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Abstract — Different schemes for voltage control under emergency are adopted in 

different jurisdictions around the world. While some features, such as Automatic Voltage 

Regulation (AVR), are common in all countries, for what concerns undervoltage load 

shedding (UVLS), to contrast voltage instability or collapse, different schemes are adopted. 

Most US transmission system operators (TSOs) adopt automatic UVLS schemes, with 

different capabilities and settings while TSOs in EU usually do not implement automatic 

UVLS but leave the decisions to the control room operators. The two options may lead to 

different impacts in terms of trajectory and final status of the transmission grid under 

emergency, with different unserved energy. In this paper we analyze the impacts from a 

technical and economic perspective, modeling the grid behavior with different UVLS 

schemes (none, manual and automatic). The comparison between the different schemes is 

done resorting to the Incident Response System (IRS), a software tool developed by the 

authors in the EU-FP7 SESAME project. An illustrative example to a realistic test case is 

presented and discussed. This paper shows that automatic UVLS is superior to Manual 

UVLS, from both technical and economic point of view, due to the fast evolution of voltage 

collapse phenomena and insufficient time for system operators’ manual reaction. The 

benefits of the scheme involving the automatic UVLS can be then compared with the 

investment costs of equipping the network with those devices. 

 

Keywords— UnderVoltage Load Shedding, voltage collapse, power system security, 
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1. INTRODUCTION 

From historic blackouts [1], [2], [3], one can observe that the main factor of most of 

recent system disturbances is voltage collapse, rather than the underfrequency conditions, 

which were prevalent in the blackouts of the 1960 and ‘70s. In some power grids, such as 

the ones in North America, most of generation sources are located remotely from load 

centers and there is reluctance to allow building new generation plants in urban areas. This 

increases the power system dependency on the transmission network and, in case of 

transmission lines trip, there may be a lack of reactive power in local areas. Therefore, in 

these transmission systems, the protection against voltage collapse is crucial. 

In the operation of power systems, when several failures happen simultaneously, 

commonly used protection relays (low voltage, over current) may not be able to distinguish 

between the voltage/current violations caused by widespread cascading failures from those 

caused by a local fault. This would result in more generators or lines being tripped, 

spreading the blackout area. So dedicated strategies for undervoltage protection are needed 

to avoid large scale cascading failures. 

An analysis performed on blackouts happened in Europe in the past 35 years [21] clearly 

shows that most of them were characterized by low voltage or voltage collapse, during the 

cascading failure, that eventually led to power outage (Table I). 

It appears that frequency and gravity of blackout events are increasing in recent years 

and, due to interdependency of other infrastructures with power system, the blackout 

impacts on other infrastructures and society are growing. One type of system instability 

which can occur when the system is heavily loaded is voltage collapse [22]. Other reasons 

for voltage instability and collapse can be the dynamics of tap-changing transformers [23], 

as these components can aggravate rapid voltage decay [24], [25], the presence of a high 

percentage of loads constituted by induction motors [26], and the presence of small noise in 

load demand [27]. 

These concerns bring the necessity of reinforcing electrical infrastructures against 

undervoltage incidents and investing on new protection schemes to prevent huge negative 

impacts. 

Suitable strategies for prevention of voltage collapse are required in order to save costs 

and mitigate socioeconomic impacts. From the structural point of view, the most effective 
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improvement of voltage stability limits is building new transmission lines and increasing 

generation. But it is very difficult and expensive to find a new corridor for a transmission 

line or a new location for power plants, since the acceptance of new infrastructures by the 

population is everyday decreasing. Therefore, new solutions are being investigated to 

prevent larger blackouts in a more acceptable and economic way. When searching for 

schemes to enhance power system voltage stability, the evolution of adverse events needs 

to be analyzed [25]. 

In today’s transmission systems the problem of reactive power reserve is growing 

because of the restructuring of the power systems involving electricity markets [28]. The 

voltage and reactive power control are now partially ancillary services that need to be 

provided by the producers (in contrast with their economic objectives) to system operators 

[29]. In this framework most of the TSOs are finding it difficult to meet regulatory 

standards and criteria without using automatic transmission controls such as reactive 

switching, Remedial Action Scheme (RAS) [30], and Undervoltage Load Shedding 

(UVLS). Among these control actions, UVLS is becoming more advantageous, being 

reliable and cost-effective in preventing voltage collapse [31]. 

UVLS is widely used in the US while in EU the ENTSO-E recommends to implement it 

within DSOs grids, but up to now it is not widespread [32]. In order to guide system 

operators to make decisions on when and where to allocate undervoltage protection 

systems, a cost-benefit based supporting tool is needed. We resort to a cascading failure 

simulation tool, named Incident Response Systems (IRS) [33], to capture the sequence of 

events during an emergency, leading to a voltage collapse. We model the power system 

behavior with different voltage based load shedding schemes (no undervoltage load 

shedding, manual and automatic) analyzing the impacts from a technical and economic 

perspective. 

In the next section, voltage control strategies under emergency are briefly discussed, 

mainly focusing on different load shedding schemes as countermeasure. In section III, IRS 

will be introduced, highlighting the undervoltage load shedding model. Section IV 

illustrates a comparison among the different impacts of different types of undervoltage load 

shedding with reference to the Austrian grid.  
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2. VOLTAGE CONTROL UNDER EMERGENCY 

Voltage collapse in a power system indicates that the operation is beyond its capability 

for the existing conditions and contingencies. The main symptoms of voltage collapse are 

low voltage profiles, heavy reactive power flows, insufficient local reactive support, and 

heavily loaded systems. The consequences of voltage collapse often require long system 

restoration, which causes a huge amount of unserved energy to large groups of customers. 

The symptoms can be exploited by protective schemes to mitigate the collapse. 

According to IEEE/CIGRE Joint TF report, “Definition and Classification of Power 

System Stability”, the time frame for voltage stability problems varies from a few seconds 

to tens of minutes [34]. Voltage collapses in the long time frames are attracting much of the 

attention and recent investigations. These types of collapses usually occur because of loss 

of significant sources or loss of heavily loaded transmission capability. Simulation tools to 

study time dependent system response in longer time frames have only been relatively 

recently developed, while tools for transient analysis of power systems are very mature and 

widely used [35]. 

As one of the causes of voltage collapse is an excess of load for the given transmission 

system, load shedding is an effective measure and its application is increasing in large-scale 

power systems. 

 NERC’s Operating Policy 6-Operations Planning [36] includes the following criteria in 

Section C-Automatic Load Shedding: “After taking all other remedial steps, a system or 

control area whose integrity is in jeopardy due to insufficient generation or transmission 

capacity shall shed customer load rather than risk an uncontrolled failure of components or 

the interconnection”. 

Most of power system cascading failures include low or very low voltage conditions. 

Voltage collapse can occur over a wide variety of time frames [35]. The voltage variation 

rate affects the types of countermeasures that can be put in place and it depends on time and 

voltage varying characteristics of the system elements like loads, automatic tap changing 

transformers, generator excitation controls, governor and turbine responses, protective 

relays, and other automatic or manual control actions. 

Although several studies show that undervoltage load shedding is a very effective 

countermeasure in preventing voltage collapse, it may not be beneficial to all systems. For 
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example, in systems with fast voltage decay, direct full load shedding is the only solution to 

prevent a larger scale blackout in the system.  

Load can be shed either manually or automatically depending on the rate of voltage 

drop. If the time frame of the voltage drop is in the range of minutes, manual load shedding 

can be implemented in order to stabilize the system, the operator intervention may in fact 

be expected after some minutes. If, vice versa, voltage drop is faster, manual load shedding 

would be too slow to act timely. 

2.1. Manual load shedding 

In the case of manual load shedding, the TSO’s operators should have preplanned 

guidelines and procedures to follow. Blocks of sheddable loads should be predefined and 

preprogrammed on the control system SCADA. The major disadvantage of manual load 

shedding is the burden that is placed on system operators, that have to quickly recognize 

arising voltage stability problems [35]. 

2.2.  Automatic load shedding 

If the voltage perturbation is caused by a single major event on the network, voltage 

drop is fast and manual load shedding cannot prevent voltage collapse. In this case 

undervoltage relays may be used to trigger automatic load shedding. There are two basic 

types of automatic UVLS schemes: decentralized and centralized. In a decentralized 

scheme, relays are installed at the loads which are needed to be shed in case of rapid 

voltage decay. When voltage conditions at these locations start collapsing fast, load 

assigned to that relay is shed. This is somehow like under frequency load shedding and it 

can be considered as one the automatic protections. In this scheme, automatic UVLS reacts 

directly to the measured voltage conditions in a local area. It drops several hundred 

megawatts of load in predefined blocks within load centers, triggered while local voltage 

drops to a designed level, say from 89 to 94%, with a several seconds delay. It sheds load in 

order to restore reactive power balance, to prevent voltage collapse, and to keep the voltage 

problem local when a fast voltage decay is occurring. In this case, interaction between 

manual and automatic load shedding is not a problem and if both systems coexist, the time 

delays of the automatic system should be short enough to prevent overlapping with the 

manual procedure [35]. 
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When the voltage collapse evolution is slow, relays at the low voltage side of a tap-

changer transformer may not sense low voltages while transmission system voltages may 

drop excessively.  The centralized schemes aim to protect system in case of slow voltage 

collapse (several minutes to one hour): all measurements are conveyed to, and all the 

decisions are taken by a central control center, undervoltage relays are installed at key 

system buses and trip information is transmitted to shed load at various locations [37]. In 

this case, interaction between manual and automatic load shedding may be a problem as the 

time scales might overlap.  

The main problem connected to an automatic system is the appropriate setting of the 

devices, which means proper voltage thresholds and proper time delays. The undervoltage 

relays should not operate in case of temporary low voltage events which do not lead to 

collapse. For example, low voltages caused by load pickup or by normally cleared faults 

must be discriminated and the UVLS system should not be triggered. The UVLS scheme 

setting, including voltage thresholds, time delays and predefined loads to be shed in 

emergency, need to be coordinated with the other  protection relays.  

These countermeasures are suggested in the current NERC (North American Electric 

Reliability council) regulations and widely implemented in North American power systems 

[38]. 

3. CASCADING FAILURE SIMULATION 

In this section, first we briefly introduce a simulation framework we implemented as a 

software tool: Incident Response System (IRS) [33], which chronologically simulates the 

sequence of post-contingency failures (“cascading failure”) and the restoration actions on a 

time-frame scheme. More details on the specifications of this simulation framework and the 

modelled components of a power system can be found in the SESAME project deliverable 

named “System Specification of Decision Support System” [33]. As the focus of the paper 

is on cost-benefit analysis of manual and automatic undervoltage load shedding, then we 

explain how the manual and automatic undervoltage load shedding are modeled in this 

framework. 

3.1 Incident Response System 

A cascade occurs when there is a sequential tripping of numerous transmission lines and 
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generators in a wide geographic area. It can be triggered by only a few initiating events we 

call “triggering events” which are materialized form of natural, accidental or malicious 

threats to power systems [21]. 

In the IRS (Fig 1), we modeled a large set of existing automatic countermeasures as well 

as human optimal operation decisions. The purpose is to model, evaluate and compare the 

effective countermeasures for system operators, especially the long-term investment; 

therefore, the observation windows we use are from several minutes to days. With such 

large observation window, dynamics are hardly observed. Therefore, all components are 

represented by a quasi steady-state model. Quasi steady-state means that each snapshot is 

solved by a steady state model, but the variation of some quantities (e.g. frequency, voltage, 

etc.) between different snapshots is also modeled. All common power system elements 

including generators, branches and loads are modeled as well as capacitor and shunt 

inductor banks, phase shifters, FACTS devices, DC lines, and pumped-storage stations. The 

system power-frequency characteristic for the entire system, including generator droop and 

load frequency response are considered. To model frequency control such as primary 

control, loads are modeled sensitive to frequency. The self-regulation of the load has been 

also applied assuming 1%/Hz [32], which means a load decrease of 1 % occurs in case of a 

frequency drop of 1 Hz. Voltage collapse is studied in steady state simulation using 

constant MVA loads having no voltage sensitivity, which may result in the most 

pessimistic outcome. As the simulation framework is mainly designed to perform a trade-

off analysis to compare different countermeasures effectiveness under the same conditions 

(e.i. the most dramatic situation with respect to voltage violations), the analysis conclusion 

remains valid. 

As human optimal decision making requires more time with respect to the system 

automatic reactions, IRS enables user to set a time before which only automatic protection 

schemes are considered in simulation. These actions mainly include: frequency control 

(including primary control, secondary control, reserved generation, and automatic/manual 

under frequency load shedding (UFLS)) , voltage control (including automatic voltage 

control (AVR) and automatic/manual undervoltage load shedding (UVLS)), component-

wise protections (modeling under/over voltage relays for all the parallel-connected 

components, over current relays for all branches and generators under/over frequency 
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relays), human non-optimal operational intervention, and system feasibility evaluation. 

 As soon as IRS reaches the predefined time in simulations – called second-stage 

reaction initiating time –, if no new equilibrium point is established, it first tries to find a 

feasible solution for the system by minimizing load shedding through optimization 

modeling and prioritizing loads. After establishing a new system equilibrium, it mainly 

aims to restore the system and the loads. It also implements the black start procedure if 

needed.  

IRS is flexible to handle network islanding so that in case of system split due to line 

disconnections, all islands can be treated separately and simultaneously. Moreover, islands 

can get integrated during the restoration, depending on branches’ re-closure time. 

A scheduler is designed to schedule triggering events occurrence, all system time-

dependent automatic protections, load curve following and modification of system element 

settings as a flexible model of human driving actions (like manual load shedding, 

generators operational status, etc.) as well as human optimal decision initiating time. 

The evolution of the system status is observed in discrete time points called system 

snapshots. The time-points are provoked by user set intervals and special events during the 

simulation. Simulation end time as an input is also defined by user. The total unserved 

energy for this given amount of time is calculated by the software, and it can be translated 

into economic losses. Benefits of different types of countermeasures can then be evaluated 

comparing their implementation cost with the reduction of unserved energy cost. 

As in this paper, we focus on analyzing the benefits of automatic undervoltage load 

shedding, in this section we focus on modelling different undervoltage load shedding 

schemes  and shortly describe the undervoltage control module in IRS. 

3.2 Modeled UVLS 

The common voltage control measures, such as direct load tripping, generators 

Automatic Voltage Control (AVR),  transformer automatic LTC action, LTC blocking, 

capacitor bank switching, SVCs, common voltage protection relays,  are modeled in the 

IRS. In addition, in IRS, we modeled both manual and automatic UVLS, which will be 

briefly discussed here. 

Manual load shedding may be required to backup the automatic scheme.  To model the 

manual LS, the software is flexible to involve human intervention by predefining the 
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voltage and load amount for a specific time after triggering events occurrence. 

Since voltage collapse may happen suddenly, there might not be enough time for 

operator interventions to stabilize the system. Therefore, an automatic undervoltage load 

shedding scheme is needed as an effective means to rescue the interconnected systems and 

mitigate the voltage collapse effects. 

Some existing automatic undervoltage load shedding application schemes are 

summarized in reference [39]. Some utilities such as Hydro Quebec and New Mexico 

installed centralized controller; some cases like Entergy and Southern Sweden applied 

UVLS function as part of EMS; and in some cases such as Puget Sound and Northeast Ohio 

decentralized U/V relays installed in substations were utilized. 

It is not possible to find a generic load shedding scheme to be suitable for all systems; in 

some grids, shedding only a nominal amount of load in one step may be an enough remedy 

while in some others more extensive schemes using two or more levels of load shedding 

with corresponding multiple voltage pick-up points and time delays are needed. As well, 

for some power systems, centralized schemes might be more efficient. 

In IRS, the implemented automatic UVLS scheme is a basic scheme which mainly 

models the decentralized type; however it can be customized by the user for individual 

regulated plans. The main characteristics of UVLS schemes are voltage threshold values, 

time delays, locations and amounts of load to be shed. No generic values are defined for 

these parameters by different regulations or standards and they all depend on individual 

systems. Nevertheless, having studied the implemented schemes, we found ranges of 0.85-

0.95 for the voltage threshold value, 1-10 seconds for the time delay, and 5-20% for the 

amount of shed load as the most common setting values. 

There are sometimes several shedding steps containing different load amounts, voltage 

threshold values or time delays. In our modeled UVLS scheme, these values can be 

predefined by user. IRS receives the bus information including the substations where the 

loads have relays for shedding by percentage, the voltage threshold value in which 

automatic UVLS is executed, time delay and amount of load to be shed in maximum 3 

allowed steps. To run UVLS the transmission system voltage (bus voltage) are measured 

considering contingencies like line trips. As voltage conditions at these locations begin to 

collapse, load assigned to that relay is shed.  
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4. IMPACTS ANALYSIS OF DIFFERENT SCHEMES 

In order to analyze the benefits of undervoltage load shedding, we apply the IRS to a 

simplified model of the Austrian grid on which a contingency scenario is applied, which 

results in an outage in case no undervoltage load shedding is considered. 

The Austrian base case model is extracted from an approximate model of the European 

interconnected system presented by Qiong Zhou and Janusz W. Bialek [40].  For the load 

flow model, only publically available data was used. The base power flow solution has 

been modified to ensure n-1 contingency compliance. 

To extract and isolate the Austrian network from the European interconnected system 

we capture a snapshot of the transmission system operation status including power flow of 

tie lines between Austria and its neighboring countries. Then in order to model the tie-lines, 

equivalent generators are assigned to the neighboring buses which represent the 

imported/exported power from/to Austria. The equivalent generator capacity was set as the 

corresponding tie line capacity. In the test system, there are totally 39 generators among 

which 14 generators are tie-lines equivalent models, 49 buses, 114 branches (including 30 

inter-ties) and 19 loads with a total consumption of 6793 MW and 1888.5 Mvar. The 

system total generation capacity is 19400.5 MW and ±16920.0 Mvar and actual in-service 

production is 6793.4 MW and 3649.2 Mvar. 

The network data extracted from reference [40] mainly includes power flow related data, 

while some other technical parameters/settings such as protection settings, restoration time 

and costs, generation droop, etc., required for the IRS physical network model [33], are set 

according to previous studies [43]. 

The assumptions needed to design the scenarios (technical parameters, imminent natural 

threats, protection schemes, operator behavior in emergency situations) have been taken 

from the security project SESAME, whose outcome has been confirmed by the Austrian 

Regulator (E-Control). For the simulation of the load profile we use the Austrian load curve 

(24 values, time intervals of 1 hour), taken from Austrian Power Grid (APG) for 01-07-

2010 [41], as the basic pattern to scale out the load curve for our test case. The active load 

of the test case was 6793.38 MW at 14:00, while the active load from the APG curve at the 

same time is 6246.93 MW, so we scale the APG curve by a ratio of 6793.38/6246.93 before 

using it in the simulation. 
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In the designed scenario, we assume a flood as natural threat to the Austrian power grid 

which destroys one generator and 2 transmission lines (triggering events) at 14:20 (Fig 2). 

We set 20 minutes after triggering events occurrence, operator starts making optimal 

decisions – explained in the previous section - and 5 minutes as the interval between two 

consequent captured snapshots of the system before arriving at the above-mentioned time. 

In order to reflect system instantaneous reaction or changes at the triggering events 

occurrence time, IRS represents two snapshots for the time 0- and 0+ (at 14:20- and 14:20+). 

Loosing generators, disconnection of lines or loads outages are some examples of system 

sudden variations which result in different snapshots in terms of system status. The interval 

between two snapshots during operator optimal decision making simulation is set to 15 

minutes however, when the system load changes (load curve values change every hour), the 

IRS automatically generates an additional snapshot (in the test case at 15:00 which is only 5 

minutes after the previous one). Consequently, the system status evolution is described by 

10 snapshots. In Table II a summary of important events/effects (defined in [33]) which 

happen during a time interval are briefly mentioned at the end of each interval. 

For the undervoltage protection relays, 0.83 pu is assumed as the threshold and 9 

minutes as tolerance delay after which the load is totally shed in case voltage is not 

corrected. The voltage threshold for the automatic UVLS relays is set 90% of the normal 

value based on the implemented UVLS protection relays in Puget Sound, Washington, US, 

as it is one of the most typical schemes [31]. According to this guideline, “the relays 

operate when the voltage is below a set threshold, for a minimum time duration”. 

Considering the time needed for human decision, we assume the manual load shedding 

happens between 5 to 10 minutes after the contingency. Therefore, the effects can be 

captured at the end of second time interval, i.e. 10 minutes after the event. 

The post-contingency behavior of the system during one hour is simulated by IRS 

considering 3 cases: a base case without any kind of undervoltage load shedding, a case 

with manual undervoltage load shedding and finally a case with deployed automatic 

undervoltage load shedding. Besides technical effects such as voltage magnitude profiles of 

some buses, the impact on the system in terms of unserved energy is assessed and 

compared. 

In the simulated scenario voltage drop is one of the main effects of the 
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triggering/cascading events, which causes cascading failures such as line trip due to 

overcurrent. Fig 3 presents a comparison among the 3 different cases in terms of voltage 

magnitude evolution in the buses where low voltage is observed (A-10, A-11, A-12, A-13, 

A-14, A-16, A-18 and A-30 in the Austrian grid [40]).  

Simulation results for the base case with no UVLS show the voltage drops in some 

buses in the center of network which lead to load interruption and line trip due to 

undervoltage and overcurrent protection relays reaction. This eventually causes power 

outage in most parts of the network (Fig 4) after 1 hour.  

In the case with manual UVLS, 10 minutes after severe low voltage observation, the 

operators shed the interruptible portion of the loads (18% of total loads supplied from buses 

A-13 and A-14). As low voltage is more wide speared than only these 2 buses and this load 

shedding cannot correct voltage sufficiently, 5 minutes later we see the 2 loads are totally 

disconnected as undervoltage protection relays do not allow violation persists for more than 

9 minutes (violation is observed at 14:25). 

In the case with automatic UVLS, some undervoltage relays are assumed to be installed 

in central buses of the Austrian grid to monitor substation bus voltage, and to trip selected 

breakers at that bus. The relays operate when the voltage is below 90% of the normal 

voltage magnitude and shed 5% load at each step. 

Table II summarizes some general descriptive information of the 10 snapshots for the 3 

cases. 

System post-contingency evolution in the 3 different cases results in 3 different unserved 

energy values. Fig 5 depicts total served load amounts during the cascading evolution and 

Fig 6 provides a comparison of all 19 loads trend in one glimpse.  Vertical axis presents 

active served loads in MW. 

The 3 cases (without/with manual/with automatic UVLS) can be analyzed comparing 

the different unserved energies with the UVLS scheme implementation cost and extra 

operational costs due to increasing generators power output and load shedding cost. In 

order to monetize the impact of the UVLS on the level of security of supply, the total costs 

can be compared.  

We calculate the cost of unserved energy according to the general formula, Cu= G/E 

where Cu is the cost of unserved energy, G is the GDP and E is the domestic electricity 
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consumption: G and E values for year 2010 are taken from key statistics 2011 report of the 

Austrian regulator (E-Control) [42]. Considering the calculated cost of unserved energy as 

3800 €/MWh, the value of the economic loss in our case study would be 16,087,680 € 

without UVLS, 5,246,280 € with manual UVLS and 3,091,300 € with automatic UVLS. 

Neglecting the small amount of extra operational cost, 12,996,380 € (the economic loss 

difference between the case without UVLS and the case with automatic UVLS) and 

10,841,400 € (the economic loss difference between the case without UVLS and the case 

with manual UVLS) are the avoided costs thanks to the implementation of the automatic or 

manual UVLS schemes as countermeasures. For a cost/benefit analysis, the avoided costs 

can be compared with the cost of UVLS implementation. 

It should be noted that, in this example, the analyzed time frame is 1 hour, in which most 

of the loads cannot get restored in the base case without UVLS. This means that until the 

end of system recovery process - which takes much more time than 1 hour and is not 

simulated here - the amount of unserved energy would be much higher, and should be 

considered for the cost-benefit analysis. 

5. CONCLUSION 

Voltage collapse has been a critical issue in many recent blackouts. According to the 

results of the cost-benefit analysis proposed in this paper, UVLS is a key-measure,  to arrest 

voltage collapse, especially during extreme contingencies. UVLS schemes are being widely 

installed to bulk power delivery substations in the power networks supplying to densely 

populated areas especially in the US. In the European countries instead, the UVLS has been 

suggested but not actually implemented. This study can technically and economically 

support the recommendations from regulations for UVLS implementation and deployment. 

The benefits of applying UVLS can be observed in both technical and economic aspects. 

From the technical point of view, the UVLS can prevent power outages due to the fast 

voltage decay and accelerate voltage recovery. From the economic point of view, it can 

avoid a large amount of societal losses; as has been shown by the simulated case, the saving 

can be up to 67 % and 81 % of total economic loss by applying manual and automatic 

UVLS respectively. 

In case of fast evolution of voltage collapse and insufficient time for operators to apply a 
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wise quick decision, Automatic UVLS is proved to be a cut above Manual UVLS. 

It is strongly recommended that the UVLS should be implemented in the European 

transmission systems which can greatly mitigate the risks of voltage collapse and blackouts, 

with associated long term economic savings. 
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Table I – BLACKOUTS INVOLVING UNDERVOLTAGE IN EU 
Country and Area Date Main references 

France – Eastern part of the country 19/12/1978 [4] 
France – Western part of the country 12/01/1987 [4] 
France – Western part of the country 26/12/1999 [5],[6],[7] 
UK – London Southern area 28/08/2003 [8],[9] 
Croatia (Southern part of the country) and Bosnia Herzegovina 12/01/2003 [10],[11],[12] 
Sweden Southern part of the country) and Denmark (Eastern part of 
the country) 

23/09/2003 [13],[14],[15] 

Italy – All the country except for Sardinia 28/09/2003 [16],[17] 
Norway – Bergen, larger part of Horland and northern parts of 
Rogaland 

13/02/2004 [13],[18],[19] 

Greece – Athens area 12/07/2004 [13] 
Poland 26/06/2006 [20] 
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Table II A DESCRIPTIVE SUMMARY OF SYSTEM SNAPSHOTS DURING 1 HOUR STUDY 
INTERVAL 

Snapshots Description of snapshots 
Clock 
Time 

Time 
[min] 

Without UVLS With Manual UVLS With Automatic UVLS 

14:20 0-  System normal 
operation 

System normal operation System normal operation 

14:20 0+ 1 generator and 2 lines 
trip 

1 generator and 2 lines trip 1 generator and 2 lines trip 

14:25 5 

Sever voltage drop in 
some buses (2 buses less 
than 0.83, 4 buses less 
than 0.9), voltage 
protection relays sense 
the violation 

Sever voltage drop in some 
buses (2 buses less than 0.83, 4 
buses less than 0.9), voltage 
protection relays sense the 
violation 

Sever voltage drop in some buses 
(2 buses less than 0.83, 4 buses 
less than 0.9), voltage protection 
relays sense the violation 

14:30 10 

Voltage drop in some 
buses (2 buses less than 
0.83, 4 buses less than 
0.9), overcurrent in 2 
lines 

18 % of the loads on 2 buses as 
their interruptible portion are 
shed manually, voltage drop in 
6 buses  

5% automatic undervoltage load 
shedding on 6 buses (voltage 
threshold 0.90 pu), voltage 
correction, no relay threshold 
violations 

14:35 15 
Tripping 2 lines, power 
outage in 2 loads by 
protection relays action 

power outage in 2 loads by 
protection relays action since 
load shedding could not 
correct voltage well, no 
overcurrent, voltage correction 

5% automatic undervoltage load 
shedding on 4 buses where still 
voltage magnitude is below 0.9 
pu 

14:40 20 

Under frequency load 
shedding in some loads, 
severe low voltage 
observation in some 
central buses (more than 
5 buses less than 0.83) 

Load restoration in 2 buses, 
voltage drop in 5 buses 
(however protection relay 
threshold, 0.83, is not violated) 

5% automatic undervoltage load 
shedding on 3 buses where still 
voltage magnitude is below 0.9 
pu, start bringing the network 
voltage back to its normal level 

14:55 35 

Tripping of many lines, 
widespread power 
outage  (85 % unserved 
load), the lines’ tripping 
caused the separation of 
the network 

Load shedding minimization 
bringing system to a feasible 
operational point 

Voltage correction, no more 
loads are shed, frequency gets 
back to the reference value (50 
Hz) 

15:00 40 
Still 85 % of system 
total load is not supplied 

Voltage correction, load 
restoration 

re-dispatching of the power, 
System feasible 

15:15 55 

Demand decreases to 
follow load curve in the 
supplied island (west of 
Austria), the rest of 
network still in blackout 

No voltage/current violation, 
re-dispatching of the power, 
load decrease following load 
curve, most of the load are 
restored to the full demand 

No voltage/current violation, re-
dispatching of the power, load 
decrease following load curve, 
most of the load are restored to 
the full demand 

15:20 60 

The same status as 
previous snapshot 
4233.6 MWh total 
unserved energy 

More loads are restored to the 
full demand,  
1380.6 MWh total unserved 
energy 

More loads are restored to the 
full demand, 
813.5 MWh total unserved energy 
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Fig 1 High level flowchart of IRS framework 

 

 

Fig 2 Austrian grid with the triggering events at 14:20 on 01-07-2010 
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Fig 3 Voltage magnitude [p.u.] of some buses in the 3 simulated cases  
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Fig 4 System snapshot at 15:20 (simulation end time) in case with no UVLS 

 

 
Fig 5 Total served load during the cascading evolution in the 3 cases 
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Fig 6 comparison of load shedding in the 3 cases 
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