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Abstract—This paper presents vibration analysis techniques
for fault detection in rotating machines. Rolling-element bearing
defects inside a motor pump are the object of study. A dynamic
model of the faults usually found in this context is presented.

Initially a graphic simulation is used to produce the signals.
Signal processing techniques, like frequency filters, Hilbert trans-
form and spectral analysis are then used to extract features that
will later be used as a base to classify the states of the studied
process. After that real data from a centrifugal pump is submitted
to the developed methods.

I. I NTRODUCTION

Detecting or even preventing failures in complex machines
usually benefits in terms of economy and security [18]. Con-
tinuous technological development contributes to the increase
of the lifetime of a rolling bearing. However, defects can
occur due to the great number of critical processes where
bearings are employed. The precocious diagnosis of possible
faults constitutes an important activity to prevent more serious
damages.

Predictive maintenance [16], from the analysis of vibration
signals produced by the process, allows to monitor and make
conclusions about the operational state of the machine, in
addition to that allows taking appropriate measures to extend
the time of use, and to minimize costs resultant from the
machine’s downtime.

The objective of the signal analysis is the discovery of dis-
criminative features that allow the identification of problems
in their early stages. In particular, bearing problems manifest
in alterations of the machine’s vibration patterns.

Especially for defects in rolling-element bearingsenvelope
detection[9] is an indicated technique because the mechanic
defects in components of the bearing manifest themselves in
periodic beatings, overlapping the low frequency vibrations
of the entire equipment, for instance caused by unbalance of
the pump’s rotor. The Hilbert transform, [1], [20] plays an
important role in the sequence of steps of the analysis. The
main idea is the separation of the defect frequency and the
natural frequency of the beating by demodulation.

II. V IBRATION ANALYSIS IN ROTATING MACHINES

Motor pumps, due to the rotating nature of their internal
pieces, produce vibrations. Accelerometers strategically placed

in points next to bearings and motors allows the position,
velocity or acceleration of the machine over time to be
measured, thus generating a discrete signal of the vibration
level. Fig. 1 shows a typical positioning configuration of
accelerometers on the equipment. In general, the orientations
of the sensors follow the three main axes of the machine, i.e.
vertical, horizontal and axial.

Fig. 1. Motor pump with extended coupling between motor and pump.
The accelerometers are placed along the main directions to capture specific
vibrations of the main axes. (H=horizontal, A=axial, V=vertical)

A. Fault Models in Bearings

The structure of a rolling bearing allows to establish a
model of possible faults. The bearings, when defective, present
characteristic frequencies depending on the localizationof
the defect [13], [10], [14]. Defects in rolling bearings can
be foreseen by the analysis of vibrations, detecting spectral
components with the frequencies (and their harmonics) typical
for the fault.

There are five characteristic frequencies at which faults can
occur. They are the shaft rotational frequencyFS, fundamental
cage frequencyFC, ball pass inner raceway frequencyFBPI,
ball pass outer raceway frequencyFBPO and the ball spin
frequencyFB.

For the ball bearings with angular contact with the cage,
the outer ring is static and the inner ring rotates at the shaft
speed. The characteristic fault frequencies can be calculated
by the following equations:
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whereDb is the ball diameter,θ is the contact angle between
the balls and the cage,Dc is the cage diameter andNb is
the number of balls in the bearing. These equations consider
that the rolling elements do not slide, but roll over the race’s
surfaces.

For bearings where the balls do not have an angular contact
with the cage, when there are defects in a rolling element,
the fault vibration frequency appears as twice the frequency
FB, because the defect will collide on both races at each ball
rotation.

These frequencies stem, in fact, from defects. They will
only be present in the vibration spectrum when the bearings
are really defective or, at least, when their components are
subject to excessive tensions and deformations that can induce
a fault.

Fig. 2 illustrates a basic model of a bearing with the rolling
elements, the inner and outer raceways and the cage.
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Fig. 2. Sectional view of a bearing model [10].

B. Spectral Composition

In the presence of bearing defects there are vibrations that
overlap the normal functioning signals. Besides that, faults
from other problems of the machinery can also occur. An
example are the lower frequency vibrations which typically
occur in case of unbalance of the rotating parts of the pump.

Whenever a collision between a defect and some bearing
element happens, a short duration pulse is produced. This
pulse excites the natural frequency of the bearing, resulting
in an increase of the vibrational energy. We consider three
basic frequency bands that are relevant for the defect analysis:
the lower unbalance frequencies, the higher frequencies ofthe

mechanic shocks of the balls with the cage (resonance) and
one or more of the frequencies defined in the equations (1) to
(4).

Fig. 3 shows some of the involved frequencies.
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Fig. 3. Time domain signal with low frequency unbalance, resonance of the
bearing collisions and intervals between the defects.

III. E NVELOPE DETECTION

The defect detection based on the frequencies of eqs. (1) to
(4) follows a set of consecutive stages usually denominated
as envelope detection [2], [6], [9]. The envelope detection
is an important signal processing technique that helps in the
identification of the bearing defects, extracting characteristic
frequencies from the vibration signal of the defective bearing.
The objective is the isolation of these frequencies and their
harmonics, previously demodulated by the Hilbert transform.
With this analysis it is possible to identify not only the
occurrence of faults in bearings, but also identify possible
sources, like faults in the inner and outer race, or in the rolling
elements.

A. Spectral Filtering

The first step in amplitude demodulation is signal filtering
with a band-pass filter to eliminate the frequencies associated
with low frequencies defects (for instance unbalance and
misalignment) and eliminating noise.

The frequency band of interest is extracted from the original
signal using a FIR filter, [8], [6], [17], [11] in the time domain.

The response to the impulseb(n), i.e. the coefficients, of
the used band-pass FIR filter, with ideal responseHPB(eiω),
is given by [11]
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where the frequenciesωc1 andωc2 are the normalized cut-off
frequencies.

An impulse response of finite length is obtained by a
truncation, b′(n) = b(n) · w(n). The effects of theGibbs
phenomenon, [8], [17], caused by the abrupt discontinuity
(or truncation) of the impulse response in the time domain,
are reduced by the utilization of a window,w(n), with small
lateral lobes like theHamming window.

A delay in b′(n), in order to obtain a causal filter, is
introduced by left shifting the origin and re-indexing the
coefficients, that is,b′(n) = b′(n − M); n = 0, 1, . . . , 2M.

The spectral filtering in the time domain is concluded by a
convolution of the input signalx(n) with the coefficients, i.e.,
y(n) =

∑N

k=0
b′(k) ·x(n−k), whereN is the filter order and

y(n) is the filtered signal.

B. Hilbert Transform

The vibration signals of interest have repetitive high fre-
quency manifestations as a consequence of the excitation of
high frequency resonances in regular intervals (see Fig. 3).
These free vibrations generated by the bearing defects are
modulated in amplitude by the sequence of repetitive impacts
and by the damping effect.

The direct frequency analysis of the signals does not pro-
vides much information [6], because in the high frequency
bands there is noise and other defects mixed with the char-
acteristic frequencies of bearing faults. These repeatingfre-
quencies are, however, easily measured in the signal envelope.
The envelope detection method (or amplitude demodulation)
provides an important and effective approximation to analyze
fault signals in high frequency vibrations.

The signal envelope can be calculated by the Hilbert trans-
form [1], [20]. Given a signalh(t) in the time domain, the
Hilbert transform is the convolution ofh(t) with the signal
1

πt
, producing a new signal in the time domain.
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Considering the spectrum ofh(t) andh̃(t), knowing that the
convolution in the time domain is equivalent to a multiplication
in the frequency domain, and thatsgn(ω) is the sign function,
we get

F{h̃(t)} = −i · sgn(ω) · F{h(t)}, (8)

i.e. the Hilbert transform causes a shift of+90◦ for the positive
frequencies and of−90◦ for the negative frequencies, leaving
the amplitudes unmodified.

The analytic signal, ha(t), a complex signal composed
by the original signalh(t) and its Hilbert transform̃h(t) in
quadrature, defined asha(t) := h(t) + ih̃(t), has a spectrum
with positive frequencies only.

It is possible to obtain the analytic signal from the equation
(8)

F{h(t) + ih̃(t)} = F{h(t)} · (1 + sgn(ω)) (9)

F{ha(t)} = F{h(t)} ·
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Considering the signal (original and analytic) as a modula-
tion by the (complex) signaleiωct of a carrier frequency of
angular frequencyωc, the magnitude of the Fourier transform
of the analytic signal|F{ha(t)}| is a (scaled) version of
the magnitude of the Fourier transform of the demodulated
original signal |F{h(t)}(ω − ωc)|, i.e. relocated to the low
frequenciesω − ωc. In this way it is possible to isolate the
bearing defects.

In the discrete form, utilizing the DFT (discrete Fourier
transform), the equation (10) can be represented in the fol-
lowing way, [20] and [12]

DFT{ha[k]} = DFT{h[k]} ·





2, k = 1, . . . , N/2 − 1

1, k = 0, N/2

0, k = N/2, . . . , N − 1
(11)

The inverse transform of the equation (11) is the analytic
signal ha[k], which imaginary part is the Hilbert transform,
by which it is possible to extract the envelope of the signal,
i.e., the magnitude ofha[k]

E [k] = ‖ha[k]‖ =

√
h2[k] + h̃2[k] (12)

The analysis steps for the calculus of the bearing defect
frequencies spectrum are then resumed: 1o) Low frequency
filtering to eliminate the influence of slow vibrations, 2o)
Calculus of the analytic signalha(t) of the original signal
h(t), 3o) Fourier transform of the analytic signal, 4o) Analysis
of the magnitude of the spectrum.

After the calculus of the spectrum, with the knowledge of
the bearing properties, a classification module is responsible
for the diagnosis of the possible fault.

IV. SIMULATION

A dynamic simulator with a graphical interface for synthetic
signal generation was developed. Fig. 4 shows the graphical
model of the simulator’s bearing, without the cage represen-
tation.

Fig. 4. Graphical model of the simulator’s bearing.



The simulator was implemented in C, with the OpenGL
graphical interface library and Gnuplot for graphics generation
in real time. The objective of the simulator is to generate
signals of defects in bearings to facilitate the learning and
training of the discussed signal processing techniques. With
the simulated signals, all the techniques presented here can be
applied to extract necessary information in order to diagnose
if the bearing is defective, which is the possible defect and
what is the level of degradation.

It is possible to simulate defects in the inner and outer
raceways, fissures in the rolling elements and unbalance of the
motor pump. Gaussian noise, representing random vibrations
from other sources of the motor pump is added to the synthetic
signal granting a more realistic character to the data.

The resulting signal is composed of two sources: a low
frequency vibration, emulating the unbalance of the rotating
parts of the motor pump and a damped harmonic oscillator,
emulating the mechanic shock between the dynamic and static
parts inside the bearing, for instance, caused by the passage
of a ball over a fissure in a raceway.

A. Damped Oscillations with one Degree of Freedom

If the source of a vibration is detectable by the accelerome-
ters, we are interested in the displacementx(t), caused by the
beatings of a ball in an irregularity inside the bearing. Consider
an isolated system. Adding to the balance of force (Hooke’s
law) F = mẍ = −kx of a simple harmonic oscillation, a
damping proportional to the velocity, we get

mẍ = −kx − cẋ (13)

wherem is the dislocated mass,k is the spring constant andc
is the damping constant. With the initial conditionsx(t = 0) =
x0, ẋ(t = 0) = v0 and supposing a underdamped system,c2−
4mk < 0, the solution of the second-order ordinary differential
equation (13) gives us the damped vibration.

x(t) = Ae−λω0t cos(ωt − φ0) (14)

whereA is the maximum amplitude of the oscillation,λ = c

2m

the damping coefficient, ω0 =
√

k

m
the natural frequency of

the oscillator,ω =
√

ω2
0
− λ2 the frequency of the damped

system andφ0 the phase of the oscillation.

V. RESULTS

To prove the previously presented fault detection method,
the results of two tests are shown: one with artificial data from
the simulator and another with real data from a submersible
motor pump. We will show that the use of pattern recognition
techniques avoids heuristics for filtering the relevant informa-
tion out of the spectrum of the signal envelope. That means
that there is no necessity to explicitly define a frequency band
where we expect the faults to manifest themselves. Information
filtering methods are used, especially feature selection.

A. Synthetic Data

With the simulation being executed with parameters from a
real bearing, it was possible to generate a set of signals for
the corroboration of the proposed methods. The simulator was
configured to rotate at 1800 RPM (FS = 30Hz), containing 12
balls, with a diameter of 38.1 mm each, in a cage of 165 mm of
diameter and considering the contact angle equal to37◦. The
resonance frequency of the rolling elements was adjusted to
4 KHz and 1024 points were sampled at a sampling frequency
of 21 KHz.

Fig. 5 illustrates the signal generated by the simulator
according to the aforementioned configuration. For better
visualization no noise was included or any other fault source
was activated, like unbalance.
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Fig. 5. Simulated original signal in the time domain. No noise orother faults
are active, only resonance.

With the data utilized to adjust the simulator, the values of
the characteristic fault frequencies of the equations (1) to (4)
are: FC = 12.24 Hz,FB = 62.93 Hz,FBPO = 146.89 Hz e
FBPI = 213.11 Hz. As these fault frequencies appear when the
bearing is defective, it is possible to identify the source of the
bearing problem by observing the spectrum of the envelope
signal.

The first step of the investigation is spectral filtering. The
filtered frequency band was [2800 Hz, 5100 Hz], because this
region contains the resonance of the material.

The step following the filtering is envelope detection, allow-
ing the identification of the origin of the fault. In Fig. 6 the
peaks in the frequency 144.1 Hz and its harmonics are made
evident, enabling the detection of a fault in the outer raceway.

Next we postulate that the use of pattern recognition
techniques [19], [4], [3], especiallyfeature selection, allows
an automatic discrimination of the bearing condition classes,
i.e. the normal state and the various fault types. In general,
measures of specific bands and its derived measures are
defined to compose the set of features that are the base of
the classification [7], [5], [22].

On the contrary to this explicit definition of the useful
features, we apply automatic information filtering techniques
to discover the most useful of the features, in this case of
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Fig. 6. Envelope spectrum emphasizing the fault in the outer raceway of the
bearing (FBPO = 146.89 Hz)

the signal envelope frequencies. We consider therefore the
complete envelope spectrum, eq. (12), as the initial feature
vector, in this case of dimensiond = 512. For each of the
5 classes (without fault and the 4 faults of the equations
(1) to (4)) 50 samples were generated. Gaussian noise with
varianceσ2 = 0.04 was added to an original synthetic signal
in the time domain (1024 samples). For example, for the “inner
raceway” fault class, the maximum absolute value is 0.62167,
the absolute average value is 0.18079 and the median of the
absolute value is 0.15269. Thus, the signal-to-noise ratiois
quite low and makes it difficult to filter out the discriminative
information.

The technique offeature selection[19] [3] has two main
advantages. First, it reduces the dimension of the feature
vector, facilitating the subsequent classification. For example,
training a multi-layer perceptron with 512 entries is much
more complex than using only the 20 best features.

In this work we use theSequential Forward Selectionstrat-
egy [19] because it is a good trade-off between computational
cost and search space complexity. Only 20 of the original 512
features were selected, representing a complexity reduction of
96%. As the selection criterion we used inter-class Euclidean
distance. The sequence of selected frequencies was: 0 Hz,
123.047 Hz, 287.109 Hz, 840.82 Hz, 2317.38 Hz, 1066.41 Hz,
758.789 Hz, 143.555 Hz, 307.617 Hz, 451.172 Hz, 471.68 Hz,
41.0156 Hz, 225.586 Hz, 594.727 Hz, 922.852 Hz, 1004.88
Hz, 205.078 Hz, 328.125 Hz, 574.219 Hz, 1025.39 Hz. In this
sequence one can encounter some of the fault frequencies and
their harmonics which evidences the discriminative importance
of the characteristic fault frequencies.

An extremely useful tool for high-dimensional data vi-
sualizing is the Sammon Plot [15], that in two or three
dimensions reproduces the mutual Euclidean distance between
each example (here 250) in the original dimension (the 20 best
features determined by the feature selection). Over the usually
employed two-dimensional visualization by the first two prin-
cipal components of the Principal Component Analysis (PCA)
[19], the Sammon plot has the advantage that it preserves the

TABLE I
ESTIMATED ERROR RATE USING THE“L EAVE-ONE-OUT” ESTIMATION

FOR VARIOUS TYPES OF CLASSIFIERS

Classifier Estimated error rate
Linear Machine 1.45%

Quadratic Gaussian 3.50%

1-Nearest-Neighbor 2.50%

Multi-Layer Perceptron 1.00%

nonlinear relationships among the data points and that it does
not cut off non-principal components. Fig. 7 clearly illustrates
the separability of the classes, i.e, the feature model potential
to diagnose the health of the bearing.
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Fig. 7. Sammon Plot for the signal of the envelope of original dimension
20, i.e. after feature selection, mapped to 2-D

An empirical comparison with various classifier models [19]
was made to confirm the separability of the data. To estimate
the error rate, the “Leave-One-Out” method was used. Table I
shows the result of the performance estimates experiences of
various classifiers: Linear Machine, Bayes with multivariate
Gaussian distribution, 1-Nearest-Neighbor and Single-Hidden-
Layer Perceptron.

B. Real Data

The second test was conducted with real data from a
submersible centrifugal motor pump, produced by Landustrie,
The Netherlands [21]. The rolling-element bearing used in the
test was the SKF6305, with fundamental shaft frequency,FS

equal to 25 Hz. The values of the frequencies originated from
potential damages are:FC = 9.2 Hz,FB = 44 Hz,FBPO = 64.4
Hz andFBPI = 111 Hz. A total of 16384 points was measured
with a sampling frequency of 51.2 KHz. Fig. 8 illustrates the
signal in the time domain.

Fig. 9 shows the envelope spectrum of the signal filtered
from 4 KHz to 8 KHz. The clearly visible peaks at the 106
Hz frequency and its harmonics evidences a fault at the inner
raceway.
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Fig. 9. Envelope spectrum emphasizing the bearing defect

VI. CONCLUSION AND FUTURE WORKS

In this work we employed signal processing and pattern
recognition techniques to classify faults in bearings. The
envelope analysis provides the feature vector used in the
subsequent classification steps. On the contrary to the majority
of the works that focus on the fault detection problem, we
explore pattern recognition methods to automate the analysis
of the obtained features.

In the near future we will be able to acquire real data
from an experimental workbench (SpectraQuest MFS2004-
PK7) allowing the refinement of the developed techniques.
A study of distinct bearing models will be realized. It is also
projected to implement the fault diagnosis system in an motor
pump environment in the oil extraction industry.
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