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Flow Monitoring Explained:
From Packet Capture to Data Analysis with

NetFlow and IPFIX
Rick Hofstede, Pavel Čeleda, Brian Trammell, Idilio Drago, Ramin Sadre, Anna Sperotto and Aiko Pras

Abstract—Flow monitoring has become a prevalent method for
monitoring traffic in high-speed networks. By focusing on the
analysis of flows, rather than individual packets, it is often said
to be more scalable than traditional packet-based traffic analysis.
Flow monitoring embraces the complete chain of packet observa-
tion, flow export using protocols such as NetFlow and IPFIX, data
collection, and data analysis. In contrast to what is often assumed,
all stages of flow monitoring are closely intertwined. Each of
these stages therefore has to be thoroughly understood, before
being able to perform sound flow measurements. Otherwise, flow
data artifacts and data loss can be the consequence, potentially
without being observed.

This paper is the first of its kind to provide an integrated
tutorial on all stages of a flow monitoring setup. As shown
throughout this paper, flow monitoring has evolved from the
early nineties into a powerful tool, and additional functionality
will certainly be added in the future. We show, for example, how
the previously opposing approaches of Deep Packet Inspection
and flow monitoring have been united into novel monitoring
approaches.

Index Terms—Flow export, network monitoring, Internet mea-
surements, NetFlow, IPFIX

I. INTRODUCTION

NETWORK monitoring approaches have been proposed
and developed throughout the years, each of them serv-

ing a different purpose. They can generally be classified into
two categories: active and passive. Active approaches, such as
implemented by tools like Ping and Traceroute, inject traffic
into a network to perform different types of measurements.
Passive approaches observe existing traffic as it passes by
a measurement point and therefore observe traffic generated
by users. One passive monitoring approach is packet capture.
This method generally provides most insight into the network
traffic, as complete packets can be captured and further ana-
lyzed. However, in high-speed networks with line rates of up
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to 100 Gbps, packet capture requires expensive hardware and
substantial infrastructure for storage and analysis.

Another passive network monitoring approach that is more
scalable for use in high-speed networks is flow export, in
which packets are aggregated into flows and exported for
storage and analysis. A flow is defined in [1] as “a set of IP
packets passing an observation point in the network during
a certain time interval, such that all packets belonging to
a particular flow have a set of common properties”. These
common properties may include packet header fields, such as
source and destination IP addresses and port numbers, packet
contents, and meta-information. Initial works on flow export
date back to the nineties and became the basis for modern
protocols, such as NetFlow and IP Flow Information eXport
(IPFIX) [2].

In addition to their suitability for use in high-speed net-
works, flow export protocols and technologies provide several
other advantages compared to regular packet capture. First,
they are widely deployed, mainly due to their integration into
high-end packet forwarding devices, such as routers, switches
and firewalls. For example, a recent survey among both com-
mercial and research network operators has shown that 70%
of the participants have devices that support flow export [3].
As such, no additional capturing devices are needed, which
makes flow monitoring less costly than regular packet capture.
Second, flow export is well understood, since it is widely
used for security analysis, capacity planning, accounting, and
profiling, among others. It is also frequently used to comply
to data retention laws. For example, communication providers
in Europe are enforced to retain connection data, such as
provided by flow export, for a period of between six months
and two years “for the purpose of the investigation, detection
and prosecution of serious crime” [4], [5]. Third, significant
data reduction can be achieved – in the order of 1/2000 of the
original volume, as shown in this paper – since packets are
aggregated after they have been captured. Fourth, flow export
is usually less privacy-sensitive than packet export, since
traditionally only packet headers are considered. However,
since researchers, vendors and standardization organizations
are working on the inclusion of application information in
flow data, the advantage of performing flow export in terms
of privacy is fading.

Despite the fact that flow export, as compared to packet-
level alternatives, significantly reduces the amount of data to
be analyzed, the size of flow data repositories can still easily
exceed tens of terabytes. This high volume, combined with the
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Fig. 1. Evolution of flow export technologies and protocols.

high speeds at which the data is processed, and the increasing
types of information that can be exported, make that flow data
can be considered a form of “Big Data”. Capturing, collecting
and analyzing data is therefore a challenging task, which is
the main incentive for this paper.

A. Objective
Many papers, specifications and other documents on

NetFlow and IPFIX have been written over the years. They
usually consider the proper operation of flow export protocols
and technologies, and the correctness of the exported data as
a given, while barely discussing how to perform sound and
accurate flow measurements. This paper focusses especially
on that. The objective of this tutorial is to provide a clear
understanding of flow export and all stages in a typical
flow monitoring setup, covering the complete spectrum from
packet capture to data analysis. After reading this tutorial,
the reader should be able to decide which choices to make
when setting up a flow monitoring infrastructure. The reader
is assumed to be familiar with basic networking protocols, but
not necessarily with flow export and network measurements.

B. Approach
We have used several approaches for collecting the informa-

tion contained in this paper. First, we surveyed the literature
where relevant and applicable. As a complement to this survey,
we have included information based on our own experience.
This experience has been gained in a variety of ways: research
in the area of flow export, involvement in the standardization
of IPFIX, operational experience, talks with network operators,
and experience in developing both hardware- and software-
based flow exporters. Finally, we have included measurements
to illustrate and provide more examples and insights into
the presented concepts. These measurements are based on a
packet trace consisting of one day of network traffic between
the campus network of the University of Twente (UT), and
the Dutch national research and education network SURFnet,
accounting for 2.1 TB of data. Various sections throughout
this paper will refer to these measurements.

C. Organization
The remainder of this paper is organized as follows. Sec-

tion II shortly outlines the history of flow export protocols,

and puts flow export in a broader context by comparing it to
related technologies. An overview of a typical flow monitoring
architecture and the most important concepts is presented in
Section III, which is also the basis for Section IV–VII. In these
sections, each of the stages of the architecture is described in
detail. In Section VIII, we describe several lessons learned that
are most important when setting up flow monitoring, based on
our experience over the past decade. We close this paper in
Section IX, where we draw our conclusions. A list of acronyms
is provided as Appendix.

D. How to Read this Paper?

Although this tutorial targets a wide audience of both
experts in the field of flow monitoring and people unfamiliar
with the subject, we believe that some sections are more
relevant to certain audiences than others. Section II and III are
intended for all readers, as they provide a general background
on flow monitoring. Researchers interested in creating or
revising an existing flow monitoring setup for the sake of
network measurements are encouraged to study all contents of
Section IV–VII as well. Network operators that use an existing
packet forwarding infrastructure for flow monitoring, can skip
the material on packet capture in Section IV, as packet capture
functionality is typically an integral part of such networking
devices. Readers new to flow monitoring are advised to focus
on Section V besides Section II and III. Finally, we believe
that Section VIII provides useful insights to all readers.

II. HISTORY & CONTEXT

In this section, we discuss both the history of flow mon-
itoring and present flow monitoring in a broader context by
comparing it to related technologies. The chronological order
of the main historic events in this area is shown in Fig. 1 and
will be covered in Section II-A. A comparison with related
technologies and approaches is provided in Section II-B.

A. History

The published origins of flow export date back to 1991,
when the aggregation of packets into flows by means of packet
header information was described in [6]. This was done as
part of the Internet Accounting (IA) Working Group (WG)
of the Internet Engineering Task Force (IETF). This WG



3

concluded in 1993, mainly due to lack of vendor interest.
Also the then-common belief that the Internet should be free,
meaning that no traffic capturing should take place that could
potentially lead to accounting, monitoring, etc., was a reason
for concluding the WG. In 1995, interest in exporting flow
data for traffic analysis was revived by [7], which presented
a methodology for profiling traffic flows on the Internet
based on packet aggregation. One year later, in 1996, the
new IETF Realtime Traffic Flow Measurement (RTFM) WG
was chartered with the objectives of investigating issues in
traffic measurement data and devices, producing an improved
traffic flow model, and developing an architecture for improved
flow measurements. This WG revised the Internet Accounting
architecture and, in 1999, published a generic framework
for flow measurement, named RTFM Traffic Measurement
System, with more flexibility in terms of flow definitions
and support for bidirectional flows [8]. In late 2000, having
completed its charter, the RTFM WG was concluded. Again,
due to vendors’ lack of interest, no flow export standard
resulted.

In parallel to RTFM, Cisco worked on its flow export tech-
nology named NetFlow, which finds its origin in switching.
In flow-based switching, flow information is maintained in a
flow cache and forwarding decisions are only made in the
control plane of a networking device for the first packet of
a flow. Subsequent packets are then switched exclusively in
the data plane [9]. The value of the information available in
the flow cache was only a secondary discovery [10] and the
next step to export this information proved to be relatively
small. NetFlow was patented by Cisco in 1996. The first
version to see wide adoption was NetFlow v5 [11], which
became available to the public around 2002. Although Cisco
never published any official documentation on the protocol,
the widespread use was in part result of Cisco making the
corresponding data format freely available [2]. NetFlow v5
was obsoleted by the more flexible NetFlow v9, the state of
which as of 2004 is described in [12]. NetFlow v9 introduced
support for adaptable data formats through templates, as
well as IPv6, Virtual Local Area Networks (VLANs) and
Multiprotocol Label Switching (MPLS), among other features.
Several vendors besides Cisco provide flow export technology
alike NetFlow v9 (e.g., Juniper’s J-Flow), which are mostly
compatible with NetFlow v9. The flexibility in representation
enabled by NetFlow v9 made other recent advances possible,
such as more flexibility in terms of flow definitions. Cisco
provides this functionality by means of its Flexible NetFlow
technology [13]. Later, in 2011, Cisco presented NetFlow-Lite,
a technology based on Flexible NetFlow that uses an external
packet aggregation machine to facilitate flow export on packet
forwarding devices without flow export capabilities, such as
datacenter switches [14].

Partly in parallel to the NetFlow development, the IETF
decided in 2004 to standardize a flow export protocol, and
chartered the IP Flow Information Export (IPFIX) WG [15].
This WG first defined a set of requirements [16] and evalu-
ated several candidate protocols. As part of this evaluation,
NetFlow v9 was selected as the basis of the new IPFIX
Protocol [17]. However, IPFIX is not merely “the standard

version of NetFlow v9” [18], as it supports many new features.
The first specifications were finalized in early 2008, four years
after the IPFIX WG was chartered. These specifications were
the basis of what has become the IPFIX Internet Standard [1]
in late 2013. A short history on flow export and details on
development and deployment of IPFIX are provided in [2].

Note that the term NetFlow itself is heavily overloaded in
literature. It refers to multiple different versions of a Cisco-
proprietary flow export protocol, of which there are also third-
party compatible implementations. It refers as well to a flow
export technology, consisting of a set of packet capture and
flow metering implementations that use these export protocols.
For this reason, we use the term flow export in this paper to
address exporting in general, without reference to a particular
export protocol. As such, the term NetFlow is solely used for
referencing the Cisco export protocol.

B. Related Technologies & Approaches
There are several related technologies with flow in the name

that do not solve exactly the same problems as flow export.
One is sFlow [19], an industry standard integrated into many
packet forwarding devices for sampling packets and interface
counters. Its capabilities for exporting packet data chunks and
interface counters are not typical features of flow export tech-
nologies. Another difference is that flow export technologies
also support 1:1 packet sampling, i.e., considering every packet
for data export, which is not supported by sFlow. From an
architectural perspective, which will be discussed in Section III
for NetFlow and IPFIX, sFlow is however very similar to flow
export technologies. Given its packet-oriented nature, sFlow
is closer related to packet sampling techniques, such as the
Packet SAMPling (PSAMP) standard [20] proposed by the
IETF, than to a flow export technology. Given that this paper
is about flow export, we do not consider sFlow.

Another related technology, which is rapidly gaining atten-
tion in academia and network operations, is OpenFlow [21].
Being one particular technology for Software-Defined Net-
working (SDN), it separates the control plane and data plane
of networking devices [22]. OpenFlow should therefore be
considered a flow-based configuration technology for packet
forwarding devices, instead of a flow export technology.
Although it was not specifically developed for the sake of
data export and network monitoring, as is the case for flow
export technologies, flow-level information available within
the OpenFlow control plane (e.g., packet and byte counters)
was recently used for performing network measurements [23].
Tutorials on OpenFlow are provided in [24], [25].

A data analysis approach that is often related to flow
export is Deep Packet Inspection (DPI), which refers to the
process of analyzing packet payloads. Two striking differences
can be identified between DPI and flow export. First, flow
export traditionally only considers packet headers, and is
therefore considered less privacy-sensitive than DPI and packet
export. Second, flow export is based on the aggregation of
packets (into flows), while DPI and packet export are typically
considering individual packets. Although seemingly opposing,
we show throughout this paper how DPI and flow export are
increasingly united for increased visibility in networks.
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Fig. 3. Various flow monitoring setups.

III. FLOW MONITORING ARCHITECTURE

The architecture of typical flow monitoring setups consists
of several stages, each of which is shown in Fig. 2. The first
stage is Packet Observation, in which packets are captured
from an Observation Point and pre-processed. Observation
Points can be line cards or interfaces of packet forwarding
devices, for example. We discuss the Packet Observation stage
in Section IV.

The second stage is Flow Metering & Export, which consists
of both a Metering Process and an Exporting Process. Within
the Metering Process, packets are aggregated into flows, which
are defined as “sets of IP packets passing an observation point
in the network during a certain time interval, such that all
packets belonging to a particular flow have a set of common
properties” [1]. After a flow is considered to have terminated, a
flow record is exported by the Exporting Process, meaning that
the record is placed in a datagram of the deployed flow export
protocol. Flow records are defined in [1] as “information about
a specific flow that was observed at an observation point”,
which may include both characteristic properties of a flow
(e.g., IP addresses and port numbers) and measured properties
(e.g., packet and byte counters). They can be imagined as
records or rows in a typical database, with one column per
property. The Metering and Exporting processes are in practice
closely related. We therefore discuss these processes together
in Section V.

The third stage is Data Collection, which is described in
Section VI. Its main tasks are the reception, storage and pre-
processing of flow data generated by the previous stage. Com-
mon pre-processing operations include aggregation, filtering,
data compression, and summary generation.

The final stage is Data Analysis, which is discussed in
Section VII. In research deployments, data analysis is often
of an exploratory nature (i.e., manual analysis), while in
operational environments, the analysis functions are often
integrated into the Data Collection stage (i.e., both manual and
automated). Common analysis functions include correlation
and aggregation; traffic profiling, classification, and characteri-
zation; anomaly and intrusion detection; and search of archival
data for forensic or other research purposes.

Note that the entities within the presented architecture are
conceptual, and may be combined or separated in various
ways, as we exemplify in Fig. 3. We will highlight two impor-
tant differences. First and most important, the Packet Observa-
tion and Flow Metering & Export stages are often combined
in a single device, commonly referred to as Flow Export
Device or flow exporter. When a flow exporter is a dedicated
device, we refer to it as flow probe. Both situations are shown
in Fig. 3. We know however from our own experience that
the IPFIX architecture [26] was developed with flow export
from packet forwarding devices in mind. In this arrangement,
packets are read directly from a monitored link or received
via the forwarding mechanisms of a packet forwarding device.
However, especially in research environments where trace data
is analyzed, packet capture may occur on a completely separate
device, and as such should not be considered an integral part of
the Flow Metering & Export stage. This is why we consider the
Packet Observation and Flow Metering & Export stages in this
work to be separate. A second difference with what is shown
in Fig. 2, is that multiple flow exporters can export flows to
multiple devices for storage and pre-processing, commonly
referred to as flow collectors. After pre-processing, flow data
is available for analysis, which can be both automated (e.g.,
by means of an appliance) or manual.
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IV. PACKET OBSERVATION

Packet observation is the process of capturing packets from
the line and pre-processing them for further use. It is therefore
key to flow monitoring. In this section, we cover all aspects
of the Packet Observation stage, starting by presenting its
architecture in Section IV-A. Understanding this architecture
is however not enough for making sound packet captures; also
the installation and configuration of the capture equipment is
crucial. This is explained in Section IV-B. Closely related
to that are special packet capture technologies that help to
increase the performance of capture equipment, which is
surveyed in Section IV-C. Finally, in Section IV-D, we discuss
one particular aspect of the Packet Observation stage in detail
that is widely used in flow monitoring setups: packet sampling
& filtering.

A. Architecture

A generic architecture of the Packet Observation stage is
shown in Fig. 4. Before any packet pre-processing can be
performed, packets must be read from the line. This step,
packet capture, is the first in the architecture and typically
carried out by a Network Interface Card (NIC). Before packets
are stored in on-card reception buffers and later moved to
the receiving host’s memory, they have to pass several checks
when they enter the card, such as checksum error checks.

The second step is timestamping. Accurate packet times-
tamps are essential for many processing functions and anal-
ysis applications. For example, when packets from different
observation points have to be merged into a single dataset,
they will be ordered based on their timestamps. Timestamping
performed in hardware upon packet arrival avoids delays as
a consequence of forwarding latencies to software, resulting
in an accuracy of up to 100 nanoseconds in the case of the
IEEE 1588 protocol, or even better. Unfortunately, hardware-
based timestamping is typically only available on special NICs

using Field Programmable Gate Arrays (FPGAs), and most
commodity cards perform timestamping in software. How-
ever, software-based clock synchronization by means of the
Network Time Protocol (NTP) or the Simple Network Time
Protocol (SNTP) usually provides an accuracy in the order
of 100 microseconds. For further reading, we recommend the
overviews on time synchronization methods in [27], [28].

Both packet capture and timestamping are performed for
all packets under any condition. All subsequent steps shown
in Fig. 4, are optional. The first of them is packet truncation,
which selects only those bytes of a packet that fit into a pre-
configured snapshot length. This reduces the amount of data
received and processed by a capture application, and therefore
also the number of computation cycles, bus bandwidth and
memory used to process the network traffic. For example, flow
exporters traditionally only rely on packet header fields and
ignore packet payloads.

The last step of the Packet Observation stage is packet
sampling and filtering [29]. Capture applications may define
sampling and filtering rules so that only certain packets are
selected for measurement. The motivation for sampling is to
select a packet subset, while still being able to estimate prop-
erties of the full packet stream. The motivation for filtering is
to remove all packets that are not of interest. Packet sampling
& filtering will be discussed in detail in Section IV-D.

B. Installation & Configuration

In this subsection, we describe how packet captures should
be made in wired, wireless, and virtual networks, and how
the involved devices should be installed and configured. Most
packet captures are made in wired networks, but can also be
made in wireless networks. Due to the popularity of virtual
environments, packet captures in virtual networks are also
becoming more common.

Most network traffic captures are made in wired networks,
which can range from Local Area Networks (LANs) to back-
bone networks. This is mainly due to their high throughput
and low external interference. Packet capture devices can be
positioned in-line and in mirroring mode, which may have a
significant impact on capture and network operation:

• In-line mode – The capture device is directly connected
to the monitored link between two hosts. This can
be achieved by installing additional hardware, such as
bridging hosts or network taps [30]. Network taps1 are
designed to duplicate all traffic passing through the tap
and provide a connection for a dedicated capture device.
They use passive splitting (optical fiber networks) or
regeneration (electrical copper networks) technology to
pass through traffic at line rates without introducing
delays or altering data. In addition, they have built-in
fail open capability that ensures traffic continuity even
if a tap stops working or loses power. Once a tap
has been installed, capture devices can be connected
or disconnected without affecting the monitored link. In
Fig. 3, Flow probe 1 receives its input traffic by means
of a network tap.

1Another commonly used name is Test Access Port (TAP).



6

WLAN
Controller

High-speed uplink

Router

Fig. 5. Packet capture in wireless networks.

• Mirroring mode – Most packet forwarding devices can
mirror packets from one or more ports to another port,
to which a capture device is connected. This is com-
monly referred to as port mirroring, port monitoring,
or Switched Port ANalyzer (SPAN) session [31]. Port
mirroring requires a change in the forwarding device’s
configuration, but does not introduce additional costs as
for a network tap. It should be noted that mirroring
may introduce delays and jitter, alter the content of the
traffic stream, or reorder packets [32]. In addition, care
should be taken to select a mirror port with enough
bandwidth; given that most captures should cover two
traffic directions (full-duplex), the mirror port should have
twice the bandwidth of the monitored port, to avoid
packet loss. In Fig. 3, Flow probe 2 receives its input
traffic by means of port mirroring.

Packet captures in wireless networks can be made using any
device equipped with a wireless NIC, under the condition that
the wireless traffic is not encrypted at the link-layer, or the
encryption key is known. Wireless NICs can however only
capture at a single frequency at a given time. Although some
cards support channel hopping, by means of which the card
can switch rapidly through all radio channels, there is no
guarantee that all packets are captured [33]. In large-scale
wireless networks, it is more common to capture all traffic
at a Wireless LAN (WLAN) Controller, which controls all
individual wireless access points and forwards their traffic
to other network segments by means of a high-speed wired
interface. This is shown in Fig. 5, where the high-speed
uplink suitable with traffic from and to all access points can
be captured. Besides having a single point of capture, the
advantage is that link-layer encryption of wireless transmission
protocols does not play a role anymore and captures can be
made as described above for wired networks.

Deployment of packet capture devices in virtual networks
is very similar to deployment in wired networks, and is
rapidly gaining importance due to the widespread use of virtual
machines (VMs). Virtual networks act as wired LANs, but are
placed in virtual environments, e.g., to interconnect VMs. We
therefore do not consider Virtual Private Networks (VPNs) as
virtual networks, as they are typically just overlay networks in
physical networks. Virtual networks use virtual switches [34],
which support port mirroring and virtual taps. Furthermore,
the mirrored traffic can be forwarded to dedicated physical
ports and captured outside the virtual environment by a packet
capture device.

Key to monitoring traffic is to identify meaningful observa-
tion points, ultimately allowing capture devices to gather most
information on traffic passing by the observation point. These
observation points should preferably be in wired networks.
Even in wireless networks one should consider capturing at
a WLAN controller to overcome all previously discussed
limitations. In addition, deployment of network taps is usually
preferred over the use of mirror ports, mainly due to effects
on the packet trace of the latter. Port mirroring should only
be used if necessary and is particularly useful for ad-hoc
deployments and in production networks where no taps have
been installed.

C. Technologies

For most operating systems, libraries and Application Pro-
gramming Interfaces (APIs) for capturing network traffic are
available, such as libpcap or libtrace [35] for Linux and BSD-
based operating systems, and WinPcap for Windows. These
libraries provide both packet capture and filtering engines,
and support reading from and writing to offline packet traces.
From a technical point of view, they are located on top of the
operating system’s networking stack.

Since the networking stacks of operating systems are de-
signed for general-purpose networking, packet captures usu-
ally suffer from suboptimal performance. The overall capture
performance depends on system costs to hand over packets
from the NIC to the capture application, via a packet capture
library; packets have to traverse several layers, which increase
latency and limit the overall performance as they add per-
packet processing overhead. Several methods have been pro-
posed to speed up this process [36]:

• Interrupt mitigation and packet throttling (Linux NAPI)
reduce performance degradation of the operating system
under heavy network loads. Interrupt mitigation decreases
the number of interrupts triggered by NICs during times
of heavy traffic, as all interrupts convey the same message
about a large number of packets waiting for processing.
This reduces the system load. Packet throttling is applied
when a system is overloaded with packets; packets are
already dropped by the NIC, even before they are moved
to the software.

• Network stack bypass techniques, such as PF RING,
avoid the per-packet processing overhead caused by the
various OS networking layers.

• Memory-map techniques for reducing the cost of copying
packets form kernel-space to user-space.

All these methods provide software-based optimizations
for making packet captures. To be able to deal with higher
packet rates, however, hardware-acceleration cards have been
introduced. They use FPGAs to reduce CPU load during
packet capture and guarantee packet capture without loss
under modest CPU load [37]. Other capabilities of these
cards are precise timestamping (with GPS synchronization),
traffic filtering, and multi-core traffic distribution by means
of multiple receive queues. They use Direct Memory Access
(DMA) to receive and transmit packets. In that way, they also
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address the problem of passing packets efficiently from NICs
to the capture application.

Modern commodity NICs provide a cost-effective solution
for making high performance packet captures on links with
speeds up to 10 Gbps [38]. Features provided by controllers on
these NICs (e.g., Intel 82599, Myri-10G Lanai Z8ES) include
multiple receive queues by means of Receive Side Scaling to
distribute packets across multiple CPUs [39], and a DMA
engine to off-load CPU processing. To be able to use these
features, vendors provide a set of libraries and drivers for
fast packet processing, such as Intel DPDK2 and PF RING
DNA/Libzero3.

It is important to fully understand the performance of the
packet capture process to create and operate reliable monitor-
ing applications. Care should be taken when selecting a packet
capture library or system: Most packet capture benchmarks
show throughputs for situations without any further process-
ing, which may overestimate the real performance when some
form of packet processing is used. An example of such packet
processing is flow export, which will be discussed in the subse-
quent sections. Key to high-performance packet processing is
efficient memory management, low-level hardware interaction,
and application optimizations.

D. Packet Sampling & Filtering

The goal of packet sampling and filtering is to forward
only certain packets to the Flow Metering & Export stage.
A combination of several sampling and filtering steps can be
adopted to select the packets of interest.

Packet sampling4 aims at reducing the load of subsequent
stages or processes (e.g., the Metering Process within the Flow
Metering & Export stage) and, consequently, to reduce the
consumption of bandwidth, memory and computation cycles.
Therefore, sampling should be used whenever it is expected
that the number of monitored packets will overload the fol-
lowing stage. The ultimate goal is to turn the uncontrolled loss
of packets caused by overload into a controlled one by using
sampling.

2http://www.dpdk.org/
3http://www.ntop.org/products/pf ring/libzero-for-dna/
4See [40] and [41] for an introduction to sampling in the context of network

management.

Several sampling strategies are defined in [29], where two
major classes of sampling schemes can be distinguished:
Systematic sampling schemes deterministically decide which
packets are selected (for example every N th packet in a
periodic sampling scheme). In contrast, random sampling
selects packets in accordance to a random process. The main
challenge when using sampling is to obtain a representative
subset of the relevant packets. In general, random sampling
should be preferred over systematic sampling when both are
available, because the latter can introduce unwanted corre-
lations in the observed data. For example, a measurement
using periodic sampling would be likely biased towards or
against periodic traffic. This restriction can be relaxed when
it is known in advance that the monitored traffic is highly
aggregated, i.e., it comprises of traffic from many different
hosts, applications, etc. In such a situation, the influence of the
sampling scheme is less noticeable, although its quantitative
impact on the resulting flow data depends on the nature of the
traffic [42].

Packet sampling obviously entails loss of information. De-
pending on the employed sampling scheme, some properties
of the original packet stream can be easily recovered. For
example, if a simple random sampling scheme is used, the total
number of packets or bytes can be estimated by multiplying the
measured numbers by the inverse of the sampling probability.
Reciprocally, it means that sampling with a rate of 1:N results
in a reduction of load to the Metering Process (in terms of
number of packets and bytes to process) by a factor of N .
Other characteristics of the original data are affected in a more
complex way. For example, longer flows are more likely to be
sampled than shorter ones. A simple scaling would yield a
biased estimation of the flow length distribution. Methods to
estimate sampled flow statistics have been discussed in [42].
Several publications propose new sampling schemes with the
goal to mitigate the effects of sampling, for example by
automatically adapting the sampling rate according to the
traffic load [43].

The role of packet filtering is to deterministically “separate
all the packets having a certain property from those not having
it” [29]. Similar to sampling, filtering can be used to reduce
the amount of data to be processed by the subsequent stages.
Again, two major classes can be distinguished: With Property
Match Filtering, a packet is selected if specific fields within the
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TABLE I
COMMON IPFIX INFORMATION ELEMENTS [44]

ID Name Description
152 flowStartMilliseconds Timestamp of the flow’s first packet.

153 flowEndMilliseconds Timestamp of the flow’s last packet.

8 sourceIPv4Address IPv4 source address in the packet
header.

12 destinationIPv4Address IPv4 destination address in the
packet header.

7 sourceTransportPort Source port in the transport header.

11 destinationTransportPort Destination port in the transport
header.

4 protocolIdentifier IP protocol number in the packet
header.

2 packetDeltaCount Number of packets for the flow.

1 octetDeltaCount Number of octets for the flow.

packet (and/or the router state) are equal to a specified value or
inside a specified value range. Typically, such filters are used
to limit packet capturing to specific IP addresses, applications,
etc. Hash-Based Filtering applies a hash function to the packet
content or some portion of it, and compares the result to a
specified value or value range. Hash-Based Filtering can be
used to efficiently select packets with common properties or,
if the hash function is applied to a large portion of the packet
content, to select packets quasi-randomly.

V. FLOW METERING & EXPORT

The Flow Metering & Export stage is where packets are
aggregated into flows and flow records are exported, which
makes it key to any flow monitoring system. Its architecture
is shown in Fig. 6. The packet aggregation is performed within
the Metering Process, based on Information Elements that
define the layout of a flow. Information Elements are discussed
in Section V-A. After aggregation, an entry per flow is stored
in a flow cache, explained in Section V-B, until a flow is con-
sidered to have terminated and the entry is expired. Expiration
of flow cache entries is discussed in Section V-C. After one
or more optional flow-based sampling and filtering functions,
which are discussed in Section V-D, flow records have to
be encapsulated in messages. This is where IPFIX comes
in, which is defined in [18] as “a unidirectional, transport-
independent protocol with flexible data representation”. IPFIX
message structures and types are discussed in Section V-E.
Furthermore, a transport protocol has to be selected, which
is discussed in Section V-F. Finally, we provide an extensive
analysis of open-source and commercial flow metering and
export implementations in Section V-G.

A. Information Elements

Fields that can be exported in IPFIX flow records are named
Information Elements (IEs). The Internet Assigned Numbers
Authority (IANA) maintains a standard list of IEs as the
IPFIX Information Element registry [44]. Use of the IANA
registry for common IEs is key to cross-vendor operability
in IPFIX. Besides IANA IEs, enterprise-specific IEs can be

Application
HTTP, DNS, etc.

Transport
TCP, UDP

Network
IP

Link
Ethernet

Common IEs

Fig. 7. Network layers considered for IEs.

defined, allowing for new fields to be specified for a particular
application without any alterations to IANA’s registry. IEs
have a name, numeric ID, description, type, length (fixed or
variable), and status (i.e., current and deprecated), together
with an enterprise ID in the case of enterprise-specific IEs [45].

A subset of IEs defined in [44] is shown in Table I, which is
often considered the smallest set of IEs for describing a flow.
These IEs are for transport-layer and network-layer fields, and
supported by most flow exporters. However, in contrast to what
the name “IP flow information eXport” (IPFIX) suggests, IEs
can be defined for any layer, ranging from the link-layer (L2)
up to and including the application-layer (L7), as shown in
Fig. 7. For example, IEs have been defined for Ethernet [46],
such as sourceMacAddress (ID 56) and vlanID (ID 58).
We refer to the support for application-layer IEs as application
awareness. In other words, flow exporters with application
awareness combine DPI with traditional flow export.

There are also other IEs that are different from the default
transport- and network-layer IEs shown in Table I in terms of
type and semantic. For example, since many IEs are identical
to what can be retrieved using widely used Simple Network
Management Protocol (SNMP) Management Information Base
(MIB) variables, such as interfaceName (ID 82), a cur-
rent standardization effort is working to define a method
for exporting SNMP MIB variables using IPFIX [47]. This
avoids the repetitive definition of IEs in the IANA registry.
Another example are IEs for exporting octet sequences, such
as ipPayloadPacketSection (ID 314), which can be
useful for exporting sampled packet chunks.

Guidelines on the definition of globally unique IEs are
provided in [48], which are intended for both those defining
new IEs and reviewing the specifications of new IEs. Before
defining a new IE, one should be sure to define an IE that 1)
is unique within the IANA IE registry, 2) is self-contained,
and 3) represents nonproprietary information. After definition,
the IE specification should be sent to IANA, after which the
request for approval is evaluated by a group of experts, named
“IE-Doctors”. Upon approval, IANA is requested to apply the
necessary changes to the IE registry. The same process applies
to requests for IE deprecation.

The configuration of Metering Processes in terms of IEs is
not standardized and varies from exporter to exporter. How-
ever, flow collectors are always instructed by flow exporters
by means of templates, which are used to describe which
IEs are used for which flow. This approach is also used by
NetFlow v9, although it is not compatible with IPFIX, because
of the different message formats used by the two protocols.
NetFlow v5 does not provide template support and is therefore
fixed to its initial specification. This considerably limits the
applicability of NetFlow v5, since no protocol evolution is pos-
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sible. NetFlow v5 cannot be used for monitoring IPv6 traffic,
for example. It is however often suggested that NetFlow v5 is
the most widely deployed flow export protocol and therefore
still a relevant source of flow information [49], [50].

In addition to what has been described before, several more
advanced mechanisms with respect to IEs have been defined:
variable-length encoding and structured data. Variable-length
encoding can be used for IEs with a variable length in
IPFIX, despite of IPFIX’ template mechanism being opti-
mized for fixed-length IEs [1]. As such, longer IEs can
be transferred efficiently since no bytes are wasted due to
a fixed-size reservation. Structured data in IPFIX [51] is
useful for transferring a list of the same IE, by encapsulating
it in a single field. A clear use-case for this are MPLS
labels; since every packet can carry a stacked set of such
labels, one traditionally has to define a dedicated IE for
every label position, e.g., mplsTopLabelStackSection,
mplsTopLabelStackSection2, etc. With structured
data, an MPLS label stack can be encoded using a single IE.

B. Flow Caches

Flow caches are tables within a Metering Process that store
information regarding all active network traffic flows. These
caches have entries that are composed of IEs, each of which
can be either a key or non-key field. The set of key fields,
commonly referred to as the flow key, is used to determine
whether a packet belongs to a flow already in the cache or to a
new flow, and therefore defines which packets are grouped into
which flow. In other words, the flow key defines the properties
that distinguish flows. Incoming packets are hashed based on
the flow key and matched against existing flow cache entries.
A match triggers a flow cache update where packet and byte
counters are tallied. Packets not matching any existing entry
in the flow cache are used to create new entries. Commonly
used key fields are source and destination IP addresses and
port numbers. Non-key fields are used for collecting flow
characteristics, such as packet and byte counters.

Given that source and destination IP addresses are normally
part of the flow key, flows are usually unidirectional. In
situations where both forward and reverse flows (between a
source/destination pair) are important, bidirectional flows [52]
may be considered. Bidirectional flow records have counters
for both directions, and a special IE (biflowDirection,
ID 239) to indicate a flow’s initiator and responder. Since
source and destination IP addresses are still part of the flow key
in a setup for bidirectional flows, special flow cache support
is needed for identifying matching forward and reverse flows.

Several parameters should be considered when selecting or
configuring a flow cache for a particular deployment, such as
the cache layout, type and size. The flow cache layout should
match the selection of key and non-key fields, as these are the
IEs accounted for each flow. Given that there are many types of
IEs available, flow cache layouts should be able to cope with
this flexibility. For example, application information in flow
records is becoming more and more important, which can be
concluded both from the fact that IEs are being registered for
applications in IANA’s IE registry, as well as flow exporters

with application identification support are being developed.
Flow caches, thus, should support flexible flow definitions per
application.

Flow caches can also differ from each other in terms of
type. For example, IPFIX defines flows that consist of a single
packet, commonly referred to as single-packet flows5 [26].
A regular flow cache typically cannot be used for single-
packet flows, as the cache management (e.g., the process that
determines which flow has terminated) of such caches is often
not fast enough. To overcome this problem, some vendors im-
plement dedicated caches for such flows, sometimes referred
to as immediate cache [53]. An example use case for single-
packet flows and immediate caches is a configuration with
a very low packet sampling rate, such as 1:2048, where it
is expected that no more than one packet is sampled per
flow. In those situations, one can avoid resource-intensive
cache management by using an immediate cache. Besides
caches for single-packet flows, it is possible to use caches
from which flow entries cannot expire, but are periodically
exported, named permanent cache [53]. These caches can be
used for simple flow accounting, as they do not require a flow
collector for collecting flow records; as flow cache entries
are never expired, packet and byte counters are never reset
upon expiration and therefore represent the flow state since
the Metering Process has started.

The size of flow caches depends on the memory available
in a flow exporter and should be configured/selected based on
the expected number of flows, the selected key and non-key
fields, and expiration policies. Given that expiration policies
have the strongest impact on the required flow cache size, we
discuss them in the next subsection.

C. Flow Cache Entry Expiration

Cache entries are maintained in the flow cache until the
corresponding flows are considered to have terminated, after
which the entries are expired. These entries are usually expired
by the Metering Process according to given timeout parameters
or when specific events have occurred. IPFIX, however, does
not mandate precisely when flow entries need to be expired
and flow records exported. Instead, it provides the following
reasons as guidelines on how Metering Processes should expire
flow cache entries [26]:

• Active timeout – The flow has been active for a specified
period of time. Therefore, the active timeout helps to
report the activity of long-lived flows periodically. Typical
timeout values range from 120 seconds to 30 minutes.
Note that cache entries expired using the active timeout
are not removed from the cache; counters are reset, and
start and end times are updated.

• Idle timeout – No packets belonging to a flow have been
observed for a specified period of time. Typical timeout
values range from 15 seconds to 5 minutes.

• Resource constraints – Special heuristics, such as the
automatic reduction of timeout parameters at run-time,

5In terms of expiration, which is discussed in Section V-C, these flows are
said to have a zero timeout.
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can be used to expire flows prematurely in case of
resource constraints.

Other reasons for expiring flow cache entries can be found
in various flow exporter implementations:

• Natural expiration – A TCP packet with a FIN or RST
flag set has been observed for a flow and therefore the
flow is considered to have terminated.

• Emergency expiration – A number of flow entries are
immediately expired when the flow cache becomes full.

• Cache flush – All flow cache entries have to be expired
in unexpected situations, such as a significant change in
flow exporter system time after time synchronization.

We survey how flow exporters handle flow cache entry
expiration in practice in Section V-G.

The configured active and idle timeout values have impact
on the total number of flow records exported for a particular
dataset and the number of flow entries in the flow cache. On
the one hand, using longer timeout values results in a higher
aggregation of packets into flow records, which is generally
positive and desirable to reduce the load on flow collectors. On
the other hand, using longer timeout values means that it takes
longer before a flow becomes visible to the Data Analysis
stage.

To illustrate the expiration behavior of a typical flow
exporter, we have performed several experiments using the
dataset presented in Section I-B on the impact of active and
idle timeout values on 1) the number of resulting flow records,
and 2) the maximum flow cache utilization. nProbe, an open-
source flow exporter that will be discussed in Section V-G,
has been used for exporting the flows without sampling. All
experiments have been performed twice: Once by varying the
active timeout value while maintaining a fixed idle timeout
value, and once by varying the idle timeout value while
maintaining a fixed active timeout value.

The experiment results are shown in Fig. 8. The figure
shows the maximum number of concurrently used flow cache
entries for various timeout values. Several conclusions can
be derived from the experiment results. First, as shown in
Fig. 8(a), an increasing idle timeout value results in fewer
flow records, which is the case because of more packets being
aggregated into the same flow record. This implies that flow
entries stay in the flow cache for a longer time, resulting
in a higher flow cache utilization. Second, the number of
exported flow records and the maximum flow cache utilization
stabilize for an increasing active timeout value, as shown in
Fig. 8(b). This can be explained by the fact that most flow
entries are expired by the idle timeout because of the very
large active timeout value. Third, as soon as the idle timeout
value equals the active timeout value (i.e., 120 seconds for
our experiments), as shown in Fig. 8(a), the number of flow
records and the flow cache utilization stabilize again, which
is due to the fact that flow records are expired by the active
timeout. We have also measured the impact of using natural
expiration based on TCP flags and conclude that it barely
affects the total number of flow records and the flow cache
utilization.

Besides showing the relation between active and idle time-
out behavior, the results in Fig. 8 provide insight into the
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Fig. 8. Impact of timeouts on the aggregation of packets into flows and flow
cache utilization.
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Fig. 9. Sampling & Filtering in a flow exporter.

minimum flow cache size required for monitoring the link in
this specific example, which has a top throughput of roughly
2 Gbps. For example, given an active and idle timeout values
of 120 and 15 seconds, respectively, the maximum flow cache
utilization never exceeds 230k cache entries. More insights
into flow cache overload and dimensioning are provided in
Section VIII-A.

D. Flow Record Sampling & Filtering

Flow record sampling and filtering provide a means to select
a subset of flow records, with the goal to reduce the processing
requirements of the Exporting Process and all subsequent
stages. In contrast to packet sampling and filtering, which
are performed as part of the Packet Observation stage, flow
record sampling and filtering functions are performed after the
Metering Process and therefore work on flow records instead
of packets. This is shown in Fig. 9. As a consequence, either
all packets of a flow are accounted, or none.
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Version number (2) Length (2)

Export time (4)

Sequence number (4)

Observation domain ID (4)

Set ID (2) Length (2)

Record 1

Record 2

Record n

Set

Fig. 10. IPFIX message (simplified) [1].

The techniques for performing flow record sampling and
filtering are similar to packet sampling and filtering, which
have been described in Section IV-D. We distinguish again
between systematic sampling and random sampling [54].
Systematic sampling decides deterministically whether a flow
record is selected (for example, every N th flow record in
periodic sampling). In contrast, with random sampling, flow
records are selected in accordance to a random process. As
for packet sampling, random sampling should be generally
preferred over systematic sampling when in doubt about the
characteristics of the traffic, because the latter can introduce
unwanted correlations in the observed data.

Flow record filtering can be distinguished between Prop-
erty Match Filtering and Hash-Based Filtering [54]. Property
Match Filtering for flow records works similarly to Property
Match Filtering for packets, but rather than filtering on packet
attributes, filtering is performed on flow record attributes. It is
particularly useful when only flow records for specific hosts,
subnets, ports, etc. are of interest. With Hash-Based Filtering,
flow records are selected if the hash value of their flow key lies
within a predefined range of values. Hash-Based Filtering can
be used for selecting a group of flow records from different
observation points. Flow records from different observation
points can be correlated because the flow key shared by
packets belonging to the same flow results in the same hash
value.

E. IPFIX Messages
A simplified version of the IPFIX message format [1] is

shown in Fig. 10. The field size in bytes is shown for fields
with a fixed size; other fields have a variable length. The first
16 bytes of the message form the message header and include
a protocol version number, message length, export time and
an observation domain ID. After the header come one or more
Sets, which have an ID and a variable length, and can be of
any of the following types:

• Template Sets contain one or more templates, used to
describe the layout of Data Records.

• Data Sets are used for carrying exported Data Records
(i.e., flow records).

• Options Template Sets are used for sending meta-data to
flow collectors, such as control plane data or data applica-
ble to multiple Data Records [55]. For example, Options

TABLE II
COMPARISON OF TRANSPORT PROTOCOLS FOR IPFIX

SCTP TCP UDP
Congestion awareness + + –

Deployability – + +

Graceful degradation + – –

Reliability + + –

Secure transport + + –

Template Sets can be used to inform flow collectors about
the flow keys used by the Metering Process.

Sets are composed of one or more records. The number
of records in an IPFIX message is usually limited to avoid
IP fragmentation. It is up to the Exporting Process to decide
how many Records make up a message, while ensuring that
the message size never exceeds the Maximum Transmission
Unit (MTU) of a link (e.g., 1500 bytes) [1]. An exception to
this rule is a situation in which IEs with variable lengths that
exceed the link MTU are exported.

An example of a template, a corresponding Data Record,
and a flow record is shown in Fig. 11. The template is shown
at the top of the figure, and consists of an ID (257) and 9 IEs. A
corresponding Data Record points at the appropriate template
by listing its ID. This is mandatory to provide a means for flow
collectors to associate Data Records with their templates. Also
multiple flow records are included in the Data Record, which
must adhere to the full set of IEs listed in the template.

F. Transport Protocols

After constructing an IPFIX message for transmission to a
flow collector, a transport protocol has to be selected. A key
feature of IPFIX is support for multiple transport protocols [1].
A comparison of transport protocols for IPFIX is provided in
Table II, where ‘+’ stands for supported or good, and ‘-’ for
unsupported or poor.

The Stream Control Transmission Protocol (SCTP) [56] is
the mandatory transport protocol to implement for IPFIX. It
provides a congestion-aware and sequential packet delivery
service; packets are kept in sequence as with TCP, and packet
boundaries are preserved as with UDP, i.e., the receiver can
distinguish between individual packets, rather than a stream of
bytes as with TCP. SCTP also provides multiple streams per
connection, which can be used to avoid head-of-line blocking
when multiple logical separate streams (e.g., one per template)
are exported simultaneously [57]. The partial reliability exten-
sion [58] to SCTP provides further flexibility: The Exporting
Process can cancel retransmission of unreceived datagrams
after a given timeout. This allows graceful degradation via
selective dropping of exported datagrams under high load,
rather than overloading buffers with pending retransmissions.

Despite these advantages, SCTP is currently the least-
deployed of the three supported protocols. The reason is
primarily a practical one: IPFIX over SCTP can be difficult

6This IE has been abbreviated for the sake of space. The full IE name is
shown in the template.
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Template

Length = 9 IEsTemplate ID = 257

flowStartMilliseconds (ID = 152)

flowEndMilliseconds (ID = 153)

sourceIPv4Address (ID = 8)

destinationIPv4Address (ID = 12)

sourceTransportPort (ID = 7)

destinationTransportPort (ID = 11)

protocolIdentifier (ID = 4)

packetDeltaCount (ID = 2)

octetDeltaCount (ID = 1)

Data Record

Set Header (Set ID = 257)

Record 1

Record 2

Record n

Flow Record

flowStartMilliseconds = 2013-07-28 21:09:07.170

flowEndMilliseconds = 2013-07-28 21:10:33.785

sourceIPv4Address = 192.168.1.2

destinationIPv4Address = 192.168.1.254

dstTransportPort6 = 80sourceTransportPort = 9469

protocolIdentifier = 6

packetDeltaCount = 17

octetDeltaCount = 3329

Fig. 11. Correlation between IPFIX data types (simplified) [1].

to implement, mainly because support for SCTP lags on other
operating systems than Linux and BSD. Bindings to DTLS7

for secure transport may also be hard to find in all but the most
recent versions of TLS libraries. There are also deployment
considerations. Since much more effort has gone into TCP
stack optimization than SCTP stack optimization, the latter
can be slower than TCP. It can also be difficult to send SCTP
packets across the open Internet, as some middleboxes drop
SCTP packets as having an unrecognized IP protocol number.
Also, many Network Address Translation (NAT) devices often

7DTLS is an implementation of TLS for transmission over datagram
transport protocols, such as UDP and SCTP.

fail to support SCTP. However, given its advantages, we
advocate using SCTP for flow export in every situation in
which it is possible to do so.

IPFIX supports transport over TCP as well. TCP provides
congestion-aware, reliable stream transport. It is widely imple-
mented and, as such, it is very easy to implement IPFIX over
TCP on most platforms. Bindings to TLS for secure transport
are also widely available, which makes IPFIX over TLS over
TCP the preferred transport for exporting flow records over
the open Internet. The primary problem with IPFIX over TCP
is that TCP does not degrade gracefully in overload situations.
Specifically, the TCP receiver window mechanism limits the
Exporting Process’ sending rate when the Collecting Process
is not ready to receive, thereby locking the rate of export
to the rate of collection. This pushes buffering back to the
Exporting Process, which is generally the least able to buffer
datagrams. Careful selection of TCP socket receive buffer
sizes and careful implementation of the Collecting Process
can mitigate this problem, but those implementing Collecting
Processes should be aware of it.

The most widely implemented and deployed transport pro-
tocol for flow export is UDP. UDP has the advantage of being
easy to implement even in hardware Exporting Processes. It
incurs almost no overhead, but on its turn provides almost
no service: “Best-effort” (or “unreliable”) delivery of packets
without congestion awareness. As a consequence, UDP should
be used for flow export with care. The lack of any congestion
awareness means that high-volume export may incur signif-
icant loss. The lack of flow control means that Collecting
Processes must use very large socket buffers to handle bursts of
flow records. As the volume of exported flow records increases
dramatically during Denial-of-Service (DoS) attacks or other
incidents involving large numbers of very short flows, the lack
of flow control also may make UDP futile for measuring such
incidents. Another serious problem concerns templates. On
UDP, Exporting Processes must periodically resend templates
to ensure that Collecting Processes have received them. While
IPFIX does provide a sequence numbering facility to allow a
Collecting Process to roughly estimate how many flow records
have been lost during export over UDP, this does not protect
templates. A Collecting Process that loses a template, or that
restarts in the middle of an export, may be unable to interpret
any flow records until the next template retransmission.

A fourth method provided by IPFIX is the IPFIX File
Format [59]. IPFIX messages are grouped together into files,
which can be stored and transported using any of the various
protocols that deal with files (e.g., SSH, HTTP, FTP and NFS).
File transport is not particularly interoperable and therefore
not recommended in general. However, it may be worth
considering in specific cases, such as making IPFIX flow data
widely available via a well-known URL.

G. Open-Source Tools & Commercial Appliances
Open-source and commercial flow exporters existing to date

can be classified into two types: hardware-based and software-
based. Hardware-based exporters can usually achieve higher
throughputs, while software-based ones provide greater flexi-
bility in terms of functionality. Software-based exporters are
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TABLE III
OPEN-SOURCE FLOW EXPORTERS
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Version 1.8 0.9.9 6.13 0.14.3 0.9.01 1.0.0a 2.4.0
Application
awareness 3 3

Flow cache
entry expiration

Active timeout, idle timeout
TCP FIN/RST TCP FIN/RST

Flow key

Source IP address, destination IP address, source port number, destination port number
IP protocol
number, IP
ToS, SNMP
interface ID

IP protocol
number

IP protocol number,
IP ToS, VLAN ID

IP protocol number
VLAN ID,
IP protocol

number

Flow sampling 3 3

Packet
sampling 3 3 3 3

NetFlow v5 3 3 3 3 3

NetFlow v9 3 3 3 3

IP
FI

X

Bidirectional
flows 3 3 3 3 3

Structured data
(RFC 6313) 3

Enterprise-
specific IEs

Application information,
performance metrics,

geolocation information,
TCP metrics, plugins

Performance
metrics

Application
information

Options
templates 3 3 3 3 3

Transport
protocols SCTP, TCP, UDP UDP SCTP, TCP,

UDP, file
SCTP, TCP, UDP, file

Variable-length
encoding 3 3 3 3

1 Only a pre-release version was available at the time of writing.

also less costly. Another classification divides flow exporters
into open-source and commercial exporters. In this section, we
provide both an overview of some available open-source and
commercial flow exporters, and a hands-on guide for those
selecting a new flow exporter.

When selecting a flow exporter for deployment, it is impor-
tant to verify the following criteria:

• Throughput – Throughput is one of the most important
properties of a flow exporter, as it shows how many
flows, packets and bits can be processed per second.
Most vendors and developers express throughput in Gbps,
without specifying the number of packets that can be
handled per second, which leads to some ambiguity. For
example, 10 Gbps can mean 14.88 Mpkt/s, calculated
based on the minimum allowed frame size for Ethernet,
or 812.84 kpkt/s, calculated based on the maximum
allowed frame size. Moreover, the provided performance
indications often refer to the case where most packets
can be mapped to existing flow cache entries. The rate
at which the device can create new entries in the flow
cache is usually significantly lower. In addition, many
vendors and developers express the throughput of their
flow exporters for the case in which only a limited set of

IEs is used within the Metering Process. It is often the
case that the advertized throughput cannot be achieved
anymore when additional IEs are enabled.

• Flow cache size – As many flow exporters come with a
fixed-size flow cache, it is important to have an under-
standing of how many flows transit in the network, to
avoid flow cache under-dimensioning. The availability of
expiration policies should also be checked, as they affect
the flow cache utilization.

• Supported IEs and accuracy thereof – Many flow ex-
porters, mostly older and hardware-based, support only a
limited set of IEs; MAC addresses, VLAN tags, MPLS
labels, TCP flags, or application information often cannot
be exported. In addition, it should be verified whether
the claimed accuracy of IEs is actually provided. For
example, it is shown in [64] that many high-end packet
forwarding devices do not convey TCP flag information
in flow data, although the required IE (ID 6) is actually
supported. Also the precision of exported timestamps
varies from exporter to exporter; IPFIX supports time-
stamps ranging from second to nanosecond precision,
and care should be taken that the timestamp precision
matches the accuracy prescribed by the IE. Also, the
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timestamp precision should meet the requirements of the
Data Analysis stage. More information on the accuracy
of flow data is provided in Section VIII-D.

In addition to these criteria, one may consider another crite-
rion that is rapidly gaining importance: application awareness.
Application awareness in flow export is relatively young, but
given that it increases visibility in network traffic and the
fact that the number of analysis applications supporting it is
increasing as well, it should be considered when selecting a
flow exporter.

We have compiled a list of open-source flow exporters in
Table III. All presented flow exporters are software-based
and have been updated at least once since 2008. The table
compares both general flow exporter properties (upper part)
and properties specific to the various flow export protocols
(lower part), and can be summarized as follows:

• The flow keys used by the various flow exporters do all
include IP addresses and port numbers, but differ greatly
with respect to the remaining fields. A surprising obser-
vation that can be made is that the typical 5-tuple and
7-tuple8, which are commonly-used terms for describing
IP flows, are only used by four out of seven exporters.
In addition, none of the tools supporting IPFIX allows
for the flexible definition of flow keys (not shown in
Table III).

• All tools support NetFlow v5, NetFlow v9, or both,
except for YAF and QoF, which have been designed
specifically for IPFIX-compliance. ipt-netflow and soft-
flowd do not support IPFIX at all.

• Although “IPFIX support” is advertized for most flow
exporters, some IPFIX-specific features are still unsup-
ported. Support for bidirectional flows, options templates
and variable-length encoding is widely available, while
only YAF supports structured data. This may be due to
the fact that structured data has been standardized only in
2011. Finally, SCTP support is provided by all IPFIX flow
exporters but pmacct, although operating system support
is often still lacking.

• Packet sampling is supported by most tools, while flow
sampling is only available in nProbe and pmacct.

• nProbe, QoF and YAF export several enterprise-specific
IEs, mostly targeted at application identification and
latency measurements.

Besides the open-source flow exporters listed in Table III,
there are flow exporters available that do not export flow
data using NetFlow or IPFIX. These exporters write the flow
data directly to text or binary files, for example, without
the involvement of a Data Collection stage. A well-known
example is tstat [65], which has a strong focus on application
awareness and performance metrics. Since this paper is a
tutorial on NetFlow and IPFIX, we consider such tools out
of the scope of this paper.

The market of commercial flow exporters consists mostly
of appliance products: packet forwarding devices (e.g., routers
and switches), firewalls, and dedicated flow probes. Forward-

8The 5-tuple consists of IP addresses, port numbers and IP protocol number.
The 7-tuple additionally includes IP ToS and SNMP input interface ID.

ing devices and firewalls are often already available in net-
works, and if they have flow export support, the step to enable
this functionality is relatively small. These devices usually ex-
port the vast majority of flows in hardware using Application-
Specific Integrated Circuits (ASICs), so that flow export does
not consume costly CPU time. Although this results in a
very high performance, it also has the disadvantages of being
more expensive and usually less flexible than software-based
solutions. For example, it is almost impossible to fix bugs and
introduce new features in such tailored hardware.

Commercial flow probes are typically part of a flow mon-
itoring system including collection and analysis tools from
the same vendor and overcome several limitations of packet
forwarding devices with flow export capabilities. They usu-
ally come in two types: fully software-based and hardware-
accelerated. Software-based probes (mostly Linux-based) are
often sold on commodity hardware and are therefore much
cheaper than hardware-based flow exporters. They can be
equipped with hardware-acceleration to achieve line-rate pro-
cessing. Hardware-acceleration is usually performed by special
cards with FPGAs or commodity NICs with special firmware.
Even hardware-accelerated solutions rely on software-based
flow exporters, as the acceleration is purely used for packet
timestamping, filtering and packet distribution over CPU cores.
Given their architecture, flow probes are more flexible when it
comes to bug fixing and introducing new features, compared
to packet forwarding devices.

Many vendors have their own implementation of NetFlow,
while others follow with their own NetFlow-alike technolo-
gies, such as Juniper’s J-Flow. Since its standardization by
the IETF, IPFIX is becoming dominant for many vendors.
Experience has shown, however, that commercial solutions
so far do not provide full IPFIX compliance, although many
of them claim to have “IPFIX support”. A list of recognized
commercial flow exporters is provided in Table IV, where we
evaluate these based on export protocol support, application
awareness, and the main selling features (i.e., what the main
features advertized by the vendor are). Since we have no access
to all listed commercial flow exporters, we compare these
devices only by means of information made public by the
vendor by means of feature specifications, manuals, etc. We
have included all available flow probes, those packet forward-
ing devices that (partly) support hardware-based flow export,
and those firewalls exporting flows. It is clear that vendors of
flow probes try to be as flexible as possible with respect to
integration into existing environments (e.g., flow collectors),
as all surveyed appliances support NetFlow v5, NetFlow v9
and IPFIX. Also application awareness is widely supported
among flow probes nowadays. Less flexibility is shown by the
listed packet forwarding devices, mostly because of the fact
that they perform flow export (partly) in hardware. Finally,
the firewall appliances show a clear focus on security-oriented
information export by means of application awareness.
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TABLE IV
COMMERCIAL FLOW EXPORTERS

Vendor Product NetFlow
v5

NetFlow
v9 IPFIX Application

awareness Main selling point(s)

Pr
ob

es

Cisco NetFlow Generation
Appliance 3 3 3 3

Cross-device flow export in high-speed
networks

Emulex
(Endace) Endace NetFlow Generator 3 3 3

High-performance flow export based on
Endace DAG Cards

INVEA-
TECH FlowMon Probe 3 3 3 3

High-performance flow export (both
software-based and hardware-accelerated)

Lancope StealthWatch FlowSensor 3 3 3 3
Flow export with focus on application

awareness and performance metrics

ntop nBox NetFlow/IPFIX 3 3 3 3
Commercial versions of open-source tools

(nProbe, ntop)

Fo
rw

ar
di

ng
de

vi
ce

s

Cisco Cisco IOS Flexible NetFlow 3 3 3 3 Application awareness
Enterasys N-Series, S-Series 3 3 Flexible flow export based on ASIC
Extreme
Networks ExtremeXOS 3 Flow export on L2 through L4

Juniper Junos J-Flow 3 3 3 Flow export on L2 through L4

Fi
re

w
al

ls

Barracuda
Networks Barracuda NG Firewall 3 3

Audit logs and HTTP proxy reporting
using IPFIX

Dell Sonic Wall Next-Generation
Firewall 3 3 3 3 Application awareness

Palo Alto
Networks Next-Generation Firewall 3 3

Flow export with specific IEs, such as
application and user IDs

VI. DATA COLLECTION

Flow collectors are an integral part of flow monitoring
setups, as they receive, store, and pre-process9 flow data from
one or more flow exporters in the network. Data collection is
performed by one or more Collecting Processes within flow
collectors. Common pre-processing tasks are data compres-
sion [59], [66], aggregation [67], data anonymization, filtering,
and summary generation.

In this section, we discuss the most important characteristics
of flow collectors. We start by describing the various formats
in which flow data can be stored in Section VI-A. After that,
in Section VI-B, we provide best-practices in the field of data
anonymization. Anonymization is a type of data obfuscation
that ensures anonymity of individuals and prevents tracking
individual activity. We close this section with Section VI-C,
where we provide an extensive analysis of open-source and
commercial flow collection implementations.

A. Storage Formats

The functionality and performance provided by flow collec-
tors depend strongly on the underlying data storage format,
as this defines how and at which speed data can be read
and written. This section discusses and compares the various
available storage formats, which should allow one to choose
a flow collector that satisfies the requirements of a particular
setup or application area. We can distinguish two types of
storage formats:

• Volatile – Volatile storage is performed in-memory and
therefore very fast. It can be useful for data processing
or caching, before it is written to persistent storage.

9We talk about pre-processing here, as we assume that processing is done
in the Data Analysis stage.

• Persistent – Persistent storage is used for storing data for
a longer time and usually has a larger capacity. However,
it is significantly slower than volatile storage.

Although flow data often has to be stored for a long time
(e.g., to comply with data retention laws), it can be useful
to keep data in-memory. This is mostly the case when flow
data has to be analyzed on-the-fly, and only results have to
be stored. In those situations, one can benefit from the high
performance of volatile storage. An example use case is the
generation of a time-series in which only the time-series data
itself has to be stored.

When data has to be stored beyond the time needed for
processing, it has to be moved to persistent storage. This,
however, results in a bottleneck, due to the difference in speed
between volatile and persistent storage. Depending on the
system facilitating the flow collection, one may consider to
compress data before moving it to persistent storage (more de-
tails are provided in Section VIII-C). We distinguish between
the following types of persistent storage:

• Flat files – Flat file storage is usually very fast when
reading and writing files, while providing limited query
facilities [68]. Examples of flat file storage are binary and
text files.

• Row-oriented databases – Row-oriented databases store
data in tables by means of rows and are frequently used
in Database Management Systems (DBMSs), such as
MySQL10, PostgreSQL11, and Microsoft SQL Server12.
Accessing the data is therefore done by reading the full
rows, even though only part of the data may be needed
to answer a query.

10https://www.mysql.com/
11http://www.postgresql.org/
12http://www.microsoft.com/sql/
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TABLE V
COMPARISON OF DATA STORAGE FORMATS

Flat files Row-oriented
databases

Column-oriented
databases

Disk space + – 0

Insertion
performance + – 0

Portability – (binary),
+ (text) – –

Query
flexibility – + +

Query
performance

+ (binary),
– (text) – +

• Column-oriented databases – Column-oriented databases,
such as FastBit13, store data by column rather than by
row. Only fields that are necessary for answering a query
are therefore accessed.

A comparison of these data storage formats is shown in
Table V, where ‘+’ stands for good, ‘–’ for poor, and ‘0’
for average. We evaluate each format based on disk space re-
quirements, insertion performance, portability, query flexibility
and query performance. We consider nfdump a representative
option for binary flat file storage, MySQL for row-oriented
databases, and FastBit for column-oriented databases.

In terms of disk space, flat files have a clear advantage
above the database-based approaches. This is mainly due to
the fact that row- and column-oriented databases usually need
indexes for shorter query response times, which consume more
disk space on top of the “raw” dataset. For example, it is
described in [69] that MySQL with indexes needs almost
twice the capacity of nfdump for a particular dataset. For the
case of FastBit, it is shown to be less capacity-intensive than
MySQL (depending on its configuration) [68], but more than
nfdump. High compression rates can be achieved since data in
a particular column is usually very similar, i.e., homogeneous.
The highest insertion performance can be achieved using flat
files, as new data can be simply added to the end of a
file, without any additional management overhead, such as
updating indexes in the case of MySQL. When it comes to
portability, text-based flat files have the clear advantage of
being readable by many tools on any system. However, flat
files usually provide only limited query language vocabulary,
which makes databases more flexible in terms of possible
queries.

In contrast to database-based approaches, flat file storage
is usually not indexed; sequential scans over datasets are
therefore unavoidable. However, since many flat file storages
create smaller files at regular intervals, this can be considered a
coarse time-based index that limits the size of sequential scans
by selecting fewer input files in a query. Several works have
compared the performance of the various data storage formats
in the context of flow data collection. The performance of
binary flat files and MySQL is compared in [69], where query
response times are measured for a set of queries on subsets
of a single dataset. The authors show that binary storage

13https://sdm.lbl.gov/fastbit/

outperforms MySQL-based storage in all tested scenarios and
advocate the use of binary storage when short query response
times are required. A similar methodology has been used
in [70], where the performance of FastBit is compared with
binary flat files. It is shown that FastBit easily outperforms
binary storage in terms of query response times, which is
explained by the fact that FastBit only reads columns that
are needed for a query. This results in fewer I/O operations.
The performance of FastBit- and MySQL has been compared
in [68], where the authors conclude that FastBit-based storage
is at least an order of magnitude faster than MySQL.

The performance of the described approaches can generally
be improved by distributing flow data over multiple devices.
For example, it is a common practice to use storage based
on a Redundant Array of Independent Disks (RAID) in a
flow collector, which ensures data distribution over multiple
hard drives in a transparent fashion. Even more performance
improvements can be achieved by deploying multiple flow col-
lectors and distributing the data between them. This, however,
requires some management system that decides how data is
distributed (for an example, see [71]).

B. Data Anonymization
Flow data traditionally has a significant privacy protection

advantage over raw or sampled packet traces: Since flow data
generally does not contain any payload, the content of end-
user communications is protected. However, flows can still
be used to identify individuals and track individual activity
and, as such, the collection and analysis of flow data can
pose severe risks for the privacy of end users. The legal and
regulatory aspects of this privacy risk, and requirements to
mitigate it are out of scope for this work – these are largely a
matter of national law, and can vary widely from jurisdiction
to jurisdiction. Instead of surveying the landscape of data
protection laws, we make a general simplifying assumption
that IP addresses can be used to identify individuals and as
such should be protected. Other information available in flows
can be used to disambiguate flows and therefore may be used
to profile end users or to break IP address anonymization.

Best practices for trace data anonymization are laid out by
CAIDA in [75], drawing on the state of the art in anonymiza-
tion techniques surveyed in [76]. The key tradeoff in IP address
anonymization is between privacy risk and data utility. There
is no ‘one-size-fits-all’ flow data anonymization strategy, as
data utility is also dependent on the type of analysis being
done. For example, simply removing IP address information
carries with it the lowest risk of identification, but also makes
the data useless for anything requiring linkage of flows to
hosts; for simple statistics on flow durations and volumes, for
example, such data can however still be useful.

In the more general case, since networks are structured,
a structure-preserving anonymization technique such as the
Crypto-PAn algorithm [77] allows anonymized IP addresses
to be grouped by prefix into anonymized networks. This pre-
serves significant utility for analysis, at the cost of restricting
the space of possible anonymized addresses for a given real
address, making profiling attacks against address anonymiza-
tion easier. Even given this tradeoff, the significantly increased



17

TABLE VI
OPEN-SOURCE FLOW COLLECTORS
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Version 3.0.7.5 0.9.1 0.6.0 1.6.10 6.13 0.14.3 3.7.1 1.0.0.a
Anonymization 3 3 3 3

Storage
formats

Flat files
(binary, text),
row-oriented

DB

Flat files
(binary)

Column-
oriented

DB

Flat files
(binary)

Flat files (binary, text),
row-oriented DB

Flat files
(text),

row-oriented
DB

Flat files
(binary)

Row-
oriented

DB

NetFlow v5 3 3 3 3 3 3 3

NetFlow v9 3 3 3 3 3 3 3 3

IP
FI

X

Bidirectional
flows 3 3 3 3

Enterprise-
specific IEs Any

Application information,
performance metrics,

geolocation information,
plugins

Application
information

Options
templates 3 3 3 3 3 3

Structured data
(RFC 6313) 3

Transport
protocols

SCTP,
TCP,

UDP, file
UDP SCTP, TCP, UDP UDP SCTP, TCP,

UDP

SCTP,
TCP, UDP,

file
Variable length

encoding 3 3 3 3

utility of the results leads to a recommendation for Crypto-
PAn.

Given the restricted space of solutions to the anonymization
problem, it has become apparent that unrestricted publication
of anonymized datasets is probably not a tenable approach to
the sharing of flow data [78], as attacks against anonymiza-
tion techniques scale more easily than strengthening these
techniques while maintaining utility. Technical approaches to
data protection are therefore only one part of the puzzle;
non-technical protection, such as sharing of data in vetted
communities of researchers, or analysis architectures whereby
analysis code is sent to a data repository and only results are
returned, must also play a part in preserving the privacy of
network end-users.

C. Open-Source Tools & Commercial Appliances

When selecting a flow collector for deployment, regardless
of whether an open-source or commercial one is selected, it
is important to verify the following criteria:

• Performance – The performance of flow collectors is
usually expressed in terms of the number of flow records
that can be received, pre-processed and stored per second.

• Storage format – The storage format used by the flow
collector determines how the stored flow data can be
accessed.

• Export protocol features – It is essential for a flow
collector to support the same export protocol features as
the used flow exporter, such as data encodings, transport
protocols, and IEs. A flow collector that does not support
full flow stream collection (i.e., all exported elements in

the received data stream can be processed and stored)
may lead to data loss. Special attention should be paid
when non-traditional IEs are used, such as IEs related to
application awareness or enterprise-specific IEs. Guide-
lines on which flow exporter features to use in which
situation are provided in Section V.

• Processing delay – Data analysis always has to wait for
a flow collector to finish processing the flow data. The
shorter the processing delays are, the more timely data
analysis can take place within the Data Analysis stage.

• Flow record deduplication – This technique eliminates
flow record duplicates in a dataset, which can be the result
of a flow being exported at multiple observation points
in a network. Flow record duplicates lead to erroneous
accounting and suboptimal security analysis, for example.

• Integration with other systems – Since flow data is often
used as a complement to other network monitoring and
management technologies, it is important that enterprise
flow collectors provide multiple integration interfaces for
technologies as SNMP, syslog, REST API, etc.

We have compiled a list of open-source flow collectors that
have been updated at least once since 2008 in Table VI. Several
observations can be made. First, all available storage formats
discussed before are supported by at least one collector. This
can make the selection of a flow collector easier, in situations
where a particular storage format is a hard requirement.
Second, IPFIX is claimed to be widely supported, although
some IPFIX-specific features, such as structured data export,
are barely available. Third, only three flow collectors support
flow data anonymization.
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TABLE VII
COMMERCIAL FLOW COLLECTORS
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Storage format (proprietary) Row-oriented
database

Flat files
(binary)

Column-oriented
database

Row-oriented database

NetFlow v5 3 3 3 3 3 3 3 3 3

NetFlow v9 3 3 3 3 3 3 3 3 3

IPFIX 3 3 3 3 3 3 3 3 3

Most open-source flow collectors do not come with any
specification of their performance in terms of the number
of flow records that can be processed per second. In cases
where it is specified, however, it is rather a performance
indication of what the developer has achieved on test systems,
rather than a guaranteed performance. This is mainly because
the performance of flow collectors strongly depends on the
selected storage format and the performance of the deployment
machine’s storage subsystem. We therefore have not included
any performance indication in Table VI. Also flow record
deduplication and integration with other systems are less
common in open-source flow collectors, and have therefore
been left out of the comparison. Finally, it should be noted
that most flow collectors in Table VI have no processing delay,
or that it is configurable. For example, nfdump uses intervals
of five minutes by default.

A list of major vendors on the market of commercial flow
collector appliances is shown in Table VII. None of these
vendors sells appliances that solely perform flow data collec-
tion; they all come with some sort of analysis and reporting
functionality instead, to provide easy-to-use and integrated
flow solutions. In this section, we focus on the collection-
related aspects of these appliances. The analysis and reporting
functionality, however, will be discussed in Section VII.

In contrast to open-source flow collectors, the performance
in terms of flow records per second that can be processed is
always specified for commercial appliances. This is because
commercial flow collectors are predominantly sold as an
appliance, a dedicated machine with a RAID-based setup
for performance and data redundancy, and flow collection
software pre-installed. Vendors are able to select the under-
lying hardware, measure the overall performance, and provide
performance guarantees, independent of the deployment setup.
All vendors listed in Table VII sell appliances that support
high traffic volumes (i.e., more than 10k flow records per
second) and data collection from multiple sources, and have
disk space for long-term data retention. Most of them use row-
based databases, such as MySQL, PostgreSQL, and Microsoft
SQL Server, although Lancope, for example, uses a column-
oriented database that is optimized for reading operations, use-
ful for data analysis in a later processing stage. An interesting
observation with respect to the storage formats used in flow
collection appliances, is that the fastest appliances rely on row-
based DBMSs, while it has been discussed in Section VI-A to

be one of the slower formats in the context of flow collection.
This can be explained by the fact that appliances mostly use
optimized DBMS setups, while DBMSs in a scientific context
are often out-of-the-box installations. In addition, appliances
heavily rely on volatile storage for pre-processing and Solid-
State Drives (SSDs) for permanent storage.

VII. DATA ANALYSIS

Data Analysis is the final stage in a flow monitoring setup,
where the results of all previous stages come together. We
distinguish between three application areas for data analy-
sis, which are widely used for classifying analysis software:
1) Flow Analysis & Reporting, 2) Threat Detection, and
3) Performance Monitoring. These areas will be discussed
in Section VII-A, VII-B, and VII-C, respectively. We do
this by explaining practical use cases, alternatives, and recent
advances for each area. After that, we provide an extensive
analysis of open-source and commercial flow data analysis
software in Section VII-D. The goal of this section is to
provide a glimpse what can be done with flow data.

For further reading, one may consider the IPFIX applica-
bility statement issued by the IETF in [79], and the survey on
network flow applications provided in [80].

A. Flow Analysis & Reporting

Given that flow export devices are commonly deployed at
strategical locations in a network where traffic from a large
number of hosts can be observed, the resulting data provides
a comprehensive set of connections summaries. Flow Analysis
& Reporting is the most basic functionality provided by
flow analysis applications and typically provides the following
functionality:

• Browsing and filtering flow data.
• Statistics overview – The most common statistics are

for top-talkers, i.e., those hosts, autonomous systems or
services that exchanged most traffic.

• Reporting and alerting – A commonly used report-
ing application is bandwidth reporting, i.e., which
user/customer exchanged how much traffic. Alerting can
be used when traffic thresholds are exceeded (e.g., when
hosts are generating a suspicious number of connections)
or hosts are communicating using unwanted applications
or protocols.
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A typical example of an application providing this function-
ality is NfSen14, a popular open-source framework, featuring a
Web-interface, built around the flow collection toolkit nfdump.
It can be used in many situations, such as finding spamming
hosts, routing problems, and misconfigured services (e.g.,
DNS). In the remainder of this subsection, we discuss how
NfSen can be used for both manual flow data inspection and
automatic reporting. For further reading, we recommend the
tutorial on NfSen provided in [81].

The usual start for analyzing flow data is by observing
the traffic graphs provided as part of the Dashboard, which
provides insight in the traffic behavior in terms of flows,
packets and bytes. Peaks in those graphs signal that the traffic
behaves different from what is considered ‘normal’. Whether
this is an indication of something malicious or purely benign,
can now be investigated by retrieving flow data statistics
for the timeframe in which the anomaly was active. This
reveals which hosts have been top-talkers. When top-talkers
have been identified based on the number of flows they
have generated, for example, it is not uncommon to identify
sources of network scans, brute-force attacks, or Distributed
DoS (DDoS) attacks, as these kind of attacks often result in
many small flows [82]. After identification, raw flow data can
be retrieved and analyzed to learn the actual nature of the
anomalous traffic.

To automate some analysis options, NfSen provides report-
ing functionality by means of alerts. Alerts can be configured
based on thresholds for nearly any traffic characteristic that
can be expressed in terms of the number of flows, packets and
bytes, and filters. This helps network managers to be aware
of problems in the network as early as possible. Taking the
scenario of hosts generating an abnormal number of flows, one
could consider configuring a threshold based on the number
of flows generated per time interval. This can inform network
administrators of (large) attacks or other misuses targeting the
monitored network and hosts.

The functionality of NfSen can be extended by means
of plugins15. These plugins can process raw flow data and
visualize the results in a Web interface. As such, NfSen
can be extended to include Threat Detection or Performance
Monitoring functionality. An example of a plugin for NfSen
that provides Flow Analysis & Reporting functionality is
SURFmap [83], a network monitoring tool based on the
Google Maps API. It adds a geographical dimension to flow
data and shows the flow data on a map.

B. Threat Detection

When flow data is used for threat detection, we can distin-
guish between roughly two types of uses. First, flow data may
be used purely for analyzing which host has communicated
with which each other host (i.e., forensics), potentially includ-
ing summaries of the number of packet and bytes involved, the
number of connections, etc. The second utilizes the definition
of a flow for analyzing certain types of threats, which allows

14http://nfsen.sourceforge.net/
15A list of plugins for NfSen is maintained at https://sourceforge.net/apps/

trac/nfsen-plugins/.
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Fig. 12. Time-series of the number of PPF of an SSH dictionary attack (based
on [86]).

for modeling threats in terms of network behavior. In the
remainder of this section, we discuss an example of both types.

The central observation points at which flow export devices
are usually deployed make flow export especially useful for
the detection of the following attacks and malwares [84]:
DDoS attacks, network scans, worm spreading, and botnet
communication. The commonality between these attacks is
that they affect metrics that can be directly derived from flow
records, such as the volume of traffic in terms of packets
and bytes, the number of active flows in a certain time
interval, suspicious port numbers commonly used by worms,
and suspicious destination hosts for traffic.

The identification of suspicious destination hosts for traffic
is usually done by means of IP reputation lists, or blacklists.
IP reputation lists are lists of IP addresses that have been
identified as sources of malicious activities. For example, they
may have sent SPAM messages, hosted malware, or taken part
in a botnet infrastructure. Flow data can be easily combined
with IP reputation lists by checking whether the source or
destination addresses of a record have been listed as offenders.
This technique does however not only identify threats coming
from outside the network perimeter; IP reputation lists can also
help in the detection of Advanced Persistent Threats (APTs),
for example. APTs16 are modern attacks that combine a high
degree of stealthiness, long term planning and a multiplicity
of attack vectors. They typically target governmental and
commercial entities, and aim at gaining a stronghold in the
target network, for example, for cyber-espionage. By analyzing
connections from the local network to external hosts with
a poor reputation, APTs and other suspicious activities like
botnets may be identified.

The second use of flow data for threat detection utilizes
the common definition of a flow, to identify certain types of
attacks. We discuss this by means of an example: Secure Shell
(SSH). SSH provides secure remote access to a UNIX-based
machine, and is a frequently-used target of dictionary attacks.
These attacks use lists with often-used username and password
combinations, which are tried on SSH daemons by means of
brute-force. Once a remote machine has been compromised,
the attacker gains control of it and can misuse it for all kinds
of malicious purposes.

16An APT that gained much media attention is APT1 [85].
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Start Source Destination Flags Pkts
-----------------------------------------------------
03:07:21 87.2.34.3:46682 36.128.7.9:22 ....S. 1
03:09:36 87.2.34.3:59459 36.128.7.9:22 .AP.SF 12
03:09:39 87.2.34.3:59973 36.128.7.9:22 .AP.SF 12
03:09:42 87.2.34.3:60318 36.128.7.9:22 .AP.SF 12

...

Fig. 13. Dictionary attack pattern in flow records (simplified). The IP
addresses have been anonymized.

Despite the fact that SSH traffic is encrypted, SSH dic-
tionary attacks can be easily detected using flow analysis
because of a typical attack pattern: Many credentials are tested
subsequently and SSH daemons close the connections after
a fixed number of login attempts, resulting in many TCP
connections with similar size in terms of packets. An example
of this is shown in Fig. 12, where three attack phases can
be identified: 1) scan phase, where an attacker probes for
active SSH daemons (t < 1000), 2) brute-force phase, where
the actual dictionary attack is performed (1000 ≤ t ≤ 1900),
and 3) die-off phase, where residual traffic may be exchanged
between attacker and target after a compromise (t > 1900),
for example. Important here is the observation that the scan
phase shows a low number of Packets-Per-Flow (PPF), while
the brute-force phase shows a significantly higher number of
PPF.

The pattern with respect to PPF described before can also
be identified in the corresponding flow records, as shown
in Fig. 13; the first flow record (source port 46682) clearly
indicates a scan, while the other flow records match the pattern
of login attempts. The detection of these patterns can be
performed in an automated fashion [87], as is done by the
Intrusion Detection System (IDS) SSHCure17, for example.
SSHCure is completely flow-based, and is able to identify
various flavors of the flow pattern discussed before, e.g.,
with a different number of PPF. This demonstrates two main
advantages of flow-based intrusion detection: It works in
encrypted environments, as it does not rely on packet payloads,
and its light-weight nature allows for analyzing even backbone
links with thousands of flows per second. For further reading,
we recommend the survey on flow-based intrusion detection
provided in [84].

C. Performance Monitoring

Performance monitoring aims at observing the status of
services running on the network. Typical metrics that such data
analysis applications report include Round-Trip-Time (RTT),
delay, jitter, response time, packet loss and bandwidth usage.
Performance monitoring applications post-process flow data
and show a set of metrics per target service, to verify Service-
Level Agreement (SLA) compliance and, ultimately, reveal
network events and their impact on end-user experience.

As for the other types of data analysis, the greatest strength
of monitoring performance using flow measurements comes
from the strategical vantage points from where flow mea-
surements are usually taken. As a comparison, monitoring

17https://sshcure.sourceforge.net/
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Fig. 14. Estimating Web server latency (based on [88]).

applications by means of client instrumentation requires the
installation of agents in client devices, which makes the
measurement environment not only less convenient to set up,
but also harder to be managed. However, as we will exemplify
next, flow measurements sometimes provide only a coarse
approximation of common performance metrics, since such
metrics are generally not directly measured and exported.

Flow-based performance monitoring applications can be
roughly divided into two groups. A first group of applications
tries to estimate performance metrics, such as service avail-
ability [89], RTT or one-way delay [90], by post-processing
the IEs that are commonly exported by flow exporters (see
Section V-A). The main advantage of such an approach is that
no customization is needed in either flow exporters or flow
collectors, i.e., to export and collect enterprise-specific IEs.
However, as high-level performance metrics are not part of
the most common list of IEs, the precision of the reported
metrics might not be sufficient in certain circumstances. As
an example, the estimation of one-way delays using NetFlow
records has been evaluated in [90]. The one-way delay between
two routers is estimated from the difference between the flow
start times reported by the routers for the same flow. When
applying this approach to empirical data, it quickly turns out
that the results are significantly affected by timing errors.
This is partly compensated for by introducing a calibration
phase, in which offline flow measurements are used to create
exporter-specific profiles, containing information on clock
offsets and skews, timer resolution, among others (see also
Section VIII-D).

A completely different approach is taken by a second group
of analysis applications, which rely on extensions for flow
exporters that extract performance metrics. We illustrate that
by showing how nProbe can be used for exporting the latency
of Web servers. nProbe and other flow exporters that provide
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Fig. 15. Monitoring a Web server using flow measurements.

advanced application awareness (see Section V-G) implement
similar functionality to monitor other protocols as well, such
as DNS. By analyzing also packet payloads, nProbe is able to
identify HTTP traffic and export enterprise-specific IEs that
report the network latency from client to the flow exporter,
the network latency from the flow exporter to servers and the
total application latencies. The semantic of these metrics is
depicted in Fig. 14. The Web server latency can be obtained
by subtracting the server network latency from the total
application latency.

Fig. 15 illustrates how these IEs are useful for monitoring
the performance of Web servers. The figure shows the latency
of a server, installed at the UT, which provides a public
mirror for a popular Linux distribution. The median latency
users experienced when retrieving a file from the server is
shown for a 6-hour interval in 1-minute time bins (note
the logarithmic y-scale). As we can observe, the median
latency is slightly higher than 200 ms most of the time,
except for some particular intervals where a sharp increase
can be observed. These surges in latency happen because the
server is configured to synchronize with upstream repositories
periodically, impacting the performance for end-users. System
administrators can therefore rely on similar monitoring setups
for analyzing application performance, even if servers are not
under their control and, moreover, without instrumenting client
devices.

The two examples discussed in this section illustrate the
main pros and cons designers of flow-based performance
monitoring applications are facing. An approach solely relying
on common IEs comes with very low deployment costs,
as it is likely compatible with an existing flow monitoring
infrastructure. On the other hand, performance metrics such
as one-way delay are not directly supported by many flow
exporters and may require substantial calibration and com-
pensation efforts. In contrast, enterprise-specific IEs allow to
implement sophisticated monitoring techniques, but they rely
heavily on DPI, resulting in higher deployment and privacy
costs. We refer to [88], [89], [90] for further reading on flow-
based performance monitoring.

D. Open-Source Tools & Commercial Appliances
When selecting a flow data analysis tool for deployment,

regardless of whether an open-source or commercial one is
selected, it is important to verify the following criteria:

• Performance – The performance of data analysis appli-
cations is usually measured by means of interface re-
sponsiveness; well-performing applications provide traffic
reports on-the-fly, for an arbitrary number of data sources.
The performance also depends on the amount of data to
be processed, which depends on how historical data is
handled, e.g., how long raw and aggregated data is stored.

• Integration with systems and data sources – Rather than
solely relying on flow data, data analysis usually benefits
from integrating with other data sources, such as geolo-
cation databases, WHOIS, blacklists, BGP information,
etc. In terms of system integration, support for directory
services for user authentication are a welcome feature.

• Analysis delay – This delay should not be confused
with the processing delay of a flow collector; while the
processing delay determines when flow data is made
available for analysis, the analysis delay is based on the
computation time of the analysis software. The shorter
the computation time, the more timely the analysis.
Especially for time-critical applications, such as IDSs,
analysis delays are an important criterium.

The market of commercial flow analysis applications con-
sists of both appliance products (hardware or virtual) and
software (standalone or Software as a Service). An overview
of applications that have a primary focus on flow data analysis,
is provided in Table VIII. Several conclusions can be drawn
from this table. First, all applications provide Flow Analysis
& Reporting functionality, usually complemented with Threat
Detection or Performance Monitoring functionality. Very few
applications provide both threat detection and performance
monitoring functionality. Second, those applications doing
performance monitoring have a strong focus on application
performance, which is in line with the observation that ap-
plication awareness in flow monitoring is becoming more
important.

The number of available open-source flow data analysis
applications that have been updated at least once since 2008
is rather small. We have compiled an overview in Table IX.
Contrary to commercial applications, open-source alternatives
are usually rather limited in functionality; although they all
support flow analysis & reporting, extended functionality like
performance monitoring is rare. Moreover, threat detection
functionality is not supported by any open-source application.
Some applications, such as NfSen, do however provide plugin-
support, by means of which threat detection or performance
monitoring can be implemented.

As flow data consists of large volumes of essentially tabular,
timestamped information that is not very semantically com-
plex, existing work in data analysis for other fields may prove
to be applicable to flow data as well. We have had success
in using the open-source pandas18 data analysis framework
for Python, together with glue code for bridging the gap
between IPFIX files and pandas data-frames [93]. Pandas was
originally developed for financial analysis and visualization,
and is based on the numpy numerical computing framework
for Python, which provides efficient primitives for dealing

18http://pandas.pydata.org/
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TABLE VIII
COMMERCIAL FLOW DATA ANALYSIS APPLICATIONS

Vendor Product Flow analysis
& reporting

Threat
detection

Performance
monitoring Main selling point(s)

Arbor
Networks

Pravail Network Security
Intelligence (NSI) 3 3

Global threat intelligence, DDoS attack detection &
mitigation

Compuware Compuware APM (3)1 3
Application-aware network monitoring (Quality of

Experience)

Fluke
Networks Visual TruView 3 3

Application, network and VoIP performance
monitoring

IBM QRadar, QFlow 3 3
Security event correlation and NetFlow-based

network behavior analysis

InfoVista 5View NetFlow 3 3
Application-aware network monitoring and

reporting

INVEA-
TECH

FlowMon Collector +
ADS 3 3 3

Traffic monitoring, threat (anomaly) detection and
performance monitoring

Lancope StealthWatch
FlowCollector 3 3 3 Security and performance monitoring

ManageEngine NetFlow Analyzer 3 3 Traffic visibility and anomaly detection

Plixer Flow Analytics 3 3 3
Traffic monitoring, threat detection and

performance monitoring

Riverbed
Technology Cascade Gateway 3 (3)1 3 Network and application performance management

SevOne SevOne Performance
Appliance Solution 3 3 Network and application performance management

SolarWinds NetFlow Traffic Analyzer 3 Network utilization and bandwidth monitoring
1 This feature is partially supported and not the principal functionality of the application or appliance.

TABLE IX
OPEN-SOURCE FLOW DATA ANALYSIS APPLICATIONS

Name Flow analysis & reporting Performance
monitoring

FlowViewer 3

NfSen [73] 3

ntop/ntopng [91] 3

SiLK [74] 3

Stager [92] 3

WebView
NetFlow Reporter 3 3

with large in-memory arrays of numeric data. It provides an
environment for rapid exploratory analysis of relatively small
datasets, crucial when designing and testing new algorithms
and approaches for data analysis. Together with matplotlib and
the “notebook” feature of iPython, it also provides a method
for publishing analysis code work-in-progress along with data
for collaborative and teaching tasks. Work in this areas is
ongoing.

VIII. LESSONS LEARNED – COMMON PITFALLS

In the previous sections, we have discussed how to setup
a typical flow monitoring system. Before the exported flow
data can however be used for production or measurement
purposes, the setup has to be verified and calibrated. This
section will discuss how hidden problems that impact the
resulting data can be detected and potentially overcome. We
start by describing flow exporter overload in Section VIII-A,
followed by transport overload and flow collector overload in

Section VIII-B and VIII-C, respectively. Finally, we discuss
several flow data artifacts that can be found on several flow
export devices in Section VIII-D.

A. Flow Exporter Overload

Flow caches in a flow exporter usually have a fixed size that
is either constrained by hardware, or determined at compile-
time in the case of flow exporter software. When this size
turns out to be small, flow data loss or low performance can
be the result. The latter is especially the case for software-
based solutions, as they often use linked lists to store different
flow cache entries under the same hash value, which results in
longer cache entry lookup times. Given that it is not always
possible to foresee significant changes in the monitored traffic,
flow caches may eventually turn out under-dimensioned.

Since under-dimensioned flow caches usually result in data
loss it is important to be aware of this happening, especially
when the exported flow data is used for critical applications.
For those having access to a flow exporter, be it a packet
forwarding device or dedicated probe, it is usually trivial
to obtain these data loss statistics. For example, software
exporters often write them to log files, while the flow cache
utilization and loss statistics of hardware flow exporters can
be obtained via a command-line interface (CLI), or SNMP. An
example of how to retrieve such details from Cisco switches is
provided in [64]. For those having only access to the exported
flow data, it is much harder to derive conclusions about data
loss. An example of this is also provided in [64], where it
is shown that indications of an under-dimensioned flow cache
can be retrieved from the dataset with some uncertainty.
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Fig. 16. Impact of packet sampling on the number of flow records.

Several actions can be taken to reduce flow exporter load,
without the need to replace a flow exporter. First, expiration
timeouts can be reduced. Especially the idle timeout should
be considered here, as it expires cache entries of flows that are
inactive anyway. Although reducing timeouts results in a lower
flow cache utilization, which has been shown in Section V-C,
this will result in more flow records. Care should be taken
to not overload a flow exporter’s Exporting Process or a flow
collector with this larger number of flow records.

A second action for reducing the load of flow exporters is
enabling packet sampling or decreasing the packet sampling
rate, i.e., reducing the number of packets forwarded to the
Metering Process. We have measured the impact of packet
sampling on the resulting flow data based on the dataset
presented in Section I-B. The results are shown in Fig. 16
and two conclusions can be derived from this figure. First, the
use of packet sampling does not necessarily reduce the number
of flow records, mostly because of the use of timeout-based
expiration and the nature of the traffic; when intermediate
packets in a flow are not sampled and therefore not considered
by the Metering Process, this flow can be split into multiple
flows by the applied idle timeout. This demonstrates that
packet sampling reduces the load of the Metering Process, but
not necessarily of the subsequent stages. Second, the impact
of packet sampling on the number of flow records reduces
when the sampling rate is increased (except for very high rates,
such as 1:2, in our dataset). In contrast to packet sampling,
flow sampling reduces the number of flow records, but it
will not help to reduce utilization of the flow cache, as it is
applied after the Metering Process. Enabling packet sampling
or increasing its rate however results in information loss that is
in various cases very hard to (mathematically) compensate for.
A flow-based anomaly detection system, for example, which is
based on thresholds determined on a non-sampled dataset or
datasets captured using another sampling rate, will function
sub-optimally or stop functioning completely. It is therefore
advised to tune flow entry expiration first, before enabling or
modifying sampling parameters.

As soon as a flow exporter is experiencing capacity prob-
lems due to resource constraints, flow records may start to
be expired in a different way. That means, the active and idle
timeouts are respected as much as possible, until the utilization
of the flow cache exceeds a threshold (e.g., 90%). At that
moment, an emergency expiration kicks in which expires cache

TABLE X
EXPORT VOLUMES FOR THE UT DATASET (2.1 TB)

Sampling rate Protocol Export packets / bytes
1:1 NetFlow v5 1.4 M / 2.1 G

1:1

NetFlow v9

3.5 M / 2.5 G
1:10 1.6 M / 1.1 G

1:100 314.9 k / 222.5 M
1:1000 72.2 k / 49.5 M

1:1 IPFIX 4.3 M / 3.0 G

entries prematurely, to free up the flow cache and to allow new
entries to be inserted. This results in more flow records, and
flow data that is not expired consistently, which may impact
the subsequent Data Analysis stage. For example, an intrusion
detection system (IDS) that counts the number of flow records
for detecting a particular anomaly may not function properly
anymore by raising false alerts. It is therefore important to be
aware of these dynamics in flow export setups.

B. Transport Overload

It is not uncommon for flow exporters to export data from
links of 10 Gbps and higher over links of 1 Gbps. This is
usually the case because flow data is sent to collectors of
the exporter’s management interface (which usually has a
line speed of 1 Gbps), and because flow collectors are often
“normal” file servers that are not equipped with special, high-
speed network interfaces. Due to the data reduction achieved
by flow export, flow data exported from high-speed links can
generally be exported over smaller links without data loss.
However, in anomalous situations as described in the previous
subsection, such links will become a bottleneck in a flow
monitoring system. This is especially the case in anomalous
situations, where the data aggregation achieved by flow export
is constrained, such as under DDoS attacks. One type of DDoS
attacks are flooding attacks, which aim at overloading targets
by opening many new connections by sending a large number
of TCP SYN-packets, for example. Due to the definition of a
flow, this type of traffic results in many new flows, because
of the changing flow key in every packet [94]. Moreover,
depending on the selected number of IEs for each flow, the
data aggregation usually achieved can change into data export
that is neutral in size (i.e. the exported data has the same
size as the monitored data) or even data amplification; as
soon as the overhead of the IPFIX Message is larger than the
monitored packets on the line (e.g., during a flooding attack),
amplification takes place. This is not uncommon, as many flow
exporters use by default a set of IEs that is larger in terms of
bytes than a TCP SYN-packet, for example.

We have measured the volume of NetFlow and IPFIX
Messages in terms of packet and bytes for the UT dataset
presented in Section I-B. The results for various packet
sampling rates and export protocols are shown in Table X.
Two main observations can be made. First, the newer the
flow export protocol, the more packets and bytes are sent to
the flow collector. This can be explained by the inclusion
of (option) templates in NetFlow v9 and IPFIX, and the
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increase in timestamp size from 32 bits relative timestamps
(in NetFlow v9) to 64 bits absolute timestamps19 in IPFIX.
Second, regardless of the export protocol used, NetFlow and
IPFIX traffic is roughly 0.1% of the original traffic in a setup
without packet sampling. This is in contrast to [55], where it
is claimed that the IPFIX traffic generated by a flow exporter
is 2-5% of the traffic of the monitored link.

Both NetFlow and IPFIX carry sequence numbers in their
respective packet headers, which assist in identifying packet
loss when either unreliable transports are used (e.g., UDP)
or the transport bandwidth is permanently under-dimensioned.
Flow collectors, such as nfdump, keep track of these sequence
numbers and store the number of sequence failures in the
metadata of each file. Before deriving any conclusion from
sequence failure counters, attention should be paid to the
export protocol version. Both NetFlow v5 and IPFIX provide
sequence numbers in terms of flow records, while NetFlow v9
provides these in terms of export packets. As such, the actual
number of missing flow records can only be estimated when
NetFlow v5 or IPFIX are used.

C. Flow Collector Overload

Flow data collection usually gets least attention of all stages
in a typical flow monitoring setup, although a suboptimal setup
can result in severe – and often unnoticed – data loss. What
makes it difficult to dimension a flow collector, is that in
anomalous situations, the number of incoming flow records
can be doubled or even more than that. Considerable over-
provisioning and calibration are therefore needed to ensure
that no data is lost. In this subsection, we discuss how
flow collectors should be calibrated by means of performance
measurements.

Data loss as part of flow collector overload can be a
consequence of both kernel and application buffer overflows,
and disk I/O overload. Kernel buffers store NetFlow and IPFIX
Messages before they are received by a Collecting Process.
Application buffers are part of the flow collector itself and can
be used for any intermediate processing before the flow data
is stored. Buffers can be tuned to a certain extent; increasing
buffer sizes allows more data to be temporarily stored, but
is useless if subsequent system elements are becoming a
bottleneck. In practice, disk I/O will be a bottleneck in
such situations, so increasing buffers provides only limited
advantages.

Many flow collectors apply data compression to flow data
by default. Whether or not compression should be enabled
depends on the processing and storage capacities of the system
acting as a flow collector. As a rule of thumb, one can compare
the time needed to store a flow data chunk both in compressed
and uncompressed format. If writing compressed data is faster,
the storage subsystem is the bottleneck of the collection system
and data compression, which is CPU-intensive, should be
enabled. Otherwise, if writing uncompressed data is faster,
processing capacity is the bottleneck and data compression

19IPFIX supports timestamps at multiple granularities, ranging from sec-
onds to nanoseconds. The used flow exporter, nProbe, uses millisecond
resolution timestamps by default for IPFIX.

TABLE XI
STORAGE VOLUMES FOR THE UT DATASET (2.1 TB)

Sampling rate Protocol Storage volume Reduction factor
1:1 NetFlow v5 912.7 MB 2301x

1:1

NetFlow v9

1.0 GB 2100x
1:10 503.7 MB 4169x
1:100 103.9 MB 20212x

1:1000 20.4 MB 102941x

1:1 IPFIX 820.4 MB 2560x

should be disabled. This rule of thumb is confirmed by nftest,
part of nfdump, which performs these tests automatically and
provides one with an advice on whether or not to enable data
compression.

To get an idea of how much processing capacity is needed
to store flow data of one day, we have performed several
measurements on the UT dataset presented in Section I-B,
where we have used nfdump as the flow collector software.
The storage volumes for various export parameters are listed
in Table XI. The listed storage volumes are for compressed
datasets and are slightly less than 1 GB per day when no
packet sampling is used. To put this in contrast; the Czech
National Research and Education Network (NREN) CESNET
does not apply packet sampling either and stores roughly 125
GB of flow data per day, while SURFnet, the Dutch NREN,
stores around 16 GB per day with a packet sampling rate of
1:100.

D. Flow Data Artifacts

Analyses have shown that the advantages offered by flow
export often come at the expense of accuracy, although the
gains of using flow data normally excuse this. Since IPFIX is
still in its early days and NetFlow deployment is far more
mature [3], most literature on flow data artifacts is about
NetFlow (especially v9).

Flow data artifacts described in literature can be classified
into three categories:

• Timing, related to the way in which flow exporters
put timestamps into flow records, how these timestamps
are stored by export protocols, and how precise flow
exporters are in expiring flow records.

• Data loss, causing unrepairable damage to flow datasets.
• Minor inaccuracies that can usually be repaired or ig-

nored.
Artifacts in the first category, timing, are all related to the

way in which NetFlow accounts flow record start and end
times. NetFlow v9 in particular uses two separate clocks: an
uptime clock in milliseconds that is used to express flow record
start and end times in terms of a flow exporter’s uptime, and a
real-time clock (UNIX time) that is used to map those uptimes
to an absolute time. The real time is inserted in NetFlow
packets together with the uptime before they are transmitted
to a flow collector. It is then up to a flow collector to calculate
the absolute start and end times of flow records based on
these two types of timestamps. The advantage of using only
a single real-time clock is that there are no two clocks that
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need to remain synchronized all the times. However, several
artifacts related to timing have been reported in literature.
First, it is explained in [90] and [95] that the millisecond-
level precision of the flow exporter uptimes is sacrificed, since
only second-level timestamps of the real time can be stored
in a NetFlow v9 packet. This leads to imprecise or incorrect
start and end times of flow records. The same works describe
that both clocks are not necessarily synchronized, resulting in
a clock skew in the order of seconds per day. In addition,
two timestamps are not necessarily inserted into the NetFlow
packet at exactly the same moment either due to resource
exhaustion or explicit export rate limiting, resulting in an
additional delay [95]. Another category of timing artifacts is
the imprecise or erroneous expiration of flow records, resulting
in periodic patterns in the flow dataset and erroneously merged
flow records [64], [96].

The second category of artifacts is related to data loss. It is
described in [64] that many older yet widespread Cisco routers
and switches – Cisco’s Catalyst 6500 in particular, which has
been Cisco’s most-sold device – do not export TCP flags for
the majority of flows. Since TCP flags are useful to infer
TCP connection states, many analysis applications will have
to disable part of their functionality because of this missing
information. Another artifact related to data loss described
in [64] and [96] is related to gaps in flow data, usually
caused by an under-dimensioned flow cache, as described in
Section VIII-A. As a consequence, packets cannot always
be accounted to flow records in the flow cache, effectively
resulting in data loss.

Two artifacts causing minor inaccuracies in flow data are
also described in [64]. First, invalid byte counters in flow
records can be caused by certain Cisco routers in the case
of very small Ethernet frames. This happens because the
padding bytes in Ethernet frames are not correctly stripped
in those situations. Second, some flow records exported by
older Cisco routers have TCP flags set for non-TCP flows.
This is, however, not problematic for the flow data itself and
can usually be ignored.

For many application areas, such as traffic accounting,
the artifacts described in this section do not play a major
role. However, as soon as the flow data is used for research
purposes, e.g., for flow-based delay measurements [90], more
attention should be paid. Flow exporters must be calibrated
before their data is used for such purposes. Also analysis
applications have to be verified whether they will work as
expected with flow data from a certain flow exporter. Interop-
erability tests are organized from time to time to test protocol
compliance of implementations from various vendors. This
is however only on the level of protocols and not on the
level of flow records. Up to a certain degree, the variance
and imprecision of flow exporters when exporting flows is
even tolerated by the specifications. For example, for flow
cache entry expiration, as described in Section V-C, a certain
degree of freedom is left for flow exporters in case of resource
constraints.

IX. CONCLUDING REMARKS & OUTLOOK

This tutorial has shown and discussed all aspects of a full-
fledged flow monitoring setup based on NetFlow or IPFIX,
covering the complete spectrum of packet observation, flow
metering and export, data collection, and data analysis. The
generic architecture of such a setup has been explained in
Section III. It has been shown that each of these stages
affects the final flow data and consequently, its analysis.
Understanding all these stages to avoid measurement artifacts
is therefore of key importance to anyone performing flow
measurements, as demonstrated in Section VIII.

One of the most prevalent trends in flow export is certainly
the flexibility with respect to which data is exported. This is
clearly shown by IPFIX, which allows one to tailor virtually
anything to the needs of data analysis, as shown in Section V.
In contrast to what the name suggests, IPFIX can be used to
export any traffic information from L2-L7. A concrete example
of this has been discussed extensively in Section V of this
paper: application awareness.

The applicability of IPFIX can even be taken to the next
level by exploiting its flexibility and extending the set of IEs
beyond network traffic information. As long as flow exporters
know how to insert measurement data into IPFIX Messages,
existing flow monitoring infrastructure and applications can
be used, such as flow collectors, and analysis software. A
proof-of-concept has been demonstrated as part of an IETF
tutorial on IPFIX [97], where the room temperature was
exported to a flow collector using IPFIX. Existing software
could be used for monitoring the temperature over time and
configuring thresholds and alerts. Another untypical use case
is the transport of syslog or SNMP data using IPFIX, which
are features recently offered by several vendors and discussed
within the IETF, respectively.

Given the mentioned developments, we consider IPFIX
– in contrast to what the name suggests – a generic transport
protocol for structured data, rather than a pure flow export
protocol. More applications based on IPFIX that go beyond
flow export will certainly follow, a typical example being the
Internet of Things (IoT), where a plethora of sensor devices
is connected to the Internet. Since these devices produce
structured measurement data that has to be collected and
analyzed, we believe that these new application areas can
definitely utilize the principles developed and work performed
by the flow measurement community.
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APPENDIX
LIST OF ABBREVIATIONS

APT Advanced Persistent Threat
ASIC Application-Specific Integrated Circuit
BGP Border Gateway Protocol
CLI Command-Line Interface
CPU Central Processing Unit
DBMS Database Management System
DMA Direct Memory Access
DNS Domain Name System
DDoS Distributed DoS
DoS Denial-of-Service
DPI Deep Packet Inspection
DTLS Datagram TLS
FPGA Field-Programmable Gate Array
FTP File Transfer Protocol
HTTP HyperText Transfer Protocol
IANA Internet Assigned Numbers Authority
IDS Intrusion Detection System
IE Information Element
IETF Internet Engineering Task Force
IP Internet Protocol
IPFIX IP Flow Information eXport
LAN Local Area Network
MAC Medium Access Control
MIB Management Information Base
MPLS Multiprotocol Label Switching
MTU Maximum Transmission Unit
NAT Network Address Translation
NFS Network File System
NREN National Research and Education Network
NTP Network Time Protocol
PSAMP Packet Sampling
RAID Redundant Array of Independent Disks
REST REpresentational State Transfer
RTFM Realtime Traffic Flow Measurement
RTT Round Trip Time
SCTP Stream Control Transmission Protocol
SDN Software-Defined Networking
SLA Service-Level Agreement
SNMP Simple Network Management Protocol
SNTP Simple NTP
SPAN Switched Port ANalyzer
SSD Solid-State Drive
SSH Secure SHell
TCP Transmission Control Protocol
TLS Transport Layer Security
UDP User Datagram Protocol
URL Uniform Resource Locator
VLAN Virtual LAN
VM Virtual Machine
VPN Virtual Private Network
WG (IETF) Working Group
WLAN Wireless LAN
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