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RNAs competing for microRNAs mutually
influence their fluctuations in a highly
non-linear microRNA-dependent manner in
single cells
Carla Bosia1,3*† , Francesco Sgrò2†, Laura Conti2, Carlo Baldassi4,5, Davide Brusa1, Federica Cavallo2,
Ferdinando Di Cunto2, Emilia Turco2, Andrea Pagnani1,3,5† and Riccardo Zecchina1,3,4†

Abstract

Background: Distinct RNA species may compete for binding to microRNAs (miRNAs). This competition creates an
indirect interaction between miRNA targets, which behave as miRNA sponges and eventually influence each other’s
expression levels. Theoretical predictions suggest that not only the mean expression levels of targets but also the
fluctuations around the means are coupled through miRNAs. This may result in striking effects on a broad range of
cellular processes, such as cell differentiation and proliferation. Although several studies have reported the functional
relevance of this mechanism of interaction, detailed experiments are lacking that study this phenomenon in
controlled conditions by mimicking a physiological range.

Results: We used an experimental design based on two bidirectional plasmids and flow cytometry measurements of
cotransfected mammalian cells. We validated a stochastic gene interaction model that describes how mRNAs can
influence each other’s fluctuations in a miRNA-dependent manner in single cells. We show that miRNA–target
correlations eventually lead to either bimodal cell population distributions with high and low target expression states,
or correlated fluctuations across targets when the pool of unbound targets and miRNAs are in near-equimolar
concentration. We found that there is an optimal range of conditions for the onset of cross-regulation, which is
compatible with 10–1000 copies of targets per cell.

Conclusions: Our results are summarized in a phase diagram for miRNA-mediated cross-regulation that links
experimentally measured quantities and effective model parameters. This phase diagram can be applied to in vivo
studies of RNAs that are in competition for miRNA binding.

Keywords: Post-transcriptional cross-regulation, MicroRNA target synchronization, Bimodality, Single cell,
Stochastic modelling
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Background
MicroRNAs (miRNAs) are small non-coding post-
transcriptional repressors of gene expression [1]. They
exert important regulatory functions on both protein-
coding and non-coding genes and are often involved in
pivotal biological processes, like developmental biology
or the molecular pathogenesis of several diseases [2–5].
It is commonly believed that miRNAs play central roles
in conferring robustness to biological processes against
environmental fluctuations [6–10]. The common assump-
tion that at any given time one miRNA molecule can
interact at most with one target mRNA [11] suggests a
whole new layer of post-transcriptional cross-regulation,
lately named the competing endogenous RNA (ceRNA)
effect [12]. This theory proposes that the amount of a
gene product may be tuned by varying the concentra-
tion of another transcript that shares with it the same
miRNAs. Qualitative experiments based on observing
induced variations in the level of transcripts show indeed
that these could be coupled, due to the interaction with a
common pool of miRNAs [13–16]. The discovery that the
miRNA–target interaction is compatible with a titration
mechanism [17] supports the emergence of hypersensitiv-
ity regions [18, 19] where miRNA targets should be highly
correlated and their relative stoichiometry tightly con-
trolled [20–22]. Many biochemical competition phenom-
ena that are qualitatively like the one studied here have
been extensively studied in the past [23–25]. However, the
relevance of competition at the post-transcriptional level
is still largely debated [26]. Indeed, on the one hand, abso-
lute quantification experiments in primary hepatocytes
and liver suggested that the ceRNA effect is unlikely to
affect significantly gene expression and metabolism [27].
On the other hand, differential susceptibility based on
endogenous miRNA/target pool ratios provide a physio-
logical context for target competition in vivo [28]. More-
over, recent studies on topics ranging from development
[29] to cancer [30–34] show how the competition for
miRNA binding can actively regulate key biological pro-
cesses. Crosstalk among mRNAs may, thus, be regulated
depending on miRNA and mRNA relative abundances
and may exhibit non-negligible target correlation pro-
files [20, 21].
Here, we experimentally explore these features and

address the relevance of the relative mRNA–miRNA sto-
ichiometric composition. In particular, we set out to
validate a stochastic gene interaction model [20] that
describes how mRNAs sharing common miRNA regula-
tory elements (MREs) can influence each other’s fluctu-
ations in a miRNA-dependent way. Thus, we designed
two bidirectional plasmids, each with a two-color fluo-
rescent reporter system, enabling the simultaneous track-
ing of gene expression in the presence and absence of
MREs. This allows us to quantify the correlations between

the expression of the encoded proteins under different
conditions. We found that there is an optimal range of
parameters (in terms of effective transcription rates and
miRNA interaction strengths) for which cross-regulation
is maximal among miRNA targets. We show that such
cross-regulation arises both at the level of mean protein
concentrations (like [35]) and, for the first time to the
best of our knowledge, at the level of fluctuations and
correlations.
We show that the optimal cross-regulation regime is

compatible with low numbers of mRNA molecules. In
particular, the bulk quantification of mean exogenous
transcripts per cell reveals that in our experiments, the
crosstalk is highest in a physiological regime of order
10 to 1000 molecules per cell [36, 37]. Interestingly,
in agreement with the model, we found that the same
mechanism may induce bimodal population distributions
with distinct high and low expression states of the
targets.

Results
Stochastic titration model for crosstalk
We propose a stochastic model for the miRNA-mediated
target cross-regulation [17, 20, 23] (see Fig. 1a). Through
the formulation of a chemical master equation (see
“Methods” and Additional file 1 for details of the model),
the model describes the mean amount and fluctuations
of two mRNAs r1 and r2, which are both targets of the
same miRNA s. Both r1 and r2 can be translated into pro-
teins (p1 and p2, respectively) only when not bound to the
miRNA. ThemRNA–miRNA complex can be degraded as
a whole, while themiRNA can be recycled with probability
1 − α. Since the two targets r1 and r2, and thus p1 and p2,
are coupled through their common regulatory miRNA s,
the pool of available mature miRNAs is the limiting factor
in a system of potentially interacting targets.
A Gaussian approximation of the master equation [20]

(see Additional file 1) allows us to evaluate mean val-
ues (〈x〉), noise (coefficient of variation CVx = σx/〈x〉),
and Pearson correlation coefficients (ρx,y = (〈xy〉 −
〈x〉〈y〉)/σxσy) for each molecular species x represented in
Fig. 1a (with x ∈ {r1, r2, p1, p2, s}); see Fig. 1b–d, respec-
tively. The parameters g1 and g2, which are proportional to
the miRNA–mRNA association rate, determine qualita-
tively the shapes of the functions generated by the model.
In Fig. 1b–d, these curves are plotted as a function of pro-
tein constitutive expression p0 (i.e., the value of p1 or p2
when g1 or g2 tends to 0). When one of these parame-
ters tends to zero (say g2), its corresponding target (r2)
is not interacting with the miRNA. The other target r1
(and, thus, p1) is repressed until a threshold level of r0
(and, thus, p0) is exceeded (Fig. 1b) [17]. The threshold
is established by miRNA regulation and its location can
be adjusted by regulating both the pool of miRNAs (via
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Fig. 1Model and predictions. a Sketch of theminimal model of miRNA–target interactions. OnemiRNA s and two targets r1 and r2 are independently
transcribed with rates ks , kr1 , and kr2 , respectively. Each transcript can then degrade with rate gs , gr1 , or gr2 , respectively. Each miRNA s can interact
with targets r1 or r2 with effective binding rates g1 or g2. α measures the probability of miRNA recycling. If not bound to a miRNA, targets r1 and r2
can be translated into proteins p1 and p2, respectively, which could then degrade with rates gp1 and gp2 . b–d Predictions from the stochastic model
of interactions sketched in (a) as a function of p0 (which is the constitutive value of p1 when g1 tends to 0) in terms of b the mean amount of p1 free
molecules, c the p1 coefficient of variation CVp1 , and d the Pearson correlation coefficient between p1 and p2. In (b–d), the red curve is the reference
curve for a given set of parameters while the red line identifies the threshold. Blue and green curves show how the red curve would move when
increasing the interaction strength with the second target g2 or the pool of miRNA via the miRNA transcription rate ks , respectively. e Schematic
representation of the two bidirectional plasmids coding for the four fluorophores.miRNAmicroRNA, UTR untranslated region

the miRNA transcription rate ks) and the pool of targets
(via the target transcription rates kr1 and kr2 ) [17, 20].
The increase of g1 sharpens the transition between thresh-
old and escape regimes. From the point of view of r1, g2
(proportional to the association constant of the second
target) governs the concentration of free miRNA avail-
able within the cell. Increasing g2 (while keeping all other
parameters fixed) pushes the threshold to lower values of
expression (lower r0 and p0) and globally increases r1 (and
p1). r2 behaves as a sponge for the miRNA, and increas-
ing g2 is equivalent to sponging away the miRNA available
to target r1. When all the miRNAs have been sponged
away by r2 (high value of g2), then r1 is not regulated
anymore. At intermediate conditions in which miRNA
is not completely sponged away by one of the targets,
finely tuned cross-regulation between targets is possi-
ble. The mathematical model, thus, suggests experiments

for testing this hypothesis and quantifying the crosstalk,
modulated by g1, g2, and the amount of miRNA present in
the cell.

Experimental set-up for unraveling cross-regulation
To investigate the predicted miRNA-mediated cross-
regulation in single mammalian cells, we transfected
two different two-color fluorescent reporters (sketched
in Fig. 1e) in the HEK 293 cell line. Both constructs
consist of bidirectional promoters driving two genes
whose products are fluorescent proteins. The first con-
struct expresses the fluorescent proteins mCherry and
enhanced yellow fluorescent protein (eYFP) [17], while
the second construct expresses mCerulean and mKOr-
ange. The 3′ untranslated region (UTR) of both mCherry
and mCerulean was engineered to contain a fixed num-
berN of MREs for miR-20a (withN = 0, 1, 4, 7), a miRNA
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endogenously expressed by the HEK 293 cell line [38, 39]
and related to cell proliferation.
mCherry and mCerulean are, therefore, proxies for the

two targets in the model (p1 and p2). The 3′ UTRs of
eYFP and mKOrange were left unchanged in order to
measure the transcriptional activity of the reporters in
single cells (they are proxies for p0). The constructs,
thus, allow simultaneousmonitoring of protein levels with
(mCherry and mCerulean) and without (eYFP and mKO-
range) miRNA regulation. The absence of a control on the
number of plasmids per cell allows us to explore the vari-
ation of target transcription levels by simply sorting the
cells on their eYFP or mKOrange fluorescence level.
For single-construct transfections, we observed a

threshold effect [17]. Briefly, when no MREs are present,
the levels of expression ofmCherry (mCerulean) and eYFP
(mKOrange) are proportional. In cells with one or more
miR-20a site on mCherry (mCerulean), the mCherry
(mCerulean) level does not increase until a threshold level
of eYFP (mKOrange) is exceeded (see Additional file 1:
Figure S1). This indicates that protein production is highly
repressed below the threshold established by miRNA reg-
ulation and responds sensitively to target mRNA input
close to it. Cotransfections of both constructs with dif-
ferent MRE numbers and measurements of fluorescence
with a flow cytometer enabled the quantification of the
crosstalk between mCherry and mCerulean as a function
of N. Different combinations of MRE numbers mimic the
variation of the model parameters g1 and g2. To capture
the cross-regulation quantitatively, we measured the joint
distributions of mCherry (p1) and eYFP (p0) levels given
mCerulean (p2) in single cells positive to the fluorophores.
We, therefore, binned the data according to their eYFP
levels and calculated the mCherry and mCerulean mean
levels as well as their standard deviations and Pearson
correlation coefficients in each eYFP bin. To show that our
results are unbiased with respect to the cell line we used,
we repeated the experiments in HeLa cells. These data are
presented in Additional file 1.

The extent of cross-regulation is determined by relative
miRNA/target stoichiometry
To quantify the crosstalk by modulating g1 and g2, we
expressed different numbers of MREs on mCherry and
mCerulean (N = 1, 4, 7) and compared themwhenN = 0.
These cotransfections allowed us to follow the expression
of one target (mCherry) while tuning the amount of free
miRNA via the second target (mCerulean). As predicted
by the model (Fig. 1b), it is possible to identify two differ-
ent effects: (i) the appearance of a threshold on mCherry
while increasing the number N of MREs on its 3′ UTR
and keeping N = 0 on mCerulean (Fig. 2a and Additional
file 1: Figure S2a) and (ii) a global increase of the mCherry
mean fluorescence and a shift in the threshold while

increasing N on mCerulean (Fig. 2b and Additional file 1:
Figure S2b). Threshold effects such those shown in Fig. 2
are a typical landmark for non-linear behavior. More
specifically, the strength of the miRNA–target interaction
dictates the departure from linear behavior. In the absence
of an miRNA–target interaction, the mean number of
transcripts (and proteins) miRNA-mediated regulation
breaks this linear dependence by inducing highly non-
linear threshold effects.
In Fig. 2a, b, circles are data points with error bars

over the experimental replicates while continuous lines
are model fits (see Additional file 1 for details). The gray
curves in Fig. 2a and b are the model prediction with the
parameters fitted from the data and g1 → ∞. Notice that
the onset of the threshold is very close to the origin of the
plot, indicating a relatively small amount of free miRNA.
mCherry tends to the unregulated case (mCherry is lin-
early proportional to eYFP) on increasing the number of
MREs on mCerulean. This result is well summarized by
the fold-repression F between regulated and unregulated
mCherry mean fluorescence (Fig. 2c–e). F is the ratio
between the value of mCherry in the absence of miR-20a
MREs and its value in the presence of MREs for each eYFP
bin and for each N on mCerulean. Increasing the num-
ber of MREs on mCherry increases its repression, and F is
highest when mCerulean has N = 0 MREs while it tends
to one on increasing the eYFP expression or the number of
MREs on mCerulean. In particular, near the threshold, F
shows amaximumwhose value depends both onmCherry
and mCeruleanMREs. F could be indirectly considered as
a measure of cross-regulation between the two targets.
These data show that the cross-regulation is maximal

near the threshold and for intermediate levels of repres-
sion (in our case whenmCerulean is between one and four
MREs).

miRNA increase shifts the optimal cross-regulation region
To assess the cross-regulation dependence on the avail-
ability of miRNA, we transfected 100 nM of pre-miR
for miR-20a together with the bidirectional constructs.
In our model, this is equivalent to increasing the basal
miRNA transcription rate ks. We analyzed the cases with
N = 4 for mCherry and N = 0, 1, 4, 7 for mCerulean.
In agreement with the model predictions (see Fig. 1b),
we observed a shift of the threshold towards higher eYFP
levels (Fig. 3a) together with a global increase in the fold-
repression (Fig. 3b) and a resulting shift of the optimal
crosstalk region towards a higher number of MREs. In
Fig. 3a, triangles and circles are data points for cotransfec-
tions with pre-miR20a and negative controls, respectively,
while continuous lines are model fits (see Additional file 1
for details). The gray curve in Fig. 3a is again the model
prediction with the parameters fitted from the data and
g1 → ∞.
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Fig. 2 Titration-induced threshold determines the optimal crosstalk. a, bmCherry mean fluorescence (a proxy for p1 in the model, Fig. 1b) is plotted
against eYFP (a proxy for the constitutive expression p0 in the model). Error bars are evaluated on the biological replicates. Continuous lines are model
fits. The gray curves in (a) and (b) are the model prediction with the parameters fitted from the data and miRNA/target effective interaction strength
g1 → ∞. The black arrow points to the model-predicted threshold. A threshold (or non-linear behavior) emerges when increasing mCherry MRE
(a) while it disappears when increasing mCerulean MRE (b). The onset of the threshold is very close to the origin of the plot, indicating a relatively
small amount of freemiRNA. The intensity of crosstalk (measured in terms of fold-repression F with respect to the unregulated fluorophores) depends
on the particular combination of MRE on both exogenous targets (c–e). F is the ratio between the value of mCherry in the absence of miR-20a MREs
and its value in the presence of MREs for each eYFP bin and for each N on mCerulean. Purple and cyan circles in legends represent the plasmids
coding for the mCherry and mCerulean fluorophores. a.u. arbitrary units, eYFP enhanced yellow fluorescent protein,MRE miRNA regulatory element

We then quantified by quantitative PCR the mean
absolute number of exogenous targets in three subpop-
ulations of cells (bulk measurements), sorted according
to their eYFP intensity (low, medium, or high) both in
the presence and absence of pre-miR for when N =
4 on mCherry and N = 1 on mCerulean (Table 1).
We found that mCherry and mCerulean ranged from
40 to 400 and from 10 to 200 mean molecules per
cell, respectively, without pre-miR and both from 10 to
about 250 mean molecules in the presence of pre-miR
(see Additional file 1 for details). Mature miR-20a, both
endogenous and in cells transfected with 100 nM of its
pre-miR, was quantified as well. We found about 1250
molecules per cell of mature miR-20a in the untrans-
fected cells and 163 times more mature molecules in
the pre-miR transfected cells (see Additional file 1
for details).
These data show that in our system, the maximal cross-

regulation region is dependent on the relative number of

both miRNAs and targets and it is compatible with a low
number of mRNA molecules.

Titration induces increased cell-to-cell variability and
bimodality
It is well known that the intrinsic noise of an unregu-
lated gene product decreases when its expression level
increases [40]. The effect of miRNA regulation introduces
an extra source of noise (extrinsic noise). Our mathemat-
ical model predicts that, at fixed levels of expression, the
total noise (intrinsic plus extrinsic) of a miRNA-regulated
gene product (say CVp1 ) should increase or decrease
upon enhancing miRNA–target interaction strengths g1
or g2, respectively (see Fig. 1c), compared to the unreg-
ulated case (when g1 → 0). The increase of CVp1 is
due to the coupling of the intrinsic noise of the target
r1 (and, thus, p1) to the extrinsic noise of the miRNA s
induced by the titration reactions. Increasing the interac-
tion strength of the second target g2 partially decouples
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Fig. 3miRNA increase shifts the maximal crosstalk region. amCherry mean fluorescence (a proxy for p1 in the model, Fig. 1b) is plotted against eYFP
(a proxy for the constitutive expression p0 in the model). Blue triangles and red circles are data from cotransfection with pre-miR20a and negative
controls, respectively. Error bars are evaluated on the biological replicates. The gray curve is the model prediction with the parameters fitted from the
data and miRNA/target effective interaction strength g1 → ∞. The black arrow points to the model-predicted threshold. According to the model,
increasing the pool of available miRNAs (transfecting pre-miRNAs) shifts the threshold to higher constitutive expression values. b Different
combinations of miR-20a MREs lead to different levels of fold-repression and crosstalk. Triangles and circles in the plot are data from transfections
with pre-miR20a and negative controls, respectively. Purple and cyan circles in legends represent the plasmids coding for mCherry and mCerulean
fluorophores, respectively. a.u. arbitrary units, eYFP enhanced yellow fluorescent protein,MRE miRNA regulatory element

r1 and s, thus, reducing the noise CVp1 . In particular, the
model predicts the onset of a local maximum in the noise
profile of the miRNA target versus its level of constitu-
tive expression for high g1 near the threshold. Indeed,
near the threshold, also the coupling between the two

Table 1 Absolute quantification of exogenous targets

Exogenous transcript Cotransfection Cotransfection + pre-miR-20a

eYFP low 58 (42) 41 (28)

eYFP medium 354 (398) 103 (54)

eYFP high 2986 (2840) 336 (28)

mCherry low 34 (18) 10 (9)

mCherry medium 113 (50) 21 (18)

mCherry high 424 (368) 205 (214)

mCerulean low 6 (1) 8 (3)

mCerulean medium 60 (54) 36 (29)

mCerulean high 208 (152) 261 (296)

Absolute quantification of the number of transcripts per cell for the exogenous
molecules (standard deviation over the biological replicates in parentheses) for the
cotransfection of the two constructs (second column), and the cotransfection of the
two constructs plus pre-miR20 (third column). The mean number of mRNA
exogenous molecules for three different intervals of eYFP basal expression is low
enough to be comparable with physiological values

targets r1 and r2 (and, thus, p1 and p2) becomes non-
negligible (maximal cross-regulation) and contributes to
the total noise. The local maximum is a vivid mani-
festation of the so-called retroactivity phenomenon, i.e.,
of how binding and titration can introduce correlations
between intrinsic and extrinsic noise [41]. The intrinsic
noise of one target is coupled to the extrinsic noise of
the miRNA and in turn to the extrinsic noise of the other
miRNA target.
Experimentally, we show that: (i) upon increasing N

on mCherry (i.e., g1), the total noise of mCherry glob-
ally increases as a function of eYFP (Fig. 4a and Addi-
tional file 1: Figure S2c) and (ii) upon increasing N on
mCerulean (i.e., g2), the total noise of mCherry glob-
ally decreases (Fig. 4b and Additional file 1: Figure S2d).
For high levels of repression (high N on mCherry and
low N on mCerulean), the mCherry CV eventually shows
a local maximum near the threshold (Additional file 1:
Figure S2c, d). A low level of noise indicates unimodal dis-
tributions while an increase in noise indicates increased
cell-to-cell variability and may indicate bimodal popula-
tion distributions with distinct high and low expression
states [42]. We then checked if this was the case and found
that bimodality on mCherry is present near the thresh-
old for a high miRNA–target interaction (N = 4, 7 on
mCherry andN = 0, 1 on mCerulean); see the histograms
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Fig. 4 Retroactivity increases cell-to-cell variability. a, bmCherry total noise, quantified by its coefficient of variation (CV, a proxy for CVp1 in Fig. 1c), is
plotted against eYFP (a proxy for the constitutive expression p0 in the model). The black arrow identifies the model-predicted threshold shown in
Fig. 2. Error bars are evaluated on the biological replicates. CV globally increases on increasing the number of mCherry MREs (a) while it decreases on
increasing the number of mCerulean MREs (b). The competition between these two strengths results in lowering the noise even if the expected
repression from the rough number of mCherry MREs is high. Histograms in the lower panels showmCherry data distributions for the shaded regions
in (a) and (b). A strong miRNA target repression strength increases cell-to-cell variability with the eventual appearance of different phenotypes
(bimodal distributions). Purple and cyan circles in legends represent the plasmids coding for mCherry and mCerulean fluorophores, respectively. a.u.
arbitrary units, CV coefficient of variation, eYFP enhanced yellow fluorescent protein,MRE miRNA regulatory element

in Fig. 4 and Additional file 1: Figure S3. In particular, for
N = 7 on mCherry and N = 0 on mCerulean, two very
discernible phenotypes appear. This suggests the binary
response is directly linked to the variability in the level of
repression the miRNA exerts on the target [20]. Near the
threshold, where the numbers of free target and miRNA
molecules are small and similar, stochastic fluctuations
become decisive for the cell fate. A small fluctuation in
the number of miRNAs or targets will indeed produce
cells with a highly repressed or unrepressed target product
depending on the particular miRNA repression strength
exerted on the target.
Our data show that miRNA–target titration reactions

introduce non-trivial couplings between miRNA and tar-
gets (retroactivity) that possibly result in an increase in

noise and bimodal cell population distributions near the
threshold.

Titration-induced retroactivity causes target
synchronization
The model predicts a maximum in the correlation
between the two target products p1 (mCherry) and p2
(mCerulean) near the threshold (see Fig. 1d). We inves-
tigated the strength of this prediction, distinguishing
between correlations dependent on the experimental set-
ting (mainly transient cotransfections and partial sharing
of regulatory elements in the promoter) and correlations
induced by the competition for miRNA binding, which
can potentially lead to synchronized fluctuations. We,
thus, defined the ratio of the Pearson correlation coef-
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ficients (the ratio of the Pearson coefficients between
mCherry and mCerulean possessing different MREs for
the same measure in the absence of MREs). We mea-
sured this ratio for eYFP below, around, and above the
threshold (Fig. 5a–c, respectively), and observed that
the competition for miRNA binding introduces cor-
relations ranging from 4- to 12-fold higher than the
basal level of correlation. The correlation between tar-
gets is a measure of the extrinsic noise component of
CVp1 induced by the miRNA titration reactions and
gives insights into the possible synchronization of the
targets.
Our results show that it is possible to have weakly or

highly correlated targets for precise transcriptional pro-
grams. The regime of synchronized fluctuations, which is
due to the titration-induced retroactivity, is determined
by the number of MREs on both targets and is maximal
around the threshold for intermediate miRNA repression
strengths.

Interplay between transcriptional activity and
miRNA–target interaction strength
Although many mRNAs have more than one MRE for
a given miRNA, most of them have just one (see Addi-
tional file 1). However, even if there is only one MRE,
these targets are typically expressed in multiple copies per
cell and, thus, have the potential to titrate away the avail-
able miRNA molecules and crosstalk with other targets,
if expressed at sufficiently high levels. This suggests test-
ing to see if increasing the number of molecules for a
reporter with only oneMRE has the same effect on the tar-
get competitor as increasing the number of MREs on the
same reporter.

The model predicts that either an increase (respectively,
a decrease) of the transcription rate of target 2 (kr2 ) or
of its interaction strength (g2) causes the same quali-
tative effect on the system: a decrease (respectively, an
increase) of the number of free miRNAs available to bind
the first target (r1). However, the average number of tran-
scripts (〈r1〉) functionally depends in a different manner
on the parameters kr2 and g2. This implies that the two
effects, albeit qualitatively similar, are not equivalent (see
Fig. 6a–c).
In particular, increasing kr2 has the effect of increasing

the basal number of available targets r2 and simply shifts
the p1 threshold to lower p0 values. That is, the p1 curve is
shifted towards the left and we see the p1 curve approach-
ing the unregulated case (see Fig. 6a). On the other hand,
increasing g2 mimics an increase in the binding efficiency
between the target r2 and the miRNA and results in a
decrease in the probability of the miRNA binding to r1.
It is, moreover, possible to define two different regimes,
depending on the basal transcription rate of r2. If the r2
transcription rate is smaller than themiRNA transcription
rate, then on increasing g2, p1 will tend to a limiting curve
that is different from the unregulated case (see Fig. 6c).
That is, even for a high interaction between miRNA and
r2, there will always be an excess of miRNAs so that r1
(and p1) shows a threshold-like behavior. If instead the r2
transcription rate is bigger than the miRNA transcription
rate, then r1 (and p1) will tend to the unregulated case
when increasing g2 (see Fig. 6b) due to an initial target sur-
plus. This last case is qualitatively like increasing the r2
transcription rate.
We experimentally tested this hypothesis as follows. For

a fixed total amount of DNA transfected per cell plate

a b c

Fig. 5 Fold Pearson and p values. The Pearson ratio is measured for three different values of eYFP basal expression: below threshold (a), around
threshold (b), and above threshold (c). p values are reported for each combination of miRNA MREs on the two plasmids. The regions inside the blue
perimeters are statistically significant with p < 0.01. As predicted by the model, the correlation is maximal around the threshold and could be even
12-fold higher than in the unregulated case. Blue-delimited areas are regions whose Pearson ratio (i.e., the ratio of the Pearson coefficients between
mCherry and mCerulean possessing different MREs for the same measure in the absence of MREs) is statistically relevant with respect to the
corresponding unregulated case. eYFP enhanced yellow fluorescent protein,miRNAmicroRNA,MRE miRNA regulatory element
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a

d e

b c

Fig. 6 Interplay between transcriptional activity and miRNA–target interaction strength. The figure shows model predictions and experimental
results obtained when investigating the effect on one target (say p1) of the interplay between the second target (say r2 and, thus, p2) and the
miRNA. The interplay between r2 and miRNA is tuned both via the transcription rate kr2 of r2 and via the interaction strength g2 between r2 and the
miRNA. p1 is plotted against p0 on a increasing the transcription rate kr2 of r2, b increasing the interaction strength g2 between miRNA and r2 when
kr2 > ks (excess of targets), and c increasing the interaction strength g2 between miRNA and r2 when kr2 < ks (excess of miRNA). The model
prediction for cases depicted in (a) and (b) are qualitatively very similar. dmCherry mean fluorescence (a proxy for p1 in the model) is plotted
against eYFP (a proxy for the constitutive expression p0 in the model). The dashed black line corresponds to the unregulated case while the blue data
points correspond to the reference case with four MREs on mCherry and one MRE on mCerulean. Either increasing the copy number of mCerulean
(a proxy for kr2 in the model), black data points, or the number of MREs on its sequence (a proxy for g2 in the model), red data points, has the effect of
decreasing the amount of miRNA available to target mCherry (which globally increases). e Fold-repression with respect to the unregulated case
plotted against eYFP. Error bars are evaluated on the biological replicates. a.u. arbitrary units, eYFP enhanced yellow fluorescent protein,miRNA
microRNA,MRE miRNA regulatory element

(5 μg), (i) we transfected 1 μg of mCherry reporter with
four MREs and 4 μg of mCerulean reporter with one
MRE and (ii) we transfected 1 μg of mCherry reporter
with four MREs, 1 μg of mCerulean reporter with four
MREs, and 3 μg of empty backbone vectors.We then com-
pared the results with the unregulated case (zero MREs
on both reporters) and the case with 1 μg of mCherry
with four MREs and 1 μg of mCerulean with one MRE.
This experiment relies on the assumption that an increase
in the quantity of the transfected reporter is a proxy for
an increase in the transcription rate of the gene coded in
the reporter (i.e., kr1,2 ), while an increase of the number
of MREs (i.e., 1, 4, and 7 binding sites) corresponds to an
increase of the miRNA–target interaction strength g1,2.
Our results, shown in Fig. 6d and e, suggest that increas-

ing the number of MREs on a reporter molecule or
increasing the number of reporter molecules with only
one MRE have qualitatively similar, although quantita-

tively different, effects in terms of crosstalk (Fig. 6e). In
particular, they also suggest an excess of targets, since the
two curves (red and black) in Fig. 6d are similar. Since
from our target quantification the number of molecules
per cell, close to the threshold, is about 150 and the num-
ber of mature miR-20a’s is about 1000 molecules per cell,
to be in excess of targets the other endogenous miR-20
targets should be active in sequestering the miRNA.

Discussion and conclusions
Previous studies pointed out the functional relevance of
RNA competition formiRNA binding, thus addressing the
potential role of RNAs in regulating the distribution of
miRNA molecules on their targets [29–34, 43, 44]. In this
work, we show, both with stochastic modeling and single-
cell experiments that validate the model, that RNAs com-
peting for miRNAs influence their relative fluctuations as
well and that this happens in a miRNA-dependent man-
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ner. Our results offer a detailed feature map for charac-
terizing the post-transcriptional mRNA cross-regulation
(see Fig. 7). Besides the general consistency with previous
population-based qualitative results [16] and the agree-
ment with a titration-based mechanism of miRNA–target
interaction [17, 20, 21], the stochastic analysis allowed us
to characterize curve trends for fluctuations and corre-
lations of two targets of the same miRNA as a function
of their expression level. The detailed picture points out
that crosstalk between targets is quantitatively relevant
only in conditions of intermediate miRNA repression and
small amounts of target molecules (of order 10–1000), in
agreement with a cell-population-based study by Bosson
and coworkers [28].
We stress that the numbers we obtainedmust be consid-

ered more like orders of magnitude than exact numbers,
since the way we estimated them, although correct, is
indirect [17, 45]. These values are a lower bound on the
actual number of molecules per cell since the RNA extrac-
tion yield is lower than 100%. Nonetheless, our numbers
are compatible with those in [17] and qualitatively in
agreement with what we see at the level of fluorescence
(i.e., the amount of exogenous RNAs increases on increas-
ing the fluorescence of the eYFP reporter). This finding is

Fig. 7 Phase diagram for mCherry (the target product p1). The figure
shows how the crosstalk between targets and bimodality on mCherry
behave on varying the effective miRNA interaction strength and the
mean numbers of target mRNA molecules. The effective miRNA
interaction strength on target r1 (and, thus, p1) is measured
theoretically through the ratio g2/g1 and experimentally with different
combinations of miRNA binding sites on both synthetic constructs

in contrast with that in [35] where, with a similar exper-
imental design, the authors observed that the exogenous
targets are expressed as the most expressed endogenous
genes. Despite that both our study and [35] used the HEK
293 cell line, the evaluated endogenous miRNAs are dif-
ferent: miR-20a in our case and miR-21 in [35]. According
to [38], miR-20a is the most expressed miRNA in HEK
293 whereas miR-21 is not even in the list of the 20 most
expressed miRNAs in that cell line. This implies that if
the relative stoichiometry between miRNA and targets
matters with respect to the effectiveness of competition,
the discrepancy with what was observed in [35] may be
related to the endogenous amount of miR-21. Indeed, we
showed that the effectiveness of the competition is lim-
ited to particular stoichiometric conditions and that these
conditions are achieved near the threshold produced by
the miRNA–target titration reactions. Although cross-
regulation between targets is not zero even for a high level
of target fluorescence (highmRNA expression), the region
of maximal sensitivity of the system is limited.
The miRNA–target titration reactions introduce corre-

lations among the intrinsic noise of one target and the
extrinsic noise of the miRNA and in turn the extrinsic
noise of the other miRNA target. The model predicts that
this phenomenon of noise coupling, first introduced in
[41] as a consequence of binding reactions, is large near
the threshold, when the amount of free miRNA is compa-
rable to the number of free targets. The idea that binding
reactions introduce correlations is defined as retroactiv-
ity (see [46] for a review) and described at the mean
field level in [47]. Our results are a vivid manifestation
of this retroactivity phenomenon, which per se can dras-
tically affect noise transmission in cellular networks and
eventually impede a modular description of biochemical
networks [41]. However, when the retroactivity is high,
two or more targets may be highly cross-correlated, thus
our results suggest that optimal levels of expression of
genes and of miRNAs with respect to maximizing retroac-
tivity may control the relative fluctuations of targets that
have to interact or bind in complexes with a precise
stoichiometry [22].
On the other hand, we found that strongmiRNA repres-

sion together with low target crosstalk is sufficient to
induce bimodality, i.e., the appearance of two distinct pop-
ulations of cells with low and high target expression states.
Bimodally expressed genes are found in different contexts,
ranging from breast cancer [48] to immune cells [49],
and usually each mode of the bimodal distribution corre-
sponds to a different physiological condition (for example,
a normal or a disease state). Our results suggest that
if the bimodally expressed gene is a miRNA target, the
system could be locked in one of the two states, chang-
ing the miRNA–target interaction strength through the
expression of other competitors.
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Our experimental strategy allowed us to study the inter-
play between MRE multiplicity and the effect of differ-
entially expressing one of the two targets. The stochastic
model predicts, and our results confirm, that the effect
of increasing the transcription rate of one of the two
targets reduces the share of free miRNAs available to
repress the other target. Qualitatively, the same effect
could be achieved by increasing the miRNA–target inter-
action strength of one of the two targets. Although from
a purely mathematical point of view the dependence of
the average number of proteins of the first target on
the transcription rate and on the miRNA–target interac-
tion strength of the second one are different, there are
ranges of parameter values for which this distinction is not
so sharp.
According to Sætrom and colleagues, two miRNA

molecules can cooperate in the repression of their tar-
get when seed binding sites are 13–35 nucleotides apart
[50], a phenomenon that has also been studied theo-
retically [51, 52]. In contrast, MREs very near to each
other may result in the interference of miRNA binding.
Experimentally, we modulated the interaction strength
through the number of MREs on the constructs. Our
constructs have bulged miR-20a sites separated by four-
nucleotide-long spacers [17] and the seed binding sites
are 18 nucleotides from each other, which should imply
the cooperative miRNA repression of the targets. How-
ever, there is no significant difference in the repression
of mCherry with N = 4 and N = 7 MREs if there
are no MREs on mCerulean (Fig. 2a) and there is little
shift in the mCherry fluorescence when the number of
MREs on mCerulean increased from one to four (Fig. 2b).
A possible key to interpreting our results is that upon
increasing the number of MREs per construct what is
really increasing is the probability of miRNA binding to
the target and not the number of miRNAs simultaneously
bound to a single target. However, as recently shown in
[53], the very mechanism of the miRNA–target interac-
tion is not yet completely understood, and we expect new
findings in the near future that will put our mathematical
modeling on more solid ground.
It is tempting to speculate that gene expression thresh-

olding could be an important feature of cell fate decisions.
However, while titrative regulatory mechanisms of miR-
NAs may easily switch whole gene networks on or off
depending on the relative stoichiometry of miRNAs and
targets, the scope of this mechanism has to be determined
case by case. Indeed, theoretically, there is in principle no
limit on the number of genes that can be cross-regulated
by one gene or via the expression of a common miRNA
[20] (see Additional file 1), given that it is just a matter
of parameters to tune to the appropriate value (for exam-
ple, the transcription rate of one target or miRNA). In
physiological conditions, however, where there is no fuel

turnover, the number of genes involved in the crosstalk
may be limited and case specific.
Taken together, our results suggest as well that cross-

regulation is relevant for molecules present in small
amounts. Molecular species physiologically present in
the order of 10–1000 molecules per cell, such as tran-
scription factors or signaling molecules [37, 54], are
more likely to be affected by cross-regulation. Although
our experimental setting is artificial, it provides a
deep exploration of the parameter space. A physio-
logical system of miRNAs and targets could indeed
experience only a small subset of the features so far
described, rendering the characterization of crosstalk
difficult. Without needing to over-express any endoge-
nous gene, we were instead able to mimic the variation
of relevant model parameters (miRNA and target tran-
scription rates and miRNA–target interaction strength).
Our phase diagram (Fig. 7) links quantitative mea-
surements (effective miRNA repression and number of
mRNAmolecules) with model parameters, suggesting the
possibility of moving around in the phenotype space tun-
ing quantities such as the accessibility of binding sites or
the affinity between miRNA and targets.
The functional importance of miRNA-mediated target

cross-regulation has been shown in a number of cases,
both diseased and physiological. For example, the pseu-
dogene PTENP1 regulates the expression of the tumor
suppressor PTEN in a miRNA-dependent manner, even-
tually modulating cancer cell growth [43, 55]. Our find-
ings suggest the possibility that when PTENP1 crosstalks
with PTEN, their corresponding RNAs are close to the
maximum-crosstalk region of the phase diagram. Tun-
ing the miRNA–PTEN interaction strength through the
expression of the miRNA-competitor PTENP1 would
then move the system closer to the bimodality region,
with the two modes of the distribution being the can-
cer and the normal cells. At this point, the cell popu-
lation can switch from one subpopulation to the other
and the two competitors are highly coupled. Subsequent
downregulation of PTENP1 would then lock the system
in one of the two states and move it toward the low-
crosstalk region of the phase diagram, characterized by a
monomodal distribution of the cell population. Another
relevant case involves the long non-coding RNA linc-
MD1, which competes for binding miRNAs with the two
transcription factors MAML1 and MEF2C. Thus, it reg-
ulates the differentiation of myoblasts in normal mus-
cle development [44]. As a last example, the 3′ UTR of
CD44 competes for miRNA binding with the mRNA of
CDC42, whose corresponding protein regulates the cell
cycle [56]. We think that our findings give theoretical sup-
port and valuable tools for making significant progress in
the understanding of these and other miRNA-mediated
target cross-interactions.
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Methods
A detailed description of the modelling and data analysis
procedures is available in Additional file 1 (Supplementary
Material).

Reporter plasmid construction
The set of fluorescent reporters coding for eYFP and
mCherry was obtained from Addgene (#31463, #31464,
#31465, and #31466, deposited by Phil Sharp Lab)
and are the same as those used in [17]. The second
set of fluorescent reporters were cloned into pBI-
CMV1 (Clontech). A nuclear localization sequence
(NLS) (ATGGGCCCTAAAAAGAAGCGTAAAGTC)
was appended to mCerulean-N1 (Addgene #27795,
deposited by Steven Vogel Lab [57]) by PCR and then
inserted into the main vector with ClaI and BamHI.
mKOrange-NLS (Addgene #37346, deposited by Con-
nie Cepko Lab [58]) was cloned into the vector using
EcoRI blunt and BamHI. miR-20a regulatory elements
were appended to the 3′ UTR of mCerulean with the
same strategy applied in [17]: the N = 1 bulged miR-20
binding site (TACCTGCACTCGCGCACTTTA) was
appended by PCR and for both constructs, CCGG spacers
separate subsequent miR-20a regulatory elements.

Transient transfections
We performed two different methods of transfection, with
Lipofectamine (data in Figs. 2, 3 and 4 in the main text
and in Additional file 1: Figure S3) and with CaCl2 (data
in Additional file 1: Figures S1 and S2). Our results are
independent of the method of transfection.

Lipofectamine transfection method HEK 293 TeT-Off
cells (Clontech) below passage 6 were plated in G418
(Gibco) 200 μg/ml media in six-well dishes the day before
transfection. Reporter plasmids were transfected with
Lipofectamine 2000 (Invitrogen) following the manufac-
turer’s specifications. miR-20a pre and negative controls
(Ambion) were cotransfected at the indicated concentra-
tions. The media was changed 24 h after transfection.
Assays were performed 48 h after transfection.

CaCl2 transfection method HEK 293 TeT-Off cells
(Clontech) below passage 6 were plated in 100 × 20 mm
(Falcon BD) dishes the day before transfection. The cells
were transfected using CaCl2 protocols [59]. The media
was changed 24 h after transfection. Assays were per-
formed 48 h after transfection.

Flow cytometry
Cells were harvested 48 h after transfection (cell conflu-
ency ∼90 %) and run on a CyanADP (Beckman Coulter)
flow cytometer. For each sample, at least 0.5 × 106 cells
were acquired. The raw FACS data were analyzed with

the Summit3.1 software (Beckman Coulter) to gate cells
according to their forward and side scatter profiles and
to define the intensity of fluorescent signals emitted by
the four reporters in each cell. These values were nor-
malized for background fluorescence by subtracting the
mean plus two standard deviations of the fluorescent sig-
nal measured in the untransfected control cells. The data
were then binned according to their eYFP values.

Data processing
For each cell, we collected the raw fluorescent intensi-
ties and then we subtracted the background fluorescence
levels estimated from non-transfected cell reads. The
background-corrected data were then binned into con-
secutive equally spaced intervals of eYFP intensities. Each
bin contains a subpopulation of the order of 104 cells.
Eventually, each bin is characterized by the mean fluo-
rescent intensity, by the coefficient of variation for each
fluorophore, and by the Pearson correlation coefficient
between mCherry and mCerulean (computed for each
subpopulation). The same procedure was then applied to
the three different biological replicates. The final values
we report in data plots (Figs. 2a, b, 3a and 4a, b in the main
text and Additional file 1: Figures S1 and S2) are the mean
of these measurements over the biological replicates for
each bin, and the error bar is their standard deviation. It
is probably worth stressing that the error bar computed in
this way is a proxy for the fluctuation of the mean over the
biological replicates rather than the data dispersion, the
latter being a factor

√
Ncib larger than the former, where

Ncib is the number of cells in a bin (see Additional file 1:
Figure S4). The error bars for Figs. 2c–e and 3b are instead
computed with a standard jackknife procedure.

Fluorescence-activated cell sorting
Cells were transfected with the N = 4 eYFP-mCherry and
N = 1 mkOrange-mCerulean reporters with and with-
out pre-miR-20a 100 nM (Ambion). 48 h after transfec-
tion, three cell populations were sorted according to their
eYFP fluorescence (low, medium, or high YFP expression)
using a BD FACS Aria III (Becton Dickinson) cell sorter.
Cell pellets were washed and snap-frozen before RNA
isolation.

Empirical observables and Pearson correlation coefficient
ratio
We defined the empirical average of a given observable O
over an ensemble of cells as 〈O〉 = ∑

i∈cellOi/Ncell. The
Pearson ratio is defined as the ratio of the Pearson cor-
relation coefficient (ρx,y = (〈xy〉 − 〈x〉〈y〉)/σxσy) between
mCherry and mCerulean with a given combination of
MREs to the same measure in the absence of MREs. We
evaluated the ratio for each eYFP bin (below, around, and
above the threshold) for at least three different biological
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replicates. We then estimated the p values of each ratio
with respect to the distributions having as standard devi-
ation the error on the biological replicates and as mean
values the Pearson ratio for mCherry and mCerulean with
N = 0 MRE for the three eYFP intervals.

Additional file

Additional file 1: Supplementary Material. Detailed description of the
modeling and data analysis procedures. (PDF 1106 kb)
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