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Abstract 11 

Ground Source Heat Pump (GSHP) is a low carbon heating and cooling technology which can make an 12 

important contribution for reaching the ambitious CO2 reduction targets set by the European Union. The 13 

economic and technical suitability of this technology strongly depends on the thermal and hydrogeological 14 

properties of the ground at the installation site, which need to be assessed in detail. A common indicator 15 

adopted to define such suitability is the geothermal potential, i.e. the thermal power that can be 16 

exchanged with the ground through a GSHP with a certain setup. In this paper, we present the assessment 17 

and mapping of the shallow geothermal potential in the province of Cuneo, a 6,900 km2 wide county in NW 18 

Italy. Geological, hydrogeological and climatic information are collected and processed to estimate the 19 

relevant ground properties. The shallow geothermal potential is then estimated with different methods for 20 

closed-loop installations (Borehole Heat Exchangers, BHEs) and open-loop installations (Ground Water Heat 21 

Pumps, GWHPs) systems in order to identify the most suitable areas for different technologies. The maps of 22 

the geothermal potential are an important planning tool for the installation of GSHPs and for the growth of 23 

this renewable energy source. 24 

Keywords: geothermal potential; Ground Source Heat Pump; Borehole Heat Exchanger; Ground Water 25 

Heat Pump; Cuneo; heat pump 26 

1 Introduction 27 

The European Union recently set three ambitious objectives for its energy policies: by the year 2020, the 28 

total energy consumption and the Greenhouse Gas emission have to be cut by 20%, and 20% of the total 29 
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energy consumption should be covered by Renewable Energy Sources (RES) [1].  Italy has already achieved 30 

its national target in 2014, with 38.6% of the electricity and 18% of the heat production provided by RES [2], 31 

one of the best performances among EU Member States [1]. To achieve further improvements in alignment 32 

with Roadmap 2050 [3], efforts should now concentrate on heat production, for which the most adopted 33 

RES are ligneous biomass (68.9%) and heat pumps (25.8%) [2]. A further expansion of biomass heating is 34 

hardly sustainable, due to its impact on air quality [4, 5]. On the other hand, heat pumps have zero 35 

emissions on site and reduce GHG emissions up to 90% compared to fossil fuel burners, depending on the 36 

energy mix adopted for the production of electricity [6, 7]. In Italy, about 60% of the total production of 37 

electricity is covered by fossil fuels, with an emission factor of 326.8 g CO2/kWh [8]; the consequent 38 

reduction of CO2 production, according to Saner et al. [7], is of about 50% compared to a methane boiler. 39 

Heat pumps are divided into two main categories: Air Source (ASHP) and Ground Source (GSHP). The main 40 

advantage of GSHPs compared to ASHPs is the higher COP, thanks to the lower temperature difference 41 

between the heat source (ground or groundwater) and sink (heating/cooling terminals) [9]. GSHPs have 42 

proved to be a cost-effective solution for a wide range of buildings, despite the additional expense for the 43 

installation of the ground heat exchangers .  44 

GSHPs in Italy still account for only 0.1% of the total thermal energy production [2]. However, a 45 

continuously increasing trend has been observed in recent years (+13% in 2013), and a strong rise is 46 

expected for the next 10-15 years [10, 11]. The high cost of installation is widely acknowledged as a limiting 47 

factor for the increase of heat pump installations and, particularly, for geothermal heat pumps. In Italy, 48 

another major barrier is the high cost of electricity for domestic supply, compared to the relatively low cost 49 

of methane [12]. As a consequence, compared to other countries, a lower saving margin is achieved for 50 

heat pumps against fossil-fuelled boilers. The problem of the higher cost of installation has been addressed 51 

introducing a strong tax refund (65%) on energy retrofit works of existing buildings, among which GSHPs 52 

are included [13].  53 

The lack of homogeneous and targeted regulation is another barrier for the growth of shallow geothermal 54 

energy in Italy  [14]. This absence of regulation has been partially filled with voluntary schemes and 55 

standardization [15], such as the recent UNI standards for GSHPs [16-18].  56 

A final problem is that the technology and the potential of shallow geothermal energy are still little known 57 

in most EU countries. A number of EU-funded projects have been conducted in recent years to disseminate 58 

knowledge on GSHPs with training events, workshops, and case studies [19-21]. These projects raised the 59 

different stakeholders’ awareness of the potential applications of shallow geothermal energy.  60 

However, the suitability of different territories for GSHPs needs to be studied on the small scale, since it 61 

depends on site-specific parameters and on the technology adopted [22-24]. A commonly adopted 62 

indicator is geothermal potential, which is defined in different ways, but can generally be identified as the 63 
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capacity of the ground/aquifer to provide heating and/or cooling [25-31]. Some projects have already been 64 

conducted in Italy to assess shallow geothermal potential. Busoni et al. [26] assessed and mapped the 65 

suitability for the installation of BHEs of the province of Treviso (Veneto, NE Italy). Their work took into 66 

account ground thermal conductivity, geothermal gradient and groundwater velocity. The VIGOR project 67 

[28, 29] addressed both shallow and deep geothermal energy potentials of four regions in Southern Italy 68 

(Campania, Apulia, Calabria and Sicily). In situ measurements of the thermal conductivity of rocks [28] were 69 

conducted over the mapped territory, and the potential for GSHPs was mapped for both heating and 70 

cooling purposes [29]. Gemelli et al. (2011, [30]) assessed the shallow geothermal potential of the Marche 71 

region (Central Italy), evaluating the required BHE length to cover a standard thermal load. Fewer studies 72 

have been performed for open loop Ground Water Heat Pumps (GWHPs), such as the works of Arola et al. 73 

in Finland [25]. Lo Russo and Civita provide an overview of the hydrodynamic properties of shallow 74 

unconfined aquifers in Piedmont (NW Italy) [31]. 75 

The aforementioned studies provide a methodological basis for the work presented in this paper. Here, the 76 

shallow geothermal potential in the province of Cuneo (Piedmont, NW Italy) is assessed and mapped. The 77 

geological and hydrogeological setting of this territory is studied, and a conceptual model is provided to 78 

correlate this setting with ground thermal parameters. These are the input for the estimation of the closed-79 

loop geothermal potential with model G.POT [27]. The geothermal potential for open-loop systems was 80 

evaluated by estimating the maximum extractable and injectable flow rates of the shallow aquifers of the 81 

Cuneo plain, based on a dataset of well tests results. Conclusions are drawn on the suitability of different 82 

areas of the province of Cuneo for closed and open loop geothermal heat pumps. 83 

2 The territory surveyed 84 

The province of Cuneo is a 6,900 km2 wide area located in the south-western edge of Piedmont. It can be 85 

subdivided into three main parts (Fig. 1): the Alpine valleys (Cotian and Maritime Alps) on the western and 86 

southern edges, covering about 51% of the total surface, the plain in the centre of the Province (22%) and 87 

the hills of Langhe and Roero in the East part (27%).  88 
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    89 

Fig. 1 – Map of the province of Cuneo. Scale: 1:1,500,000. 90 

The total population is 592,060 inhabitants, of which 35% live in the county seat Cuneo (56,113 inhabitants) 91 

and 6 other main towns in the plain (Alba, Bra, Fossano, Mondovì, Savigliano and Saluzzo) of 15,000 to 92 

30,000 inhabitants. The rest of the population mostly lives in rural villages on the plain, while a small part 93 

lives in the mountains and the hills. 94 

In this chapter, the province of Cuneo is described from the climatic, geologic and hydrogeological points of 95 

view, and data is provided for the assessment of the shallow geothermal potential. 96 

2.1 Climate 97 

Cuneo is characterized by a continental climate with a cold winter and a mild summer, as reported in Fig. 98 

2A. Although the distance from the sea is quite short (30÷100 km), a weak influence of the Mediterranean 99 

sea is observed, due to the isolating effect of the Alpine chain. The total rainfall varies widely, from 100 

700÷900 mm/y in the hills of Langhe and Roero to 900÷1200 mm/y in the plain and in the mountains [32]. 101 

The annual mean air temperature is strongly correlated with the ground elevation, as shown in Fig. 2B, 102 

ranging from -3.1°C to +13.2°C [33]. The climate of Cuneo and its province is therefore one of the coldest in 103 

Italy, thus influencing the distribution of the heating degree-days (Italian DPR 412/1993 [34]). 66% of the 104 

population lives in climate zone E (2400÷3000 heating DD) and 34% lives in climate zone F (>3000 DD). As a 105 

consequence, the expense for house heating is one of the highest in Italy, while almost 90% of homes have 106 

no chilling plant [35]. 107 
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  108 

Fig. 2 – Climate of the province of Cuneo: (A) monthly mean temperatures in different locations; (B) correlation between 109 
elevation and mean annual air temperature. 110 

 111 

  112 
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2.2 Geology 113 

The mountainous portion of the territory surveyed is located on the boundary between the Helvetic and 114 

the Penninic domains of the Alps [36] and, according to the geological map of Piedmont [37] reported in 115 

Fig. 3, it is mainly composed of gneiss, and, to a lesser extent, limestone, calceschysts, serpentinites, 116 

sedimentary rocks (conglomerates, sandstone, gypsum, consolidated clays) and granite. 117 

The plain is composed of locally cemented sand and gravel sediments deposited in the Holocene (12000 118 

years BP), with small loamy and clayey lenses. This alluvial cover lies on the Tertiary Piedmont Basin, 119 

composed of marine sediments settled during the Pliocene and the Villafranchian (5÷1 Ma BP) [31, 38].  120 

The East part of the province of Cuneo is occupied by the hills of the Langhe, on the right bank of the 121 

Tanaro river, and of Roero, on the left bank. These hills were formed by the local uplifting of the Tertiary 122 

Piedmont Basin (Langhian, 16÷13 Ma BP) [39] and the excavated by the tributaries of the Tanaro river after 123 

the capture of this watercourse, occurred in the Riss-Wurm interglacial period (250,000 years BP). Langhe 124 

hills are mainly composed of Miocene marls and sandstones (23÷5 Ma BP), while Roero hills are composed 125 

of fine sands and clays deposited during the Pliocene (5÷2.5 Ma BP).  126 

 127 

Fig. 3 – Geological map of the province of Cuneo (adapted from ARPA Piemonte [40]). Scale: 1:1,000,000. 128 

 129 
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2.3 Hydrogeology 130 

The capture of Tanaro affected not only the morphology of a large part of the territory surveyed, but also 131 

the underground water circulation. Indeed, the deepening of the river bed of Tanaro’s tributaries 132 

transformed them into hydraulic divides of the alluvial unconfined aquifer, which is composed of three 133 

main portions [32] (Fig. 4): the Left Stura Bank and the Right Stura Bank, separated by the river Stura, and 134 

the Tanaro Valley along the river.  135 

The Left Stura Bank is a large aquifer (1117 km2) in the Western sector of the plain. The subsurface flow is 136 

directed from SW to NNE (Fig. 4A,) and the hydraulic gradient gradually diminishes from 10‰ on the West 137 

and South edges to 2‰ in the North part of the plain. The transmissivity is very high (up to 0.1 m2s-1) in the 138 

centre and diminishes on the eastern edge, with a concurrent reduction of the saturated thickness (Fig. 4B) 139 

of the aquifer [31]. The depth to water table (Fig. 4A) is below 10 m in the central part of the plain, while 140 

higher values close to the East and West boundaries, up to 70 m in the South-Western portion. 141 

The Right Stura Bank aquifer (523.5 km2) is divided into a number of sub-sectors due to the influence of the 142 

creeks Pesio, Ellero and other smaller water courses [38]. On a narrow strip along the Stura river, the 143 

average transmissivity is quite high (5·10-3÷5·10-2 m2s-1) [31], while in the rest of this area is much lower 144 

(<10-3 m2s-1). The saturated thickness is about 50 m in the SW portion along the Stura and it decreases to 145 

5÷10 m elsewhere, with a sharp transition; a similar trend is observed for the depth to water table. 146 

The narrow aquifer of Tanaro Valley is scarcely productive [32] and, together with the other small aquifers 147 

located in the valleys and on the Langhe and Roero hills, it is not considered in the analysis of the open-loop 148 

geothermal potential. 149 

3 Shallow geothermal potential  150 

The spatial distributions of thermal and hydrogeological parameters, reported and described in the 151 

previous chapter, were used to assess the techno-economic feasibility of shallow geothermal systems in 152 

different parts of the province of Cuneo. The geothermal potential has different definitions depending on 153 

the technology adopted, i.e. closed-loop (BHE) or open-loop (GWHP).  154 

For closed-loop systems it is defined, according to G.POT [27], as the yearly average thermal load that can 155 

be exchanged with the ground by a BHE with a length 𝐿, coping with a minimum/maximum temperature 156 

threshold of the heat carrier fluid. A limit is therefore imposed to the thermal alteration of the heat carrier 157 

fluid, which mostly depends on the thermal parameters of the ground and, to a lesser extent, on the 158 

characteristics of the BHE itself [22].  159 

On the other hand, heat transport in GWHPs mostly depends on the hydrodynamic parameters of the 160 

aquifer, while thermal conductivity has a minor impact on the heat diffusion into the aquifer [41]. The 161 

efficiency of these systems can be impaired by thermal recycling, which should be considered in the design 162 
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phase using analytical or numerical models [24, 42]. Another important aspect of the design of GWHPs is 163 

the propagation of thermal plumes downstream the injection well, with a negative impact on drinking 164 

water wells or other geothermal installations. These issues are more likely in large cities with a high density 165 

of GWHPs [43, 44], rather than in a scarcely populated territory such as the province of Cuneo. Both the 166 

issues of thermal recycling and thermal plume interference should be evaluated with consideration to 167 

specific plants and setups, and hence a large-scale assessment is not feasible. On the other hand, the 168 

alteration of hydraulic heads due to water extraction and injection mainly depends on the aquifer’s 169 

properties. A point-wise evaluation was therefore performed, based on available data on the hydrodynamic 170 

parameters of the unconfined aquifers. The  maximum flow rate to be sustainably abstracted and injected 171 

was estimated and, from this value, the peak thermal power was derived. Differently from G.POT, the 172 

evaluation of open-loop geothermal potential did not consider a thermal load profile, but a peak value. 173 

Indeed, the evaluation of time-varying thermal loads would require complex and time-consuming 174 

numerical simulations for each point reported on the map, which is not feasible at this scale. 175 

The considerations reported above are the conceptual basis for the assessment and mapping of the 176 

geothermal potential for BHEs and GWHPs, which is described in this chapter. 177 

 178 
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 179 

Fig. 4 – Maps of the hydrogeological parameters of the unconfined aquifers of Left Stura Bank and Right Stura Bank: (A) 180 
hydraulic heads and depth to water table; (B) transmissivity and saturated thickness. Scale 1:500,000. 181 

 182 

3.1 Closed-loop geothermal potential 183 

Closed-loop geothermal heat pumps can be installed virtually everywhere, since they do not require the 184 

abstraction of groundwater. However, the techno-economic feasibility of these systems varies substantially 185 

depending on a wide range of factors, namely: 186 

- usage profile: the GSHP can be used in heating or cooling mode, or for both purposes in different 187 

proportions, depending on the building type (i.e. residential, commercial, public building…) and on 188 

the climate;  189 

- thermal properties of the ground: thermal conductivity (𝜆), thermal capacity (𝜌𝑐),  undisturbed 190 

ground temperature (𝑇0); 191 

- BHE and plant properties: length (𝐿), minimum/maximum threshold fluid temperature (𝑇lim) and 192 

thermal resistance (𝑅𝑏). The value of 𝑅𝑏 is function of  the geometry (borehole radius 𝑟𝑏, pipe 193 
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radius 𝑟𝑝, number of U-pipes 𝑛) and of the thermal conductivity of the backfilling (geothermal grout 194 

𝜆𝑏𝑓). 195 

Based on the aforementioned parameters, the closed-loop shallow geothermal potential 𝑃̅𝐵𝐻𝐸 (MWh/y) 196 

was estimated with the G.POT method [27]: 197 

𝑃̅𝐵𝐻𝐸 =
0.0701 · (𝑇0 − 𝑇𝑙𝑖𝑚) · 𝜆 · 𝐿 · 𝑡𝑐

′

𝐺𝑚𝑎𝑥(𝑢𝑠
′ , 𝑢𝑐

′ , 𝑡𝑐
′ ) + 4𝜋𝜆 · 𝑅𝑏

 

Eq. 1 198 

where 𝑇0 (°C) is the undisturbed ground temperature, 𝑇𝑙𝑖𝑚 (°C) is the threshold minimum fluid 199 

temperature, 𝜆 (Wm-1K-1) is the ground thermal conductivity, 𝐿 (m) is the borehole depth,  and 𝑅𝑏 (mKW-1) 200 

is the borehole thermal resistance. 𝐺𝑚𝑎𝑥(𝑢𝑠
′ , 𝑢𝑐

′ , 𝑡𝑐
′ ) is function of three non-dimensional parameters 𝑡𝑐

′  , 𝑢𝑐
′  201 

and  𝑢𝑠
′ : 202 

𝐺𝑚𝑎𝑥(𝑢𝑠
′ , 𝑢𝑐

′ , 𝑡𝑐
′ ) = −0.619 · 𝑡𝑐

′ · 𝑙𝑜𝑔(𝑢𝑠
′ ) + (0.532 · 𝑡𝑐

′ − 0.962) · 𝑙𝑜𝑔(𝑢𝑐
′ ) − 0.455 · 𝑡𝑐

′ − 1.619 

Eq. 2 203 

with: 204 

𝑡𝑐
′ = 𝑡𝑐 𝑡𝑦⁄  

Eq. 3 205 

𝑢𝑐
′ = 𝜌𝑐 · 𝑟𝑏

2 (4𝜆𝑡𝑐)⁄  

Eq. 4 206 

𝑢𝑠
′ = 𝜌𝑐 · 𝑟𝑏

2 (4𝜆𝑡𝑠)⁄  

Eq. 5 207 

where 𝑡𝑐 (s) is the length of the heating season (set to 183 days), and  𝑡𝑦 is the length of the year; 𝜌𝑐 (Jm-3K-208 

1) is the thermal capacity of the ground; 𝑡𝑠 (s) is the simulated lifetime of the plant (set to 50 years). The 209 

G.POT method is implemented in an electronic spreadsheet available at http://goo.gl/Pm93JT.  210 

An only-heating usage profile was set, as most of residential buildings in Piedmont do not have a chilling 211 

plant [35]. This is a conservative assumption, since the operation in cooling mode during summer would 212 

partially compensate the heat extraction during winter, and hence reduce the thermal drift of the ground. 213 

The thermal load has a sinusoidal trend and a typical duration of the heating season has been chosen, from 214 

October 15th to April 15th (183 days), as foreseen by DPR 412/93 for the climate zone “E” [34]. A typical 215 

double-U pipe BHE (Tab. 1) was considered, with a length 𝐿 = 100𝑚. The thermal properties of the ground 216 

were therefore evaluated on the same depth.  217 

 218 

Tab. 1 – Geometrical and physical properties of the BHE adopted for the geothermal potential analysis. 219 

Parameter Symbol Value 

Borehole length 𝐿 100 m 

Borehole radius 𝑟𝑏 0.075 m 

http://goo.gl/Pm93JT
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Pipe radius 𝑟𝑝 0.016 m 

Pipe number 𝑛 4 (2-U pipe) 

Thermal conductivity of backfilling 𝜆𝑏𝑓 2 Wm-1K-1 

 220 

For thermal conductivity and thermal capacity, two different approaches were adopted: 221 

- homogeneous values were adopted for compact rocks, both metamorphic (gneiss, serpentinite) 222 

and sedimentary (marls, sandstones, limestones); 223 

- a depth-averaged value has been chosen for alluvial aquifers in the plain, considering the different 224 

thermal conductivity of the vadose and the saturated zone (see Tab. 2). The depth to water table 225 

was used to determine the thickness of these two layers. 226 

The maps of ground thermal conductivity and capacity are reported in the Supporting Information. 227 

 228 

Fig. 5 – Map of the closed-loop geothermal potential calculated with the G.POT method [27]. Scale 1:750,000. 229 

 230 

 231 

 232 
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Tab. 2 – Values of thermal conductivity and thermal capacity adopted for different lithologies (elaboration on data from [28, 45]. 233 

N° Lithology 𝝀 [Wm-1K-1]  𝝆𝒄 [106 Jm-3K-1] 

1, 2 Alluvial/moraine sediments (dry) 2.4 1.5 

1, 2 Alluvial/moraine sediments (saturated) 0.5 2.4 

3, 9 Clay/Alternated clayey layers 1.8 2.5 

4 Fine sand 1.8 2.5 

5 Clay and clayey marl 2.1 2.25 

6 Marl 2.3 2.25 

7 Marl and siltstone 2.1 2.25 

8 Sandstone 2.8 2.2 

10 Serpentinite 2.5 2.8 

11 Calceschyst 2.5 2.4 

12 Limestone and dolostone 2.7 2.25 

13 Fine grained gneiss 2.5 2.1 

14 Coarse grained gneiss 2.9 2.1 

15 Granite 3.2 2.5 

 234 

The ground temperature is almost constant through the year and slightly higher than the annual mean air 235 

temperature [30, 46], which is strongly correlated with the elevation (Fig. 2). A few data are available on 236 

the subsurface temperature in the province of Cuneo, measured in a number of water wells in the plain 237 

[31, 47], while no measures are available for the hilly and mountainous parts. An empirical correlation with 238 

the ground elevation was therefore used, which was calibrated against ground temperature measured in 239 

Switzerland [48]. The regional DTM of Piedmont was used as an input for ground elevations [49]. Ground 240 

temperatures were not estimated above 1500 m a.s.l. where, according to Ref. [48], the correlation is not 241 

valid since the snow cover alters the thermal exchange between the air and the ground. About 25% of the 242 

total area of the province of Cuneo, but less than 1% of the total population, was therefore excluded from 243 

the evaluation of the ground temperature and hence of the geothermal potential.  244 

The map of the closed-loop geothermal potential is shown in Fig. 5Errore. L'origine riferimento non è stata 245 

trovata.. This indicator varies from 5 to 12 MWh/y, depending on the thermal conductivity and the 246 

temperature of the ground. In the central and northern part of the Left Stura Bank plain and in the Tanaro 247 

Valley, the thermal conductivity is quite high (𝜆 = 2 ÷ 2.3 𝑊𝑚−1𝐾−1) due to the shallow water table, and 248 

the ground temperature are the highest in the territory surveyed (𝑇0 = 12 ÷ 14°𝐶). The highest 249 

geothermal potentials (𝑃̅𝐵𝐻𝐸 = 10 ÷ 12 𝑀𝑊ℎ/𝑦) are therefore observed in this part of the plain, which 250 

accounts for about 20% of the total area and 40% of the total population. The hills of Langhe and Roero and 251 

the southern portion of the Right Stura Bank plain, which account for about 50% of the total population, 252 

are slightly less suitable for BHEs (𝑃̅𝐵𝐻𝐸 = 8 ÷ 10 𝑀𝑊ℎ/𝑦) due to the lower thermal conductivity 253 

(𝜆 = 1.2 ÷ 2.1 𝑊𝑚−1𝐾−1) and temperature (𝑇0 = 10 ÷ 12°𝐶) of the ground. Less than 10% of the 254 

population lives in areas with very low suitability for BHEs, where the geothermal potential falls to 255 

𝑃̅𝐵𝐻𝐸 = 5 ÷ 8 𝑀𝑊ℎ/𝑦. The causes of such a low geothermal potential are different: 256 



 
Page 13 of 21 

 

- in the valleys, the outcropping rocks are generally very conductive (𝜆 > 2.5 𝑊𝑚−1𝐾−1) but the 257 

ground temperature is very low (𝑇0 = 7 ÷ 10°𝐶); 258 

- in the SW of the Left Stura Bank (Cuneo, Caraglio, Busca and Centallo) the water table is very deep 259 

(up to 70 m from ground surface) and hence the thermal conductivity is very low (𝜆 = 1 ÷260 

1.5 𝑊𝑚−1𝐾−1). Borehole Thermal Energy Storage (BTES) can be installed here to take advantage 261 

of the poorly conductive ground, storing large quantities of heat during Summer with low heat 262 

losses [50]. 263 

 264 

3.2 Open-loop geothermal potential 265 

While the design of closed-loop GSHPs is generally performed with standard sizing methods based on 266 

ground thermal parameters which can be derived from large-scale geological maps, GWHPs require a 267 

thorough hydrogeological characterization of the installation site. Indeed, the hydrodynamic properties of 268 

the aquifer are site-specific, may vary in large ranges over short distances and should therefore be 269 

evaluated with in situ tests. A spatially continuous map of the open-loop geothermal potential cannot be 270 

developed unless a high spatial resolution database is available, which is not the case. A point-wise 271 

evaluation was therefore performed. The maximum allowed flow rate was estimated for both extraction 272 

and injection. The minimum of these two values was then used to calculate the open-loop geothermal 273 

potential, i.e. the maximum thermal power that can be exchanged with the aquifer, if water is disposed 274 

into the same aquifer after the heat exchange, which is the most commonly adopted practice.  275 

Misstear and Beeson (2000, [51]) defined the potential well yield as the maximum flow rate that can be 276 

extracted by a well respecting a low-level threshold called Deepest Advisable Pumping Water Level 277 

(DAPWL). The variation of the hydraulic head in the well is calculated with the equation of Cooper and 278 

Jacob (1946, [52]): 279 

𝑠𝑤(𝑄) =
𝑄

4𝜋𝑇
· 𝑙𝑜𝑔 (2.25

𝑇𝑡𝑝𝑢𝑚𝑝

𝑆𝑟𝑤
2

) +𝐶𝑄2 

Eq. 6 280 

where 𝑄 (m3s-1) is the well flow rate, 𝑇 (m2s-1) is the transmissivity of the aquifer,  𝑡𝑝𝑢𝑚𝑝 (s) is the pumping 281 

time, 𝑟𝑤(m) is the well radius, and 𝐶 (s2m-5) is the coefficient of the quadratic term of the Rorabaugh 282 

equation.  283 

The drawdown in the production well and the rise in the reinjection well are calculated without considering 284 

their mutual interference. This is a conservative assumption, since the drawdown induced by the extraction 285 

well partially compensates the level rise due to the injection well, and vice versa. 286 

The maximum allowed abstracted (𝑄𝑎𝑏𝑠) and injected (𝑄𝑖𝑛𝑗) flow rates were calculated with Eq. 6 imposing, 287 

respectively, a maximum drawdown (Eq. 7) and a maximum level rise (Eq. 8). 288 
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𝑠𝑤(𝑄𝑎𝑏𝑠) = 𝛼 · 𝑏 

Eq. 7 289 

𝑠𝑤(𝑄𝑖𝑛𝑗) = 𝑑 − 𝑑𝑚𝑖𝑛 

Eq. 8 290 

where 𝛼 is a fraction of the saturated thickness (𝑏), 𝑑 and 𝑑𝑚𝑖𝑛 are respectively the initial and the 291 

minimum possible depth of water table from ground surface. A 50% reduction of the initial saturated 292 

thickness (𝛼 = 0.5), was set as suggested by Ref. [51], while a minimum water table depth 𝑑𝑚𝑖𝑛 = 3𝑚 was 293 

imposed to provide a safety margin against groundwater flooding. 294 

The values of transmissivity (𝑇) were drawn from a dataset of specific flow rates 𝑞𝑠𝑝 derived from 304 wells 295 

in the Left and Right Stura Bank [53], adopting the equivalence 𝑇 = 𝑞𝑠𝑝 suggested by Refs. [54-56]. The 296 

storage coefficient was set to 𝑆 = 0.2, i.e. the average value of the range (𝑆 = 0.1 ÷ 0.3) provided for 297 

unconfined aquifers [54]. The well radius was set to 𝑟𝑤 = 0.25𝑚 and the quadratic loss coefficient of the 298 

Rorabaugh equation was set to 𝐶 = 1900𝑠2𝑚−5, i.e. the highest value for a non-deteriorated well [57]. 299 

The pumping time was set to 𝑡𝑝𝑢𝑚𝑝 = 200𝑑, as suggested by Ref. [51]. 300 

The maximum allowed extracted/injected flow rates are used as input to calculate the open-loop 301 

geothermal potential according to two operating modes: 302 

- without reinjection, thus avoiding possible groundwater flooding issues in the reinjection wells: 303 

𝑃 𝐺𝑊𝐻𝑃,𝑚𝑎𝑥,𝑛𝑜𝑖𝑛𝑗 = 𝑄𝑎𝑏𝑠 · 𝜌𝑓𝑐𝑓 · ∆𝑇 

Eq. 9 304 

- with reinjection, which is the most commonly adopted solution: 305 

𝑃 𝐺𝑊𝐻𝑃,𝑚𝑎𝑥,𝑖𝑛𝑗 = min(𝑄𝑎𝑏𝑠, 𝑄𝑖𝑛𝑗) · 𝜌𝑓𝑐𝑓 · ∆𝑇 

Eq. 10 306 

where 𝜌𝑓𝑐𝑓 = 4.2 · 106𝐽𝑚−3𝐾−1 is the thermal capacity of water and ∆𝑇 = 5𝐾 is the temperature 307 

difference between injection and abstraction well.  308 

The maps of the open-loop geothermal potential with and without reinjection are reported in Fig. 6. 309 

Reinjection can be avoided if a surface water body (rivers, channels, lakes) is available close to the 310 

installation site. The open-loop geothermal potential in this case achieves values higher than 1000 kW in 311 

most of the Left Stura Bank plain, as shown in Fig. 6A, while lower values are observed on the western and 312 

eastern edges, due to the lower transmissivity of the aquifer (Fig. 4B). However, reinjection is usually 313 

required for GWHPs in Piedmont, in order to avoid additional consumptive uses of the aquifer, and hence 314 

the open-loop geothermal potential with reinjection was calculated (𝑃𝐺𝑊𝐻𝑃,𝑚𝑎𝑥,𝑖𝑛𝑗, see Eq. 10). Reinjection 315 

proves a strong limiting factor for the installable thermal power of GWHPs, as shown in Fig. 6B, due to the 316 

low depth to water table of the northern and eastern sectors of the Left Stura Bank, and of most of the the 317 

Right Stura Bank (Fig. 4A). A clear decreasing trend from west to east is therefore observed for open-loop 318 
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geothermal potential in the Left Stura Bank (Fig. 4B) due to the progressive reduction of the water table 319 

depth and hence of the injectable flow rate. This issue can be overcome adopting multiple injection and 320 

extraction wells, or other reinjection techniques such as ponds or trenches [58]. 321 

Groundwater chemistry is another important design issue for of GWHPs. According to Rafferty (1999, [59]), 322 

scale formation can occur in the thermal exchange circuit for water carbonate hardness higher than 10°F. 323 

This threshold is usually not respected in the unconfined aquifer in the province of Cuneo, with most values 324 

ranging between 20°F and 40°F [38, 60], and hence the use of secondary heat exchange circuit is strongly 325 

advised.  326 

 327 

 328 

Fig. 6 – Map of the open-loop geothermal potential in the alluvial shallow aquifers of the province of Cuneo with water disposal 329 
in surface water bodies (A) and in the same aquifer (B). 330 

4 Conclusions 331 

Ground Source Heat Pump is an environmentally and economically viable technology for the heating and 332 

cooling of buildings. It exploits a local RES such as the heat stored in shallow ground. This resource is 333 

available everywhere, but the techno-economic feasibility depends on the site conditions, i.e. ground 334 

thermal and/or hydrogeological parameters. In this work, the potential for the installation of closed-loop 335 
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and open-loop geothermal heat pumps was assessed in the province of Cuneo, NW Italy. The geology, the 336 

hydrogeology and the climate of this territory was studied by harmonizing and homogenizing data from 337 

different sources. Based on these data, relevant parameters for the operation of GSHPs were estimated. A 338 

mathematical method called G.POT [27] was used to estimate the closed-loop geothermal potential, i.e. the 339 

thermal power that can be exchanged by a BHE. The open-loop geothermal potential is defined as the 340 

maximum thermal power that can be exchanged by a GWHP composed of a well doublet. The thermal 341 

power is limited by hydraulic head alterations induced by groundwater extraction and injection, which 342 

depend on the hydrogeological properties of the aquifer. 343 

According to the results, the following conclusions can be drawn: 344 

- the province of Cuneo has a good potential for the installation of closed-loop BHEs, in particular in 345 

the central part of the plain, where about 40% of the population lives. In this area, 10÷12 MWh/y 346 

can be exchanged with a 100 m-long BHE. The geothermal potential diminishes to 8÷10 MWh/y in 347 

the hilly areas of the Langhe and Roero, in the alluvial aquifers at the bottom of the valleys and in 348 

the southern part of the alluvial plain of the Right Stura Bank, due to lower ground temperatures;  349 

- less than 10% of the population lives in areas with a low suitability for the installation of BHEs, 350 

where the geothermal potential falls to 𝑃̅𝐵𝐻𝐸 = 5 ÷ 8 𝑀𝑊ℎ/𝑦). In the south-western part of the 351 

plain (both Left Stura Bank and Right Stura Bank), this is due to the presence of a thick vadose zone 352 

(up to 70 m) and the consequently low thermal conductivity of the ground. On the other hand, such 353 

a thick unsaturated zone makes this area suitable for Borehole Thermal Energy Storage (BTES). The 354 

upper part of the Alpine valleys, characterized by a very low ground temperature, is also scarcely 355 

suitable for BHEs;  356 

- a large part of the Province of Cuneo is occupied by alluvial aquifers with a high transmissivity, 357 

which makes them suitable for the installation of GWHPs. The main limiting factor is the low depth 358 

to water table, which is critical for water reinjection. This issue can be overcome by using 359 

reinjection techniques such as ponds, trenches, and gabions [58]. 360 

Maps of geothermal potential are valuable tools for the evaluation of the suitability for closed-loop and 361 

open-loop geothermal heat pumps. Closed-loop BHEs can be installed everywhere, hence the evaluation in 362 

this work focused on the efficiency of a possible installation, depending  on site-specific ground thermal 363 

parameters. On the other hand, the installation of an open-loop GWHP is possible only in the presence of a 364 

sufficiently productive aquifer. For this reason, the evaluation focused on the sustainability of groundwater 365 

extraction and reinjection, which depends on the hydrodynamic properties of the aquifer, while the 366 

efficiency was not evaluated, since it depends on the characteristics of single geothermal systems.  367 
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6 List of acronyms 507 

 508 

 509 

 510 

  511 

ASHP Air-Source Heat Pump 

BHE Borehole Heat Exchangers 

BP Before Present 

BTES Borehole Thermal Energy Storage 

COP Coefficient Of Performance 

DD Degree-Days 

DTM Digital Terrain Model 

EU European Union 

G.POT Geothermal POTential 

GSHP Ground Source Heat Pump 

GWHP Ground Water Heat Pump 

RES Renewable Energy Source 
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7 List of symbols 512 

7.1 Latin letters 513 

7.2 Greek letters 514 

Symbol Unit Description 

𝛼 - Maximum allowed reduction of the saturated thickness 

ΔT K Temperature difference between abstraction and injection well 

𝜆 Wm-1K-1 Thermal conductivity of the ground 

𝜆𝑏𝑓 Wm-1K-1 Thermal conductivity of the borehole filling (grout) 

𝜌𝑐 Jm-3K-1 Thermal capacity of the ground 

𝜌𝑓𝑐𝑓 Jm-3K-1 Thermal capacity of water 

 515 

Symbol Unit Description 

𝑏 m Saturated thickness of the aquifer 

𝑑 m Depth of the aquifer’s water table (depth to water table) 

𝑑𝑚𝑖𝑛 m Minimum allowed depth to water table 

𝐺𝑚𝑎𝑥(𝑢𝑠
′ , 𝑢𝑐

′ , 𝑡𝑐
′ ) - 

Non-dimensional function of the maximum thermal alteration of the ground at the 
borehole wall 

𝐿 m Depth of the borehole heat exchanger 

𝑛 - Number of pipes 

𝑃̅𝐵𝐻𝐸 MWh/y Closed-loop geothermal potential 

𝑃𝐺𝑊𝐻𝑃,𝑚𝑎𝑥,𝑖𝑛𝑗 kW Open-loop geothermal potential with water reinjection into the same aquifer 

𝑃𝐺𝑊𝐻𝑃,𝑚𝑎𝑥,𝑛𝑜𝑖𝑛𝑗 kW Open-loop geothermal potential without water reinjection 

𝑄 m3s-1 Well flow rate 

𝑄𝑎𝑏𝑠 m3s-1 Maximum allowed abstraction flow rate 

𝑄𝑖𝑛𝑗 m3s-1 Maximum allowed injection flow rate 

𝑞𝑠𝑝 m2s-1 Specific flow rate 

𝑟𝑏 m Radius of the borehole 

𝑅𝑏 mKW-1 Borehole thermal resistance 

𝑟𝑝 m Radius of the pipes of the borehole heat exchanger 

𝑟𝑤 m Well radius 

𝑆 - Aquifer’s storage coefficient 

𝑠𝑤 m Level displacement in the well 

𝑇0 K Undisturbed ground temperature 

𝑡𝑐 s Length of the heating season 

𝑡′𝑐 - Non-dimensional length of the heating season 

𝑇 m2s-1 Aquifer’s transmissivity 

𝑇lim K Minimum or maximum threshold temperature of the heat carrier fluid 

𝑇𝑚𝑡ℎ °C Monthly average air temperature 

𝑡𝑠 s Simulated operation time 

𝑡𝑦 s Length of the year 

𝑇𝑦𝑟 °C Yearly average air temperature 

𝑢𝑐
′  - Non-dimensional cycle time parameter 

𝑢𝑠
′  - Non-dimensional simulation time parameter 

   


