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Abstract. The main idea of black-box macromodeling is to approximate the
dynamic behavior of complex systems in terms of low-complexity models or
equivalent circuits. Such compact models can be derived through robust
numerical algorithms, such as the Vector Fitting scheme, starting from
frequency- or time-domain responses of the system, and without any specific
knowledge of its internal structure. The excellent accuracy that can be achieved,
combined with the reduced size of the models, has led to a widespread adoption
of this approach in several electrical and electronic applications, allowing
designers to perform numerical simulations at the system level with high
efficiency. This paper reviews the basics of black-box macromodeling and
illustrates several application scenarios that are relevant for the EMC
community, including Signal and Power Integrity, lossy transmission line
modeling, electromagnetic full-wave simulation, network equivalencing and
transformer modeling.

l. Introduction

Models are the fundamental tool that engineers use to understand, predict and
design systems. This is true for all disciplines, including of course EMC. A model
provides a mathematical description of how a system behaves or responds under
prescribed excitations, and how different parts of a complex system interact with
each other. When suitably validated through independent numerical simulation
or direct measurement, a model can be reliably and consistently used for design,
verification, and prediction.

But what is a model? Different answers to this question might be expected from
engineers working in different application fields, on different problems, or even
different aspects of the same problem. Maxwell’s equations and Kirchhoff
equations are models. But also a linear algebraic system of equations arising
from a Finite Elements or Finite Differences discretization of Maxwell’s
equations is a model. A simplified equivalent circuit with RLC components
describing a Power Distribution Network is also a model, as well as a detailed
transistor-level description of a power amplifier or an I/0 buffer.



First-principle models like Maxwell’s equations and even their discretized
versions are sometimes inadequate for the description of EMC problems and for
their numerical simulation aimed at prediction or verification. Consider, as an
example, the case of a Signal/Power Integrity (SPI) verification of a complete
electronic system in a post-layout phase (see Figure 1). All signal and power
degradation effects must be taken into account, including interconnect parasitics
(both of signal and power distribution networks), relevant capacitive and
inductive couplings between each pair of conductors, local and global
resonances, dispersive and non-ideal material properties, strong nonlinear and
dynamic effects of 1/0 circuits that drive/receive signals by drawing supply
current from the power distribution network, and even the non-ideal
characteristics of the Voltage Regulator Modules. Although suitably discretized
Maxwell’s equations (for the interconnect part) and Kirchhoff laws with device
characteristics (for the device part) certainly hold true, a brute-force approach
that combines these descriptions into a global system-level model for the entire
structure will fail. The model is too complex to be realistically simulated on any
computing hardware. A similar conclusion is reached for simulation of
traditional power systems for generation, transmission and distribution of
electrical power. For instance, the investigation of undesirable disturbance
effects from power electronic converters on other system components cannot be
simulated by a single, complete model obtained from first principles.

This is where “macromodeling” comes into play, sometimes under different
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denominations like “behavioral modeling”, “reduced-order modeling”, “black-box
modeling”, “surrogate modeling”, and “network equivalencing” [1, 2]. The basic
idea is simple: deriving a simpler model by reducing the complexity of an initial
description through some approximation process, without compromising the
ability of the final model to describe the phenomena that it is intended to
represent. This simplification is performed through a mathematical process,
whose only objective is accuracy-controlled complexity reduction. Not very
different in fact from image or file compression algorithms that we daily use to
reduce the size of and store our data.

This approach is quite different from “white-box”, “topological”, or “physics-
based” modeling. The latter try to describe a dominant physical phenomenon
with a simple circuit description, whose parameters are directly related to the
geometry and materials of the structure. An example can be a loop inductance of
a critical current return path, which is computed or parameterized based on the
actual position and dimension of the conductors [3]. Black-box macromodeling
aims at simplifying an initial and excessively complex model, in order to enable
efficient numerical simulations, most often trading physical insight for
simulation speed or even ability to perform simulations. White-box and black-
box approaches are thus complementary, and no one should be preferred to the
other. They are simply intended for different tasks.

In this article, we focus on linear black-box macromodeling, by discussing
various approaches that are available for systems that are adequately described
by linear equations (such as interconnect networks, transmission lines, filters),
and for which both time and frequency domain descriptions are possible. In a
companion article (this issue, page XX), the Authors focus on nonlinear
macromodeling, with specific reference to 1/0 buffer modeling. Although the
mathematical tools that are required are somewhat different, both applications



share the same objective of producing simple, reliable, and representative
simulation models.

Il. Why black-box macromodeling?

With reference to EMC applications, there are several scenarios in which (linear)
black-box macromodeling proves extremely useful. Some of these scenarios are
itemized below.

Order reduction: a given large-size circuit can be reliably “compressed” by
applying a projection or approximation process under controlled accuracy [4,5]:
a smaller circuit is obtained, with nearly the same time and frequency-domain
response as the larger original circuit. Runtime reduction of orders of magnitude
is often possible using the reduced-order circuit (see Section III.A below).

Modeling from measurements or field solver data: starting from a set of
tabulated responses available from measurements (e.g. scattering, admittance,
or voltage transfer), it is possible to derive a black-box model that is ready for
transient simulation; this model can be cast both in terms of state-space
equations, or even synthesized as an equivalent circuit for SPICE or EMTP
simulations [1]. The same process can be applied to extract a model from the
results of a full-wave simulation. In fact, the macromodel derivation is agnostic
about where these initial data come from: the measurement process can be
replaced with a virtual measurement as offered by a field solver, which returns
frequency or time responses by solving Maxwell’s equations. Macromodeling can
thus be applied as a post-processing step that translates the results of a field
solver into a compact equivalent circuit (see Section III.B below). Most modern
field solvers offer this post-processing capability, often transparently from the
user.

Hiding proprietary information: a black-box model is defined by parameters
that are measured or computed through a mathematical procedure; as such, no
sensitive information on geometry or materials of the structure under
investigation is disclosed. This feature intrinsically hides IP, therefore making
black-box models excellent candidates to exchange information about electrical
properties of devices between different vendors and companies, or even entire
systems of components.

Inclusion of frequency-dependent effects: black-box macromodels are derived
through robust mathematical algorithms, ensuring that any frequency-
dependent effect is reproduced by the model equations; from a dispersive
dielectric to a resonant cavity or a transmission line, macromodeling provides a
unifying framework for describing complex frequency-dependent phenomena in
terms of low-order linear Ordinary Differential Equations (ODE).

Interpolation: a set of tabulated scattering or admittance parameters describes
the response of a system only at the frequencies where samples are available; a
macromodel derived from these samples is a set of equations, whose AC



response can be computed at any arbitrary frequency (of course, within the
modeling bandwidth). Thus, macromodels have an intrinsic interpolation
capability.

Fast time-domain simulation: since macromodels can be cast as ODEs or as
equivalent circuits, a direct simulation in time-domain is straightforward with
off-the-shelf circuit solvers of the SPICE and EMTP class. Macromodels can also
be cast in pole-residue form, which supports transient simulation based on
recursive convolution [6,7]. This is by far the fastest possible transient
simulation method, which is now implemented in all modern SPICE and EMTP
engines.

lll. Macromodeling flows

Two main different types of macromodeling flows are available, depicted in
Figures 2 and 3.

I1I.A Macromodeling via Model Order Reduction

Let us consider Figure 2, where a “Model Order Reduction (MOR)” flow is
discussed. The starting point is the physical structure under investigation. The
first step translates a physical description into a first-principle electromagnetic
model, by setting up ports (which define where we need to excite the system and
where we need to observe its response) and appropriate boundary conditions
for the fields. A spatial discretization is then applied; depending on the adopted
strategy, the result is either a large-scale circuit description, e.g., as arising from
a Partial Element Equivalent Circuit (PEEC) extraction [8], or a large-scale
system of Differential Algebraic Equations (DAE’s) or ODE’s in case of a Finite
Difference or Finite Element discretization (note that we are leaving the time
variable continuous). The former PEEC circuit can be translated into a DAE
system by applying a suitable circuit formulation such as Modified Nodal
Analysis (MNA) [9]. The state vector x(t) includes all currents/voltages or
electric/magnetic field coefficients arising from the discretization, so that its size
N can be very large (millions of unknowns).

The MOR approach reduces the size of the state vector by performing an
approximate change of variable. The full set of unknowns is projected onto a
smaller set x, of size q < N asx ~ V,x, whereV,is a “tall and thin” matrix
with many more rows than columns. Since the change of variable is not
invertible, we will never be able to recover the full set of unknowns from the
small number of elements in x,;: we are throwing away something. At the same
time, a smaller number q of equations is obtained from the original N equations,
by throwing away the equations that are unnecessary. Several consolidated MOR
techniques exist [4,5,2] to determine particular changes of variable (i.e. matrices
V,), and equation-reduction strategies so that the reduced model of size g
preserves the desired features of the original model responses. Some of these
formulations lead to a passive model if the original model is passive [5]; some
other techniques require a subsequent passivity check and enforcement stage
(more on passivity in Section IV). Once a reduced order model is available, it can



be synthesized as a behavioral equivalent circuit [10,11,12], or even directly
included in a SPICE deck, in case an interface is available. We should remark that
this entire process, from geometry to SPICE netlist, can be fully automated.
Figure 3 compares the frequency response of a reduced model to the
corresponding full-size model of a transmission line network: accuracy is
excellent, with almost 97% complexity reduction.

I11.B Macromodeling via rational function fitting

Figure 4 describes a different application setting, which requires a different
macromodeling flow [1]. Here, we assume that the frequency responses H;, (e.g.,
the scattering parameters) of the structure under investigation are available at a
prescribed set of frequencies wy. The most typical scenario is to compute these
samples using a commercial field solver, but the samples can come from any
other source, like a direct measurement, a customer, a supplier, or a colleague.
How can we derive an equivalent circuit from a finite number of frequency
response samples?

Let us recall that the response of any lumped circuit (the form in which we
would like to obtain our macromodel) is a rational function of the complex
frequency s = jw. Such response can be cast in pole/zero form, as a ratio of
polynomials in s, and in pole/residue form as in Figure 4, where the poles are
denoted as p,, and the corresponding residue (matrices) with R,,. Once poles and
residues are known, our model is ready. All we have to do is to determine poles
and residues, making sure that the model response matches as closely as
possible the available frequency samples, as H(jwy) ~ H, for all k. This is a
simple data fitting operation; since based on a rational function model form, the
common denomination is rational function fitting.

A smart algorithm that is able to compute poles and residues reliably, by
enforcing the above fitting condition, is the so-called Vector Fitting (VF) scheme
[13,14]. This method is based on an iterative sequence of steps that, starting
from an initial guess of the poles (yes, this guess can be almost arbitrary!),
successively refines the estimate until the poles stabilize. Each step involves a
linear least squares solution followed by an eigenvalue computation. The
simplicity and the outstanding performance of VF made it the method of choice
for black-box macromodeling since its introduction. Nowadays, practically all
state-of-the-art field solvers and circuit solvers include some implementation of
VF, either explicitly as an add-on tool, or hidden from the user. Figure 5
compares a VF model response of a package interconnect to the raw data
samples from which the model was derived.

Once the model is available in pole/residue form, a so-called realization process
constructs the associated system of ODE’s in form of state-space equations. The
latter can then be subject to a passivity check and enforcement, and
subsequently synthesized as an equivalent circuit and/or interfaced with SPICE.

IV. Passivity, causality and stability

Electrical interconnects are passive, i.e., they are unable to generate energy [15].
It is then expected that interconnect models are also passive, in order to be



physically consistent. It turns out that enforcing passivity in a black-box model is
not trivial, since the model parameters are obtained through numerical fitting.
Due to the unavoidable (and intentional) numerical approximations, the reduced
model might result non-passive. Simply ignoring the problem will not work,
since it is known that a non-passive model may lead to unstable transient
simulations [16], whereas the interconnection of passive models is theoretically
guaranteed to remain stable. Model passivity is mandatory.

How can we enforce model passivity? First, we need to formulate a constraint
that translates mathematically the concept of passivity. Then, we need to embed
this constraint in the model construction. The model fitting process becomes
thus a constrained fitting under passivity conditions. For the typical case of
models in scattering form (for which the transfer function H(s) is a scattering
matrix), the passivity conditions are listed in the inset [15, 17].

Condition 1 is related to stability and causality: a stable and causal model cannot
have poles with a positive real part. Condition 2 implies that the impulse
response h(t) is real-valued. Finally, condition 3 implies that the model does not
generate any energy. This is easily understood if we consider a one-port system,
whose scattering matrix H(s) is scalar and coincides with the reflection
coefficient I'(s). We know that the reflection coefficient of a passive one-port
must be less than one at any frequency, |I'(jw)| < 1 for all w, otherwise the one-
port returns more power than it receives. Condition 3 generalizes this to an
arbitrary multi-port, where energy boundedness is expressed in terms of the
singular values g; of the scattering matrix (we recall that for any complex matrix
X, the singular values are defined as g;{X} = m , where A; are the
eigenvalues and superscript # denotes complex conjugate transpose). Singular
values simply generalize the concept of magnitude to matrices. Figure 6
compares the singular values of a non-passive and a passive model of a
connector, which in the latter case are uniformly less than one at all frequencies,
whereas the non-passive model violates passivity conditions outside the
modeling bandwidth (this is sufficient to destabilize SPICE simulations).

Most passivity enforcement schemes [18,19,20,21] start with an initial non-
passive model and try to correct the model parameters (e.g., the residue matrices
or directly the ODE coefficients) so that the singular values do not exceed one. In
fact, the passive model of Figure 6 (bottom) was obtained by applying one of the
leading passivity enforcement schemes [18] to the non-passive model (top). It is
interesting to note that passivity conditions (see inset) include stability and
causality as byproducts. Passivity is therefore the stronger and most important
feature that a macromodel must have [22].

V. EMC applications: a showcase

Applications of black-box macromodeling are unlimited, even crossing the
boundaries of EMC [1]. In this section, we illustrate a few significant application
scenarios for which macromodeling can be now considered as a standard
approach.

Full PCB modeling. Figure 7 shows selected scattering responses of a full PCB
structure, defined at both signal and power ports in order to include system



resonances and substrate coupling in a Signal and Power co-simulation flow
[23]. The black-box model reproduces almost exactly the scattering responses
obtained from a full-wave solver. Using the model in a SPICE simulation enables
the direct computation of eye diagrams (Figure 8). This simulation can be set up
to selectively include the possible different sources of signal degradation
(crosstalk from nearby aggressor lines and/or core switching), in order to
pinpoint where the design needs to be improved and optimized.

Enhancing field solvers. Rational function fitting can be integrated into
frequency-domain field solver engines, in order to speed up frequency sweeps.
Figure 9 shows how effective this integration can be. Only a few frequencies are
directly computed by the solver. A rational fitting process is applied to predict
the inter-sample behavior using a subset of computed samples, and the
remaining samples are used to validate this prediction. Iteration of this process
leads to an Adaptive Frequency Sampling loop [24] that produces a rational
interpolation that is undistinguishable from the actual response, as could be
computed with a fine resolution by the solver. Since the rational fitting time is
negligible with respect to the time required for a single frequency computation
by the solver, this process results in major CPU time savings.

Enhancing field solvers (again). The predictive capabilities of black-box
macromodels can be applied to stop the iterations of a time-domain field solver
[25]. Once the system responses have been computed long enough, so that the
available time samples include all information on the system dynamics, a Time-
Domain Vector Fitting (TDVF) scheme [26] can be applied to predict the future
transient evolution (Figure 10) via a macromodel. Validating this prediction by
running the field solver for a few extra time steps ensures that the black-box
model represents with good accuracy the original system. Automation of this
process provides an accuracy-controlled criterion to terminate the solver run.

Transmission lines. One of the very first macromodeling applications was
frequency-dependent modeling of transmission lines. These components are
found in a wide range of applications, from high-speed electronics to high-
voltage power systems. The runtime of time domain simulations can be greatly
reduced by use of the traveling wave method, which requires to fit the line
characteristic admittance and propagation operator with macromodels [27, 28].
Figure 11 reports the modeling of the propagation operator for a six-conductor
high-voltage cable system. The model was obtained via the Universal Line Model
scheme [28], where Vector Fitting is applied to modal components. The accuracy
of the final approximation is seen to be excellent.

Network equivalents. Large systems such as a high-voltage grid can consist of
hundreds of components. Simulation of local effects, e.g. the overvoltage
resulting from the switching of a circuit breaker, can be very time consuming
when all components are included in the system model. In many cases, the
runtime can be greatly reduced by representing the adjacent system by a low-
order macromodel. Figure 12 reports an example of simulating a three-phase
short-circuit on one three-phase bus in the French 400 kV grid. The EMTP
program was used for generating frequency domain samples for an admittance



terminal representation of the system adjacent to the faulted bus which was
fitted using VF followed by passivity enforcement (top panel) [29]. The lower
panel shows that the model can simulate the fault response with adequate
accuracy. In this example, the CPU time for the simulation was reduced from
63.9sto 4.7 s.

Power transformers. The high-frequency terminal behavior of power
transformers can be extremely difficult to predict through calculations alone. For
studies of transient voltage transfer between windings and other high-frequency
effects, a better approach is often to characterize the transformer behavior using
frequency domain measurements. Figure 13 reports simulation results obtained
for a three-phase three-winding transformer. Here, a nine-terminal admittance
parameter model was extracted using admittance measurements followed by
model extraction by Vector Fitting and passivity enforcement. In addition, the
voltage transfer from the nine external terminals to eight internal points along
one winding was measured and fitted using Vector Fitting. Figure 13 shows a
very good agreement between the measured and simulated time domain
responses on the internal points due to step voltage excitation to one of the
transformer terminals.

VI. Conclusions

This article presented a qualitative overview of black-box (linear)
macromodeling approaches, together with a discussion on the main reasons why
these techniques have become widespread in many scientific and engineering
applications, including EMC. The literature on this subject is huge. The recent
book [1] provides a general introduction to the theory of passive
macromodeling, with a collection of the most important references. It is safe to
state that, given the level of robustness and the versatility of state-of-the-art
schemes, black-box macromodeling should now be regarded as one of the
fundamental tools that an EMC engineer should have access to, in order to cope
with the everincreasing complexity of electrical and electronic systems.
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Figure 5: Scattering responses of a package interconnect from a field solver
(solid lines) and corresponding response of a rational macromodel obtained by
VF (dashed lines).
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Figure 6: singular value (passivity) plot of a nonb passive model (top) and
a passive model (bottom) of a PCB connector (modeling bandwidth: 20 GHz).
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Figure 7: full PCB modeling; comparing selected scattering responses of a
passive macromodel to the corresponding responses from a frequency-domain

field solver (courtesy of Prof. Madhavan Swaminathan, Georgia Institute of
Technology, USA and E-System Design, Inc.).
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Figure 8: computed eye diagrams of a PCB interconnect link (left: isolated link;
middle: with nearby aggressor lines switching; right: with core switching

enabled).



Scattering responses, magnitude (dB)
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Figure 9: embedding a macromodel-based ra tional in terpolation in to an

Adaptive Frequency Sampling loop to speed up a frequency sweep of a field
solver.
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Figure 10: Stopping a transient solver through a macromodel-based prediction.
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Figure 11: Delayed-rational model of transmission line propagation operator.



Terminal admittance
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Figure 12: Network equivalencing of high-voltage grid with respect to a three-
phase bus. Top: Fitted terminal admittance matrix. Bottom: time
domain simulation of system response to shortb circuit application.
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Figure 13: Wideb band modeling of power transformer. Voltages on internal
points along winding. "Applied" denotes the excitation voltage used in the test.



Inset [Section V]

Passivity conditions (scattering)

1. H(s) regular for R(s) > 0
2. H*(s) = H(s")
3. g;{H(s)} < 1forR(s) >0

*: complex conjugate operator
o;: singular values of matrix H (s)




