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Abstract—Wireless body sensor networks (WBSN) provide an
appreciable aid to patients who require continuous care and
monitoring. One key application of WBSN is mobile health
(mHealth) for continuous patient monitoring, acquiring vital
signs e.g. EEG, ECG, etc. Such monitoring devices are doomed
to be portable, i.e., batter powered, and agile to allow for patient
mobility, while providing sustainable, energy-efficient hardware
platforms. Hence, EEG data compression is critical in reducing
the transmission power, hence increase the battery life. In this
paper, we design and implement a complete hardware model
based on discrete wavelet transform (DWT) for vital signs data
compression and reconstruction on a field programmable gate
array (FPGA) based platform. We evaluate the performance of
our DWT compression FPGA implementation under different
practical parameters including filter length and the compression
ratio. We investigate the hardware and computational complexity
of our design in terms of used resource blocks for future
comparison with state-of-the-art techniques. Our results show
the efficiency of the proposed hardware compression and recon-
struction model at different system parameters, including the
high pass filter coefficients, and DWT type, and DWT threshold.

Index Terms—WBSN, FPGA, EEG, ECG.

I. INTRODUCTION

Wireless body sensor network (WBSN), also referred to as
body area network, comprises wearable sensors, typically in
the form of probes that collect medical information and send it
to the fusion center, also referred to as the network coordinator.
WBSN modules can be embedded inside the human body or
attached to it. WBSN monitor various vital signs and send
them periodically to the networks coordinator to be ready for
the medical care personnel. Research in WBAN has attracted a
growing research recently. This due to the increasing number
of patients with chronic diseases, who require an uninterrupted
monitoring. WBSN allow remote monitoring of patients and
hence enabling mobility, increased ability to avoid foreseen
medical conditions as well as improved quality of medical
care. Electrocardiogram (ECG) and electroencephalogram
(EEG) monitoring devices are core WBSN technologies. EEG
devices allow health care professionals to monitor and record
electrical activity of the brain. Applications of EEG systems
include detection and diagnosis of epileptic seizure, coma
and brain death. With the recent technology trends, EEG
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Fig. 1. Block diagram of WBSN architecture.

devices are highly desired to be portable and as tiny and
non-intrusive as possible. The size of the battery of the
portable EEG device determines the overall size as well as
operational time. Therefore, data compression is paramount in
any implementation of EEG systems [1] in order to reduce
encoding and transmission powers, which are the two most
preeminent elements limiting the life of the battery.

Several data compression techniques have been exploited
within the context of EEG and ECG data, which can be
categorized into two main categories.

• Compressed sensing (CS) based: In [2], the authors
presented a framework for ECG data compression using
compressed sensing. Their proposed solution has a low
complexity that comes at the cost of poor performance
when compared to wavelet transform based compression.
In addition, within their proposed framework, limited
control is provided over the encoder parameters, which
causes their framework to lose the balance between power
consumption and distortion rate. Practical implementation
of CS data compression on scalp EEG signals is presented
in [3], [4]. The authors investigated the reconstruction
accuracy on different data sets. Although the data com-
pression applied in the EEG module has low complexity,
CS decoder has a high computational complexity, which
may render the real-time implementation of the system.
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Fig. 2. Labview FPGA design of DWT compression: decimation and convolution.
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Fig. 3. Labview FPGA design of DWT compression.

The authors in [5] developed a CS framework for de-
tection and classification of mother and fetal heartbeats
using fetal-ECG signal. A thorough review on exploiting
compressing sensing data for bioelectric data compres-
sion can be found in [6].

• Discrete wavelet transform (DWT) based: DWT data
compression and reconstruction methods have high con-
struction accuracy. EEG DWT data compression is pre-
sented in [7] as a lossless compression technique for EEG
signal. However, because of the randomness of the EEG
signal, high compression rates cannot be attained with
lossless compression. The DWT based techniques pre-
sented [8], [9], [10], [11] provide the desired compromise
between compression rate and residual distortion.

Extensive literature review shows a lack of hardware imple-
mentation of DWT EEG data compression, particularly real-
time field programmable gate array (FPGA) implementation.

This is crucial for any future development or commercial-
ization of EEG portable devices since it allows designers
as well as academic researchers discover bottlenecks and
implementation hurdles. Hence, develop new methods in order
to tackle such problems.

Our contributions in this work as compared to existing liter-
ature are as follows. We design and implement an FPGA based
real-time complete EEG data compression and reconstruction
platform. We use real EEG data collected from [12]. We study
the performance of our EEG data compression design under
different filter length and for different compression ratios,
which are the main parameters that affect distortion rate. We
present the resource blocks used by the FPGA to implement
the DWT compression algorithm.

As a matter of fact, our DWT FPGA implementation for
data compression and reconstruction can be applied on other
data types such as ECG. In the following, we apply our FPGA
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Fig. 4. Example of EEG data compression and reconstruction implementation.

implementation on both EEG and ECG data. In addition,
applications of DWT data compression and reconstruction
include other wireless sensor networks such as structure health
monitoring (SHM) networks. However, we focus on WBSN,
since EEG data is considered one of the largest data types.
Note that the acceptable distortion rate depends on the char-
acteristics of the application.

The rest of this paper is organized as follows. In Section II
we present our system model. Basics of DWT is presented
in II. In Section III, we describe our FPGA design and
implementation. Results are then presented in Section IV. The
paper is then concluded in Section V.

II. SYSTEM MODEL

Fig. 1 depicts a block diagram of typical WBSN archi-
tecture. The EEG data is collected from the patient through
probes. The EEG signal is then passed through a low noise
amplifier as well as a filter. The EEG signal is then passed
through a parameter optimization block, which decides on the
compression parameters such as filter length and appropriate
compression ratio based on the selected application. EEG
data is then compressed using any of the aforementioned
techniques. The EEG data then gets quantized and transmitted
through the wireless channel to the receiver, which estimates
the quality of the channel and feed it back to the transmitter
to adjust its compression ratio. In this paper, we focus on
FPGA design and implementation of EEG data compression
and reconstruction using DWT.
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Fig. 5. DWT EEG data compression and reconstruction for filter length of 8
coefficients.

The wavelet series expansion for a given function f(y) can
be given by [13]:

f(y) =
∑
k

cj0(k)φj0,k(y) +

∞∑
j=j0

∑
k

dj(k)Ψj,k(y), (1)

where cj0 is the approximation coefficient, φ(y) is the scaling
function used to provide an approximation of the function
f(y) at a scale j0, where j0 is an arbitrary scale, dj(k) are
the coefficients responsible for the coarse resolution and Ψ(y)
represents the wavelet function. Note that cj0 can be calculated
through

cj0(k) = 〈f(y), φj0,k(y)〉, (2)

where 〈· · · 〉 denote the inner product operation. Furthermore,
Ψ(y) is used to estimate the resolution coefficients according
to

dj(k) = 〈f(y),Ψj,k(y)〉. (3)

DWT implements (2) and (3) through a tree of low and high
pass filters.

TABLE I
FPGA RESOURCE UTILIZATION

Device
Utilization

Used Total Percent

Slice register 16145 35200 45.9
Slice LUT 13896 17600 79
Block RAMS 18 60 30
DSP48s 16 80 20

III. FPGA DESIGN

We implement a complete DWT compression and recon-
struction on FPGA based platform for real-time EEG data
compression. We implement our design on National Instru-
ment NI myRIO-1900 platform. It consists mainly of Xilinx
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Fig. 6. DWT EEG data compression and reconstruction for filter length of
16 coefficients.

FPGA and Dual-core ARM Cortex-A9 processor as well as
reconfigurable 8 analog inputs, 4 analog outputs, 32 digital I/O
lines. The DWT is designed and tested first on Labview before
it is downloaded and compiled on the FPGA for standalone
operation.

Fig. 3 shows the complete Labview FPGA design of the
DWT EEG data compression. The FPGA design consists of
low pass filter block, high pass filter block and first input first
output (FIFO) block. The EEG data is first passed through
FIFO to read and buffer the data to the FPGA. The EEG
data is convolved with both low pass and high pass filters
simultaneously. The outputs of the two filters are combined
in an alternating way where a sample from the low pass filter
is followed by the following sample from the high pass filter
output, i.e., a decimation of factor 2 as shown in Fig. 2. The
resulted signal is then passed through the thresholding step.
In this step, if the sample does not exceed the threshold, it is
replaced by a zero. In other words, the threshold level controls
the compression ratio. The resulted signal is the DWT output
compressed signal.

The compression ratio is evaluated as:

CR = (1− M

N
)× 100, (4)

where N is the length of the original signal and M is the
number of non-zero samples generated after DWT threshold-
ing. The distortion calculated through the root mean square
difference of the reconstructed EEG data according to:

D =
||y − yr||
||y||

× 100, (5)

where y is the original signal and yr is the reconstructed signal.

IV. EXPERIMENTAL RESULTS

In the following we apply DWT compression on both EEG
and ECG data types. We study the effect of different filter
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Fig. 7. DWT EEG data compression and reconstruction.

length on distortion ratio. In addition, apply different types of
DWT on EEG data.

A. EEG data compression and reconstruction

Fig. 4 shows an inputted original EEG signal (top), three
versions of the reconstructed signal at different threshold
levels and the threshold to distortion ratio curve. As the
threshold level increases, the EEG signal becomes more sparse
resulting in less required transmitter power. In other words,
the threshold represents the compression ratio. The tradeoff is
that as threshold increases, more distortion occurs to the EEG
signal, but the more compressed the data and the less required
power to transmit it.

Table I presents a complete list of all the utilized resources
of the FPGA used to implement the DWT compression such
as look up tables (LUTs) and block random access memory
(RAMs). The resources in Table 1 were estimated using
Labview’s FPGA toolbox compilation result. DWT requires
a large number of LUTs throughout implementation. This
indicates that a memory with an appropriate size should be
dedicated in future commercialization of such compression
technique.

In Figs. 5 and 6, we present the effect of different filter
lengths on the performance of DWT data compression and
reconstruction. We change the filter length from 8 (Fig. 5)
to 16 (Fig. 6) coefficients. The lower the number of filer
coefficients the better the compression and reconstruction
process as seen from the compression ratio to distortion ratio
curve.

B. Different DWT types

There exists several ways in which DWT is applied. In the
previous figures, we used db02 DWT. In Fig. 7, we evaluate
the performance of compression and reconstruction when used
Haar DWT. Based on the application and type of signal,
different DWT types should be used.
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Fig. 8. Example of ECG data compression and reconstruction implementation.

C. ECG data compression and reconstruction

In Fig. 8, we show an example of applying our DWT FPGA
implementation on ECG data. The ECG data is collected from
[14]. The original ECG signal (top) is passed through the DWT
compression before it gets reconstructed (middle). This shows
that DWT compression and reconstruction can be applied on
any generic data type.

V. CONCLUSION

We presented the design of a complete hardware model
based on DWT data compression algorithm on FPGA based
platform. We have presented the detailed low/high pass fil-
ter design and the hardware design blocks to realize the
DWT transform, including, decimation and convolution design
blocks. We used real EEG and ECG collected data. We showed
that our design works for different filter lengths and different
compression ratios. In addition, we presented a complete list
of the resource blocks used by the FPGA to implement the
design. We show that the performance of the compression
and reconstruction model measured through distortion and
compression ratio is heavily dependent on the DWT filter
coefficient, type and threshold used. Hence, such parameters
have to be tuned for desirable application performance, design
complexity, and energy consumption.
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