that, ed&mn
drker reputation isnot known a-priori, the above decision
rule is no more optimal, since it neglects the informatioat th
answers to other tasks can provide about worker reputation.
B. Uniform allocation

Here we briefly recall thai{[5][]6] proposed a simple task. Oracle-aided MAP decision
allocation strategy (under the assumption that workers A®he oracle-aided MAP decision rule is a non-implementable

5The functionf(n) is O(g(n)) if f(n) = O(g(n) log® n) for any positive d_e.c_ision strategy Which .has direct access to the error proba
constantb. bilities p;,, of every individual worker for every task.



According to the oracle-aided MAP decision rule, first waypothesis for each worker according to whether she has

compute for every task;: answered correctly most tasks or not. Our implementation,
1 —prw instead, assumes a different statistical mixture for edassg

OLLR(ay) = Z A log ————. (15) and a more complex weight update rule, which is essentially

w Prw locally optimal. The details of our implementation follow.

Then, the oracle-aided MAP decision rule outputs the taskin the considered bipartite graph, nodes are either tasksod
solution estimater; = 1 if OLLR; > 0 and7, = —1 if  or worker nodes. An edge connects task notteworker node

OLLR; <0, that is, w if and only if g, = 1. Messages are exchanged along the
#(ar) = sgn (OLLRy (ay)) . (16) edges. Let:(w) be the class which worker belongs to and

f,g(()zu)(p) be the a-priori pdf of the error probability for class

Observe that the oracle-aided MAP decision rule provid w). Let m®
an upper bound to the performance of every impIementa&%det to Wotr_l><7éur nodew (resp. from worker nodev to task
decision rule (i.e., it gives a lower bound on the error pFObﬂodet) in the i-th iteration./ — 1.9 Given the answer

bility). matrix A = {a;, }, the MP algorithm reads as follows.

Initial condition:
D. Low-rank approximation (LRA)
Pl = () (17)

and mf,f)_n be the messages sent from task

For the sake of comparison, we briefly recall here the
Low-Rank Approximation decision rule proposed fin [3]] [6]For!=1,2,...
[8] for the case when: i) no a-priori information about the Output LLR:
reputation of workers is available, ii) the error probapilf (1-1)
every individual workerw is the same for every task, i.e., LLRE” _ Zatw log 1 — pry (18)
Pww = Pw Vt. The LRA decision rule was shown to provide - pg;l)
asymptotically optimal performance under assumptionsid) a

i) [B]. Task-to-worker message:
Denote withv the leading right singular vector &, the 1—pi=D
. . . ) _ P
LRA decision is taken according to: My Ly = E apr log ——5— (19)
/# E 7 )

7A't (at) = Sgn(LRA(at))

where

Worker-to-task message:
1
LRA@) = > aruwvu mi),, = pl = / Pt (p)dp, (20)
w 0
The idea underlying the LRA decision rule is that eacheing
component of the leading singular vector Af, measuring m®
i 1 0 o
the degree of coherence among the answers provided b)ft(w)(p)cxf]g(zu)(p) H 1+(1—2p)ay, tanh tT—>
the corresponding worker, represents a good estimate of the 4t
worker’s reputation. (21)
It can be seen froni(18) that, at each iteration, task nodes
E. Message passing perform the LLR computatipn as.in. the MAP decis!on rule
i ) o ) ) for known workers’ reputation, similarly td_(IL3), with the
Another possible suboptimal decision algorithm is based @fjrrent estimates of workers’ error probabilities. Beeaos
message passing (MP). The fundamental idea behind MPy3 initialization in [I¥), the LLR outputs at the first itéicm
that, if the allocation matridG is sparse, the MAP algorithm o equal tol{13).
can be well approximated by exchangmg Ioc_aIIy computed The task-to-worker message Y19) is thdrinsic LLR,
messages, between the nodes of the bipartite graph whose . ; .
L o . ; . I.e., the one that does not consider the incoming message on
biadjacency matrix i9=, for a certain number of iterations. .
) ; : : the same edge. The worker-to-task messagd_ih (20) is the
The algorithm is based on the hypothesis that a given Workerd ted estimate of th babilit f K
behaves in the same way for all tasks, iyg,, = p,, for all ¢ up I?'e es |m? gtw Oth € error pro_tha Ilypwtot vtvr?r er ¢
andw, so thatry, — 7, for all ¢ and k. w. It is computed as the average with respect to the curren

l . .
Our MP algorithm is an extension of the one describﬁ]df.ft(w)_(p) for taskt of Puw, GIVEN by [21). The details of the
in [6], where we take into account the a-priori informatio erivation of [21) are given in Appendix|D.

about worker classesn [6] it is shown that a particular Mp ~ Regarding the a-priori pdf, several choices are possible. |
algorithm can be seen as an efficient implementation of tRer implementation, we have considered as a-prioriff(p)
LRA decision rule. In such MP algorithm, workers are seeifie max-entropy distribution [39, Ch. 12] ovier, 1/2] with a

as a statistical mixture of a hammer,(= 0) and a malicious Mean equal tor;, namely

worker (p,, = 1). Initially, the statistical mixture assigns the f(o)( ) o P 22)
same weight to both hypotheses, while at each iteration the kP

weights are corrected, strengthening or weakening the lmmhere )\, is a parameter that depends on the mean If



TABLE | .
MAIN PARAMETERS FOR THE THREE CONSIDERED SCENARIOS A. Senario 1

| | T | P | W, W, s | The first set of results is repo_rted in F|_gus 1{@), 1(b),
Seerac 11001 01 02 0% 156 1% [l(c), and®. For starters, results in these figures refer o th
=5 0'05 0'1 0‘5 most classical scenario, where all tasks are identicalwhat

Scenario 2 0 |01 02 05 30 120 150| concerns workers, we define three classes, and the number
. : : of available workers per class is set W, = 30,W, =
Scenario 3 °0 101 02 05 40 120 40 | 120,W3 = 150. Since each worker can handle up to 20 tasks

i 50 | 05 2,97'? 0.1 (ro = 20), the maximum number of assignments that can
Scenario 4| 100 | my = Z, ISk<K | 3, Wk =90 | pe handled by the three classes are 600, 2400, and 3000,

respectively.
We setmy; = 0.1, 12 = 0.2, m3 = 0.5 for all ¢. This means
Haldane priors are assumed for all workers, i.e., that workers in class 1 are the most reliable, while workers i
1 1 class 3 are spammers. This situation is summarized in Table
L p) = 56(0) + 300 = 1) (23) [Das Scenario 1

The results depicted in Figuié 1(a) assume that all workers

whered(-) denotes Dirac delta function, then we obtain theelonging to the same class have the same error probability

simplified MP algorithm whose description can be founde., p;, = Ty k(w), k(w) being the class worken belongs

in [6]. Simulation results will show in many cases the ado. In particular, the figure shows the average task error

vantage of usingl(22) instead df {23), whose performancepgobability, plotted versus the average number of workers p

essentially the same as the LRA decision rule of Seéfiod V-Rsk, 3 = C/T. As expected, greedy allocation strategies

perform much better due to the fact that they exploit the

VI. RESULTS knowledge about the workers’ reliability,), and thus they

. . . ssign tasks to the best possible performing workers. These
In this section, except stated otherwise, we evaluate the . . . L ;
. strategies provide quite a significant reduction of the rerro
performance of a system whefé = 100 tasks are assigned

to a set of workers, which are organized ih = 3 classes. probability, for a given number of workers per task, or a

Each worker can handle up to 20 tasks, ire,, = 20, w — reduction in the number of assignments required to achieve a

1,...,W. We compare the performance of the allocation afi_xed target error probability. For examplE, = 10~* can be

gorithms and decision rules described in Sectiofs IV[@naV, ?Ch'eved by greedy algorithms by assigning only 6 workers

S S v st o T, e 2% (7 1539 e g iy of v

We study the performance of: (on ave?age(; 9 y P

- the “"Majority voting” decision rule applied to the “Uni- * gjince class 1 can handle up to 600 assignments, for the
form allqcation” strategy, hereinafter referred to as “Magreedy allocation algorithm, and fo8 > 6 the requester
jority uniform”; o . has to allocate tasks to workers of class 2 as well. Since

- the “Majority voting” decision rule applied to the,rkers of class 2 are less reliable than workers of class 1
“Greedy allocation” strategy, hereinafter referred 10 e slopes of the curves decrease. This behavior is not shown

‘Majority greedy”, by algorithms employing uniform allocation since they cseo
« the "Low rank approximation” decision rule applied tQyorkers irrespectively of the class they belong to.

the “Uniform gllocation" strategy, in the figures referred \\e also observe that: i) in this scenario the simple MAP
to as “LRA uniform™ N ~ decision rule is optimal (it perfectly coincides with the @)

« the “Low rank approximation” decision rule applied t0j) every decision rule (even the simple majority rule) when
the “Greedy allocation” strategy, in the figures referre pplied in conjunction with a greedy scheduler provides
to as “LRA greedy”; _ comparable performance with respect to the optimal MAP

« the “MAP” decision rule applied to the “Greedy allo-5igorithm (within a factor 2), iii) the performance of the MP
cation” strategy, in the following referred to as “MAPgreedy algorithm is slightly worse than LRA greedy in this
greedy”. _ o _ _ scenario; iv) some of the algorithms such as the “Majority

- the "Message Passing” decision algorithm applied t0 theedy” exhibit a non monotonic behavior with respectto
“Greedy allocation” strategy, in the following referred tapjs js a consequence of the fact that in order to provide best

as “MP greedy”. o _ performance, these schemes require the number of workers
« the “Oracle-aided MAP” decision rule applied to thessigned to tasks to be odd.

“Greedy allocation” strategy, in the following referred to - As final remark, we would like to observe that we have

as “OMAP greedy”. also implemented the MP algorithm proposed_in [6], obtajnin
Specifically, for the greedy allocation algorithm, desedlin in all cases results that are practically indistinguishabbm
Section[TV-A, we employed the overall mutual information.RA.
®5(G) as objective function. We consider 4 scenarios char-Next, we take into account the case where in each class
acterized by different number of workers, number of classesorkers do not behave exactly the same. As already observed,
and workers’ error probabilities. The main system pararsetehis may reflect both possible inaccuracies/errors in the re
for all scenarios are summarized in Tafle . construction of user profiles, and the fact that the behavior
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Fig. 1. Scenario 1. Figures (a) and (b) report the average @nobability versus the average number of workers per,tdskor z = 0 andz = 1,
respectively. Figure (c) shows the average error probpahirsusz and for/3 = 10. The parameters of Scenario 1 are reported in Table I.

of workers is not fully predictable, since it may vary ovegreedy” improves ag increases. This effect can be explained
time. Specifically, we assume that, in each class, two typleg observing that the ability of distinguishing good perfidmg

of workers coexist, each characterized by a different erraorkers from bad performing workers within the same class
probability p;,,. More precisely, workers of type 1 have erroincreases as increases. Observe also that the error probability
probability p;,, = (1 — z)m, while workers of type 2 have achieved by “LRA greedy” and “MP greedy” is within a factor
error probability probabilityp,, = (1 — x)my, + x/2, where 2 from OMAP for everyz. In particular, observe that for small

0 <z <1 is a parameter. Moreover, workers are of type talues ofx the simple MAP decision rule represents a low-
and type 2 with probabilityi — 27, and 27y, respectively, cost good performing decision strategy, butzascreases (i.e.
so that the average error probability over the workers isclathe degree of heterogeneity increases within each clagsg m
k is my,. This bimodal worker model, even if it may appeasophisticated decision rules which jointly decode largaugs
somehow artificial, is attractive for the following two reas: of tasks are needed to achieve good performance. It is worth
i) it is simple (it depends on a single scalar parame)eand observing that the performance of the “MP greedy” algorithm
i) it encompasses as particular cases the two extreme casesomes very close to OMAP for large valueszof

of full knowledge and hammer-spammer. We would like to In light of the previous observations, we can conclude
remark that the allocation algorithm is unaware of this kiiedo that the a-priori information about worker reliability cdme
behavior of the workers. Indeed, it assumes that all workezffectively exploited to improve the overall performande o
within classk have the same error probability;. the system both at the scheduler level (e.g. greedy vs umifor

Forz = 0 all workers in each class behave exactly the santénemes) and at the decision rule level (e.g. “MAP" vs
(they all have error probability;,, = m()); this is the case “Majority greedy” for smallz and "MP greedy” vs “LRA
depicted in Figurgll(a). Far = 1 we recover the hammer- greedy” for largex).
spammer scenario; this case is represented in Figure 1(b),
where workers are spammers with probability;;, and ham-
mers with probabilityl —27,;. Here, strategies employing the
greedy allocation still greatly outperform schemes emiplgy
uniform allocations. However, differently from the previ
case, the performance of the MAP decision rule is signiflgant
sub-optimal in this scenario, when compared to “LRA greedy*
and “MP greedy”. This is due to the following two facts:

i) MAP adopts a mismatched value of the error probability o
of individual workers, whenz # 0, ii) MAP does not 2 4 6 8 10 12 14 16 18 20

exploit the extra information on individual worker relidityi B

that is possible to gather by jointly decoding differentcgas Fig. 2. Average error probability versusfor different values ofl’

Observe that the performance of “LRA greedy* and “MP

greedy’ is not significantly differept from OMAP. In partilrap In Figure[2 we show the performance of the “LRA greedy”
the scheme “MP greedy” provides performance practicallyjgorithm as the number of tasks varies while the pool of
indistinguishable from OMAP in this scenario. workers is the same as in the previous figures. Clearly, as the

In Figure[d(c), for3 = 10, we show the error probability number of tasks increases the error probability increaises s
plotted versus the parameter We observe that the perfor-a larger amount of work is conferred to workers of classes
mance of the “MAP greedy” strategy is independent on tl2and 3. By looking at the curve fdof' = 200 we observe
parameter: while the performance of “LRA greedy” and “MP that (i) for 0 < 8 < 3 only workers of class 1 are used;
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workers of both classes 1 and 2 are used; (i) for 15 the

.. . TABLE I
(i) for 3 < B < 15 the slope of the curve decreases SINCE  AssiGNMENTS PER TASK FORSCENARIO 3 AS A FUNCTION OF 3

requester allocates tasks also to workers of class 3 whigh a dﬁ) dg) dg) dg) dg) dg)
spammers. Therefore fo8 > 15 the error probability does B<16 B 0 0 0 0 3
not further decrease. 16<5<20 | B 0 | p—16 p(3-16 0 8

B. Scenario 2

Next, we assume that th& = 100 tasks are divided
into 2 groups of 50 each. Workers processing tasks of growe have applied two independent instances of the MP decision
1 and 2 are characterized by average error probabiliti@¥orithm to the two groups of tasks. In terms of performance
71 = 0.05,me = 0.1,m3 = 0.5 andmy = 0.1, 70 = first observe that, also for this scenario, even a fairly mcjme
0.2,m3 = 0.5, respectively. This scenario reflects the caggharacterization of the worker behavior can be effectively
where tasks of group 2 are more difficult to solve than tasRgploited by the requester to significantly improve system
of group 1 (error probabilities are higher). Workers of slagPerformance. Second observe that the “LRA greedy” algarith
C; are spammers for both kinds of tasks. This situation §ows severely degraded error probabilitiesfor 16, while
summarized in Tabl@ | as Scenario 2. Two different appromctiie “LRA greedy blocks” (which we recall applies LRA
are possib|e while app|y|ng LRA to scenario 2: |) we ca}ndependently to the two blocks of indistinguishable taSkS
independently apply LRA to blocks of indistinguishablekas behaves properly. The behavior of “LRA greedy” should not
(we denote this strategy with “LRA greedy blocks”) placingurprise the reader, since our third scenario may be caweside
ourselves on the safer side. ii) we can embrace a more rigk§ Possibly adversarial for the LRA scheme (when applied
approach by applying directly LRA to the whole set of task&arelessly), in light of the fact that the relative rankimgang
(we denote this strategy with “LRA greedy”). Regarding th#orkers heavily depends on the specific task. Nevertheless,
MP decision algorithm, we have applied two independefitmay still appear amazing that “LRA greedy” behaves even
instances of the algorithm to the two groups of tasks. THeorse than the “LRA uniform” scheme in several caskse
error probabilities provided by the considered algorithams technical reason for this behavior is related to the fact, tha
plotted in Figure§13(a)[13(b), afd 3(c). For the sake of figutg our example, for3 < 16, tasks of group 1 (group 2) are
readability results of the basic “Majority uniform” strate allocated to workers of class 1 (class 3) only, whilst wosker
are not reported. First, observe that the relative rankingllo ©f class 2 are not assigned any task. Instead]éor 3 < 20
strategies is essentially not varied with respect to Séeriar tasks of both types are also allocated to workers of class 2.
In particular, we wish to highlight the significant perfomea This situation is summarized in Talilé || whedﬁ;) represents
gain exhibited by strategies employing the greedy allocatithe number of times a task of typeis assigned to workers
strategy over those employing a uniform allocation, such @& classk. For this reason, whefi < 16 the matrix A turns
“LRA uniform“. Second, observe that at first glance unexout to have a block diagonal structure, which conflicts with
pectedly the “LRA greedy” slightly outperforms “LRA greedythe basic assumption made by LRA that maifijA] can be
blocks” for small z. This should not be too surprising, inwell approximated by a rank-1 matrix.

light of the fact that: i) even if the error probability of éac |t follows that the rank-1 approximations are extremely

user depends on the specific task, the relative ranking amgAgiccurate when applied to the whole mati and thus

workers remains the same for all tasks, ii) ‘LRA greedy” getsrovide high error probabilities. In such situations, bplgjng

advantage from the fact that all tasks are jointly decoded (ithe LRA algorithm separately on each block of tasks (under

SVD decomposition is applied to a larger mati better the assumption that we have enough a-priori information to

filtering out noise). partitioning tasks into groups), we achieve huge perfoean
gains.

C. Scenario 3 Finally, we want to remark that we have tested several ver-
Finally, in Figures[#(a), [J4(b), andl 4(c) we consider aions of greedy algorithms under different objective fioms,
third scenario in which again tasks are partitioned into twauch as®,(G), ®2(G), and®3(G), finding that they provide,
groups of 50 each. Here, however, the number of availabiegeneral, comparable performance. The version employing
workers per class is set td/; = 40, Wy = 120, W3 = 40, mutual information was often providing slightly better ués,
and the workers error probabilities for the tasks in grougspecially in the case of LRA greedy and MP greedy. This
1 and 2 are given byryy = 0.1, 72 = 0.25,m3 = 0.5, can be attributed to the following two facts: i) the mutual
and 7;; = 0.5,m92 = 0.25,m3 = 0.1, respectively. This information was proved to be submodular; ii) being mutual
situation reflects the case where workers are more spedalilnformation independent from the adopted decoding schéme,
or interested in solving some kinds of tasks. More specHjical provides a more reliable metric for comparing the perforagan
here workers of class 1 (class 3) are reliable when proagssof different task allocations under the LRA decoding scheme
tasks of group 1 (group 2), and behave as spammers whth respect to the error probabiligy; (G) (which, we recall,
processing tasks of group 2 (group 1). Workers of classi® computed under the assumption that the decoding scheme
behave the same for all tasks. This situation is summarizedMAP). Unfortunately, due to the lack of space, we cannot
in Tablel as Scenario 3. We remark that, as in Scenario i@¢lude these results in the paper.
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Fig. 3. Scenario 2. Figures (a) and (b) report the average @nobability versus the average number of workers per, tdskor z = 0 andz = 1,
respectively. Figure (c) shows the average error probpahirsusz and for/3 = 10. The parameters of Scenario 2 are reported in Table I.
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Fig. 4. Scenario 3. Figures (a) and (b) report the average @nobability versus the average number of workers per,tdskor z = 0 andz = 1,
respectively. Figure (c) shows the average error prolphiBrsusz and for 3 = 10. The parameters of Scenario 3 are reported in Table I.

D. Scenario 4 provements are significant only for relatively small values
of K and 5. The marginal performance gain observed by

Now, we move to a different scenario in whigh = 100 increasing K from 6 to 9, is rather limited for all values

identical tasks are assigned to a population of 90 WorkeE)sf, £. Even in this ideal case in which full information on

each one characterized by an individual reliability 'nd(.e\)/(vorkers’ characteristics is available to the systems, culirg

Ptw- Prw aré uniformly and interdependently gxtracted Wasks just on the basis of a rough classification of the werker
the range(0,1/2]. Parameterg, ,, are assumed, in general,

; . into few classes is not particularly penalizing! These Itssu
to be unknown to the system, which possesses just no P yp 9 >

estimatesp, ., of them. Such estimates are typically inferre refo_r_e, prowde an empirical justification of our appioa

’ . . of partitioning users into few classes.
from the analysis of past behavior of each worker, as better _
explained in the following. On the basis pf,, workers are T complement previous results, Fig. 6 reports the error
grouped intoK classes. Specifically, classes are obtained Byobability for specific values off and k' = 6 when the
uniformly partitioning the interva[0,1/2] in K subintervals reliability estimatep ., is noisy. To keep things simple, we
and assigning to clagse {1,2,--- K} all the workers whose assume that all workers are tested on an initial number of
estimated reliability index (error probability), ,, falls in the tasks (called training tasks) anpg., is derived accordingly, as

range (%7 %]_ Then, the nominal error probability,, the empirical estimate qf; ., on the training tasks. However,

assigned to class, is set equal to the median point of heve wish to remark thap, ., can be, in principle, obtained
considered interval, i.ex;;, = 22_[—(1_ by analyzing answer of workers on previously assigned tasks

Fig [8 reports the error probability achieved by the LRAWitlh(_)ut the necessity of. subjecting vyorkers to an initial
greedy algorithm v for different values of in a optimistic training phase. Once again, we would like to highlight that a
scenario, in which perfect estimates of reliability indicare detailed investigation of how; ., can be obtained goes beyond

known to the system, i.f; ., = pi.w- the scope of this paper.
As expected, by increasing’, a reduction of the error Observe that when the number of training task is 0, no
probability is observed. However note that performance inmformation aboutp, ,, is available and, therefore, workers
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are assigned to classes at random. Instead, when the nunmbessage-passing decision algorithm. We have tested our pro
of training tasks becomes arbitrarily large, the system caosed algorithms, and compared them to different solutions
count on exact estimates of the workers reliability indicegvhich can be obtained by extrapolating the proposals for the

i'e'v ﬁt,w = Ptiw-

cases when reputation information is not available, shgwin

that the crowd work system performance can greatly benefit

@

o
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Fig. 5. Average error probability as a function of the averammber of
workers per task3, in Scenario 4.

from even largely inaccurate estimates of workers’ repanat
Our numerical results have shown that:

o even a significantly imperfect characterization of the

workers’ reputation can be extremely useful to improve
the system performance;

the application of advanced joint task decoding schemes
such as message passing can further improve the overall
system performance, especially in the realistic case in
which the a-priori information about worker reputation is
largely affected by errors;

o the performance of advanced joint tasks decoding

schemes such as LRA applied naively may become
extremely poor in adversarial scenarios.
the results show that “LRA greedy” and “MP greedy”

R algorithms perform well in most of the cases; their
2 :L o p=2 difference in terms of performance is rather limited,
= -o-- (=4 . i
s n (=8 therefore they can both be used equivalently in a real-
S0t P mv B=12 | world scenario.
o V' N T Tl . . . . . .
5 _ Bheromrmreneeee . i Future work directions include the extension to time-viagyi
5 102 1 N SR . . workers’ behavior, non-binary tasks, and the desing ofceffe
AL D e O 4 . . . . , .
% R tive algorithms for estimating workers’ error probability
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Fig. 6. Average error probability as a function of the numbérraining .
tasks in Scenario 4.
(2]

Figure [6 shows that even rather imprecise estimates of
Dtw (i.€., obtained through the analysis of relatively short
sequences of training tasks) can be effectively exploited t3l]
significantly improve the performance of the system. Furthe
more, observe that marginal gains significantly reduces@s t[4
length of training set increases. In particular, for motiera
values of3, performance obtained when the training set siz
is set to 100 is hardly distinguishable from that observeg5
when arbitrarily long training sets are employed. This jules
further support to the viability of our approach, which appse (6]
rather robust to possibly imprecise estimates of workers’
reliability indices. (71
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In this paper we have presented the first systematic investi-
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13

M.-C. Yuen, I. King, and K.-S. Leung, “A Survey of Crowdsing
Systems,” IEEE PASSAT-SOCIALCOM, Boston (MA), USA, Oct. 9-
11, pp. 766-773, 2011.

D. E. Difallah, M. Catasta, G. Demartini, P. G. Ipeirotend P. Cudr-
Mauroux, “The dynamics of micro-task crowdsourcing: Thesecaf
amazon mturk”,Proceedings of the 24th International Conference on
World Wide Web, pp. 238-247, 2015.

A. Kittur, J. V. Nickerson, M. Bernstein, E. Gerber, A. &k J.
Zimmerman, M. Lease, and J. Horton, “The future of crowd work
ACM CSCW, San Antonio, Texas, USA, 2013.

E. Peer, J. Vosgerau, and A. Acquisti, “Reputation as #icgent
condition for data quality on Amazon Mechanical Turk8ehavior
Research Methods, v. 46, pp. 1023-1031.

] D. R. Karger, S. Oh and D. Shah, “Budget- optimal Crowdsmg

Using Low-rank Matrix Approximations,49th Allerton Conf. on Com-
munication, Control, and Computing, pp. 284-291, Sept. 28-30, 2011.
D. R. Karger, S. Oh, and D. Shah, "Budget-Optimal Taskogdltion for
Reliable Crowdsourcing System$perations Research, Vol. 62, No. 1,
pp. 1-24, 2014.

D. R. Karger, S. Oh, and D. Shah, "Efficient crowdsourcfiog multi-
class labeling,” SIGMETRICS Perform. Eval. Rev., Vol. 419.M, pp.
81-92, June 2013.

A. Ghosh, S. Kale, and P. McAfee, “Who moderates the mates?:
crowdsourcing abuse detection in user-generated conti2th ACM
Conf. on Electronic commerce, New York, NY, USA, pp. 167-12G11.

I. Abraham, O. Alonso, V. Kandylas, and A. Slivkins, "Agka
tive Crowdsourcing Algorithms for the Bandit Survey Proble
http://arxiv.org/abs/1302.32(8.

H. Zhang, Y. Ma, and M. Sugiyama, “Bandit-based taskgmsaent for
heterogeneous crowdsourcindleural computation, 2015.

Y. Zheng, J. Wang, G. Li, R. Cheng, and J. Feng, “QASCA: a
quality-aware task assignment system for crowdsourcirgicgtions”,
Proceedings of the 2015 ACM SIGMOD International Conference on
Management of Data, pp. 1031-1046, 2015.

Y. Bachrach, T. Graepel, T. Minka, and J. Guiver, “How Grade
a Test Without Knowing the Answers—A Bayesian Graphical ®Mod
for Adaptive Crowdsourcing and Aptitude TestingArXiv Preprint,
arXiv:1206.6386, 2012.


http://arxiv.org/abs/1302.3268

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

V. C. Raykar, S. Yu, L. H. Zhao, G. H. Valadez, C. Florin, Bogoni,
and L. Moy, “Learning from crowds"the Journal of Machine Learning
Research, v. 11, pp. 1297-1322, 2010.

D. Lee, J. Kim, H. Lee, and K. Jung, “Reliable Multipleaice Iterative
Algorithm for CS Systems”jn Proc. of the 2015 ACM SGMETRICS
International Conference on Measurement and Modeling of Computer
Systems, pp. 205-216, 2015.

J. Whitehill, T.-f. Wu, J. Bergsma, J. R. Movellan, andLP Ruvolo,
“Whose vote should count more: Optimal integration of labffom
labelers of unknown expertise’Advances in neural information pro-
cessing systems, pp. 2035-2043, 2009.

S. Kerr, “On the folly of rewarding A, while hoping for B"Academy
of Management Journal, pp. 769-783, 1975.

D. Chandler, and A. Kapelner, “Breaking monotony witheaning:
Motivation in crowdsourcing markets'Journal of Economic Behavior
& Organization, pp. 123-133, 2013.

A. Kittur, E.H. Chi, and B. Suh, “Crowdsourcing user dies with
Mechanical Turk”,Proceedings of the 26th annual SSGCHI conference

on Human factors in computing systems - CHI '08, pp. 453-456, 2008.

S. Lewis, M. Dontcheva, and E. Gerber, “Affective cortgiional
priming and creativity”,Proceedings of the 2011 annual conference on
Human factors in computing systems - CHI’ 11, pp. 735-744, 2011.
W. Mason, and D.J. Watts, “Financial Incentives andRleeformance of
Crowds”, Proceedings of The ACM Conference on Human Computation
& Crowdsourcing 2009, 2009.

J. Rogstadius, V. Kostakos, A. Kittur, B. Smus, J. Larednd M.
Vukovic, “An Assessment of Intrinsic and Extrinsic Motii@i on Task
Performance in Crowdsourcing Markets”Proceedings of the Fifth
International AAAI Conference on Weblogs and Social Media, 2011.
A.D. Shaw, J.J., Horton, and D.L. Chen, “Designing imbees for
inexpert human raters'Proceedings of the ACM 2011 conference on
Computer supported cooperative work, pp. 275-284, 2011.

C. J. Ho, A. Slivkins, S. Suri, and J. W. Vaughan, “Indeizing high
quality crowdwork”, Proceedings of the 24th International Conference
on World Wide Web, pp. 419-429, 2015.

E. Christoforou, A. Fernandez Anta, C. Georgiou, M. Aodteiro, and
A. Sanchez, “Applying the dynamics of evolution to achieedability
in master-worker computingConcurrency and Computation: Practice
and Experience Vol. 25, No. 17, pp. 2363-2380, 2013.

A. Fernandez Anta, C. Georgiou, and M. A. Mosteiro, “Bighmic
mechanisms for internet-based master-worker computitiy witrusted
and selfish workers,” IEEE IPDPS 2010, Atlanta (GA), Aprill20

A. Fernandez Anta, C. Georgiou, L. Lopez, and A. SantBgliable
internet-based master-worker computing in the presencmalicious
workers,” Parallel Processing Letters, Vol. 22, No. 1, 2012.

A. Singla and A. Krause, “Truthful incentives in crowascing tasks
using regret minimization mechanisms,” 22nd internaticc@nference
on World Wide Web, Rio de Janeiro, Brazil, May 2013.

E. Kamar and E. Horvitz, "Incentives for truthful repiog in crowd-
sourcing,” 11th International Conference on Autonomousemtg and
Multiagent Systems, Valencia, ES, pp. 1329-1330, June.2012

P. Donmez, J. G. Carbonell, and J. Schneider, “Effityetéarning
the accuracy of labeling sources for selective samplingth IACM
SIGKDD international conference on Knowledge discoveryl atata
mining, New York (NY), USA, pp.259-268, June 2009.

Y. Zheng, S. Scott, and K. Deng, “Active learning from limle noisy
labelers with varied costs,” 2010 IEEE 10th Internationahference on
Data Mining, Sydney, Australia, Dec. 13-17, pp. 639-648,020

E. Christoforou, A. Fernandez Anta, C. Georgiou, M. Mosteiro,
“Reputation-Based Mechanisms for Evolutionary Mastermr®o Com-
puting,” in Principles of Distributed Systems: Proc. of the 17th Interna-
tional Conference, OPODIS 2013, Nice, France, pp. 98-113, 2013.
U. Gadiraju, R. Kawase, S. Dietze, and G. Demartini, derstanding
malicious behavior in crowdsourcing platforms: The caseonfine
surveys”, Proceedings of CHI, 2015.

M. Kokkodis, and P. G. Ipeirotis, “Reputation Trangfeility in Online
Labor Markets”,Management Science, 2015.

J. Fan, G. Li, B. C. Ooi, K. L. Tan, and J. Feng, “iCrowd: Adaptive
CS Framework” Proceedings of the 2015 ACM SSGMOD International
Conference on Management of Data, pp. 1015-1030, 2015.

J.M. Rzeszotarski, and A. Kittur, “Instrumenting theowd: using
implicit behavioral measures to predict task performan&tnposium
on User Interface Software and Technology - UIST '11, 2011.

J.M. Rzeszotarski, and A. Kittur, “CrowdScape: intgieely visualizing
user behavior and outputRroc. of the 25th annual ACM symposium
on User interface software and technology - UIST *12, pp. 55-62, 2012.

[37] R. Buettner, “A Systematic Literature Review of CS Rasb from a
Human Resource Management PerspectiVEEE 48th Hawaii Inter-
national Conference on System Sciences (HICSS), pp. 4609-4618, 2015.

[38] A. Tarable, A. Nordio, E. Leonardi, and M. Ajmone MarsdiThe

Importance of Being Earnest in Crowdsourcing SystertSEE INFO-

COM, Hong Kong, April 2015.

T. M. Cover and J. M. Thomas, “Elements of informatiordhy,” 2nd

ed., John Wiley, 2005.

G. Calinescu, C. Chekuri, M. Pal, J. Vondrak, “Maxkimg a Monotone

Submodular Function Subject to a Matroid Constrai®AM Journal

on Computing, Vol. 40, No. 6, pp.1740-1766, 2011.

[39]

[40]

APPENDIXA
MATROID DEFINITION AND PROOF OFPROPOSITION3.1

First we recall the definition of a Matroid. Given a family
F of subsets of a finite ground sé (i.e., F C 2°), F is a
Matroid iff: i) if G € F, thenH € F wheneverH C G;

i) if G € FandH e F with |G| > |H|, then there exists a
(to,wo) eg \ H.

Now we can prove Proposition 3.1. First, observe that in our
case property i) trivially holds. Then, we show that propert
i) holds too. Given thatG| > |#| and since by construction
G| =3, L(w,G) and|H| =", L(w,H), necessarily there
exists anwy such thati L(wo, G)| > |L(wo, H)|. This implies
that £L(wo, G) \ L(wo,H) # 0. Let (to, wo) be an individual
assignment inL(wo,G) \ L(wo,H). Since by assumption
|L(wo, H)| < |L(wo,G)|] < ruy,, denoted withH' = H U
{(to,wo)}, we have thatlL(wo, H')| = |L(wo,H)| + 1 <
|L(wo, G)| < 1y, Similarly |H'| [H|+1 < |G] < C,
thereforeH’ € F.

The fact that in our casge = ‘;“1’"‘97’-""9“ 1 descends
immediately by the fact that necesséLrﬂ}ye B iff either i)
|G| = C whenC < 7, orii) |G| = >, e WhenC >
Zw Tw-

APPENDIXB
MUTUAL INFORMATION FOR KNOWN ERROR
PROBABILITIES 74

The workers’ answers about the tasksire collected in the
randomT x W matrix A(G), defined in Section Il of the main
document. The information that the answéprovide about
the tasksr is denoted by

I(A;7) = H(A) — H(A|T)

where the entropy (a) and the conditional entrop¥ (a|b)
have been defined in Section 1lI.C of the main document.
We first computeH (A|t) and we observe that, given the
tasks 7, the answerA are independent, i.eP{A|r}

]_[kK:1 Hthl P{a; |}, whereay is the vector of answers to
task 0, from users of clasg;. SinceP{A|r} has a product
form, we obtainH (A|r) = Zszl ZL H(ay|m). Thanks

to the fact that workers of the same class are independent
and all have error probability,, we can writeH (a;;|7) =

dii Hy(m1;) whereHy,(p) = —plogp—(1—p) log(1—p) anddy

is the number of allocations of taskn classCy. In conclusion,
we get:

T

K
Z Z do Hy (T4

t=1 k=1

H(A|T)
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As for the entropyH (A), we have: We first observe that
Ia(GUv);7) = I(a(G2UGsUv);7)

= I(ag,as,a4;7)

—~
N

P{A} = E,P{A|r} = E, [[P{as|ne} = [ ] E~.P{a|7:}

—~
=

where a; is the vector of answers to tagk (corresponding = I(ag,a,;7) + I(as; T|ag, ay)

to thet-th row of A). Note thatE,,P{a;|r:} = P{a;}, hence ) )
P{A} = HtT:1 P{a,} and we immediately obtaiil(A) = where in(a) we exploited the fact that the sefg, G-, and~y

ZtT—1 H(a,). The probabilitie®{a,, |7 — 1} andP{a| — are_disjoint W_hil_e in(b) we appligd the mutual information
T} are easy to compute. Indeed for— —1 we have chain rule. Similarly we can writd (a;;7) = I(a2;7) +
I(a3; T|az) By consequencé (28) reduces to
]P){atlet = —1} = Fflzkimtk(l — Ftk)mtk (24)

I(ag;T|ag) > I(as; T|az, ay)
where my. is the number of “1” answers to taskd, from

classk workers. The above formula derives from the fact th§y applying to both sides of the above inequality the defini-

workers of the same class are independent and have the sHAR O_f the mutual inf(_)rmation given in the main document,
error probabilityr,;,. Similarly equation (7), we obtain
]P{atk|7't _ _|_1} _ 7722”“(1 _ ﬂ-tk)dtk_mtk (25) H(33|32)—H(33|Ta a2)ZH(a3|327 av)—H(a3|T, az, av() )
29
The expression§ (24) and {25) can compactly written as  Since workers are independent we now observe that

e (1) /2= e H(as|t,a2) = H(as|T) sinceas only depends orr;. There-
Pla|m} = (1 — myp) b bgy, 7027 (26) " fore (29) reduces to t

where by, = /(1 — mu). Since, givenr, workers are
independent, we obtain

P{at} = ETtP{ath}

H(ag|az) > H(asz|az, a,)

which holds due to the fact that entropy is reduced by

" conditioning.
_ ’YtkETt Hbgllc—Tt)dtk/Q—mtth‘|
k=1
K K
Ttk —my, dyptmen | Ytk APPENDIXD
= 5 lH by + [T vie k} =5 f(me)  DERVATION OF EQUATION (24) OF THE MAIN DOCUMENT
k=1 k=1
. K ,-h
with m, 5 [mars- . omex] and f(h) = T by™ +  In the i-th iteration of the MP algorithm, an updated pdf
[ L=y by """ Finally, by using the definition of entropy,  of the error probability of workeww, p., is computed given
H(a) = Ea[-logP{a}] th_e answer matrixA an_d the current pos_terlor probability
o distribution of task solutions, used as a-priori.
= —log— —E,, f(m)

2 Let pgl) (1) be the posterior probability distribution for task
Yk Vew K Mk t at iterationl. Also, Ietflg?fﬂ)(p) be the a-priori distribution of
—log o T 9 Z f(n)log f(n) H < i ) the error probability for clasB(w) which workerw belongs to.
" =1 27 In the computation of the pdft(l)(p) of p,,, we useextrinsic
@7 information, i.e., we only usgag)(il) for t # t’. We have,
wheren = [nq,...,ng]andng =0,...,mu, k=1,..., K. thanks to Bayes’ rule, that
O oimaeaq, comPutaton dHET) s exponentialin e nmBe ) ) o 1O )BLAIpy = p 4o (ED}is} (30

where

P{A[pu=p, {p\ (+1)} sz }ox [ Plavw|pw=p, pl (+1
APPENDIXC {Alpw=p, {pp" (£1)} ez} tH# {atwlpw=p, py’ (£1)}
SUBMODULARITY OF THE MUTUAL INFORMATION (31)
In both equations above, the omitted factors do not depend on

Let G, andG, be two generic allocations for tagksuch that p. Now
G2 C G andG; = G2 UGs. Also let the pairy = (t,w) € O\ W B
G;1. Let a(G) be the random vector of answers corresponding Plawwlpw = ppi (F1)} =
to the allocationg. For the sake of notation simplicity in the P{atw|pw = p,t = 1}p§l)(1) (32)
fo_llowmg we c.ieflneaj.: a(g;), j =1, 2,3, anda, = a(y) + Plag|pe = p,t = _1}p§l)(_1)
(sincex is a single pair, the answex(~y) is scalar).

Then the mutual informatio(a(G); 7) is submodular if

I(a(GaUn);7)—1I(ag;7) > I(a(G1Uy);7)—I(ay; 7). (28) P{aw|pw = p,t = £1} = % [1£ (1~ 2p)atw] (33)

and
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Substituting back(33) intd (32), we obtain
Plavu|pw = p.pi (£1)}
_1 0] 0]
=5 [1+ 0= 2)an (o) - o (1))

(34)
Finally, from the definition of LLR, we have
(1)
1
mil,, = log £ (@)
Pt (_1)
so that
emigw
l
pt(E )(1) = 0) (36)
1 + emtaw
and o
pi’ (1) = p(=1) = tanh <%> (37)

Substituting [(3l7) into[{34), and then back infa](31) aind (30)
we obtain equation (24) appearing in the main document.
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