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Abstract—This paper presents vibration analysis techniques in points next to bearings and motors allows the position,
for fault detection in rotating machines. Rolling-element bearing velocity or acceleration of the machine over time to be

defects inside a motor pump are the object of study. A dynamic \e55yred, thus generating a discrete signal of the vibratio
model of the faults usually found in this context is presented. ’

Initially a graphic simulation is used to produce the signals. level. Fig. 1 shows a typ!cal positioning Conflgurgtlon (?f
Signal processing techniques, like frequency filters, Hilbert trans ~accelerometers on the equipment. In general, the oriensati
form and spectral analysis are then used to extract features it  of the sensors follow the three main axes of the machine, i.e.
will later be used as a base to classify the states of the studiedyertical, horizontal and axial.
process. After that real data from a centrifugal pump is submitted

to the developed methods. 1V oV 3V v

I. INTRODUCTION

Detecting or even preventing failures in complex machines —
usually benefits in terms of economy and security [18]. Con- S
tinuous technological development contributes to theciase /ZI:E\
of the lifetime of a rolling bearing. However, defects can
occur due to the great number of critical processes where —
bearings are employed. The precocious diagnosis of pessibl JL J.1
faults constitutes an important activity to prevent monecses |
damages.

Predictive maintenance [16], from the analysis of VibrratiOFig, 1. Motor pump with extended coupling between motor and pump
signals produced by the process, allows to monitor and make accelerometers are placed along the main directions toreagpecific
conclusions about the operational state of the machine, YRatons of the main axes. (H=horizontal, A=axial, V=vea)
addition to that allows taking appropriate measures tonekte
the time of use, and to minimize costs resultant from the
machine’s downtime. A. Fault Models in Bearings

The objective of the signal analysis is the discovery of dis-
criminative features that allow the identification of pretns
in their early stages. In particular, bearing problems ffieghi

The structure of a rolling bearing allows to establish a
model of possible faults. The bearings, when defectivesgre
in alterations of the machine's vibration patterns characteristic frequencies depending on the localizatibn

Especially for defects in rolling-element bearingisvelope the defect [13], [10], [14]. Defects in rolling bearings can

detection[9] is an indicated technique because the mecharﬁg foreseen by the analysis of vibrations, detecting salectr

defects in components of the bearing manifest themselvesC{Ponents with the frequencies (and their harmonicsLa/pi

periodic beatings, overlapping the low frequency vibnagio for the fault. i o . .

of the entire equipment, for instance caused by unbalance off here are five charactensng frequencies at which faults ca
the pump’s rotor. The Hilbert transform, [1], [20] plays arPCcur- They are the shaft rota.t|onal frequeti¢y fundamental
important role in the sequence of steps of the analysis. TFaJ€ frequencyc, ball pass inner raceway frequenéyer,
main idea is the separation of the defect frequency and th@ll Pass outer raceway frequendispo and the ball spin

natural frequency of the beating by demodulation. frequency .
For the ball bearings with angular contact with the cage,

Il. VIBRATION ANALYSIS IN ROTATING MACHINES the outer ring is static and the inner ring rotates at thetshaf
Motor pumps, due to the rotating nature of their internapeed. The characteristic fault frequencies can be cabclla
pieces, produce vibrations. Accelerometers strategipddiced by the following equations:



mechanic shocks of the balls with the cage (resonance) and

Fo = lFs (1 _ Dbcos(e)) (1) one or more of the frequencies defined in the equations (1) to
2 D. (4).
i &F 1 D, cos(6) o Fig. 3 shows some of the involved frequencies.
BrL 2 S -DC 3 T T T T
bfearlitng
Ngp Dy, cos(6) <«
F = —Fs(1— —— 3) 2
oro = s (1- 25 ©
g = De Fs(1- M (4) CT"J r resonance
2D, D? § 1-5 kHz
. . . =0 -
whereD, is the ball diametef is the contact angle betweeszq;]
the balls and the cagd). is the cage diameter andy; is g
the number of balls in the bearing. These equations considelr I
that the rolling elements do not slide, but roll over the imce
surfaces. 20 o 7
For bearings where the balls do not have an angular contagt ! unbalancing !
1 1 1 1 1

with the cage, when there are defects in a rolling elemers,
the fault vibration frequency appears as twice the frequenc
Iy, because the defect will collide on both races at each ball
rotation. Fig. 3. Time domain signal with low frequency unbalance, resece of the
These frequencies stem, in fact, from defects. They WHFanng collisions and intervals between the defects.
only be present in the vibration spectrum when the bearings
are really defective or, at least, when their components are lIl. ENVELOPEDETECTION
subject to excessive tensions and deformations that carcénd The defect detection based on the frequencies of egs. (1) to
a fault. (4) follows a set of consecutive stages usually denominated
Fig. 2 illustrates a basic model of a bearing with the rollings envelope detection [2], [6], [9]. The envelope detection
elements, the inner and outer raceways and the cage. is an important signal processing technique that helpsén th
identification of the bearing defects, extracting chandstie
frequencies from the vibration signal of the defective begar
The objective is the isolation of these frequencies and thei
harmonics, previously demodulated by the Hilbert transfor
With this analysis it is possible to identify not only the
occurrence of faults in bearings, but also identify possibl
sources, like faults in the inner and outer race, or in thingpl
elements.

0.015 0.02 0.025 0.03 0.035
time (s)

Internal raceway

A. Spectral Filtering

The first step in amplitude demodulation is signal filtering
with a band-pass filter to eliminate the frequencies astatia
with low frequencies defects (for instance unbalance and

Fig. 2. Sectional view of a bearing model [10]. misalignment) and eliminating noise.
The frequency band of interest is extracted from the origina
» signal using a FIR filter, [8], [6], [17], [11] in the time dorima
B. Spectral Composition The response to the impulgén), i.e. the coefficients, of

In the presence of bearing defects there are vibrations tiia¢ used band-pass FIR filter, with ideal respohge; (e’),

overlap the normal functioning signals. Besides that, tfaulis given by [11]

External
raceway

from other problems of the machinery can also occur. An 1 [ ,
example are the lower frequency vibrations which typically b(n) = %/ Hppe™?dw
occur in case of unbalance of the rotating parts of the pump. 1 -
Whenever a collision between a defect and some bearing = [sin(nwe,) — sin(nw, )] - (5)

element happens, a short duration pulse is produced. This

pulse excites the natural frequency of the bearing, resulti

in an increase of the vibrational energy. We consider three

basic frequency bands that are relevant for the defect sisaly b(n) = (6)
the lower unbalance frequencies, the higher frequenciéiseof L [sin(nwe,) — sin(nwe, )], |n| >0

™

(Wc2 _wcl)/ﬂ—ﬂ n=0



where the frequencies,, andw,., are the normalized cut-off

frequencies. 2, w>0
An impulse response of finite length is obtained by a F{ha(t)} = F{h(t)} - 1, w=0 (10)
truncation, ¥’ (n) = b(n) - w(n). The effects of theGibbs 0. w<0

phenomenan([8], [17], caused by the abrupt discontinuity

(or truncation) of the impulse response in the time domain, Considering the signal (original and analytic) as a modula-

are reduced by the utilization of a window,(n), with small tion by the (complex) signat’”-* of a carrier frequency of

lateral lobes like theHamming window angular frequency., the magnitude of the Fourier transform
A delay in b'(n), in order to obtain a causal filter, isof the analytic signal.%{h.(t)}| is a (scaled) version of

introduced by left shifting the origin and re-indexing thehe magnitude of the Fourier transform of the demodulated

coefficients, that is)/(n) =b'(n — M); n=0,1,...,2M.  original signal|.Z {h(t)}(w — w.)|, i.e. relocated to the low
The spectral filtering in the time domain is concluded by fiequenciesv — w.. In this way it is possible to isolate the

convolution of the input signat(n) with the coefficients, i.e., bearing defects.

y(n) = Zﬁzo b'(k)-z(n—Ek), whereN is the filter order and  In the discrete form, utilizing the DFT (discrete Fourier

y(n) is the filtered signal. transform), the equation (10) can be represented in the fol-

lowing way, [20] and [12]
B. Hilbert Transform

L . . » , 2, k=1,...,N/2-1
The vibration signals of interest have repetitive high fre_DtFT{ha[k:]} — DFT{AK]}-{ 1, k=0,N/2

guency manifestations as a consequence of the excitation 0

high frequency resonances in regular intervals (see Fig. 3) 0, k=N/2,...,N -1

These free vibrations generated by the bearing defects are i ) 11 )

modulated in amplitude by the sequence of repetitive impact | "€ inverse transform of the equation (11) is the analytic

and by the damping effect. signal .ha [l<_:],_wh|ch imaginary part is the Hilbert transfqrm,
The direct frequency analysis of the signals does not leBy which it is _pOSS|bIe to extract the envelope of the signal,

vides much information [6], because in the high frequendy®" the magnitude of, [k]

bands there is noise and other defects mixed with the char- =

acteristic frequencies of bearing faults. These repedtieg E[k] = ||ha[k]|| = \/ h?[k] + h?[K] (12)

quencies are, however, easily measured in the signal qrvelo The analysis steps for the calculus of the bearing defect

The envelope detection method (or amplitude demOdwatiO{r%quencies spectrum are then resumed): low frequency
rovides an important and effective approximation to amaly ..~ A . ' . )
P P bp yfllterlng to eliminate the influence of slow vibrations?)2

fault signals in high frequency vibrations. Calculus of the analytic signal,(¢) of the original signal

The signal en\{elope can be calc_:ulated .by the Hllpert trar’hs(-t)’ 3°) Fourier transform of the analytic signaP)4Analysis
form [1], [20]. Given a signali(¢) in the time domain, the of the magnitude of the spectrum

Hilbert transform is the convolution of(t) with the signal .
%, producing a new signal in the time domain. After t_he calculus_ of the spe_ct.runj, with the kpowledge 9f
the bearing properties, a classification module is resptasi
1 1 /00 dr @) for the diagnosis of the possible fault.

h(t) = A#{h(t)} = h(t)x — = = h(t)

mt T t—71

IV. SIMULATION

Considering the spectrum ft) andA(t), knowing thatthe A dynamic simulator with a graphical interface for syntaeti
convolution in the time domain is equivalent to a multiptioa  signal generation was developed. Fig. 4 shows the graphical
in the frequency domain, and than(w) is the sign function, model of the simulator’s bearing, without the cage represen
we get N tation.

F{h(t)} = —i-sgn(w) - F{h(t)}, 8

i.e. the Hilbert transform causes a shifte$0° for the positive
frequencies and of90° for the negative frequencies, leaving
the amplitudes unmodified.

The analytic signa) h.(t), a complex signal composed
by the original signalh(t) and its Hilbert transformh(t) in
quadrature, defined ds,(¢) := h(t) + ih(t), has a spectrum
with positive frequencies only.

It is possible to obtain the analytic signal from the equatio

(8)

F{h(t) + zﬁ(t)} = ZF{h(t)} (1 +sgn(w)) 9) Fig. 4. Graphical model of the simulator’s bearing.



The simulator was implemented in C, with the OpenGK. Synthetic Data

graphical interface library and Gnuplot for graphics getien  \ith the simulation being executed with parameters from a
in real time. The objective of the simulator is to generatgg| bearing, it was possible to generate a set of signals for
signals of defects in bearings to facilitate the learningl afne corroboration of the proposed methods. The simulatsr wa
training of the discussed signal processing techniquesh Whonfigured to rotate at 1800 RPNFY = 30Hz), containing 12
the simulated signals, all the techniques presented herbea balls, with a diameter of 38.1 mm each, in a cage of 165 mm of
applied to extract necessary information in order to di&@nogigmeter and considering the contact angle equalrto The

if the bearing is defective, which is the possible defect andsonance frequency of the rolling elements was adjusted to

what is the level of degradation. 4 KHz and 1024 points were sampled at a sampling frequency
It is possible to simulate defects in the inner and outgf 21 KHz.

raceways, fissures in the rolling elements and unbalandeeof t Fig. 5 jllustrates the signal generated by the simulator
motor pump. Gaussian noise, representing random vibsatigftcording to the aforementioned configuration. For better

from other sources of the motor pump is added to the synthefigualization no noise was included or any other fault seurc
signal granting a more realistic character to the data. was activated, like unbalance.

The resulting signal is composed of two sources: a low
frequency vibration, emulating the unbalance of the rogati 0.5
parts of the motor pump and a damped harmonic oscillatos,4 |- .
emulating the mechanic shock between the dynamic and staH'% |
parts inside the bearing, for instance, caused by the passag
of a ball over a fissure in a raceway. 5 02

0.1 1
0 ’ _

eration .

A. Damped Oscillations with one Degree of Freedom

If the source of a vibration is detectable by the acceler0|§le.0~1 B T
ters, we are interested in the displacemeft), caused by the® 02k _
beatings of a ball in an irregularity inside the bearing. §lder
an isolated system. Adding to the balance of force (Hooke's
law) F = mi = —ka of a simple harmonic oscillation, a 04 001 0.02 0.03 0.04 0.05
damping proportional to the velocity, we get time (s)

Fig. 5. Simulated original signal in the time domain. No noisether faults
mi = —kx — cx (13) are active, only resonance.

wherem is the dislocated mass,is the spring constant and  With the data utilized to adjust the simulator, the values of
is the damping constant. With the initial conditiong = 0) = the characteristic fault frequencies of the equations ¢1(4)
x, &(t = 0) = vy and supposing a underdamped systetw; are: Fo = 12.24 Hz,Fg = 62.93 Hz, Fgpo = 146.89 Hz e
4mk < 0, the solution of the second-order ordinary differentialzp; = 213.11 Hz. As these fault frequencies appear when the

equation (13) gives us the damped vibration. bearing is defective, it is possible to identify the sourt¢he
Nt bearing problem by observing the spectrum of the envelope
x(t) = Ae” " cos(wt — ¢p) (14)  signal.

The first step of the investigation is spectral filtering. The
filtered frequency band was [2800 Hz, 5100 Hz], because this
the damping coefficients, = (/£ the natural frequency of region contains the resonance of the material.
the oscillator,w = /w2 — A2 the frequency of the damped The step following the filtering is envelope detection, aHo
system ands, the phase of the oscillation. ing the identification of the origin of the fault. In Fig. 6 the
peaks in the frequency 144.1 Hz and its harmonics are made
evident, enabling the detection of a fault in the outer ragew

Next we postulate that the use of pattern recognition

To prove the previously presented fault detection methochniques [19], [4], [3], especiallfeature selectionallows
the results of two tests are shown: one with artificial dadanfr an automatic discrimination of the bearing condition aass
the simulator and another with real data from a submersihle. the normal state and the various fault types. In general
motor pump. We will show that the use of pattern recognitiomeasures of specific bands and its derived measures are
techniques avoids heuristics for filtering the relevanbinfa- defined to compose the set of features that are the base of
tion out of the spectrum of the signal envelope. That meatige classification [7], [5], [22].
that there is no necessity to explicitly define a frequenaydba On the contrary to this explicit definition of the useful
where we expect the faults to manifest themselves. Infaamat features, we apply automatic information filtering techuss
filtering methods are used, especially feature selection.  to discover the most useful of the features, in this case of

whereA is the maximum amplitude of the oscillatioh = 5~

V. RESULTS



Amplitude

TABLE |

ESTIMATED ERROR RATE USING THE'L EAVE-ONE-OUT” ESTIMATION
0.03|- O 144.1 Hz | FOR VARIOUS TYPES OF CLASSIFIERS
Classifier Estimated error rate
0.025- B Linear Machine 1.45%
287.5 Hz Quadratic Gaussian 3.50%
0.02 - B 1-Nearest-Neighbor 2.50%
Multi-Layer Perceptron 1.00%
0.015| .
0.01 .
0.005 nonlinear relationships among the data points and thates do
’ not cut off non-principal components. Fig. 7 clearly illages
0 L J\M s . the separability of the classes, i.e, the feature modelnpiate
0 500 1000 1500 = 2000 2500 to diagnose the health of the bearing.
Frequency (Hz)
Fig. 6. Envelope spectrum emphasizing the fault in the osteeway of the  0.04 T SLE — T ———
bearing FBPO = 146.89 HZ) | L4 t * ¥ + Xx  x X |
A Yeo. xx X XX x X %
g 002 R S MR
the signal envelope frequencies. We consider thereforeSthe | ’ JE Yo ok T T
complete envelope spectrum, eq. (12), as the initial feagr 0 + LT o q © *ox
. . . . [~ a X —
vector, in this case of dimensiah = 512. For each of theg 0 © . Emm Lo 0o
B . < <
5 classes (without fault and the 4 faults of the equatigns [ .~ . = "o ° o " %0 o
. . . & [m]
(1) to (4)) 50 samples were generated. Gaussian noise ;ﬁwg{bz E—— cLe I ° o Pog - i
variances? = 0.04 was added to an original synthetic sigr=l N 0% O, .0 5 DED o c
in the time domain (1024 samples). For example, for the finne | ° e 5% 50 5 ° |
. . ~ <
raceway” fault class, the maximum absolute value is 0.62160.04 - ¢ e e o .
the absolute average value is 0.18079 and the median of the ! ! ! ! ! !
absolute value is 0.15269. Thus, the signal-to-noise ratio -0.04 -0.02 0 0.02 0.04
quite low and makes it difficult to filter out the discriminai Mapped dimension #2
. . internal raceway-
information. external raceway-
The technique ofeature selectior19] [3] has two main ball defect .

advantages. First, it reduces the dimension of the featLIHiS. 7. Sammon Plot for the signal of the envelope of originahefision

vector, facilitating the subsequent classification. Fanegle, 20, i.e. after feature selection, mapped to 2-D

training a multi-layer perceptron with 512 entries is much

more complex than using only the 20 best features. An empirical comparison with various classifier models [19]
In this work we use th&equential Forward Selectistrat- was made to confirm the separability of the data. To estimate

egy [19] because it is a good trade-off between computdtiorihe error rate, the “Leave-One-Out” method was used. Table |

cost and search space complexity. Only 20 of the original 58Rows the result of the performance estimates experierfces o

features were selected, representing a complexity remtucfi  various classifiers: Linear Machine, Bayes with multivaria

96%. As the selection criterion we used inter-class EuatideGaussian distribution, 1-Nearest-Neighbor and Singlddilin-

distance. The sequence of selected frequencies was: 0 Hzyer Perceptron.

123.047 Hz, 287.109 Hz, 840.82 Hz, 2317.38 Hz, 1066.41 Hz,

758.789 Hz, 143.555 Hz, 307.617 Hz, 451.172 Hz, 471.68 H3; Real Data

41.0156 Hz, 225.586 Hz, 594.727 Hz, 922.852 Hz, 1004.88The second test was conducted with real data from a

Hz, 205.078 Hz, 328.125 Hz, 574.219 Hz, 1025.39 Hz. In thisibmersible centrifugal motor pump, produced by Landeistri

sequence one can encounter some of the fault frequencies @hd Netherlands [21]. The rolling-element bearing usedhén t

their harmonics which evidences the discriminative immoce test was the SKF6305, with fundamental shaft frequegy,

of the characteristic fault frequencies. equal to 25 Hz. The values of the frequencies originated from
An extremely useful tool for high-dimensional data vipotential damages aréc = 9.2 Hz,Fz = 44 Hz,Fgpo = 64.4

sualizing is the Sammon Plot [15], that in two or threélz andFgp; = 111 Hz. A total of 16384 points was measured

dimensions reproduces the mutual Euclidean distance batwwith a sampling frequency of 51.2 KHz. Fig. 8 illustrates the

each example (here 250) in the original dimension (the 20 baggnal in the time domain.

features determined by the feature selection). Over thellysu Fig. 9 shows the envelope spectrum of the signal filtered

employed two-dimensional visualization by the first twonpri from 4 KHz to 8 KHz. The clearly visible peaks at the 106

cipal components of the Principal Component Analysis (PCA)z frequency and its harmonics evidences a fault at the inner

[19], the Sammon plot has the advantage that it preserves theeway.
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subsequent classification steps. On the contrary to therityajo
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VI. CONCLUSION AND FUTURE WORKS
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In this work we employed signal processing and pattern
recognition techniques to classify faults in bearings. The
envelope analysis provides the feature vector used in the

of the works that focus on the fault detection problem, we
explore pattern recognition methods to automate the aisalys
of the obtained features.
In the near future we will be able to acquire real data
from an experimental workbench (SpectraQuest MFS2004-
PK7) allowing the refinement of the developed techniques.

A study of distinct bearing models will be realized. It is@ls

projected to implement the fault diagnosis system in an moto
pump environment in the oil extraction industry.
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