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Abstract
Large-mesopore silica films with a narrow pore size distribution and high porosity have been obtained by a sol–gel reaction of a

silicon oxide precursor (TEOS) and using polystyrene-block-poly(ethylene oxide) (PS-b-PEO) copolymers as templates in an acidic

environment. PS-b-PEO copolymers with different molecular weight and composition have been studied in order to assess the

effects of the block length on the pore size of the templated silica films. The changes in the morphology of the porous systems have

been investigated by transmission electron microscopy and a systematic analysis has been carried out, evidencing the dependence

between the hydrophilic/hydrophobic ratio of the two polymer blocks and the size of the final silica pores. The obtained results

prove that by tuning the PS/PEO ratio, the pore size of the templated silica films can be easily and finely predicted.
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Introduction
Mesoporous materials with large, tunable porosity are currently

being investigated as selective molecular sieves, finding poten-

tial applications in many fields such as catalysis, encapsulation

of proteins, filtration and separation of large molecules, mem-

brane technology, drug delivery, dosing, adsorption, sensing,

among many others [1-5].

Different approaches have been applied in order to obtain

porous materials characterized by a controlled porous architec-

ture. A sol–gel process, carried out in combination with a

templating method and spin-coating deposition, is the easiest

and the most versatile way for preparing well-organized, meso-

porous, thin films. Among all the different templating ap-
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proaches, the most widely used for the synthesis of nanostruc-

tured porous and high surface area oxides are soft templating

(endotemplating) and hard templating (exotemplating) [6,7].

In general, templating agents arrange in the surrounding envi-

ronment in such a way to generate a porous system in the newly

synthesized materials, which replicates the 3D structure of the

template arrangement. Often, both shape and size of the result-

ing porous system are directly and clearly correlated to the

adopted porogen, but sometimes the template behavior and its

effect on pore generation remain unclear.

Concerning soft templating, this procedure is related to the use

of amphiphilic, low molecular weight surfactants or supramo-

lecular cooperative macromolecules, which are relatively flex-

ible in shape and size since they operate as structure directing

agents in solution [8].

Amphiphiles are particular molecules containing a hydrophilic

part (head) and a hydrophobic chain (tail). In solution and at

certain conditions (i.e., when their concentration is higher than

the critical micellar concentration, CMC) amphiphiles can spon-

taneously self-organize into well-defined supramolecular aggre-

gates (host) which can be classified as normal and reverse

micelles, emulsions, vesicles or liquid crystal phases and can

shape or pattern other materials (guest), forming spherical nano-

structures, rod-like short cylinders, lamellar sheets or worm-like

structures [9-16].

Since these colloidal aggregates are in equilibrium with the iso-

lated species (i.e., amphiphilic molecules or macromolecules

and ions) present in the solution, their formation (and stability)

is concentration dependent. In addition to the amphiphile con-

centration, the morphology and size of both micelles and

micellar aggregates also depend on other solution parameters,

such as the type of solvents, the solvent/nonsolvent ratio, the

presence of additives, and on molecular parameters, such as the

amphiphilic nature, molecular weight and architecture.

In the past twenty years, block copolymer-templated silica with

large, spherical, accessible mesopores were intensively investi-

gated [17-19] and several morphologies with different pore

shapes and sizes were obtained by modulating the reactant ratio

in the synthetic formulation as well as by changing the

amphiphile parameters (e.g., number of polar/apolar moieties,

functional groups, block length) [20-22].

Pluronics, nonionic amphiphiles consisting of poly(ethylene

oxide) (PEO) and poly(propylene oxide) (PPO) triblock copoly-

mers (PEO-b-PPO-b-PEO) [23], are among the most widely

used soft templating agents to produce mesoporous silica. The

templating process is based on the well-known attractive inter-

action between the silanol groups at the silica surface and PEO

moieties [24]. In addition to Pluronics, other PEO containing

amphiphilic block copolymers, such as polystyrene-block-

poly(ethylene oxide) (PS-b-PEO), have been successfully em-

ployed to synthetize mesoporous oxides [19,25].

Starting from these previous works, we decided to develop a

systematic study to gain better control on the morphological

features of templated silica films. Thus, by fixing the TEOS/PS-

b-PEO weight ratio of the micellar solutions in order to get

spherical micelles (that is for TEOS/PS-b-PEO weight ratios of

95/5 or 93/7), we studied the effect of the PS/PEO ratio on the

pore size of the templated silica films.

Results and Discussion
Hybrid TEOS/block copolymer films obtained by spin-coating

deposition of block copolymer micellar solutions were trans-

formed into silica nanoporous thin layers by thermal treatment

performed in air. This way, the organic templating species (i.e.,

block copolymers) were degraded and removed, leaving voids

which formed the ordered nanoporous network [19].

In order to have the same final porous nanostructure (i.e.,

stacked spherical pores), the weight ratio between the silica pre-

cursor and polymeric soft templates was fixed at 95/5 and 93/7.

In fact, as reported by other authors [26,27] and in our previous

works [19,25], by further reducing the TEOS/block copolymer

weight ratio, a change in the pore shape from spherical to elon-

gated cavities is achieved as a result of the supramolecular

arrangement of PS-b-PEO chains around a line instead of a dot

(i.e., sphere-to-cylinder transition).

In this study, four PS-b-PEO copolymers with different size and

block lengths (i.e., PS117-b-PEO543, PS183-b-PEO145, PS308-b-

PEO250, and PS567-b-PEO704) were selected. HRTEM micro-

graphs showing the mesoporous silica films prepared by soft

templating of the four PS-b-PEO copolymers are reported in

Figure 1 (95TEOS/5PS-b-PEO) and Figure 2 (93TEOS/7PS-b-

PEO). Moreover, a fifth block copolymer (PS120-b-PEO318)

was taken as a validation sample and HRTEM micrographs of

both formulations (i.e., 95/5 and 93/7) are reported in Figure 3.

Additionally, the average pore sizes calculated for each meso-

porous silica film are collected in Table 1.

Independently from the length of the block copolymer used as a

soft-templating agent, the TEM images confirm the formation

of a homogeneous, internally porous system along the thick-

ness of mesoporous films. The samples with the highest TEOS/

block copolymer weight ratio (95/5) present stacked spherical

pores, homogeneous in size, but are not regularly distributed.
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Figure 1: HRTEM micrographs of calcined 95TEOS/5PS-b-PEO films obtained by using different block copolymers, namely: PS117-b-PEO543 (A),
PS183-b-PEO145 (B), PS308-b-PEO250 (C), and PS567-b-PEO704 (D). All micrographs were collected at the same magnification. Panel (B) reprinted
with permission from [19], copyright 2014 Elsevier.

Figure 2: HRTEM micrographs of calcined 93TEOS/7PS-b-PEO films obtained by using different block copolymers, namely: PS117-b-PEO543 (A),
PS183-b-PEO145 (B), PS308-b-PEO250 (C), and PS567-b-PEO704 (D). All micrographs were collected at the same magnification. Panel (B) reprinted
with permission from [19], copyright 2014 Elsevier.
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Figure 3: HRTEM micrographs of calcined TEOS/PS120-b-PEO318 films obtained at different TEOS/PS-b-PEO ratios, namely: 95/5 (A) and 93/7 (B).
All micrographs were collected at the same magnification.

Table 1: Average pore size calculated from HRTEM measurements.

PS-b-PEO PS/PEO ratio 95TEOS/5PS-b-PEOa 93TEOS/7PS-b-PEOa

PS117-b-PEO543 0.51 19 ± 2 17 ± 2
PS120-b-PEO318 0.89 25 ± 5 22 ± 4
PS183-b-PEO145 2.97 39 ± 5 41 ± 5
PS308-b-PEO250 2.91 36 ± 6 31 ± 4
PS567-b-PEO704 1.90 35 ± 3 34 ± 3

aDiameters are reported in nm ± standard deviation.

Reducing the TEOS/block-copolymer weight ratio to 93/7, and

consequently decreasing the hydrophilic/hydrophobic solvent

ratio, the spherical pore morphology is still retained, but a

general improvement of the lateral order of the porous network

is reached, thus also increasing the pore density [19]. In general,

the pore diameters were found to be between approximately

20 nm up to 40 nm, with good reproducibility (i.e., low stan-

dard deviation).

Moreover, since the four block copolymers selected present dif-

ferent block lengths, the effect of the block copolymer composi-

tion on the pore dimensions of the silica coatings was investi-

gated. In detail, trying to rationalize the dependence of the pore

size from the length of each block (both PS and/or PEO), no ex-

perimental trends were evidenced. Surprisingly, a second-order

polynomial trend, with good data accuracy (Figure 4A), was

achieved by plotting the average pore size as a function of the

PS/PEO ratio. Both the investigated formulations (namely

95TEOS/5PS-b-PEO and 93TEOS/7PS-b-PEO) showed this

polynomial trend. In particular, the lower the PS/PEO ratio

(PS/PEO < 0.5), the smaller the pore size (i.e., micelle diame-

ter) in the final templated materials. For a higher PS/PEO ratio

(PS/PEO > 1) the pore diameter tends to reach a plateau.

Furthermore, by making a linearization of such behavior in a

decimal logarithmic scale (base 10), a linear trend with good

data accuracy was also obtained (Figure 4B).

In order to validate this behavior, the theoretical pore size of the

validation sample with a PS/PEO ratio of 0.89 was calculated

by substituting this value in the four equations reported in

Figure 4A,B. The calculated values are 25 nm (polynomial

curve) and 24 nm (linear curve) for the 95/5 formulation and

23 nm (polynomial curve) and 22 nm (linear curve) for the 93/7

one. Concerning the polynomial curves, the pore size calcula-

tion is highlighted in Figure 4C, whereas experimental values

calculated for these two formulations are reported in Figure 4D

(numerical values collected in Table 2). Experimentally,

95TEOS/5PS120-b-PEO318 films present a pore size of

25 ± 5 nm and 93TEOS/7PS120-b-PEO318 films of 22 ± 4 nm,

thus confirming the good matching between experimental and

theoretical data.

This dependence of the pore size, and of micelle size in the

micellar solutions, may be explained by a different swelling

effect of the PS core that depends on the micelle morphology.

In the investigated formulations, PS blocks form the internal

core of the templating micelles and PEO blocks form the
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Figure 4: Evaluation of the pore size (nm ± SD) as a function of the PS/PEO ratio (A, C, D) and logarithm of pore size vs logarithm of the PS/PEO
ratio (B) for the 95TEOS/5PS-b-PEO (black circles) and 93TEOS/7PS-b-PEO (white circles) samples. In particular, the equations in panels A and B
refer, from top to bottom, to the 95/5 (dashed line) and 93/7 (dotted line) experimental fitting curves, respectively. Reliability of regressions: R2 > 0.98
and 0.83 (A), R2 > 0.96 and 0.88 (B). Black square in panel A is the zoomed area reported in panel C. Calculations of the pore size for the sample
with 0.89 PS/PEO ratio are reported in panel C (dotted arrows), whereas experimental values are reported in panel D (dotted oval).

Table 2: Compositions (wt %) of micellar solutions.

Sample namea TEOS PS-b-PEOb Benzene Ethanol HCl

95TEOS/5PS-b-PEO 12.38 0.65 64.52 20.92 1.53
93TEOS/7PS-b-PEO 9.67 0.73 72.07 16.34 1.19

aSample names refer to the composition (wt %) excluding solvents. bFive different types of commercial PS-b-PEO block copolymers were selected:
PS117-b-PEO543; PS120-b-PEO318; PS183-b-PEO145; PS308-b-PEO250; PS567-b-PEO704.

external corona. For low PS/PEO ratios, the PS-made micellar

core occupies a smaller volume and is surrounded by a thicker

PEO polar corona [28]. Due to the high incompatibility of PEO

with the major component of the solvent mixture (i.e., benzene),

in the micellar solution, PEO blocks are collapsed on the PS

core, forming a dense layer that hinders a dynamic diffusion of

benzene from the solution to the PS core, thus reducing the

swelling and size of the micelle core. Vice versa, if the PEO

block is shorter than the PS one, by increasing the PS/PEO

ratio, the PEO corona becomes less dense, facilitating the diffu-

sion of benzene through it. As a consequence, the PS-made

micellar core increases up to a constant value. This happens

when a swelling equilibrium with the apolar solvent inside/

outside the templating micelles is achieved.

Even though further studies are necessary to better clarify this

point, the interesting trends reported here confirm the impor-

tance of the template choice in order to obtain the desired

porosity. In particular, based on the study presented here, it is

possible to rationalize the design of the coating procedure and
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to control the final pore size in large-mesopore oxidic thin films

by choosing the block copolymer template with the proper

block length.

Conclusion
A systematic analysis of the pore size of the block copolymer-

templated mesoporous silica by varying the template structure

has been realized. In particular, the templates selected in this

study are PS-b-PEO polymers. By fixing the ratio between the

block copolymer and TEOS (i.e., the silica precursor), stacked

spherical porous systems were obtained. Five different PS-b-

PEO copolymers were investigated and the importance of the

PS/PEO ratio in order to control and predict the pore size in the

final porous materials was proved. Until now many attempts

have been made to control the size and shape of pores in

templated silica, and in general, a direct relationship is sought

between the size of micelles or pores and the length of the

blocks. However, this is a simplification of the driving forces

governing soft templating. The results here presented confirm

that by fixing the composition of the micellar solution (i.e., the

geometry of the system), a key parameter which drives the

porosity is the hydrophilic/hydrophobic block ratio. Therefore,

this study allows a rationalization of the preparation of meso-

porous architectures in inorganic thin functional coatings.

Experimental
Synthesis and preparation of the meso-
porous silica thin layers
Mesoporous silica thin films were synthesized by a sol–gel

reaction of tetraethyl orthosilicate (TEOS, ≥ 99.0%, Aldrich) in

ethanol (≥ 95.0%, Carlo Erba Reagents) under acidic condi-

tions (HCl 37 wt %, Fluka Chemika) as reported in [19]. Differ-

ent sol–gel solutions were prepared with a TEOS/HCl molar

ratio of 3.5 (Table 2). All chemicals were used without further

modification. Solutions were stirred at room temperature (rt) for

30 min using a magnetic stirrer. Five different types of commer-

cial PS-b-PEO copolymers (PS117-b-PEO543 with Mn = 12,200-

b-23,900; PS120-b-PEO318 with Mn = 12,500-b-14,000; PS183-

b-PEO145 with Mn = 19,000-b-6,400; PS308-b-PEO250 with

Mn = 32,000-b-11,000; PS567-b-PEO704 with Mn = 59,000-b-

31,000) were purchased from Polymer Source Inc. (Dorval,

Canada). Benzene (≥ 99.7%, Riedel-de-Haën) was chosen as a

solvent for the preparation of copolymer solutions. Copolymer

benzene solutions (1 wt %) were stirred for 30 min to ensure

complete dissolution of the copolymer. Micellar solutions were

prepared by adding the desired amount of sol–gel solution to the

copolymer solution. Final solutions were spin-coated onto mica

sheets of 1.27 cm × 1.27 cm × 15 mm, at 1000 rpm for 20 s,

using an 8” Desktop Precision Spin Coating System, model

P-6708D vs. 2.0. After deposition, the films were dried in a

hood at rt for at least 12 h in order to reach complete evapora-

tion of solvents. Hybrid films were then transformed into silica

nanostructured thin layers by thermal treatment in a furnace

under air atmosphere (400 °C for 2 h, ramp of 2 °C/min). The

samples were named XTEOS/YPS-b-PEO, where X and Y are

the TEOS and block copolymer weight ratio excluding solvents.

Two different weight ratios were analyzed: 95/5 and 93/7.

Physicochemical characterization
High-resolution transmission electron microscopy (HRTEM)

was used to evaluate the pore size and morphology of meso-

porous silica films after the removal of the polymer templates.

Micrographs were obtained by using a JEOL 2010 instrument

(300 kV) equipped with a LaB6 filament. For the specimen

preparation, a few drops of water were poured on the supported

silica layer. After a few seconds the surface was gently

scratched and the functionalized layer separated from the

support. Fragments were then transferred onto holey carbon

coated copper grids by lifting the grids onto the water layer.

Pore sizes and distributions were calculated by using the soft-

ware Particule2 on an average of 100 pores.
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