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Best Theory Diagrams for Cross-Ply Composite Plates using  

Polynomial, Trigonometric and Exponential Thickness Expansions 

This paper presents Best Theory Diagrams (BTDs) employing combinations of 

Maclaurin, trigonometric and exponential terms to build two-dimensional theories 

for laminated cross-ply plates. The BTD is a curve in which the least number of 

unknown variables to meet a given accuracy requirement is read. The used refined 

models are Equivalent Single Layer and are obtained using the Unified 

Formulation developed by Carrera. The governing equations are derived from the 

Principle of Virtual Displacement (PVD), and Navier-type closed form solutions 

have been obtained in the case of simply supported plates loaded by a bisinuisoidal 

transverse pressure. BTDs have been constructed using the Axiomatic/Asymptotic 

Method (AAM) and genetic algorithms (GA). The influence of trigonometric and 

exponential terms in the BTDs has been studied for different layer configurations, 

length-to-thickness ratios and stresses. It is shown that the addition of 

trigonometric and exponential expansion terms to Maclaurin ones may improve 

the accuracy and computational cost of refined plate theories. The combined use 

of CUF, AAM and GA is a powerful tool to evaluate the accuracy of any structural 

theory. 

Keywords: Plates; Carrera Unified Formulation (CUF); Trigonometric; 

Exponential; Best Theory Diagram; Composite Structures. 

1. Introduction 

Laminated composite plates are extensively used in many engineering applications due 

to their high strength-to-weight ratio, high stiffness-to weight ratio, environmental 

resistance and the ability to tailor properties for desired applications. An accurate analysis 

of composite structures is fundamental for a reliable structural design. Several researchers 

have investigated the modelling of the laminated composites over the past few decades 

and some structural models have been developed for their analysis.  

Classical plate theories (CPT), originally developed for thin isotropic plates [1, 

2], neglect transverse shear and normal stresses. An extension of this model to multi-
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layered structures is referred to as the Classical Lamination Theory (CLT) [3, 4]. Reissner 

and Mindlin [5, 6] included transverse shear effects in their well-known First Order Shear 

Deformation Theory (FSDT). More accurate theories such as higher order theories (HOT) 

assume quadratic, cubic, higher variations or non-polynomial terms to improve the 

displacement field along the thickness direction [7-14]. 

However, the abovementioned theories may be not sufficient if local effects are 

important or accuracy in the calculation of the transverse stresses is required. The Zig-

Zag models [15, 16] and mixed variational tools [17] have been proposed to deal with 

these phenomena. Among the plate models for laminated structures two different 

approach can be distinguished: the Equivalent Single Layer (ESL) and the Layer-Wise 

(LW) models. Excellent reviews of existing ESL and LW models can be found in [18-

22]. 

This paper makes use of trigonometric and exponential expansions to build 

refined plate models. Shimpi and Ghugal [12], proposed a LW trigonometric shear 

deformation theory for the analysis of composite beams. Arya et al. [13] developed a Zig-

Zag model using a sine term to represent the non-linear displacement field across the 

thickness in symmetric laminated beams. Ferreira et al. [14] presented a LW plate model 

using a meshless discretization method for symmetric composite plates. Mantari et al. 

[23] developed a new ESL plate model in which a parameter m was included on the 

trigonometric functions to obtain 3D like elasticity solutions. Mantari et al. [24] extended 

[23] to a LW plate model for finite element analysis of sandwich and composite laminated 

plate. Thai et al. [25, 26] presented isogeometric finite element formulations for static, 

free vibration and buckling analysis of laminated composite and sandwich plates. This 

was extended to a generalized shear deformation theory by Thai et al. [27]. Hybrid 

Maclaurin-trigonometric models were proposed by Mantari et al. [28, 29] for bending, 
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free vibration and buckling analysis of laminated beams. Mantari et al. [30] presented a 

generalized hybrid formulation for the study of functionally graded sandwich beams, 

which was extended to the Finite Element Method (FEM) by Yarasca et al. [31]. A unified 

framework on higher order shear deformation theories of laminated composite plates was 

proposed by Nguyen et al. [32]. Ramos et al. [33] developed refined theories based on 

non-polynomial kinematics via the Carrera Unified Formulation to deal with thermal 

problems, which was extended by Mantari et al. [34] to investigate the static behavior of 

FGM. 

The refined models employed in this paper are based on the Carrera Unified 

Formulation (CUF). According to CUF, the governing equations are given regarding the 

so-called fundamental nuclei whose form does not depend on either the expansion order 

nor on the choices made for the base functions. This important feature allows to analyze 

any number of kinematic models in a single formulation and software. ESL and LW 

models were successfully developed in CUF, as reported in [35]. More details on CUF 

can be found in [36, 37]. To developed accurate refined theories with lower computational 

effort, Carrera and Petrolo [38, 39] introduced the Axiomatic/Asymptotic Method 

(AAM). This method consists of discarding all terms that do not contribute to the plate 

response analysis once a reference solution is defined. This leads to the development of 

reduced models whose accuracies are equivalent to those of full higher-order models. The 

AAM has been applied to several problems, including: static and free vibration of beams 

[38, 40], metallic and composite plates [39, 41], shells [42, 43], LW models [44, 45], 

advanced models based on the Reissner Mixed Variational Theorem [46], and 

piezoelectric plates [47]. 

The AAM method was adopted to build the BTD by Carrera et al. [48]. The BTD 

is a curve in which the minimum number of expansion terms - i.e. unknown variables - 
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required to meet a given accuracy can be read; or, conversely, the best accuracy provided 

by a given amount of variables can be read. To construct BTDs with a lower 

computational cost, a genetic algorithm was employed by Carrera and Miglioretti [49]. 

Petrolo et al. [50] presented BTDs for ESL and LW composite plate models based on 

Maclaurin and Legendre polynomial expansions of the unknown variables along the 

thickness.  

The present work presents BTDs using Maclaurin, trigonometric and exponential 

thickness expansions for the analysis of laminated composite plates. The functions 

employed in this paper were selected according to Filippi et al. [51, 52]. Genetic 

algorithms are employed to reduce the computational cost related to the definition of the 

BTD.  

The present paper is organized as follows: a description of the adopted 

formulation is provided in Section 2; the governing equations and closed-form solution 

is presented in Section 3; the AAM is presented in Section 4; the BTD is introduced in 

Section 5; the results are presented in Section 6, and the conclusions are drawn in Section 

7. 

2. Carrera Unified Formulation for Plates  

The geometry and the coordinate system of the multilayered plate of L layers are shown 

in Fig. 1. The integer k denotes the layer number that starts from the plate-bottom, x and 

y are the in-plane coordinates while z is the thickness coordinate.  

In the framework of CUF, the displacement of a plate model can be described as: 

 𝒖(𝑥, 𝑦, 𝑧) = 𝐹𝜏(𝑧) ∙ 𝒖𝜏(𝑥, 𝑦)          𝜏 = 1, 2, … . , 𝑁 + 1 (1) 
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where 𝒖 is the displacement vector (𝑢𝑥 , 𝑢𝑦 , 𝑢𝑧) whose components are the displacements 

along the x, y and z reference axes. 𝐹𝜏 are the expansion functions and 𝒖𝜏 (𝑢𝑥𝜏
, 𝑢𝑦𝜏

, 𝑢𝑧𝜏
) 

are the displacements variables. If an ESL scheme is employed, the behavior of a 

multilayered plate is analyzed considering it as a single equivalent lamina. In this case, 

𝐹𝜏 functions can be Maclaurin functions of 𝑧 defined as 𝐹𝜏 = 𝑧𝜏−1. The ESL models are 

indicated as EDN, where N is the expansion order. An example of an ED4 displacement 

field is reported as: 

 𝑢𝑥 = 𝑢𝑥1
+ 𝑧 𝑢𝑥2

+ 𝑧2𝑢𝑥3
+ 𝑧3𝑢𝑥4

+ 𝑧4𝑢𝑥5
  

 𝑢𝑦 = 𝑢𝑦1
+ 𝑧 𝑢𝑦2

+ 𝑧2𝑢𝑦3
+ 𝑧3𝑢𝑦4

+ 𝑧4𝑢𝑦5
  

 𝑢𝑧 = 𝑢𝑧1
+ 𝑧 𝑢𝑧2

+ 𝑧2𝑢𝑧3
+ 𝑧3𝑢𝑧4

+ 𝑧4𝑢𝑧5
 (2) 

The present paper investigates the influence of trigonometric and exponential 

terms in ESL theories for laminated composite plates. The complete ED17 set of terms 

adopted is reported in  Table 1. The displacement field of ED17 consists of 51 unknown 

variables, which include 15 Maclaurin terms - the ED4 terms -, 24 trigonometric terms 

and 12 exponential terms.  For instance, the full expression of the displacement along x 

is 

𝑢𝑥 = 𝑢𝑥1
+ 𝑧 𝑢𝑥2

+ 𝑧2𝑢𝑥3
+ 𝑧3𝑢𝑥4

+ 𝑧4𝑢𝑥5
 + sin (

𝜋𝑧

ℎ
)𝑢𝑥6  + sin (

2𝜋𝑧

ℎ
)𝑢𝑥7   

 +sin (
3𝜋𝑧

ℎ
) 𝑢𝑥8  + sin (

4𝜋𝑧

ℎ
) 𝑢𝑥9  + cos (

𝜋𝑧

ℎ
) 𝑢𝑥10  + cos (

2𝜋𝑧

ℎ
)𝑢𝑥11  + 

 +  cos (
4𝜋𝑧

ℎ
) 𝑢𝑥13  + 𝑒

𝑧

ℎ𝑢𝑥14  + 𝑒
2𝑧

ℎ 𝑢𝑥15  + 𝑒
3𝑧

ℎ 𝑢𝑥16  + 𝑒
4𝑧

ℎ 𝑢𝑥17   (3) 

where h is the thickness of the plate.  
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3. Governing equations and Closed-form solution  

Geometrical relations enable to express the in-plane 𝝐𝑝
𝑘 and the out-planes 𝝐𝑛

𝑘  strains in 

terms of the displacement 𝒖. 

 𝝐𝑝
𝑘 = [𝜖𝑥𝑥

𝑘 , 𝜖𝑦𝑦
𝑘 , 𝜖𝑥𝑦

𝑘 ]
𝑇

= (𝑫𝑝
𝑘)𝒖𝑘,   𝝐𝑛

𝑘 = [𝜖𝑥𝑧
𝑘 , 𝜖𝑦𝑧

𝑘 , 𝜖𝑧𝑧
𝑘 ]

𝑇
= (𝑫𝑛𝑝

𝑘 + 𝑫𝑛𝑧
𝑘 )𝒖𝑘  (4) 

where 𝑫𝑝
𝑘, 𝑫𝑛𝑝

𝑘   and 𝑫𝑛𝑧
𝑘  are differential operators whose components are: 

 𝑫𝑝
𝑘 =

[
 
 
 
 

𝜕

𝜕𝑥
0 0

0
𝜕

𝜕𝑦
0

𝜕

𝜕𝑦

𝜕

𝜕𝑥
0]
 
 
 
 

,    𝑫𝑛𝑝
𝑘 = [

0 0
𝜕

𝜕𝑥

0 0
𝜕

𝜕𝑦

0 0 0

],    𝑫𝑛𝑧
𝑘 =

[
 
 
 
 

𝜕

𝜕𝑧
0 0

0
𝜕

𝜕𝑧
0

0 0
𝜕

𝜕𝑧]
 
 
 
 

 (5) 

Stress components for a generic k layer can be obtained using the Hooke law, 

 𝝈𝑝
𝑘 = 𝑪𝑝𝑝

𝑘 𝝐𝑝
𝑘 + 𝑪𝑝𝑛

𝑘 𝝐𝒏
𝑘  

 𝝈𝑛
𝑘 = 𝑪𝑛𝑝

𝑘 𝝐𝑝
𝑘 + 𝑪𝑛𝑛

𝑘 𝝐𝒏
𝑘 (6) 

where matrices 𝑪𝑝𝑝
𝑘 , 𝑪𝑝𝑛

𝑘 , 𝑪𝑛𝑝
𝑘  and 𝑪𝑛𝑛

𝑘  are: 

 𝑪𝑝𝑝
𝑘 = [

𝐶11
𝑘 𝐶12

𝑘 𝐶16
𝑘

𝐶12
𝑘 𝐶22

𝑘 𝐶26
𝑘

𝐶16
𝑘 𝐶26

𝑘 𝐶66
𝑘

],          𝑪𝑝𝑛
𝑘 = [

0 0 𝐶13
𝑘

0 0 𝐶23
𝑘

0 0 𝐶36
𝑘

],  

 𝑪𝑛𝑝
𝑘 = [

0 0 0
0 0 0

𝐶13
𝑘 𝐶23

𝑘 𝐶36
𝑘

],          𝑪𝑛𝑛
𝑘 = [

𝐶55
𝑘 𝐶45

𝑘 0

𝐶45
𝑘 𝐶44

𝑘 0

0 0 𝐶33
𝑘

], (7) 

For the sake of brevity, the dependence of the elastic coefficients 𝐶𝑖𝑗
𝑘  on Young’s 

modulus, Poisson’s ratio, the shear modulus, and the fiber angle is no reported. They can 

be found in [9]. 
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The governing equations are obtained via the principle of virtual displacement 

(PVD), which states that: 

 𝛿𝐿𝑖𝑛𝑡 = 𝛿𝐿𝑒𝑥𝑡 (8) 

where 𝛿𝐿𝑖𝑛𝑡 is the virtual variation of the internal work and 𝛿𝐿𝑒𝑥𝑡 is the virtual variation 

of the work made by the external loadings. The PVD can be written as: 

 ∑ ∫ (𝛿𝝐𝑝
𝑘𝝈𝑝

𝑘 + 𝛿𝝐𝑛
𝑘𝝈𝑛

𝑘)
𝑉

𝑁𝑙
𝑘=1 𝑑𝑉 = ∑ 𝛿𝐿𝑒𝑥𝑡

𝑘𝑁𝑙
𝑘=1  (9) 

Further details about the CUF and its implementation through the use of variational 

principles can be found in [37]. The governing equations are expressed in compact form, 

 𝛿𝒖𝑠
𝑘:  𝑲𝑑

𝑘𝜏𝑠𝒖𝜏
𝑘 = 𝑷𝑠

𝑘 (10) 

where 𝑷𝜏
𝑘 is the external load. The fundamental nucleus , 𝑲𝑑

𝑘𝜏𝑠, is assembled through the 

indexes 𝜏 and 𝑠 to obtain the stiffness matrix of each layer 𝑘. Then, the matrices of each 

layer are assembled at the multilayer level depending on the approach considered, for this 

work the ESL approach is adopted. 

In this paper, the closed-form solution proposed by Navier for simply supported 

orthotropic plates is exploited. The following properties hold: 

 𝐶𝑝𝑝16 = 𝐶𝑝𝑝26 = 𝐶𝑝𝑛36 = 𝐶𝑛𝑛45 = 0 (11) 

The displacements are expressed in the following harmonic form, 

 𝑢𝑥 = ∑ 𝑈𝑥𝑚,𝑛 ∙ 𝑐𝑜𝑠 (
𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝑏
)  

 𝑢𝑦 = ∑ 𝑈𝑦𝑚,𝑛 ∙ 𝑐𝑜𝑠 (
𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝑏
)  
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 𝑢𝑧 = ∑ 𝑈𝑧𝑚,𝑛 ∙ 𝑐𝑜𝑠 (
𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝑏
) (12) 

where 𝑈𝑥, 𝑈𝑦 and 𝑈𝑧 are the amplitudes, 𝑚 and 𝑛 are the number of waves, and 𝑎 and 𝑏 

are the dimensions of the plate in the 𝑥 and 𝑦 directions, respectively. 

4. Axiomatic/Asymptotic Method  

The introduction of high order terms in a plate model offers significant advantages in 

terms of improved structural response analysis at the expense of higher computational 

cost. The axiomatic/asymptotic method (AAM) allows us to decrease the computational 

cost of a model and at the same time preserve the accuracy of a high order model. The 

AAM procedure can be summarized as follows: 

(1) Parameters such as geometry, boundary conditions, loadings, materials and layer 

layouts are fixed. 

(2) A set of output parameters is chosen, such as displacement and stress components. 

(3) A theory is fixed; that is the displacement variables to be analyzed are defined. 

(4) A reference solution is defined; in the present work, fourth-order LW models 

(LD4) are adopted. 

(5) The CUF is used to generate the governing equations for the considered theories. 

(6) Each variable displacement effectiveness is numerically established measuring 

the loss of accuracy on the chosen output parameters compared with the reference 

solution. 

(7) The most suitable kinematic model for a given structural problem is then obtained 

by discarding the noneffective displacement variables. 

A graphical notation is introduced to represent the results. This consists of a table 

with three rows, and some columns equal to the number of the displacement variable used 
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in the expansion. As an example, an ED4 model (full model) and a reduced model in 

which the term 𝑢𝑥2
 is deactivated is shown in Table 2. The meaning of the symbols ▲ 

and Δ is reported in Table 3. The displacement field of Table 2 is 

 𝑢𝑥 = 𝑢𝑥1
+               𝑧2𝑢𝑥3

+ 𝑧3𝑢𝑥4
+ 𝑧4𝑢𝑥5

  

 𝑢𝑦 = 𝑢𝑦1
+ 𝑧 𝑢𝑦2

+ 𝑧2𝑢𝑦3
+ 𝑧3𝑢𝑦4

+ 𝑧4𝑢𝑦5
  

 𝑢𝑧 = 𝑢𝑧1
+ 𝑧 𝑢𝑧2

+ 𝑧2𝑢𝑧3
+ 𝑧3𝑢𝑧4

+ 𝑧4𝑢𝑧5
 (13) 

5. Best Theory Diagram  

The construction of reduced models through the AAM allows one to obtain a diagram, 

which for a given problem, each reduced model is associated with the number of active 

terms and its error computed on a reference solution. This diagram allows editing an 

arbitrary given theory to get a lower number of terms for a given error, or to increase the 

accuracy while keeping the computational cost constant. Considering all the reduced 

models, it is possible to recognize that some of them provide the lowest error for a given 

number of terms. These models represent a Pareto front for this specific problem. As in 

[49], the Pareto front is defined as the best theory diagram (BTD). It should be noted that 

the diagram changes for different conditions, i.e. different materials, geometries, 

loadings, boundary conditions and output parameters. 

The AAM is a practical technique that allows us to obtain the BTD for a given 

problem. However, if the plate model has a large number of terms, the computational cost 

required for the BTD construction can be considerable. The number of all possible 

combinations of active/not-active terms for a given model is equal to 2𝑀, where M is the 

number of unknown variables (DOF) in the model. In the case considered in this paper, 
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M is equal to 51. Since the AAM evaluates every reduced plate model in order to build 

the BTD, a different strategy is needed. 

In genetic algorithms terminology, a solution vector 𝒙 ∈ 𝑿, where 𝑿 is the 

solution space, is called an individual or chromosome. Chromosomes are made of discrete 

units called genes. Each gene controls one or more features of the individual. GAs operate 

with a collection of chromosomes, called a population. The population is normally 

randomly initialized. As the search evolves, the population includes fitter and fitter 

solutions, and eventually it converges, meaning that it is dominated by a single solution. 

Simple GAs use three operators to generate new solutions from existing ones: 

reproduction, crossover and mutation. On the reproduction, individuals with higher 

fitness are preserve for the next generation. Each individual has a fitness value based on 

its rank in the population. The population is ranked according to a dominance rule. The 

fitness of each chromosome is evaluated throught the following formula: 

 𝑟𝑖(𝒙𝒊, 𝑡) = 1 + 𝑛𝑞(𝒙𝒊, 𝑡) (14) 

where 𝑛𝑞(𝒙, 𝑡) is the number of solutions dominating 𝒙 at generation t. A lower 

rank corresponds to a better solution. On the crossover, generally two chromosomes, 

called parents, are combined together to form new chromosomes, called offsprings. The 

mutation operator introduces random changes at gene level. In this paper an elitism 

technique is used in order to preserve the dominant individuals in each generation without 

any changes in its configuration. A complete explanation on genetic algorithms can be 

found in [53,54].  

Each plate theory has been considered as an individual. The genes are the terms 

of the expansion along the thickness of the three displacement fields in the following 

manner. Each gene can be active or not, the deactivation of a term is obtained by 
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exploiting a penalty or row-column elimination technique. The representation of this 

method is shown in Fig 2. Each individual is therefore described by the number of active 

terms and its error that is computed on a reference solution. The dominance rule is applied 

through these two parameters to evaluate the individual fitness. The error of the new 

models on a reference solution was evaluated through the following formula: 

 𝑒 = 100
∑ |𝑄𝑖−𝑄𝑟𝑒𝑓

𝑖 |
𝑁𝑝
𝑖=1

𝑚𝑎𝑥𝑄𝑟𝑒𝑓∙𝑁𝑝
 (15) 

where 𝑄 can be a stress/displacement component (𝜎𝑥𝑥 and 𝜏𝑥̅𝑧 in this article) and 𝑁𝑝 is 

the number of points along the thickness on which the entity 𝑄 is computed. Each 

chromosome of the new population its ranked and new dominant chromosomes are 

selected. More details about the implementation of genetic algorithms for BTD can be 

found in [49]. In this paper, 50 generations were used and the initial population was set 

to 500. 

6. Results and discussion  

A bisinusoidal load is applied to the top surface of the simply supported laminated plate: 

 𝑝 = 𝑝̅𝑧 ∙ 𝑠𝑖𝑛 (
𝑚𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑛𝜋𝑦

𝑏
) (16) 

where 𝑎 = 𝑏 = 0.1 𝑚. 𝑝̅𝑧 is the applied load amplitude, 𝑝̅𝑧 = 1 𝑘𝑃𝑎, and 𝑚 and 𝑛 are 

equal to 1. The reduced models are developed for 𝜎𝑥𝑥 and 𝜏𝑥𝑧. The axial and shear stress 

are computed at [𝑎 2⁄ , 𝑏 2⁄ , 𝑧] and [0, 𝑏 2⁄ , 𝑧], with −
ℎ

2
≤ 𝑧 ≤

ℎ

2
. ℎ is the total thickness 

of the plate. The stresses are normalized according to: 

 𝜎𝑥𝑥 =
𝜎𝑥𝑥

𝑝̅𝑧∙(
𝑎

ℎ⁄ )2
  ,       𝜏𝑥̅𝑧 =

𝜏𝑥𝑧

𝑝̅𝑧∙(
𝑎

ℎ⁄ )
 (17) 
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The material properties are: 
𝐸𝐿

𝐸𝑇
⁄ = 25; 

𝐺𝐿𝑇
𝐸𝑇

⁄ = 0.5; 
𝐺𝑇𝑇

𝐸𝑇
⁄ = 0.2;  𝜈𝐿𝑇 =

𝜈𝑇𝑇 = 0.25. Each layer has the same thickness. Two length-to-thickness ratios are 

investigated: 𝑎 ℎ⁄  = 4  and 𝑎 ℎ⁄  = 20. The numerical investigation considered three 

reference problems: 

 A three layer cross-ply square plate with lamination 0º/90º/0º. 

 A two layer cross-ply square plate with lamination 0º/90º. 

 A four layer cross-ply square plate with lamination 0º/90º/90º/0º. 

To set a reference solution, an LD4 model assessment was carried out. The results are 

reported in Table 4; the three-dimensional exact elasticity results were taken from [55, 

56]. The LD4 are in excellent agreement with the reference solution. Consequently, the 

LD4 model is used as the reference solution in this paper.  

6.1 Three layer cross-ply square plate 0º/90º/0º 

The first method that was used to build the BTD was based on the evaluation of all 

possible combinations of an ED4 polynomial model obtain by the AAM. Figure 3 shows 

the error of each theory and the corresponding BTD built by the AAM. A genetic 

algorithm is used to build the reduced ED17 plate models with low computational cost. 

To corroborate the convergence of the GA to the Pareto front, a comparison between the 

BTDs obtained by the GA and the AAM is presented in Figure 3. It is clear that the BTDs 

obtained are in complete agreement. Figures 4a and 4b show the difference between the 

BTDs built from a polynomial ED4 model and the reduce ED17 model with trigonometric 

and exponential terms for length-to-thickness ratios equal to 4 and 20. The error is 

calculated according to Eq. (15), where 𝑄 is the stress 𝜎𝑥𝑥. The notation used is the 

following: the BTD built from a polynomial ED4 model is indicated as Pol;  the BTD 
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built from the ED17 model is referred to as Hybrid. For the sake of clarity, only plate 

theories with 15 terms or less are reported to allow a straightforward comparison with the 

ED4 model. Some of the BTD models are given Fig. 4a and Fig. 4b are reported in Tables 

5 and 6, respectively. The number of active terms is indicated by ME. For instance, the 

best hybrid model for 𝜎𝑥𝑥 with six unknown variables corresponds to the following 

displacement field: 

 𝑢𝑥 = 𝑧3𝑢𝑥4
+ sin (

𝜋𝑧

ℎ
) 𝑢𝑥6

+ sin (
3𝜋𝑧

ℎ
) 𝑢𝑥8

  

 𝑢𝑦 = 𝑧𝑢𝑦2
  

 𝑢𝑧 = 𝑢𝑧1
+ 𝑒

4𝑧

ℎ 𝑢𝑧17
 (18) 

Similarly, the best plate model for 𝜎𝑥𝑥 obtained via ED4 with six unknown 

variables is 

 𝑢𝑥 = 𝑧𝑢𝑥2
+ 𝑧3𝑢𝑥4

  

 𝑢𝑦 = z𝑢𝑦2
+ 𝑧3𝑢𝑦4

  

 𝑢𝑧 = 𝑢𝑧1
+ 𝑧𝑢𝑧2

 (19) 

For comparison purposes, the errors of the reduced plate models obtained via ED4 

and those from hybrid models are presented in Table 7. The results clearly show that the 

addition of non-polynomial terms can improve considerably the performance of higher-

order plate theories. For example, the plate model of Eq. (18) can detect 𝜎𝑥𝑥 with 1.4720 

% of error, while the plate model of Eq. (19) has an error of 4.1897 %. In Fig. 5, the 

distribution through the thickness of 𝜎𝑥𝑥 is shown for different plate length-to-thickness 

ratios. The evaluation of  𝜎𝑥𝑥 is performed by means of the reduced models reported in 
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Tables 5 and 6. The notation used is N HRM, where N is the number of variables in the 

hybrid reduced models (HRM). The reference solution (LD4) and the best reduced N ED4 

plate model is included for comparison purposes. 

Figures 6a and 6b show the BTDs obtained for 𝜏𝑥̅𝑧 with 𝑎 ℎ⁄  = 4  and 𝑎 ℎ⁄  = 20, 

respectively. 𝜏𝑥̅𝑧 was obtained via 3D equilibrium equations. Hybrid plate models from 

the BTDs in Fig. 6 are reported in Tables 8 and 9, and a comparison between the hybrid 

models considered and plate models obtained from ED4 is reported in Table 10. In Fig. 

7, 𝜏𝑥̅𝑧 distribution along the thickness for the length-to-thickness ratio mentioned is 

presented.  

The results herein reported for the symmetric cross-ply square plate 0º/90º/0º 

suggest that: 

 The GA approach is a reliable and computationally inexpensive tool to build 

BTDs.  

 The addition of trigonometric and exponential expansion terms can improve the 

effeciency of plate models. In particular, such terms can lead to higher accuracies 

than purely Macluarin-based models. 

 In general, the trigonometric terms are more effective than the exponential ones. 

 In all cases, the reduced best models can detect the 3D-like, LW solution with a 

considerable lower amount of unknown variables. Some ten generalized 

displacement variables are usually enough to meet satisfactory accuracy levels.  

6.2 Two layer cross-ply square plate 0º/90º 

BTDs for 𝜎𝑥𝑥 are presented in Fig. 8. Selected BTD models for both length-to-thickness 

ratios are reported in Tables 11 and 12, repectively. For example, the best hybrid model 

with seven degrees of freedom for the stress 𝜎𝑥𝑥 and  𝑎 ℎ⁄ = 4  is the following: 
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 𝑢𝑥 = 𝑢𝑥1
+ 𝑧𝑢𝑥2

+ sin (
2𝜋𝑧

ℎ
) 𝑢𝑥7

  

 𝑢𝑦 = 𝑢𝑦1
+ 𝑧𝑢𝑦2

  

 𝑢𝑧 = 𝑢𝑧1
+ 𝑒

𝑧

ℎ𝑢𝑧14
 (20) 

Likewise, the best Maclaurin model for 𝜎𝑥𝑥 for the same case is: 

 𝑢𝑥 = 𝑢𝑥1
+ 𝑧𝑢𝑥2

+ 𝑧2𝑢𝑥3
+ 𝑧4𝑢𝑥5

  

 𝑢𝑦 = 𝑢𝑦1
+ z𝑢𝑦2

  

 𝑢𝑧 = 𝑢𝑧1
 (21) 

The same theories considered are compared with the reduced ED4 plate models in Table 

13. Figure 9 shows the stress distribution along the thickness. BTDs for 𝜏𝑥̅𝑧 are presented 

in Fig. 10, whereas Fig. 11 shows the shear stress distribution along the thickness. 

The results reported for the asymmetric cross-ply square plate 0º/90º suggest 

that: 

 Concerning 𝜎𝑥𝑥, significant improvements were observed on the BTD by 

including non-polynomial terms, especially fot the thick plate case. In particular, 

trigonometric and exponential terms have a similar relevance. 

 Concerning 𝜏̅𝑥𝑧, both ED4 and ED17 reduced models are in agreement with the 

LD4 results. In other words, the inclusion of exponential and trigonometric terms 

is less relevant than in the previous cases.  

6.3 Four layer cross-ply square plate 0º/90º/90º/0º 

The BTDs for 𝜎𝑥𝑥 is shown in Fig. 12 via the ED4 and ED17 expansions, for 𝑎 ℎ⁄  = 4 and 
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𝑎
ℎ⁄  = 20. Some plate theories belonging to the BTD are presented in Tables 14 and 15. 

Table 16 presents the accuracy of the models, whereas the stress distribution along the 

thickness is given in Fig. 13. BTDs for 𝜏𝑥̅𝑧 are presented in Fig. 14. In Tables 17 and 18, 

BTD plate theories are reported for 𝑎 ℎ⁄ = 4 and 𝑎 ℎ⁄ = 20, respectively. The shear stress 

distribution along the thickness is shown in Fig. 15. For instance, the best hybrid model 

with six degrees of freedom for the stress 𝜏𝑥̅𝑧 and  𝑎 ℎ⁄ = 4  is the following: 

 𝑢𝑥 = 𝑧𝑢𝑥2
+ 𝑧3𝑢𝑥4

+ sin (
𝜋𝑧

ℎ
)𝑢𝑥6

+ 𝑒
3𝑧

ℎ 𝑢𝑥16
  

 𝑢𝑦 = 𝑧𝑢𝑦2
  

 𝑢𝑧 = 𝑢𝑧1
 (22) 

Likewise, the best Maclaurin model for the same case is: 

 𝑢𝑥 = 𝑢𝑥1
+ 𝑧𝑢𝑥2

+ 𝑧3𝑢4  

 𝑢𝑦 = z𝑢𝑦2
  

 𝑢𝑧 = 𝑢𝑧1
+ 𝑧𝑢𝑧2

 (23) 

The results reported for the 0º/90º/90º/0º plate suggest that: 

 For 𝜎𝑥𝑥 and 𝜏𝑥̅𝑧, a 3D like accuracy is obtained by employing non-polynomial 

terms in the plate models. This is particulary significant for thick plates were the 

improvements achieved are noteworthy. 

 As seen in the previous cases, the adoption of exponential and trigonometric 

terms is useful to improve the accuracy of the model, and their influence is more 
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relevant for thick plates. In particular, the exponential terms are more effective 

than the tringonometric terms for the laminated composite plate studied. 

7. Conclusion 

Best Theory Diagrams (BTDs) for cross-ply laminated plates have been presented in this 

paper. The BTD is a curve in which, for a given probelem, the most accurate plate models 

for a given number of unknown variables can be read. The axiomatic/asymptotic method 

and genetic algorithms have been employed together with the Carrera Unified 

Formulation to develop refined ESL models. In particular, a combination of Maclaurin, 

trigonometric and exponential polynomials has been used to define the displacement field 

along the thickness of the plate. The results have been presented in terms of the in-plane 

stress 𝜎𝑥𝑥 and the shear stress 𝜏𝑥̅𝑧 for different length-to-thickness ratios. Simply-

supported plates have been analyzed via Navier-type closed form solutions. The present 

paper has highlighted the importance of non-polynomial terms on plate models. In 

particular:  

(1) The use of the AAM and the BTD leads to enhanced refined models yielding 

quasi-3D results with small computational costs. 

(2) For thick plates, the use of non-polynomial terms is of fundamental to obtain 3D-

like accuracies.  

(3) For moderately thick plates, the importance of exponential and trigonometric 

terms is smaller.   

(4) The importance of exponential and trigonometric terms vary depending on the 

plate configuration. For plates with lamination 0º/90º/0º, trigonometric terms are 

more important than exponential ones. 
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(5) For plates with lamination 0º/90º, exponential and trigonometric terms have 

similar relevance. 

(6) For plates with lamination 0º/90º/90º/0º, exponential terms are more effective than 

the trigonometric ones.  

The combined use of CUF, AAM and genetic algorithms allows us to obtain BTDs 

with low computational efforts. The BTD can be seen as a tool to evaluate the 

effectiveness of any structural model. In fact, any type and order of expansions of the 

unknown variables can be dealt with in a unified manner. Future works should tackle the 

construction of BTDs for multiple outputs (stresses and displacements) and dynamic 

problems. 
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Tables 

Table 1: Expansion terms of the proposed theories. 

1 2 3 4 5 6 7 8 9 
 

1 𝑧 𝑧2 𝑧3 𝑧4 sin (
𝜋𝑧

ℎ
) sin (

2𝜋𝑧

ℎ
) sin (

3𝜋𝑧

ℎ
) sin (

4𝜋𝑧

ℎ
) 

1 𝑧 𝑧2 𝑧3 𝑧4 sin (
𝜋𝑧

ℎ
) sin (

2𝜋𝑧

ℎ
) sin (

3𝜋𝑧

ℎ
) sin (

4𝜋𝑧

ℎ
) 

1 𝑧 𝑧2 𝑧3 𝑧4 sin (
𝜋𝑧

ℎ
) sin (

2𝜋𝑧

ℎ
) sin (

3𝜋𝑧

ℎ
) sin (

4𝜋𝑧

ℎ
) 

 

10 11 12 13 14 15 16 17 
 

cos (
𝜋𝑧

ℎ
) cos (

2𝜋𝑧

ℎ
) cos (

3𝜋𝑧

ℎ
) cos (

4𝜋𝑧

ℎ
) 𝑒

𝑧
ℎ 𝑒

2𝑧
ℎ  𝑒

3𝑧
ℎ  𝑒

4𝑧
ℎ  

cos (
𝜋𝑧

ℎ
) cos (

2𝜋𝑧

ℎ
) cos (

3𝜋𝑧

ℎ
) cos (

4𝜋𝑧

ℎ
) 𝑒

𝑧
ℎ 𝑒

2𝑧
ℎ  𝑒

3𝑧
ℎ  𝑒

4𝑧
ℎ  

cos (
𝜋𝑧

ℎ
) cos (

2𝜋𝑧

ℎ
) cos (

3𝜋𝑧

ℎ
) cos (

4𝜋𝑧

ℎ
) 𝑒

𝑧
ℎ 𝑒

2𝑧
ℎ  𝑒

3𝑧
ℎ  𝑒

4𝑧
ℎ  

 

Table 2: Example of model representation. 

Full model representation  Reduced model representation 
   

▲ ▲ ▲ ▲ ▲  ▲ Δ ▲ ▲ ▲ 

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ 

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ 

 

Table 3: Symbols to indicate the status of a displacement variable. 

Active term  Inactive terms 

▲  Δ 
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Table 4: LD4 model assessment for 3-layer and 5-layer laminated plates, 𝜎𝑥𝑥/𝑦𝑦/𝑥𝑦 =

𝜎𝑥𝑥

𝑝̅𝑧∙(
𝑎

ℎ⁄ )2
 , 𝜏𝑥̅𝑧/𝑦𝑧 =

𝜏𝑥𝑧

𝑝̅𝑧∙(
𝑎

ℎ⁄ )
. 

 

 

 

 

 

𝑎
ℎ⁄ = 100 

 
3-layer laminate (0º/90º/0º) 

 𝝈̅𝒙𝒙(𝒛 = ±𝒉/𝟐) 𝝈̅𝒚𝒚(𝒛 = ±𝒉/𝟔) 𝝉̅𝒙𝒛(𝒛 = 𝟎) 𝝉̅𝒚𝒛(𝒛 = 𝟎) 𝝉̅𝒙𝒚(𝒛 = ±𝒉/𝟐) 

Ref. [55] ±0.539 ±0.181 0.395 0.0828 ±0.0213 

LD4 ±0.539 ±0.1808 0.3946 0.0828 ±0.0213 

 
5-layer laminate (0º/90º/0º/90º/0º) 

 𝝈̅𝒙𝒙(𝒛 = ±𝒉/𝟐) 𝝈̅𝒚𝒚(𝒛 = ±𝒉/𝟑) 𝝉̅𝒙𝒛(𝒛 = 𝟎) 𝝉̅𝒚𝒛(𝒛 = 𝟎) 𝝉̅𝒙𝒚(𝒛 = ±𝒉/𝟐) 

Ref. [56] ±0.539 ±0.360 0.272 0.205 ±0.0213 

LD4 ±0.5386 ±0.3600 0.2720 0.2055 ±0.0213 

𝑎
ℎ⁄ = 4 

 
3-layer laminate (0º/90º/0º) 

 𝝈̅𝒙𝒙(𝒛 = ±𝒉/𝟐) 𝝈̅𝒚𝒚(𝒛 = ±𝒉/𝟔) 𝝉̅𝒙𝒛(𝒛 = 𝟎) 𝝉̅𝒚𝒛(𝒛 = 𝟎) 𝝉̅𝒙𝒚(𝒛 = ±𝒉/𝟐) 

Ref. [55] 0.801      -0.755 0.534      -0.556 0.256 0.2172 -0.0511  0.0505 

LD4 0.8008  -0.7547 0.5341   -0.5562 0.2559 0.2179 -0.0510  0.0505 

 5-layer laminate (0º/90º/0º/90º/0º) 

 𝝈̅𝒙𝒙(𝒛 = ±𝒉/𝟐) 𝝈̅𝒚𝒚(𝒛 = ±𝒉/𝟑) 𝝉̅𝒙𝒛(𝒛 = 𝟎) 𝝉̅𝒚𝒛(𝒛 = 𝟎) 𝝉̅𝒙𝒚(𝒛 = ±𝒉/𝟐) 

Ref. [56] 0.685      -0.651 0.633      -0.626 0.238 0.229 -0.0394  0.0384 

LD4 0.6852  -0.6512 0.6334   -0.6256 0.2378 0.2289 -0.0393  0.0384 
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Table 5: Reduced ED17 models for stress 𝜎𝑥𝑥, symmetric cross-ply laminated plate 

(0º/90º/0º), 𝑎 ℎ⁄ = 4. 

𝑀𝐸 = 4
51⁄  

 

Δ Δ Δ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 6
51⁄  

 

Δ Δ Δ ▲ Δ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ ▲ 

 

𝑀𝐸 = 8
51⁄  

 

▲ Δ Δ ▲ Δ ▲ Δ ▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ 

Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ Δ Δ 

 

𝑀𝐸 = 10
51⁄  

 

▲ Δ ▲ ▲ Δ ▲ Δ ▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ 

Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ Δ Δ 

 

𝑀𝐸 = 15
51⁄  

 

▲ ▲ ▲ ▲ Δ ▲ Δ ▲ ▲ ▲ Δ Δ Δ ▲ ▲ Δ Δ 

Δ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ Δ 

 

Table 6: Reduced ED17 models for stress 𝜎𝑥𝑥, symmetric cross-ply laminated plate 

(0º/90º/0º), 𝑎 ℎ⁄ = 20. 

𝑀𝐸 = 5
51⁄  

 

Δ ▲ Δ Δ Δ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 7
51⁄  

 

Δ ▲ Δ ▲ Δ ▲ Δ ▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ 

Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 9
51⁄  

 

Δ ▲ Δ ▲ Δ ▲ Δ ▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 
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𝑀𝐸 = 11
51⁄  

 

▲ ▲ Δ ▲ Δ ▲ Δ ▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ Δ Δ 

 

Table 7: Comparison of the ED4 and ED17 reduced models for the 𝜎𝑥𝑥 stress, 

symmetric cross-ply laminated plate (0º/90º/0º), 𝑎 ℎ⁄ = 4 and 𝑎 ℎ⁄ = 20.  

 

𝑎
ℎ⁄ = 4  𝑎

ℎ⁄ = 20 

𝑀𝐸 % Error – ED4 % Error – ED17  𝑀𝐸 % Error – ED4 % Error – ED17 
     

4
51⁄  4.4664 2.5298  5

51⁄  0.5847 0.3603 

6
51⁄  4.1897 1.4720  7

51⁄  0.5814 0.0732 

8
51⁄  4.0691 1.1104  9

51⁄  0.5814 0.0704 

10
51⁄  4.0685 0.7444  11

51⁄  0.5814 0.0586 

15
51⁄  4.0685 0.5319     

 

Table 8: Reduced ED17 models for stress 𝜏𝑥̅𝑧 obtained via 3D equilibrium equations, 

symmetric cross-ply laminated plate (0º/90º/0º), 𝑎 ℎ⁄ = 4. 

𝑀𝐸 = 5
51⁄  

 

Δ ▲ Δ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 8
51⁄  

 

▲ Δ Δ ▲ Δ ▲ Δ ▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ 

Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ ▲ 

 

𝑀𝐸 = 10
51⁄  

 

▲ Δ ▲ ▲ Δ ▲ Δ ▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ 

Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ ▲ 

▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 14
51⁄  

 

Δ ▲ ▲ Δ ▲ ▲ Δ ▲ ▲ Δ Δ Δ Δ ▲ ▲ Δ Δ 

Δ ▲ Δ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ Δ 

▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ Δ Δ 
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Table 9: Reduced ED17 models for stress 𝜏𝑥̅𝑧 obtained via 3D equilibrium equations, 

symmetric cross-ply laminated plate (0º/90º/0º), 𝑎 ℎ⁄ = 20. 

𝑀𝐸 = 5
51⁄  

 

Δ ▲ Δ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 7
51⁄  

 

Δ ▲ Δ ▲ Δ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 9
51⁄  

 

Δ ▲ Δ ▲ Δ ▲ Δ ▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ 

Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ Δ 

▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 12
51⁄  

 

▲ ▲ Δ ▲ Δ ▲ Δ ▲ ▲ Δ Δ Δ Δ ▲ Δ Δ Δ 

Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ Δ ▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ Δ Δ 

 

Table 10: Comparison of the ED4 and ED17 reduced models for stress 𝜏𝑥̅𝑧 obtained via 

3D equilibrium equations, symmetric cross-ply laminated plate (0º/90º/0º), 𝑎 ℎ⁄ = 4 and 

𝑎
ℎ⁄ = 20.  

 

𝑎
ℎ⁄ = 4  𝑎

ℎ⁄ = 20 

𝑀𝐸 % Error – ED4 % Error – ED17  𝑀𝐸 % Error – ED4 % Error – ED17 
     

5
51⁄  4.5957 1.3234  5

51⁄  0.3387 0.0843 

8
51⁄  4.5144 0.7569  7

51⁄  0.3162 0.0319 

10
51⁄  4.5144 0.3842  9

51⁄  0.3162 0.0230 

14
51⁄  4.5144 0.3525  12

51⁄  0.3162 0.0184 
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Table 11: Reduced ED17 models for stress 𝜎𝑥𝑥, asymmetric cross-ply laminated plate 

(0º/90º), 𝑎 ℎ⁄ = 4. 

𝑀𝐸 = 7
51⁄  

 

▲ ▲ Δ Δ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ Δ Δ 

 

𝑀𝐸 = 9
51⁄  

 

▲ ▲ Δ Δ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ ▲ Δ Δ Δ 

▲ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 11
51⁄  

 

▲ Δ ▲ Δ Δ Δ ▲ Δ Δ Δ Δ Δ Δ ▲ ▲ Δ Δ 

Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ Δ ▲ 

▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ ▲ Δ Δ Δ 

 

𝑀𝐸 = 13
51⁄  

 

▲ ▲ ▲ ▲ ▲ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ ▲ Δ Δ 

▲ Δ Δ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

 

Table 12: Reduced ED17 models for stress 𝜎𝑥𝑥, asymmetric cross-ply laminated plate 

(0º/90º), 𝑎 ℎ⁄ = 20. 

𝑀𝐸 = 6
51⁄  

 

▲ ▲ Δ Δ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 10
51⁄  

 

▲ ▲ Δ Δ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ 

▲ ▲ Δ Δ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 12
51⁄  

 

▲ ▲ Δ Δ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ ▲ ▲ 

▲ ▲ Δ ▲ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 
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Table 13: Comparison of the ED4 and ED17 reduced models for the 𝜎𝑥𝑥 stress, 

asymmetric cross-ply laminated plate (0º/90º), 𝑎 ℎ⁄ = 4 and 𝑎 ℎ⁄ = 20.  

 

𝑎
ℎ⁄ = 4  𝑎

ℎ⁄ = 20 

𝑀𝐸 % Error – ED4 % Error – ED17  𝑀𝐸 % Error – ED4 % Error – ED17 
     

7
51⁄  2.2384 1.7480  6

51⁄  0.1636 0.1036 

9
51⁄  1.9519 0.9017  10

51⁄  0.0752 0.0491 

11
51⁄  1.8451 0.7336  12

51⁄  0.0752 0.0343 

13
51⁄  1.8451 0.5488     

 

Table 14: Reduced ED17 models for stress 𝜎𝑥𝑥, symmetric cross-ply laminated plate 

(0º/90º/90º/0º), 𝑎 ℎ⁄ = 4. 

𝑀𝐸 = 6
51⁄  

 

Δ ▲ Δ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

Δ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 8
51⁄  

 

▲ ▲ Δ ▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ Δ 

Δ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 10
51⁄  

 

Δ ▲ Δ ▲ ▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ Δ 

Δ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 12
51⁄  

 

Δ ▲ Δ ▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ ▲ ▲ 

Δ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ ▲ ▲ 

 

𝑀𝐸 = 15
51⁄  

 

Δ ▲ Δ ▲ ▲ ▲ ▲ Δ Δ Δ ▲ ▲ Δ Δ Δ ▲ ▲ 

Δ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ ▲ ▲ 
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Table 15: Reduced ED17 models for stress 𝜎𝑥𝑥, symmetric cross-ply laminated plate 

(0º/90º/90º/0º), 𝑎 ℎ⁄ = 20. 

𝑀𝐸 = 5
51⁄  

 

Δ ▲ Δ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 8
51⁄  

 

▲ ▲ Δ ▲ ▲ Δ Δ Δ Δ ▲ Δ Δ Δ Δ ▲ Δ Δ 

Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 11
51⁄  

 

▲ ▲ Δ ▲ ▲ Δ Δ Δ Δ ▲ Δ Δ Δ ▲ ▲ Δ ▲ 

Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 15
51⁄  

 

▲ ▲ ▲ ▲ ▲ ▲ ▲ Δ Δ ▲ Δ Δ Δ ▲ ▲ ▲ ▲ 

Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

 

Table 16: Comparison of the ED4 and ED17 reduced models for the 𝜎𝑥𝑥 stress, 

symmetric cross-ply laminated plate (0º/90º/90º/0º), 𝑎 ℎ⁄ = 4 and 𝑎 ℎ⁄ = 20.  

 

𝑎
ℎ⁄ = 4  𝑎

ℎ⁄ = 20 

𝑀𝐸 % Error – ED4 % Error – ED17  𝑀𝐸 % Error – ED4 % Error – ED17 
     

6
51⁄  2.2269 1.7579  5

51⁄  0.2288 0.1828 

8
51⁄  2.0127 1.4442  8

51⁄  0.2173 0.1046 

10
51⁄  1.9397 1.0326  11

51⁄  0.2173 0.0742 

12
51⁄  1.9397 0.7753  15

51⁄  0.2173 0.0462 

15
51⁄  1.9397 0.6372     
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Table 17: Reduced ED17 models for stress 𝜏𝑥̅𝑧 obtained via 3D equilibrium equations, 

symmetric cross-ply laminated plate (0º/90º/90º/0º), 𝑎 ℎ⁄ = 4. 

𝑀𝐸 = 6
51⁄  

 

Δ ▲ Δ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ 

Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 9
51⁄  

 

Δ ▲ Δ ▲ ▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ Δ 

Δ ▲ Δ Δ Δ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ Δ Δ 

 

𝑀𝐸 = 11
51⁄  

 

▲ ▲ Δ ▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ ▲ ▲ 

Δ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ Δ 

▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ Δ Δ 

 

𝑀𝐸 = 15
51⁄  

 

▲ ▲ ▲ Δ ▲ ▲ Δ Δ Δ Δ ▲ Δ Δ ▲ ▲ Δ ▲ 

Δ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ Δ ▲ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ Δ Δ 

 

Table 18: Reduced ED17 models for stress 𝜏𝑥̅𝑧 obtained via 3D equilibrium equations, 

symmetric cross-ply laminated plate (0º/90º/90º/0º), 𝑎 ℎ⁄ = 20. 

𝑀𝐸 = 5
51⁄  

 

Δ ▲ Δ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 7
51⁄  

 

Δ ▲ Δ ▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ Δ 

 

𝑀𝐸 = 9
51⁄  

 

▲ ▲ Δ ▲ ▲ Δ Δ Δ Δ ▲ Δ Δ Δ Δ ▲ Δ Δ 

Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

 

𝑀𝐸 = 11
51⁄  

 

▲ ▲ Δ ▲ ▲ Δ Δ Δ Δ ▲ ▲ Δ Δ Δ ▲ Δ Δ 

Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ 

▲ Δ ▲ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ ▲ Δ Δ Δ 



34 

 

Table 19: Comparison of the ED4 and ED17 reduced models for stress 𝜏𝑥̅𝑧 obtained via 

3D equilibrium equations, symmetric cross-ply laminated plate (0º/90º/90º/0º), 𝑎 ℎ⁄ = 4 

and 𝑎 ℎ⁄ = 20.  

 

𝑎
ℎ⁄ = 4  𝑎

ℎ⁄ = 20 

𝑀𝐸 % Error – ED4 % Error – ED17  𝑀𝐸 % Error – ED4 % Error – ED17 
     

6
51⁄  2.0131 1.4448  5

51⁄  0.1565 0.1163 

9
51⁄  1.9078 1.1294  7

51⁄  0.1471 0.0876 

11
51⁄  1.8999 0.4819  9

51⁄  0.1441 0.0372 

15
51⁄  1.8999 0.3643  11

51⁄  0.1441 0.0282 
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Figures 

Figure 1. Plate geometry and reference system. 

 

 

 

Figure 2. Displacement field of a refined model and genes of a chromosome.  
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Figure 3. BTD based on ED4, cross-ply laminated plate (0º/90º/0º), 𝜎𝑥𝑥, 𝑎 ℎ⁄  = 4.  
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Figure 4. BTDs for a symmetric cross-ply laminated plate (0º/90º/0º), stress 𝜎𝑥𝑥, (a) 𝑎 ℎ⁄  

= 4, (b) 𝑎 ℎ⁄  = 20. The reduced polynomial ED4 models are built via the AAM (AAM – 

Pol) and the reduced Hybrid ED17 models are built via the genetic algorithm (GA - 

Hybrid). 
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Figure  5. 𝜎𝑥𝑥 distribution along the thickness of a symmetric cross-ply laminated plate 

(0º/90º/0º), (a) 𝑎 ℎ⁄  = 4, (b) 𝑎 ℎ⁄  = 20. 
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(b) 𝑎 ℎ⁄  = 20 

 

Figure 6. BTDs for a symmetric cross-ply laminated plate (0º/90º/0º), stress 𝜏𝑥̅𝑧 

obtained via 3D equilibrium equations, (a) 𝑎 ℎ⁄  = 4, (b) 𝑎 ℎ⁄  = 20. The reduced 

polynomial ED4 models are built via the AAM (AAM – Pol) and the reduced Hybrid 

ED17 models are built via the genetic algorithm (GA - Hybrid). 
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Figure  7. 𝜏𝑥̅𝑧 distribution along the thickness of a symmetric cross-ply laminated plate 

(0º/90º/0º) obtained via 3D equilibrium equations, (a) 𝑎 ℎ⁄  = 4, (b) 𝑎 ℎ⁄  = 20. 
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Figure 8. BTDs for an asymmetric cross-ply laminated plate (0º/90º), stress 𝜎𝑥𝑥, (a) 𝑎 ℎ⁄  

= 4, (b) 𝑎 ℎ⁄  = 20. The reduced polynomial ED4 models are built via the AAM (AAM – 

Pol) and the reduced Hybrid ED17 models are built via the genetic algorithm (GA - 

Hybrid). 
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Figure  9. 𝜎𝑥𝑥 distribution along the thickness of an asymmetric cross-ply laminated 

plate (0º/90º), 𝑎 ℎ⁄  = 4. 
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Figure 10. BTDs for an asymmetric cross-ply laminated plate (0º/90º), stress 𝜏𝑥̅𝑧 

obtained via 3D equilibrium equations, (a) 𝑎 ℎ⁄  = 4, (b) 𝑎 ℎ⁄  = 20. The reduced 

polynomial ED4 models are built via the AAM (AAM – Pol) and the reduced Hybrid 

ED17 models are built via the genetic algorithm (GA - Hybrid). 
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Figure  11. 𝜏𝑥̅𝑧 distribution along the thickness of an asymmetric cross-ply laminated 

plate (0º/90º) obtained via 3D equilibrium equations, 𝑎 ℎ⁄  = 4. 
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Figure 12. BTDs for a symmetric cross-ply laminated plate (0º/90º/90º/0º), stress 𝜎𝑥𝑥, 

(a) 𝑎 ℎ⁄  = 4, (b) 𝑎 ℎ⁄  = 20. The reduced polynomial ED4 models are built via the AAM 

(AAM – Pol) and the reduced Hybrid ED17 models are built via the genetic algorithm 

(GA - Hybrid). 
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Figure  13. 𝜎𝑥𝑥 distribution along the thickness of a symmetric cross-ply laminated plate 

(0º/90º/90º/0º), 𝑎 ℎ⁄  = 4. 
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Figure 14. BTDs for a symmetric cross-ply laminated plate (0º/90º/90º/0º), stress 𝜏𝑥̅𝑧 

obtained via 3D equilibrium equations, (a) 𝑎 ℎ⁄  = 4, (b) 𝑎 ℎ⁄  = 20. The reduced 

polynomial ED4 models are built via the AAM (AAM – Pol) and the reduced Hybrid 

ED17 models are built via the genetic algorithm (GA - Hybrid). 
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Figure  15. 𝜏𝑥̅𝑧 distribution along the thickness of a symmetric cross-ply laminated plate 

(0º/90º/90º/0º) obtained via 3D equilibrium equations, 𝑎 ℎ⁄  = 4. 
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