
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

On-the-fly Traffic Classification and Control with a Stateful SDN approach / Zhang, Tianzhu; Bianco, Andrea; Giaccone,
Paolo; Kelky, Seyedaidin; Mejia Campos, Nicolas; Traverso, Stefano. - ELETTRONICO. - (2017). (Intervento presentato
al convegno IEEE International Conference on Communications (ICC) tenutosi a Paris, France nel May 2017).

Original

On-the-fly Traffic Classification and Control with a Stateful SDN approach

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2664666 since: 2017-06-14T10:17:20Z

IEEE

On-the-fly Traffic Classification and Control with a
Stateful SDN approach

Tianzhu Zhang, Andrea Bianco, Paolo Giaccone, Seyedaidin Kelki, Nicolas Mejia Campos, Stefano Traverso
Dept. Electronics and Telecommunications, Politecnico di Torino, Italy

Abstract—The novel “stateful” approach in Software Defined
Networking (SDN) provides programmable processing capabili-
ties within the switches to reduce the interaction with the SDN
controller and thus improve the scalability and the performance
of the network. In our work we consider specifically the stateful
extension of OpenFlow that was recently proposed, called Open-
State, that allows to program simple state machines in almost-
standard OpenFlow switches.

We consider a reactive traffic control application that reacts
to the traffic flows which are identified in real-time by a generic
traffic classification engine. We devise an architecture in which an
OpenState-enabled switch sends the minimum number of packets
to the traffic classifier, in order to minimize the load on the
classifier and improve the scalability of the approach. We design
two stateful approaches to minimize the memory occupancy in the
flow tables of the switches. Finally, we validate experimentally our
solutions and estimate the required memory for the flow tables.

I. INTRODUCTION

Software Defined Networking (SDN) allows an unprece-
dented level of programmability, by moving the control plane
to a centralized server. This allows to achieve a coherent view
of the network state, which enables the development of ad-
vanced and flexible network applications. The SDN controller
is the software which provides the “network operating system”,
responsible to manage all the network resources accessed by
the network applications.

The reference architecture for SDN is based on OpenFlow
(OF) standard, which provides a simple protocol to program
the data plane of the switches, which act as mere executioners
of the commands received by the SDN controller. Notably,
other flavors of the SDN approach have been proposed, as
highlighted by the comprehensive survey [1], but OF represents
the most practically relevant protocol. In OF networks the
control logic internal to a switch consists of one or more flow
tables, which describe the operations on the data plane (e.g.,
forward to a specific port, send to the controller, drop) for
all the packets matching some rules (e.g., specific values or
wildcards on given fields of the packet header). Differently
from an Ethernet switch or an IP router, an OF switch does
not take any decision regarding the control plane and does not
keep any view of the network state (e.g., topology information,
link congestion) and thus OF is considered a stateless approach
within the switch.

SDN controllers can execute advanced traffic control poli-
cies, implemented as applications, which do not react only to
slow-varying states of the network (e.g., topology, link costs),
but also to fast-varying states (e.g., congestion, incoming
traffic). The switches are responsible to inform the controller
about the network state. Thus, applications with slow-varying

network states are quite scalable, since the communication
overhead to send the actual network state to the controller
is negligible. Differently, when network state changes fast,
the communication overhead between switches and controllers
may become critical in terms of bandwidth and latency, thus
posing severe limitations to the scalability of the system. This
is particularly true for network applications running in real-
time.

One possible way to improve the scalability of real-time
network applications is to reduce the interaction between the
switches and the SDN controller, by keeping some basic state
within the switch. Thus the switch is allowed to take some
simple decision in an autonomous way (e.g. re-routing). This
approach is denoted as stateful and there has been a growing
interest towards it, as discussed in [1], [2]. We remark that it
is different from the traditional stateful approaches adopted in
Ethernet switches and IP routers, where the state associated
to the control plane can be complex (e.g., different level of
abstractions in the topology related to the different formats of
LSA messages in OSPF), but cannot be programmed in real-
time, differently from the stateful SDN approach.

In our work we address the integration of traffic control
policies, that are specifically driven by a traffic classifier, with
an SDN approach. The addressed scenario is an SDN network
in which flows are classified in real-time and the traffic control
application applies some action on them. E.g., if the traffic is
classified as video-streaming, it is sent through a path with
better bandwidth and/or delays. Or, if the traffic is classified
as file-sharing, it is tagged as low priority. In this work we
show that a stateful approach reduces the interaction between
the switches and the SDN controller, which in turn is no more
involved in a continuous interaction with the traffic classifier.

The main contribution of our paper is to exploit the stateful
approach, enabled by the OpenState [3] extension of OF, to
integrate (i) the switches, (ii) the SDN controller and (iii) a
traffic classifier in order to minimize the number of packets that
are mirrored by the switch and sent to the classifier, without
the SDN controller’s intervention. As shown in [4], relying
on just a few packets (e.g., the first ones of a flow) for flow
classification can improve the scalability of the overall system
to achieve high speed rates (e.g., Gbit/s).

We propose two solutions based on OpenState, configur-
ing the flow tables in different ways. The beneficial effect
of our approach is not only for the reduced load on the
SDN controller and on the traffic classifier, but also for the
switches. Indeed, the memory occupancy of the internal flow
tables is minimized. This result is relevant since flow tables
are efficiently implemented with TCAMs (Ternary Content
Addressable Memories), which are very fast, but much smaller

(around 105-106 bytes) than standard RAM memories. As
additional contribution of our work, we validate our solutions
in a testbed with a Ryu controller interacting with an OF 1.3
switch (emulated with Mininet) and evaluate experimentally
the actual memory occupancy typical of each of our solutions,
in function of the number of concurrent flows. Thanks to our
results, we can compute the maximum number of concurrent
flows compatible with a maximum TCAM memory size.

II. INTEGRATING AN SDN CONTROLLER WITH A TRAFFIC
CLASSIFICATION ENGINE

We consider a scenario in which the incoming traffic is
mirrored to a traffic classifier (TC), so that traffic flows are
eventually identified. Based on the classification outcome, a
traffic control application operates a specific policy on the flow,
e.g. re-routing the traffic to a different port, tagging the traffic
or dropping it.

A. On-the-fly traffic classification

We address the scenario in which traffic is classified in
real-time based on the actual sequence of packets switched
across the network. To identify a flow, only the initial sequence
of packets of a flow are required by the TC. Let Cp be the
minimum number of packets to identify protocol p. Each TC
engine is characterized by different values of Cp, depending
on the adopted technology and the level of accuracy. For
some protocols, the basic classification based on transport layer
information (e.g. TCP/UDP ports), allows an immediate iden-
tification and thus Cp = 1. For more advanced identifications,
this number can be larger and may depend on the required
accuracy. The traffic control application is supposed to react
only to a specific set, denoted as A, of protocols. Let C be the
minimum number of packets sufficient to identify any protocol
in A for a given TC engine (i.e. C = minp∈A Cp).

We are now discussing some technologies for the TC
engine. One technique to classify traffic on-the-fly is Deep
Packet Inspection (DPI), which can be implemented in differ-
ent ways. The first approach is denoted as pattern-matching
DPI (aka, pure DPI), which identifies the flow by matching
the whole layer-7 payload with a set of predefined signatures.
All the signatures are collected in a dictionary defining a set of
classification rules, and then checked against the current packet
payload until either a match is found or all the signatures
have been tested. The second approach is based on Finite State
Machines (FSM-DPI) which are used to verify that message
exchanges are conform to the expected protocol behavior. For
example, for the OpenDPI engine [5], Cp ∈ [1, 25] to achieve
the maximum accuracy [6]; a smaller accuracy can be achieved
for Cp ∈ [1, 10]. The third approach is based on Behavioral
Classifiers (BC) which leverage some statistical properties of
the traffic. For instance, the distribution of packet sizes or
of inter-arrival times may allow to identify the application
generating the traffic. This approach avoids the payload inspec-
tion and is not affected by encryption mechanism. However,
statistical estimators usually require a large number of packets
per flow to achieve a good accuracy.

The definition of the signatures and matching rules imple-
mented by above approaches can be either achieved manu-
ally, i.e., by studying or reverse-engineering the protocols to

Traffic control
application

Traffic
classifier

SDN
controller

OF traffic

 OpenFlow
 switch

Data traffic

Control port

Fig. 1: Basic approach for integrating traffic classification with
an SDN controller

.

classify, or, automatically, i.e., by adopting Machine Learn-
ing (ML). ML learns the peculiar features of given traffic
flows, and provides the knowledge to classify on-the-fly the
traffic [7]. The disadvantage is that the results depend mostly
on the training data which should be up-to-date and accurate,
and may not be as accurate as other techniques. As example,
the ML-based classification scheme proposed in [8] is able
to detect the application generating the traffic with at most 5
packets, thus Cp ∈ [1, 5].

Each classifier offers a different tradeoff between accuracy
and processing speed. Our investigation is independent from
the actual classification engine, provided that only the first
C packets are required for the flow identification, given the
specific set A of protocols for which the traffic control
application is supposed to react. Whenever the engine is not
able to classify a flow after receiving C packets, it is clearly
useless and counterproductive for the TC performance to keep
sending packets of the same flow to the TC. Thus, we aim at
designing solutions satisfying the following design constraint:
no more than C packets of the same flow are sent from the
switch to the traffic classifier.

B. Basic integrated approach

A standard approach to integrate an SDN controller with
the TC which satisfies the above design constraint is shown in
Fig. 1. The traffic control application instruments the switch
to forward all the packets of a new flow to the controller
through legacy OF packet-in messages. Then the SDN con-
troller provides a copy of the received packets to the traffic
control application (usually through the northbound interface
of the controller), which does a countdown from C to 0 for
each flow, by counting the number of packets for each flow.
As soon as the TC classifies the flow, the network application
stops the countdown and then programs the switch based on the
given traffic control policy. In the case the countdown reaches
0, i.e. the number of forwarded packets is C, then the traffic
control stops sending packets to the TC (since it is useless to
identify any protocol in A) and programs the switch (typically,
through flow-mod messages) to stop sending the packets to the
controller. This approach poses severe scalability issues caused
by the exchange of packets and control messages between (i)
the switch, (ii) the controller/application and (iii) the TC, and
the consequent communication and processing overhead.

An alternative solution to reduce the communication over-
head from the switch to the controller is to install a forwarding
rule within the switch that mirrors all the traffic with a time
limit. This approach does not require a stateful extension to

Traffic control
application

SDN
controller

Traffic
classifier

OF traffic

Control port

OpenState−enabled
 OpenFlow switch

Data traffic

Mirror port

Data traffic

Fig. 2: Proposed stateful approach for integrating traffic clas-
sification with an SDN controller

the OF switch, but requires a hard-timeout which is difficult
to tune, since the minimum time corresponding to C packets
depends on the actual traffic arrival process, which is usu-
ally unknown. Notably, hard-timeouts, differently from soft-
timeouts, expire after a predefined time, independently from
the actual traffic arrival process and have been available since
OF version 1.0. Nevertheless, an hard-timeout can be safely set
assuming a worst-case behavior of the flow, but in typical cases
this would imply a much larger number of mirrored packets
than C, with a useless waste of resources.

In the following we present our approach which overcomes
the limitations of the techniques described above.

III. STATEFUL SDN APPROACH FOR TRAFFIC
CLASSIFICATION

Adopting a stateful approach in OF switch allows a very
efficient mirroring of the first C packets of a flow. Indeed, the
switch can autonomously mirror the first C packets of the flow
to the TC engine, without involving neither the traffic control
application nor the SDN controller in the countdown process.

We consider OpenState [3] as an enabling technology for
stateful SDN. OpenState supports Mealy Machine as abstrac-
tion for extended finite-state machine (XFSM), which enables
programmability of a stateful data plane in a quite flexible way,
with switches whose hardware is (almost) the same as standard
OF switches. OpenState is implemented with two main tables.
The state table maps each active flow to its current state (i.e.,
an integer value). Instead the XFSM table is an extension of a
standard OF flow table that maps a match field to an action.
Indeed, in the XFSM table the match field includes also a
possible value for the current state, and the action can also
be updated on the fly. In such a way, we can implement state
machines in which packet arrival events trigger transitions and
states evolve as described by the XFSM table. Notably, we
can implement XFSM tables directly in TCAM memories, as
currently done for flow tables in commercial OF switches. In
the following, to remark their common nature, we will refer
to the XFSM table as flow table.

Leveraging this technology, we can adopt the approach
described as follows. Whenever a packet arrives, the state table
identifies the current state of the corresponding flow, the switch
processor accesses the flow table, and based on the match fields
on the packet header and on the current state, it takes an action
on the data plane (e.g., forward, drop) and updates the state
of the flow in the state table.1 The implementation details of
OpenState are available in [3].

1Notably, OpenState is flexible and provides more operations than those
described. For instance, it allows to define different “lookup” and “update”
scopes to access and update the state table.

State
C

State
C-1

...........

Forward,

mirror
Forward, mirror,

send to controller

Drop

Forward
State
C-2

State
1

State
0

Forward,
mirror

Forward,
mirror

Packet arrival

Reset message
arrival

Fig. 3: Finite state machine programmed in the OpenState
switch for each new flow. The transitions are triggered by
packet arrivals and associated with the actions to apply on
the packet.

Match fields Action
Header Current state Data plane New state

flow-id1 C forward and mirror C − 1
flow-id1 C − 1 forward and mirror C − 2

...
flow-id1 1 forward, (send to controller) and mirror 0
flow-id1 0 forward 0

* default send to controller -

TABLE I: Flow table for SCD approach when the first packet
of flow “flow-id1” is received

To exploit the stateful approach provided by OpenState, we
propose the architecture shown in Fig. 2, based on OF switches
supporting OpenState extension. We program the switch to
run the finite state machine (FSM) illustrated in Fig. 3 for
each new flow, in order to operate the countdown from C to
0 within the switch, and not in the traffic control application
as in the basic solution described in Sec. II-B. Each packet
arrival triggers a transition in the FSM. Whenever a new packet
arrives, the switch decrements the state, forwards the packet to
the required destination port, and in the meanwhile mirrors it to
the TC. When the countdown reaches zero, the switch disables
the mirror operation. The transitions triggered by a “reset”
message are not required for the basic countdown process,
and will be discussed in Sec. III-C.

In the following, we propose two approaches to implement
the state machine mechanism described above. Our goal then
is to minimize the number of flow entries and the size of the
tables used by such approaches.

A. Simple CountDown (SCD) scheme

The first approach to implement the state machine in Fig.3
is denoted as SCD (Simple CountDown). The main idea is to
maintain the state equal to the current countdown value and the
flow table describing the update of the state based on the flow
identifier and the current state. The behavior of the proposed
scheme is described in Fig. 4, according to which the switch
mirrors only the first C packets to the TC.

Table I shows the flow entries installed in the flow table
when the first packet of a new flow reaches the controller
(through a packet-in message). We assume that the flow is
identified by a specific matching rule denoted as “flow-id1”
(e.g. IP source/destination and TCP ports). In the first C states

Match fields Action
Header Current state Data plane New state

flow-id1 0 forward 0
* default send to controller -

TABLE II: Flow table for SCD approach after the countdown
ends

Host Switch Classifier Controller

packet 1

Flow_mod

packet 1packet 2

packet 2
.
.
. .

.

.packet C
packet C

packet C+1

packet C+2

packet_in

Fig. 4: Exchange of messages for SCD and CCD schemes

(from C to 1) the switch mirrors the traffic to the TC (through
the mirror port), while it forwards the traffic according to the
standard routing. The final state of the countdown is 0 that
means that the switch has mirrored C packets to the TC,
and must disable the mirroring for the corresponding flow.
By construction, the total number of entries is C +1 for each
flow, thus the total memory occupancy of the table is F (C+1)
entries, if F is the concurrent number of flows traversing the
switch. After the installation of the entries in the state table,
the switch processes new packets belonging to the same flow
locally without the intervention of the controller.

In addition to the flow rules to update the countdown
process, we add the standard default rule for any new flow,
which must be sent to the controller (through a packet-in
message). In addition, we also add some basic rules (not shown
here for briefness) to manage ARP packets and avoid sending
them to the TC. In the following, we will not consider the
impact of this couple of rules on the size of the flow tables.

In order to minimize the memory occupancy, we devise
an optional memory purging scheme to delete the C entries
associated to a flow as the countdown ends. Indeed, when
the flow state becomes 0 (i.e. the countdown has terminated),
the packet is sent also to the controller through a packet-in
message (not shown in Fig. 4). Since in OpenState a packet-
in carries also the current value of the state, the controller
can understand that the countdown has terminated and issues
an OF delete message to remove all the entries regarding the
corresponding flow and add a entry with the final forwarding
rule to apply. At the end, the flow table corresponding to
a specific flow is shown in Table II. The proposed purging
scheme is complementary to the standard idle timeouts of the
entries in the flow tables. The main advantage of our approach
is that it does not require a careful setting of the timeouts,
which depend on some worst-case arrival pattern for a flow,
which is practically very difficult to know in advance.

B. Compact CountDown (CCD) scheme

The second approach we propose aims at reducing the
size of the flow tables, and thus we denote it as Compact
CountDown (CCD). The approach exploits a cascade of two
flow tables, as shown in Tables III and IV. The entries
corresponding to each flow in both tables are installed when the
first packet of a flow reaches the controller, as in SCD scheme.
The first table (FT1) programs the required forwarding action
and imposes that the second table (FT2) must be processed,
in cascade, independently from the actual state. Instead, FT2
stores the countdown values, independently from the flow.

In this way, we achieve the same behavior as SCD (shown
in Fig. 4) but with a reduced number of state entries. We have

Match fields Action
Header Current state Data plane New state

flow-id1 * forward and goto table 2 *
* default send to controller -

TABLE III: OpenState flow table FT1 for CCD approach

Match fields Action
Header State Data plane New state

* C mirror C − 1
* C − 1 mirror C − 2
...
* 1 mirror 0
* 0 - 0

TABLE IV: OpenState flow table FT2 for CCD approach

Host Switch Classifier

packet 1

Packet 1
packet 2

packet 2

.

.

.

packet C

packet C+1

packet C+2

Reset msgpacket 3

Fig. 5: Protocol behavior for an interruption

1 entry in FT1 for each flow and C + 1 entries in FT2 for all
the flows. Thus, for F concurrent flows, the total number of
entries is F + C + 1.

Differently from SCD, the memory purging scheme at the
end of the countdown is not necessary in CCD since only one
entry for each flow is stored in the flow tables and must be
kept for the entire life of the flow. Thus, in addition to the
reduced memory occupancy, SCD does not require the switch
to interact with the controller for the purging, with a beneficial
effect of load reduction on the controller.

C. Countdown interruption

As soon as the TC identifies the flow, it is useless to keep
mirroring the traffic to the TC. Thus, we propose a scheme to
interrupt the countdown in order to minimize the load on the
TC. We devise an in-band signaling scheme based on a “reset”
message sent directly from TC to the switch with the same
flow identifier of the just classified flow. Fig. 3 shows how
this message is integrated in the countdown FSM and Fig. 5
shows the network behavior due to the interruption. The state
machine changes in a way that anytime the TC sends a packet
to the switch on the mirror port, the new state of the flow
becomes 0, i.e., the countdown is interrupted. This behavior is
obtained by adding one flow entry as shown in Table V. The
priority of such entry is set higher than the other entries to be
sure that it works properly.

For SCD the interruption mechanism is integrated with the
proposed memory purging scheme in order to minimize the
memory occupancy.

Match fields Action
Header Input port Current state Data plane New state

...
flow-id1 mirror port * drop 0

TABLE V: Additional entry in SCD and CCD to interrupt the
countdown

SCD CCD
Number of flow tables 1 2
Memory purging Yes Not needed
Countdown interruption Yes Yes
Flow entries during countdown F (C + 1) F + C + 1
Flow entries after countdown F F + C + 1

TABLE VI: Comparison between the two approaches for F
concurrent flows

D. Comparison of approaches

Table VI summarizes the differences between our two
proposed approaches and the number of installed entries for
F concurrent flows, according to the discussion above (we
have omitted the default rule for unknown flows and the rules
related to ARP packets). From both tables, CCD appears the
most convenient because of its mild growth in the memory
occupancy. In Sec. IV-A we also evaluate the actual occupancy
in bytes.

IV. VALIDATION AND EXPERIMENTAL EVALUATION

We validate the behavior of both SCD and CCD approaches
in the testing Ubuntu 14.04 VM provided in OpenState web-
site [9]. The VM provides a modified version of Mininet
2.2.1 with OpenState-enabled switches and Ryu controller is
available to issue OpenState-specific flow-mod commands and
configure the state machine internal to the switch.

We develope a Python script running in Ryu that programs
the switch according to either SCD or CCD schemes. To
verify the correct behavior of our implementation for both
schemes, we configured Mininet to interconnect 2 hosts with
the controller and to the TC module through one switch. We
run tcpdump in all the hosts to capture the detailed exchange
of packets destined to the hosts and to verify the correct
behavior of our implementation for different values of C.

We perform the validation as follows. We program the
OpenState FSM to send the traffic arriving from host 1 to host
2 and to mirror the first C packets to the host corresponding
to the traffic classifier, using SCD or CCD approach. We
generate the ICMP packets from host 1 to host 2 with the ping
command to verify that only the first C packets are forwarded
correctly also to TC. Then, by sending an appropriate flow-
mod packet from the SDN controller, we verify that the
memory purging scheme works as expected in SCD. Finally,
to verify the correct behavior of the countdown interruption,
explained in Sec. III-C, we run netcat command in the TC
host to generate a packet with the same flow-id (at IP level) of
the flow from host 1 to host 2 and thus interrupt the countdown.

A. Empirical memory occupancy

We evaluate experimentally the actual memory occupancy
in bytes for the two approaches. Notably, it is not immediate
to infer the memory occupancy because of the different match
fields in SCD and CCD schemes. Furthermore, our estima-
tion is based on the memory occupancy of the flow tables
in Mininet with the OpenState extension, which provides a
reasonable approximation of the memory required for a real
hardware implementation based on TCAM.

To evaluate the actual size of the flow tables, we exploited
the standard OpenFlow “FLOW STATS” request and reply

Approach Flow table occupancy [bytes]

SCD min 18F
max 22F (C + 1) + 17F

CCD min 17F + 14C + 12
max 34F + 14C + 12

TABLE VII: Total memory occupancy for F concurrent flows
and countdown from C

 0.1

 1

 10

 100

 1000

 10 100 1000 10000

k
b
y
te

s

Concurrent flows F

SCD max C=25
SCD max C=05

SCD min
CCD max C=25
CCD max C=05
CCD min C=25

Fig. 6: Total memory occupancy in the flow tables

messages. The reply contains a field representing the length
in bytes of the entries installed in the tables of the switch.
This length comprises the match fields (including the current
state) and the actions (including the new state) that must be
applied over the packets. We sample the table sizes after each
installation of the XFSM for a new flow, for different values of
F and C and obtain the empirical formulas in Table VII. We
show two bounds for SCD and CCD. “SCD max” provides an
upper bound on the occupancy, due to the C+1 rules installed
for each flow at the beginning plus the rule to manage the
countdown interruption. “SCD min” provides instead a lower
bound on the occupancy, due to the final entry left in the table
after the memory purging operation. Both bounds are strict,
and we expect that the actual occupancy is between the two
bounds. For CCD the two bound differs only of 17 bytes,
equivalent to the size of the interruption entry.

Fig. 6 shows the total occupancy in function of F and for
two values of C. All the curves show the expected growing
proportional to F . SCD in the worst case requires around 1.5C
times the amount of memory than CCD, but in the best case
it can also outperform CCD, when the number of flows is less
than 50. This is due to the fixed overhead of CCD to store the
flow table FT2.

Fig. 6 allows to assess the maximum scalability of each
approach in a real setting. If we consider a maximum size
for the TCAM equal to 250 kbytes, which is a typical value
according to [10], SCD is able to sustain around 500 (for C =
25) and 2,500 (for C = 5) concurrent flows, whereas CCD can
sustain more than 80,000 concurrent flows, thus with a gain
of almost two orders of magnitude.

B. Experimental comparison with standard OpenFlow
switches

We tested experimentally the traffic monitoring architecture
in Fig. 2 in two different scenarios: the first one using the
CCD stateful approach implemented with OpenState, and the
second one using a standard approach (without countdown)
implemented in a standard OF switch. By comparing the actual
data traffic from the switch to the traffic classifier, we will
evaluate quantitatively the gain in terms of scalability of our
proposed stateful approach.

 0

 2

 4

 6

 8

 10

M
ax

 n
u

m
.

o
f

p
ac

k
et

s

Protocol id

Fig. 7: Maximum number of packets needed to identify each
protocol

 0
 2
 4
 6
 8

 10
 12
 14

1 2 3 4 5 6 7 8 9 10

P
ac

k
et

s/
s

Countdown C

CCD approach
Standard approach

Fig. 8: Average packet traffic received by nDPI for a standard
OF approach and for a stateful CCD approach

In our testbed, we connected directly Ryu controller to the
traffic classifier through a TCP socket. The traffic classifier was
implemented in a standalone module by adapting the open-
source code of nDPI [11], which allows to identify a large
set of applications analyzing the IP packets. The classifier
was programmed to send a message to the SDN controller
whenever a flow was identified. The network application
running on the SDN controller was designed to stop mirroring
the traffic of a flow anytime the flow was identified by nDPI
and to steer such flow to another port of the switch.

We created a real-traffic trace by capturing the traffic of a
single user for 53 minutes while accessing multiple services on
the Internet (e.g. web browsing, video streaming, VoIP, cloud
services, etc). The total number of packets in the trace was
645,720, with a total number of flows equal to 14,807; the
average generated traffic was around 200 packets/s. Fig. 7
shows the maximum number of packets required to identify
the flows in our specific trace, obtained by feeding directly
the real-traffic trace to nDPI. In our experiment, 51 different
kinds of protocols were identified, in particular all the DNS
queries were identified with just the one packet (as expected),
whereas between 4 and 10 packets were needed to identify all
the remaining flows. We used tcpreplay to feed the trace
of the traffic from a host to the switch. We measured through
a packet sniffer the data traffic sent from the switch to the
classifier for identification. We varied C to evaluate the effect
of the countdown procedure in CCD on the data traffic sent
by the switch to the traffic classifier.

Fig. 8 shows the traffic received by the traffic classifier
using a stateful CCD approach and a standard approach in an
OpenFlow switch. In the latter case, the average traffic sent
to the classifier is always 13.37 packets/s since C does not
have any effect. This traffic is much lower than the average
offered load to the switch (around 200 packets/s), because of
the truncated mirroring of any new identified flow. Notably,
in a scenario with multiple users to monitor, we would expect
an increase in the traffic to the classifier proportional to the
number of active users.

As we can see from Fig. 8, the CCD approach reduces
always the load of classifier between 73% (for C = 10) and
96% (for C = 1), with respect to the standard OF approach,
thanks to the countdown interruption mechanism described
in Sec. III-C. This allows to increase the number of users
monitored by the same traffic classifier, e.g. by a factor of
28 when C = 1 and by a factor of 3.7 when C = 10.

V. CONCLUSIONS

We considered an SDN traffic control application that
reacts in real-time to the traffic, based on the analysis of
a traffic classifier, towards which the traffic is mirrored. To
improve the scalability of the approach, and, thus, of the
overall system, we addressed the problem of minimizing the
interaction between the main three players of the system, i.e.,
the switch, the SDN controller and the traffic classifier.

We leveraged OpenState, a novel extension of OpenFlow,
to implement a state machine directly in the switches in order
to mirror just the minimum number of packets to the packet
classifier. We designed two solutions based on OpenState,
aimed at minimizing the total amount of memory required for
the flow tables. Finally, we evaluated experimentally the actual
memory in bytes to assess precisely the maximum scalability
of each solution, given the size of the TCAM memory through
which the flow tables are typically implemented in OpenFlow
switches.

Our results show that our proposed CCD solution outper-
forms SCD solution in terms of memory footprint by almost
two orders of magnitude, thus allowing us to execute on-
the-fly traffic classification, while guaranteeing a satisfactory
scalability degree.

REFERENCES

[1] D. Kreutz, F. M. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76,
2015.

[2] M. T. Arashloo, Y. Koral, M. Greenberg, J. Rexford, and D. Walker,
“SNAP: Stateful network-wide abstractions for packet processing,” in
ACM SIGCOMM, 2016.

[3] G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “OpenState:
programming platform-independent stateful openflow applications in-
side the switch,” ACM SIGCOMM Computer Communication Review,
vol. 44, no. 2, pp. 44–51, 2014.

[4] M. Canini, D. Fay, D. J. Miller, A. W. Moore, and R. Bolla, “Per
flow packet sampling for high-speed network monitoring,” in IEEE
COMSNETS, 2009.

[5] OpenDPI github repository. [Online]. Available: https://github.com/
thomasbhatia/OpenDPI

[6] J. M. Khalife, A. Hajjar, and J. Dı́az-Verdejo, “Performance of OpenDPI
in identifying sampled network traffic,” Journal of Networks, 2013.

[7] R. Ferdous, R. L. Cigno, and A. Zorat, “Classification of SIP messages
by a syntax filter and SVMs,” in IEEE GLOBECOM, 2012.

[8] L. Bernaille, R. Teixeira, and K. Salamatian, “Early application identi-
fication,” in ACM CoNEXT, New York, NY, USA, 2006.

[9] OpenState SDN. [Online]. Available: http://openstate-sdn.org/
[10] SDN system performance. [Online]. Available: http://www.pica8.com/

pica8-deep-dive/sdn-system-performance/
[11] nDPI. [Online]. Available: http://www.ntop.org/products/

deep-packet-inspection/ndpi

