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ABSTRACT

Downlink throughput is the most widely used and accepted
performance feature within the networking community, spe-
cially in the operational field. Current network monitor-
ing and reporting systems as well as network quality bench-
marking campaigns use the Average Downlink Throughput
(ADT) as the main Key Performance Indicators (KPIs) re-
flecting the health of the network. In this paper we address
the problem of network performance monitoring and assess-
ment in operational networks from a user-centric, Quality of
Experience (QoE) perspective. While we have shown in the
past that accurate QoE estimation requires measurements
and KPIs collected at multiple levels of the communications
stack – including network, transport, application and end-
user layers, we take a practical approach and provide an ed-
ucated guess on QoE using only a standard ADT-based KPI
as input. We do so to maximize the utilization of through-
put measurements currently collected with common network
traffic monitoring systems. Armed with QoE models map-
ping downlink bandwidth to user experience – derived from
subjective QoE lab tests, we estimate the QoE undergone
by customers of both cellular and fixed-line networks, using
large-scale passive traffic measurements. In particular, we
study the performance of three highly popular end-customer
services, including YouTube video streaming, Facebook so-
cial networking, and WhatsApp multimedia sharing. Sur-
prisingly, our results suggest that up to 33% of the observed
traffic flows might result in sub-optimal – or even poor, end-
customer experience in both cellular and fixed-line networks,
for the monitored services.

Keywords

QoE; Subjective Lab Tests; Network Measurements; Cellu-
lar Networks; Performance.

1. INTRODUCTION
Quality of Experience (QoE) is becoming one of the lead-

ing concepts for network management and performance eval-
uation in operational networks. The intensifying compe-
tition among network operators is forcing Internet Service
Providers (ISPs) to integrate QoE into the core of their net-
work management systems, from network monitoring and
reporting to traffic engineering. This need is even more
relevant for cellular network operators, who need to offer
high quality levels to reduce the risks of customers churn-
ing for quality dissatisfaction in a complex and bandwidth-
restrictive context. Mobile users consume a wide variety of

data services such as video streaming, social networks, web-
browsing, VoIP and video calls, file-sharing, etc., all of them
imposing different performance requirements to the network
in terms of user experience. For example, bandwidth-intensive
applications such as YouTube require high speed connec-
tions, whereas interactive applications such as Skype video-
calling are additionally sensitive to network latency.

Traditional Key Performance Indicators (KPIs) reflect-
ing network performance include network throughput, la-
tency, packet loss, etc. In particular, downlink throughput
is the most widely used and accepted metric in the oper-
ational field for network performance monitoring and re-
porting. Also in the case of cellular ISPs quality bench-
marking, network performance drive tests report downlink
throughput as the most relevant KPI revealing the health
and performance of a cellular network. And even more, both
end-customer Internet service offers as well as government
regulatory-bodies targets are strongly – or even solely, based
on downlink throughput.

When it comes to the experience of the end-customer,
it is well recognized within the research community that
application-layer metrics such as page load times in web-
browsing, the number of re-buffering events in video dis-
tribution, the waiting times in file sharing, etc. define the
key features to understand the network performance from
a QoE perspective. However, monitoring such features in a
large-scale basis is highly challenging and arduous in current
networks. With the term large-scale we refer to the passive
observation of the traffic generated by all the customers of
an ISP – or at least a large fraction of them. Passive moni-
toring at the large-scale is typically performed in-network at
the access and/or at the core of the ISP, and current massive
adoption of end-to-end encryption (e.g., HTTPS adoption
by YouTube, Facebook, etc.) makes it very difficult – or even
not possible, to passively monitor application-layer metrics
on those vantage points. For this reason, the tendency nowa-
days is to additionally monitor customers traffic directly at
their end devices [1], to directly capture application-layer
metrics as well as other relevant contextual information.
End-device based monitoring is performed in a crowdsourc-
ing basis, relying on the willingness of the end-user to install
and run monitoring applications on their own devices. As
such, end-device monitoring is less scalable (i.e., captures
a small share of users) and less reliable (e.g., the vantage
point is not under the control of the ISP) than in-network
monitoring.

In this paper we take a practical approach to the prob-
lem of large-scale QoE monitoring in operational networks:



we estimate the QoE of popular end-customer services in
both cellular and fixed-line networks, using as input the most
readily available KPI, the Average flow Downlink Through-
put (ADT). By doing so, we expect that our results would
improve the visibility of operators on the QoE of their cus-
tomers, without doing any modifications to their current
standard monitoring systems. To achieve the goal, we rely
on models mapping ADT to QoE for different services and
different types of networks and devices, obtained from multi-
ple subjective QoE lab tests we have performed in the past.
QoE is service-dependent, thus it is not possible to build
models mapping ADT to QoE for each of the potential ser-
vices consumed by the customer. However, it is well known
that a small number of services are responsible for the largest
share of the traffic and users in any network – the mice and
elephants phenomenon also applies to Internet services [2],
thus limiting the study to the most popular services already
gives the operator a pretty good estimation of the QoE un-
dergone by its customers. We therefore study the three most
popular services in western countries for both cellular and
fixed-line networks: YouTube, Facebook, and WhatsApp.

We apply the derived mappings to large-scale flow mea-
surements collected at both cellular and fixed-line EU ISPs
in 2013 and 2014. The complete dataset consists of a full
week of flow measurements from each network, aggregating
thousands of customers and resulting in tens of millions of
flows. Even if the QoE results provided by our study are
indicative – we do not have the ground truth in terms of
QoE for all the monitored customers, our estimations sug-
gest that: (i) up to 30%/33% of the monitored flows might
result in sub-optimal QoE (i.e., MOS scores below 3) for
YouTube in cellular/fixed-lined networks respectively, (ii)
this fraction increases to almost 40% in the case of both
Facebook and media sharing through WhatsApp in the mon-
itored cellular network, and (iii) bad quality events are likely
to occur for about 15% and 18% of the monitored YouTube
flows (cellular and fixed-line respectively), 20% of the Face-
book flows and 25% of the WhatsApp flows. As we explain
next, the proposed study is conservative and estimations are
based on worst-case scenarios; still, our results evidence that
poor quality events are far from negligible in both fixed-line
and cellular networks for the studied services, pointing to the
strong need of better network monitoring and traffic analysis
KPIs reflecting the experience of customers in operational
networks.

The main contribution of our study is to scale subjective
QoE studies out of the lab to enhance the visibility of ISPs
on the performance of their operational networks. We use
practical, readily available and well understood downlink
throughput-based KPIs to bridge large-scale network mea-
surements to end-customer experience. We provide an as-
sorted set of QoE mapping models and KPIs for different ser-
vices, different specific contents (e.g., SD and HD video) and
different end-devices (e.g., smartphone, PC/laptop). We
collect and analyze large-scale measurements in two differ-
ent operational networks. Finally, we discuss limitations of
our approach in the concluding remarks.

The remainder of the paper is organized as follows: Sec.
2 presents an overview of the related work on QoE for the
studies services and QoE in operational networks. Sec. 3
presents and discusses different models and KPIs mapping
ADT to QoE, derived from past QoE subjective tests and
recent updates. Sec. 4 describes the collected network mea-

surements and presents the results obtained by combining
the QoE models with the network measurements. Finally,
Sec. 5 concludes this work, pointing to some limitations of
our study and future work.

2. RELATED WORK
The study of the QoE requirements for services as the ones

we target in this paper has a long list of fresh and recent ref-
erences. A good survey on the QoE-relevant performance of
cellular networks when accessing many different web and
cloud services is presented in [12]. Among them, YouTube
deserves particular attention, due to its overwhelming pop-
ularity. Previous papers [3, 13–15] have shown that stalling
(i.e., stops of the video playback) and initial delays on the
video playback are the most relevant KPIs for QoE in stan-
dard, non-adaptive HTTP video streaming. In the case
of adaptive streaming (DASH), a new KPI becomes rele-
vant in terms of QoE: quality switches. Authors in [4] have
shown that quality switches may have an important impact
on QoE, as they increase or decrease the video quality dur-
ing the playback. However, in [11] we recently found that
QoE for YouTube in modern smartphones is actually slightly
impaired by resolution switches, as the size of the screens is
rather small and users are much used to watching YouTube
in such devices. A comprehensive survey of the QoE of adap-
tive streaming can be found in [16].

The study of QoE in Facebook has received less attention
in the past [3], but some newer studies are available, spe-
cially for the case of Facebook’s QoE in smartphones [1, 7].
WhatsApp is a new service and its study has been so far
quite limited. In [18] we have recently addressed the char-
acterization of its traffic, including a QoE outlook.

When it comes to assessing the performance of opera-
tional networks, there is a growing number of papers push-
ing QoE concepts and methodologies within the analysis.
Video streaming services are by far the mostly analyzed
[6, 8–10, 20]. In [8], authors study the problem of network
buffers dimensioning for optimal QoE in UDP video stream-
ing. In [20] we introduced the first on-line, large-scale mon-
itoring system for assessing the QoE of YouTube in cellular
networks using passive, in-network measurements only. Dif-
ferent papers [6, 9, 10] study the problem of QoE and user
engagement prediction for HTTP video streaming in both
fixed-line and cellular networks. Particularly in cellular net-
works, recent papers tackle the problem of modeling QoE for
Web browsing [5] and QoE for mobile apps [19] using pas-
sive in-network measurements, radio measurements and in-
device measurements, applying machine learning techniques
to obtain mappings between QoS and QoE.

There has also been a recent surge in the development
of tools for measuring QoE and network performance on
mobile devices: some examples are Mobiperf1, Mobilyzer
[23], the Android version of Netalyzr [21], and our recent
YoMoApp tool for YouTube QoE in smartphones [22]. In
a similar direction, authors in [7] introduced QoE Doctor,
a tool to measure and analyze mobile app QoE, based on
active measurements at the network, application, and user-
interface levels.

1Measuring Network Performance on Mobile Platforms,
http://mobiperf.com
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Figure 1: QoE in YouTube 360p – PC/laptops.

3. QOEMODELS
We have conducted a series of subjective QoE tests for

the studied services in previous work [1, 3, 12], both in con-
trolled lab settings as well as through field trials. In this
section we revise some of the obtained results, analyze their
main QoE characteristics and provide some updates. In
particular, we focus on those studies analyzing the depen-
dence of QoE on downlink throughput, to further apply the
obtained results to the large-scale network measurements.
QoE is evaluated along two dimensions: overall quality and
acceptability. The overall quality is rated according to a
standard Mean Opinion Score (MOS) scale [12], where 1
means bad and 5 means excellent. Acceptability is a binary
indicator, stating whether the user would be willing to con-
tinue using the service under the corresponding conditions
or not. We split the QoE results for two different classes of
end-devices: (i) PC/laptops (YouTube only) and (ii) smart-
phones (YouTube, Facebook and WhatsApp). In Sec. 4 we
apply the QoE mappings coming from (i) to measurements
from the fixed-line network, whereas we use those mappings
coming from (ii) on the cellular network measurements.

3.1 QoE in YouTube
In the case of YouTube QoE for PC/laptops, we resort to

the results in [3,12], which were obtained through subjective
field trial testing. Field trial testing places the end-user as
close as possible to his daily usage context (location, own
device, preferred content, etc), providing highly representa-
tive results. In these specific tests, 33 participants watched
their preferred YouTube videos in their own laptops at their
premises for a time span of about two weeks, and rated
the undergone experience. Downlink traffic was passively
modified through traffic shaping, done at the core of the
network – participants were provided with specific Internet
access connections for the study. Tests were performed in
2012, using the default video resolution set by the YouTube
player, which corresponded to 360p resolution by the time
of the testing.

Fig. 1 reports the (a) overall quality and (b) acceptance
rate as a function of the downlink bandwidth (DBW) config-
ured in the downlink traffic shaping. A DBW of about 750
kbps is sufficient to achieve a 90% share of positive accep-
tance with good QoE, whereas QoE degrades rapidly for a
DBW below 0.5 Mbps. QoE saturation starts at 1 Mbps, as
the QoE gain is marginal even when quadrupling the DBW.

In [3, 20] we introduced and evaluated an intuitive and
very practical traffic flow-based monitoring KPI reflecting
the QoE of non-adaptive HTTP video streaming, the ratio
β = ADT/V BR, where ADT corresponds to the average
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Figure 2: β = ADT/VBR as a KPI reflecting user
experience. Users have a much better experience
when β > 1.25 – no stalling events. We refer to this
+ 25% over-provisioning as the β rule.

flow downlink throughput and VBR to the video bitrate.
Fig. 2(a) depicts the relationship between QoE and β for the
aforementioned field trial testing. Users have a much better
experience when β > 1.25, which corresponds to videos with-
out stalling. Using measurements and results from [20] – in
a nutshell, we measure the number of stallings in YouTube
videos streamed to a DBW-controlled host, Fig. 2(b) ac-
tually shows that video stalling does not occur when the
DBW is about 25% higher than the VBR. On the contrary,
the number of stallings tends to be very high when β < 0.75.

Both the DBW-QoE thresholds coming from Fig. 1 as
well as the β KPI are applied to the fixed-line network traf-
fic traces, collected back in 2013. In Sec. 4 we verify that the
monitored videos correspond mostly to YouTube 360p con-
tents. In addition, the adoption of HTTPS by YouTube in
2013 was still limited, thus we could directly observe the ex-
act VBR values – needed to compute β, by DPI techniques.

3.2 QoE in YouTube Mobile
In [1] we performed a series of subjective QoE lab tests

in modern, 5” smartphones, for YouTube, Facebook and
WhatsApp – among other services. A total of 52 partici-
pants accessed these services in smartphones connected to a
fully controlled access network, where different DBW values
were set. In YouTube we tested both DASH and non-DASH
contents, the latter considering the highest available reso-
lution for standard 5” smartphones, i.e., HD 720p contents.
For current study, and considering that the cellular network
measurements were collected in 2014, we extended the ob-
tained results through additional subjective QoE tests to
also cover SD contents in smartphones, including 360p and
480p resolutions. To get a clear idea of the typical VBR val-
ues of different YouTube contents and different encodings –
including DASH and non-DASH streaming, Tab. 1 summa-
rizes the average VBR values for the most popular YouTube
videos – w.r.t. number of views, as declared at the YouTube
video gallery website. For different video resolutions, the
table reports the targeted device type (according to screen
size), and the average VBR values available at YouTube for
different codecs, including DASH ACV/H.264 and DASH
VP9, as well as non-DASH codes. The last column of the ta-
ble reports the β-based (i.e., 25% over-provisioning), ideally
minimum ADT requirements to avoid video stalling, taking
a conservative approach in which contents are assumed to
be non-DASH – indeed, note that non-DASH codecs result
in the highest VBR values.



Table 1: Average video bitrates for YouTube popular contents – different codecs/streaming strategies.

Quality Device Type DASH AVC DASH VP9 non-DASH β–approach (+25%)

240p Smartphone < 4.5” 250 kbps 130 kbps 275 kbps 340 kbps
360p Smartphone < 4.5” 380 kbps 250 kbps 570 kbps 710 kbps
480p Smartphone, Tablet 700 kbps 800 kbps 850 kbps 1060 kbps
720p Smartphone 5”, Tablet, Laptop/PC 1400 kbps 1000 kbps 2000 kbps 2500 kbps
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Figure 3: QoE in YouTube mobile – smartphones,
for different video resolutions.

Fig. 3 reports the overall quality MOS results for YouTube
mobile considering three different video resolutions and non-
DASH coding: 360p, 480p and 720p. Good QoE is attained
for a DBW of 0.5, 1 and 2 Mbps for the three video resolu-
tions respectively, and quality saturation is clearly observed
for 360p videos after 1 Mbps. As expected from the average
VBR values reported in Tab. 1, optimal QoE is obtained for
DBW above 1, 2 and 4 Mbps respectively. The DBW thresh-
old of 0.5 Mbps is not low enough to identify bad quality in
360p videos, but both 480p and 720p contents are heavily
impaired at this DBW value. We stress again the fact that
these QoE thresholds are conservative, as we are considering
the highest VBR values – non-DASH content (cf. Tab. 1).

3.3 QoE in Facebook Mobile
Testing Facebook from a QoE perspective is challenging,

as the application consists of multiple sub-applications and
contents, which in most cases generate very different traffic
patterns. For this reason, and based on our original expe-
riences [3], we evaluate specific Facebook sub-applications
which are either used by most users, or that cause a higher
load on the network. Thus, participants were instructed to
access the application with a specific user account, browse
the timeline of this user – composed of pictures and assorted
multimedia contents, and browse through specific photo al-
bums created for this user. Such an approach tries to cap-
ture an average usage of Facebook besides simple message
posting. Fig. 4 reports the results obtained in the Facebook
tests for different DBW configurations, considering both (a)
the overall quality and (b) the acceptance rate. A DBW of
0.5 Mbps is not high enough to reach full user satisfaction
in Facebook mobile for Android devices, as participants de-
clared a fair quality with an acceptance rate of about 80%.
Still, a DBW of 1 Mbps results in good overall quality, and
QoE saturation is already observed for higher DBW values.
Full acceptability is attained for a 2 Mbps DBW allocation.
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Figure 4: QoE in Facebook Mobile.
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Figure 5: QoE in WhatsApp.

3.4 QoE in WhatsApp
We evaluate the most bandwidth-demanding type of traf-

fic for WhatsApp, which corresponds to multi-media data
sharing – chat generates negligible traffic, and the What-
sApp calling service was still unavailable in 2014, when the
large-scale cellular traffic measurements were collected. Par-
ticipants worked in couples and exchanged specific video files
of fixed size (i.e., 5 MB), and the participant downloading
the video file was the one providing a QoE evaluation, based
on the experienced waiting time. Fig. 5 shows the QoE re-
sults for different DBW values. Users tolerate WhatsApp
downloads with a good overall experience and high accept-
ability as long as the DBW is above 2 Mbps, but experi-
ence heavily degrades for slower connections, resulting in
bad quality for a DBW of 0.5 Mbps. A DBW of 1 Mbps
defines the QoE limit to fair quality. Given the file size used
in the tests, there is a clear saturation effect after 4 Mbps, as
QoE does not increase for higher DBW values. Note however
that these results are partially biased by both the specific
file size used in the tests and the participants task briefing
– an end customer might tolerate longer waiting times if the
multi-media download does not represent a hot content or
an interactive exchange. Still, these results and thresholds
are highly similar to those we have obtained in [12] for the
specific case of cloud file sharing, suggesting a correct trend.
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Figure 6: YouTube QoE in a fixed-line network, including both ADT and β = ADT/VBR as KPIs.
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Figure 7: Direct application of DBW-QoE mapping functions to the fixed-line network measurements.

4. QOE IN OPERATIONAL NETWORKS
In this section we use the previously presented QoE re-

sults to asses the QoE-relevant performance of operational
fixed-line and cellular networks, relying on large-scale flow
throughput measurements collected in 2013 and 2014. Next
we describe the collected measurements and perform a QoE-
based evaluation of both networks.

4.1 Data Description
The evaluation of the fixed-line network is performed on

top of YouTube flows collected by mid-2013 at a link of a
European fixed-line ISP aggregating 20,000 residential cus-
tomers who access the Internet through ADSL connections.
The dataset spans a full week and consists of several mil-
lions of YouTube video flows. For each YouTube flow, the
dataset includes the achieved ADT along with additional
meta-data describing the video content – in particular, the
average VBR and the specific video format, through its itag
code. The itag is an undocumented code used internally by
YouTube to identify video formats.

The analysis of the cellular network is performed on top
of flow measurements collected at the core of a European
national-wide cellular ISP during one week in early 2014.
Flows are collected directly at the well-known Gn interface.
The complete dataset consists of several tens of millions of
YouTube, Facebook and WhatsApp flows. Only the ADT
value is reported for each flow in this network. In both cases,
user related data are fully anonymized.

4.2 QoE in a Fixed-line Network
Fig. 6(a) depicts the distribution of the YouTube flow

ADT values. Given that the fixed-line dataset includes also
the VBR value for each video flow, Fig. 6(b) additionally

reports the distribution of the β = ADT/VBR metric. Be-
fore analyzing both distributions, Fig. 6(c) and Fig. 6(d)
characterize the specific YouTube video contents watched in
this network by 2013. Fig. 6(c) confirms that more than
90% of the video flows have itag = 34, which corresponds to
360p, FLV videos; in addition, Fig. 6(d) shows that almost
80% of the collected flows have an average VBR below 600
kbps. We can therefore apply directly the QoE results pre-
sented in Sec. 3.1, which were obtained specifically for 360p
YouTube videos.

According to Fig. 6(a), about 55% of the flows achieve an
ADT above 0.5 Mbps, resulting in good QoE. However, as
much as 33% of the flows show an ADT below 400 kbps, po-
tentially resulting in poor QoE. Bad quality is most surely
occurring for about 18% of the flows, which achieve an ADT
below 250 kbps. Finally, only 35% of the flows achieve an
ADT above 700 kbps, which would result in optimal quality
according to the 25%+ β over-provisioning rule. Note that
700 kbps corresponds exactly to the DBW settings recom-
mended by large video providers for 360p videos [17]. The
picture completes with the ADT values obtained by flows
with β < 1.25 (dotted curve in Fig. 6(a)), which in all cases
is strictly below 700 kbps, further confirming the validity of
the β over-provisioning rule. When further analyzing the
QoE from the β metric perspective, Fig. 6(b) shows that
60% of the flows have a β > 1.25, resulting in optimal qual-
ity settings. The difference with the predicted 35% of flows
with ADT > 700 kbps from Fig. 6(a) comes from the vari-
ability in the VBR values. Indeed, β is a better QoE indica-
tor than ADT, as it considers the particular VBR value of
each flow. Still, about 32% of the flows have β < 1, resulting
in potentially poor quality, and about 18% have β < 0.75,
resulting in bad quality. These results are the same as those
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(a) ADT in YouTube.
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(b) ADT in Facebook.
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Figure 8: Average flow Downlink Throughput in a cellular network for YouTube, Facebook and WhatsApp.

predicted from Fig. 6(a) using the ADT, suggesting that
poor and bad quality flows can be properly analyzed from
an ADT perspective.

A final exercise we perform is that of directly translat-
ing the ADT values to quality MOS scores, by extract-
ing a simple model from the QoE subjective results. Fig.
7(a) presents a basic curve-fitting approach to map the re-
sults presented in Fig. 1 to MOS scores. As usual in QoE
modeling [12, 13, 15], we employ log-fitting curves to map
DBW to MOS: the resulting model takes the form MOS =
a× log(b×DBW)+ c, with {a, b, c} = {1.75, 2, 3} for DBW
≤ 1 Mbps, and {a, b, c} = {0.15, 2, 4.1} for DBW > 1 Mbps.
Fig. 7(b) depicts the distribution of the mapped ADT to
MOS results. Results are much more graphically appealing
from a QoE-analysis perspective, as they directly show the
predicted QoE values in terms of MOS scores. Fig. 7(c)
complements this QoE picture, showing the specific accep-
tance ratios for each of the QoE levels, using the field trial
results from Sec. 3.1. As before, we can see that about 55%
of the flows have a MOS score > 3, resulting in good QoE
and high acceptance rate – below 80% in the worst case.
About 33% of the flows have a MOS < 2.5 (i.e., poor qual-
ity), and about 18% of the flows have MOS < 2, resulting
in bad quality.

4.3 QoE in a Cellular Network
Fig. 8 reports the ADT values observed in the moni-

tored cellular network for (a) YouTube mobile, (b) Face-
book mobile and (c) WhatsApp. Note that ADT values
are computed only for flows bigger than 1 MB in Facebook
and WhatsApp, to obtain more reliable results – computing
ADT for small flows is highly error-prone. Let is begin by
the QoE of YouTube. Contrary to previous fixed-line analy-
sis, in the YouTube mobile dataset we do not have access to
the VBR values, thus we can not resort to a β-based anal-
ysis. In addition, the evaluation from an ADT perspective
becomes more challenging in this case, as we do not know
the specific video resolutions of the monitored flows. How-
ever, given that measurements were collected in early 2014,
we expect that the largest share of videos watched in this
network would correspond to 360p and 480p resolutions, us-
ing smartphones – HD content support for YouTube mobile
became massively available in late 2014. Under such an as-
sumption, and considering the QoE results of Fig. 3, Fig.
8(a) shows that 55% of the flows have an ADT > 1 Mbps,
resulting in good quality for both 360p and 480p resolutions.

About 30% of the flows have an ADT below 700 kbps, which
would potentially result in sub-optimal quality, specially for
480p videos. Finally, about 15% of the flows have an ADT
< 250 kbps, which would most probably result in bad QoE,
even for 360p videos watched in small-screen smartphones,
according to the expected VBR values in Tab. 1.

In the case of Facebook, Fig. 8(b) shows that about 40%
of the flows achieve an ADT < 0.5 Mbps, resulting in sub-
optimal QoE, whereas 25% of the flows achieve an ADT >
1 Mbps, which corresponds to potentially excellent quality
and full acceptability. The DBW-QoE mappings provided
in Fig. 4 do not offer high visibility in the bad QoE region,
which is located for some DBW value around 250 kbps –
based on simple log-extrapolation. Still, we can estimate
that about 20% of the flows result in bad QoE, with an
ADT < 250 kbps.

Finally, when it comes to WhatsApp, Fig. 8(c) shows the
distribution of ADT values for flows bigger than 1 MB, as
well as for flows with size between 4 MB and 6 MB. Recall
that the QoE results in Fig. 5 correspond to 5 MB files,
therefore this discrimination. About 60% of the flows in the
size range [4, 6] MB achieve an ADT > 1 Mbps, resulting
in good quality and high acceptability. Download waiting
times become slightly annoying for about 10% of the flows –
0.5 Mbps ≤ ADT ≤ 1 Mbps, whereas bad QoE potentially
occurs for about 20% to 25% of the flows, which achieve an
ADT < 250 kbps.

5. CONCLUDING REMARKS
QoE is becoming increasingly relevant for ISPs, and there

is a growing number of research studies focusing on the anal-
ysis of operational networks from a QoE perspective. In
this paper we have proposed a simple yet powerful approach
to shed light on the QoE undergone by customers of both
fixed-line and cellular networks, using standard and readily
available throughput measurements collected in operational
networks. Quite surprisingly, our results confirm that sub-
optimal and bad QoE occurrences are far from negligible
in both networks for highly popular end-customer services,
with about 30% of QoE-impaired traffic flows. This is highly
relevant for ISPs, which might not have a clear overview on
their performance when it comes to the experience of their
customers.

The presented assessment methodology is technically sound
and relies on real QoE subjective measurements, which pro-
vide a solid ground basis for interpretation of end user ex-



perience. Still, as we claimed throughput the paper, there
are multiple limitations on our study, coming both from the
QoE modeling perspective as well as from the large-scale
in-network measurements. Firstly, the QoE results used as
input depend on the specific characteristics of the analyzed
contents, which are not easy to get from in-network measure-
ments, as explained in Sec. 1. Whereas we do a per-content
discrimination for the YouTube analysis at the fixed-line net-
work, our predictions are potentially less accurate for the
cellular network measurements, where contents are harder
to discriminate from the available data. Still, recall that
we have considered worst-case QoE predictions in Sec. 4.3,
assuming non-DASH contents in YouTube, and higher than
average volume flows for Facebook and WhatsApp. Sec-
ondly, the QoE mappings presented in Sec. 3 consider the
relationship between MOS scores and the DBW values set at
the traffic shapers, and not the particularly measured flow
ADT values. Hence, predictions based on such mappings of-
fer an upper bound to QoE, as in general, ADT values would
be lower than the DBW ones. In any case, given that we deal
with services and/or specific tasks generating high volume
flows, we expect that QoE underestimations would be lim-
ited. Finally, MOS predictions done by modeling the QoE
in Fig. 7 correspond to average QoE values, without consid-
ering the confidence intervals observed in the lab tests. This
also applies to the evaluations done for the other services,
where we have applied QoE and ADT thresholds based on
the reported average MOS scores.

To conclude, we stress once more that accurate QoE es-
timation requires measurements and KPIs collected at mul-
tiple levels of the communications stack, including network,
transport, application and end-user layers. Still, an edu-
cated guess on QoE can be done based on simple throughput
measurements, as we have shown in this paper.
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