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✦

Abstract—The dramatic increase in the number and sensing capabili-

ties of mobile devices is fostering opportunistic sensing as a paramount

data collection paradigm in smart cities. According to this paradigm,

sensing of large-scale phenomena is autonomously performed by mo-

bile devices that provide irregular samples in time and space. The

collected data is then transferred to a central controller, and processed

so as to obtain a representation of the phenomenon. In this paper, we

investigate the factors that impact the accuracy of mobile opportunistic

sensing. Specifically, we characterize the accuracy of a phenomenon

representation obtained from samples collected by mobile devices and

processed through the popular LMMSE filter. We do so by drawing on

random matrix theory, which allows us to deal with irregularly spaced

samples. Our analytical expressions capture the fundamental relation-

ships existing between the accuracy and the parameters of mobile

opportunistic sensing. We apply our analytical results to a realistic sce-

nario where atmospheric pollution samples are collected by vehicular

and pedestrian users. We validate the proposed analytical framework,

and then exploit the model to investigate the impact on mobile sensing

accuracy of a number of parameters. These include the pedestrian and

vehicle density, the participation ratio to the sensing application, the type

of phenomenon to be sensed, and the level of noise and position errors

affecting the collected samples.

1 INTRODUCTION

Opportunistic sensing is a specific type of mobile crowd-

sensing that leverages the ever-growing availability of sens-

ing devices embedded in commodity hardware. It allows

widespread, automated information collection by privately-

owned smartphones and tablets, as well as cars or even public-

service bicycles, by exploiting the trend for all such mobile

devices to be increasingly equipped with GPS, cameras and

different types of sensors [1]–[4].

The collected data can relate to a number of phenomena,

including air quality, noise level, road traffic state, street

surface and pavement conditions. This information is typically

difficult or expensive to collect via traditional approaches that

involve, e.g., air-pollution monitoring stations, induction loop

counters, or in-situ inspection by human personnel. Mobile

devices can instead put their Internet connectivity in use to
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upload massive amounts of samples that are fine-grained and

cover large geographical areas, and do so at virtually no

cost [5], [6] and with no user involvement. However, due to

the mobility and lack of synchronization of devices, samples

are collected at irregular points in time and space. Thus, an

accurate and comprehensive characterization of the original

phenomenon requires that a remote Internet-based processing

center runs reconstruction techniques accounting for sample

irregularity.

The enormous potential yielded by mobile opportunistic

sensing is however confronted by a number of challenges,

which include that participating devices must (i) be localized,

(ii) provide a sufficiently accurate measurements of the moni-

tored phenomenon, (iii) ensure geographical coverage and (iv)

collect a substantial amount of measurements. In this paper,

we address these precise aspects and aim at characterizing

the level of accuracy achieved by a mobile opportunistic

sensing process in the estimation of a physical phenomenon

(hereinafter also referred to as signal). To this end, we con-

sider a generic system where mobile devices participate in

the opportunistic sensing process by collecting samples at

irregularly spaced points (i.e., their locations). Mobile devices

then transfer wirelessly their samples to an Internet-based

processing center. In line with opportunistic sensing principles,

data are collected and transmitted in a fully automated manner

and with no user involvement. At the processing center, the

signal is reconstructed from the collected samples by em-

ploying the well-known Linear Minimum Mean Square Error

(LMMSE) filter [7]. This filter features a good performance-

complexity tradeoff, is general-purpose, and is leveraged for

the reconstruction of physical phenomena in practical use

cases [8].

In order to analyze the system accuracy and its dependency

on the sensing scenario parameters, we leverage recent results

that have been derived for the reconstruction of signals from

irregularly-spaced samples [9]. We thus develop an analytical

method that allows us to evaluate the mean square error

(MSE) between the original phenomenon and its estimate at

the processing center. Our method accounts for all significant

system parameters, i.e., the geographical distribution and the

number of the participating sensing devices, their measurement

and positioning errors, and the frequency characterization of

the phenomenon under study. We apply our signal recon-
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struction technique to a realistic urban scenario, featuring

a faithful representation of the localization and mobility of

the citywide vehicular and pedestrian population, as well as

a practical reference phenomenon retrieved from real-world

measurements in the region.

In summary, our main contributions are as follows:

• We present a model of the mobile opportunistic sensing

process that accounts for all major system factors;

• By assuming that the LMMSE technique is used for

signal reconstruction, we provide an expression for the

estimation of a multidimensional phenomenon;

• We introduce a novel asymptotic methodology to com-

pute the signal reconstruction accuracy when its band-

width and the number of samples tend to infinity, while

their ratio is constant. Such a technique is computation-

ally efficient. As shown by our validation results, this ap-

proach provides a very good performance approximation,

even for real-world scenarios where the above parameters

take small values.

• We then use our analytical framework to derive results in

a realistic scenario, exploiting dependable data sets. Our

results show that it is possible to achieve an accurate

reconstruction of the considered phenomenon from the

samples collected through mobile opportunistic sensing.

To that end, it is especially important that the samples

collected by mobile devices are not too erroneous, and

that a sufficiently high number of devices, in the order of

a few tens per square kilometer, can provide coverage of

the area. Other system parameters, including the type of

geographical area, the daytime, or the positioning error,

only play minor roles with respect to the level of accuracy

attained by the mobile opportunistic sensing process.

The rest of the paper is organized as follows. After a

discussion of the related work in Sec. 2, we introduce in

Sec. 3 the model of the opportunistic sensing system and

of the phenomenon under study. In Sec. 4, we present our

analytical framework for the evaluation of the system perfor-

mance. Sec. 5 describes the realistic urban population scenario

under study, and presents the associated spatial distributions of

handheld and vehicular devices. Sec. 6 illustrates the reference

phenomenon considered in our performance evaluation, along

with results on the reliability of the proposed model and

on the impact of a vast range of system parameters on the

opportunistic sensing accuracy. Finally, we draw concluding

remarks in Sec. 7.

2 RELATED WORK

Mobile crowdsensing. Mobile crowdsensing envisages that

mobile devices with sensing and communication capabilities

collect and share information, so as to monitor some target

phenomenon [1], [2]. The interest in mobile crowdsensing

has rapidly grown in the last few years, fostered by its

potential capability to provide fine-grained sensing at almost

no dedicated infrastructure cost.

Mobile crowdsensing paradigms span in between two fun-

damental approaches, i.e., opportunistic sensing and partic-

ipatory sensing. Opportunistic sensing consists in a fully

autonomous process, distributely run by the devices without

any human intervention. Conversely, in participatory sensing

individuals are actively involved in contributing sensor data.

Opportunistic sensing. In our work, we focus on the former

approach. The rationale is that opportunistic sensing is in

general more acceptable to users, as it reduces the actions

they have to undertake; it is thus expected to result in much

a wider adoption than participatory sensing applications [1],

[2]. The experiments by Cardone et al. [10], [11] are especially

enlightening here, and support the point above. The authors

aim at identifying sensible users depending on the sensing

task, and at incentivizing them to participate in the process.

To that end, they develop a full-featured experimental platform

for mobile sensing, allowing them to profile users and evaluate

the incentives in a real-world environment. Lessons learned

indicate users’ participation and attitude as a major concern.

However, opportunistic sensing is also more complex to

implement than participatory sensing, since information that

could be easily input by a human user need to be inferred

automatically. A typical example is mobile device context

information, since a correct sensing often requires to know

the specific situation the device is in (e.g., in the users’ hand,

within his pocket, or laying on the dashboard of his car).

Techniques have being developed to address such issues: e.g.,

Miluzzo et al. [12] propose a practical approach to extract

mobile phone context using data from the device microphone,

camera light sensor, accelerometer, gyroscope, and compass.

Practical applications leveraging the opportunistic sensing

principle have already been demonstrated on specific applica-

tion use cases. As an example, Zhang et al. [13] equip a small

fleet of buses with sensing and communication interfaces:

the goal is the generation of maps of carbon monoxide in

Beijing, China, from samples collected through opportunistic

sensing. The authors show how this approach enables the

identification of significant temporal correlations between air

pollution and road traffic levels. Other representative examples

are the works by Zhu et al. [14] and Du et al. [15], [16], who

aim at building road traffic maps through opportunistic sensing

performed by vehicles. To that end, the authors leverage dif-

ferent approaches, including compressive sensing [14], matrix

completion [15], and use of controllable patrol vehicles [16].

Our focus is different from those of the vast majority of

previous works on opportunistic sensing. Indeed, we do not

develop a technique to perform opportunistic sensing, but

we assess the accuracy of the opportunistic sensing process.

Moreover, we do not target one specific phenomenon, but

we consider a general approach that can be applied to any

physical phenomenon. To attain our objective, we model the

quality of the sensed phenomenon once it is reconstructed at

the data processing center. Our approach let us evaluate the

impact of a number of system parameters that are hard (or even

impossible) to control in real-world deployments (see Sec. 3).

To the best of our knowledge, the only work to take a

perspective comparable to ours is that by Zhao et al. [17],

who aim at understanding the temporal and spatial frequency

of sampling granted by opportunistic sensing. However, their

approach is completely different from ours. Specifically, the

authors assume that a taxicab fleet is equipped with sensing



3

capabilities, and study the interval elapsed between two con-

secutive visits of taxis to each areas of a large conurbation, as

a measure of sensing coverage. Our methodology is instead

based on signal processing techniques, and allows accounting

not only for the spatio-temporal distribution of mobile sensing

devices, but also for the data processing phase. We are

thus able to assess the actual quality of the reconstructed

phenomenon, in terms of its mean square error (MSE), rather

than just in terms of a coverage metric. This also makes the

outcome of the two methodologies not directly comparable.

Knowledge discovery. As a concluding remark on the re-

lated literature, we recall that opportunistic sensing is often

considered as a way to collect data that can be later mined

for knowledge discovery. In such a context, data sensing is

a preliminary (and often irrelevant) step, where information

about a number of different phenomena is collected, using

multiple sources, into separate databases. Then, the databases

are integrated and mined so as to infer the physical fact

of interest. There exists a vast literature that builds on this

approach, so as to characterize, e.g., air quality dynamics in

urban areas starting from road traffic levels, meteorological

information, human mobility patterns, and point-of-interest

locations [13], [18]. Similarly, databases of cellular data traffic,

subway occupancy, and taxicab and bus routes have been

leveraged to infer transit patterns in large cities [19].

However, the focus of these works is on the database

integration and knowledge discovery phases, and not on the

opportunistic sensing. Instead, our work focuses on estimating

the accuracy of a pure opportunistic sensing process, where

spatiotemporal samples of a target phenomenon are collected

and processed to detect the precise phenomenon the samples

refer to.

3 SYSTEM MODEL

Our aim is to evaluate the accuracy of mobile opportunistic

sensing, which depends on many aspects. We thus identify a

narrow list of factors that are general enough to account for all

of the major practical aspects characterising the opportunistic

sensing process. The factors are as follows.

F1 The number of available samples. This depends on the

number of mobile devices participating in the sensing

process, the device sampling rate and duty cycle: all of

these aspects can also be seen as means to control and

limit the energy consumption of mobile devices [20],

especially in presence of services requiring continuous

sensing [1]. In addition, the number of samples received

by the processing center also reflects the reliability level

of the wireless channel.

F2 The error in estimating the sampling locations, i.e.,

the positions of mobile devices detected through GPS

or other localization techniques (e.g., via recording of

cellular or Wi-Fi signals).

F3 The spatial distribution of the mobile sensing devices over

the geographical area, which depends on the movement

patterns of devices and have a varying degree of irregu-

larity over time.

F4 The varying accuracy level of the mobile sensors. This

may depend on which user device the sensors are em-

bedded in (e.g., in-vehicle or smartphone), or on their

context (e.g., sensors in smartphones that are carried in

a bag rather than handheld).

F5 The phenomenon spectral characteristics, i.e., the signal

bandwidth, which is expressed as number of harmonics

used to represent the phenomenon.

F6 The number of dimensions (spatial coordinates and/or

time) over which the signal is defined [21].

Our model accounts for all of the factors listed above.

Its formulation can accomodate different communication and

localization technologies (F1 and F2), energy management

policies (F1), device deployment and mobility (F3), device

type and context (F4). Moreover, the model is general, and

can be applied to a variety of physical phenomena with diverse

complexity and dimensions1 (F5 and F6). To our knowledge,

no previous analytical framework has been proposed for the

performance analysis of mobile opportunistic sensing, which

accounts for all of the above factors.

Overall, our model allows deriving the level of accuracy

of the phenomenon (i.e., signal) reconstruction, as a function

of all of the factors above. E.g., it determines the minimum

number of samples necessary to achieve a desired MSE for

a target phenomenon, when employing specific technologies

and a given set of sensing devices. Thus, it provides useful

guidelines for the configuration of system parameters.

We stress that the model is applicable to both delay-

tolerant and real-time sensing applications. In the first case,

the phenomenon timescale is such that one can wait for all

devices to upload their data: this is, e.g., the case for the

pollution monitoring scenario we consider in our evaluation. In

the case of real-time monitoring of, e.g., road safety services,

the requirements in terms of latency can be translated in the

model by further limiting the number of samples available by

the imposed time deadline (e.g., due to the finite sampling rate

of mobile devices or to the level of data transfer reliability).

Additional requirements, e.g., user privacy preservation during

the opportunistic sensing, are orthogonal to our study.

Below we first introduce some notations and definitions that

will be used throughout our analysis (Sec. 3.1). We then define

a formal representation of the sensed physical phenomenon

that is opportunistically sensed (Sec. 3.2).

3.1 Notation and definitions

Throughout the paper, vectors and matrices are denoted by

bold lowercase and uppercase letters, respectively. I represents

the identity matrix. The superscripts T and H denote matrix

transpose and conjugate-transpose, respectively, while Tr{·}
represents the matrix-trace operator. The expectation of a

random variable a is denoted by E[a].

1. Although our analysis can accommodate an arbitrary number of dimen-
sions, in this work we focus on phenomena over a bidimensional geographical
regions and in a given time period. This case reflects a typical sensing
procedure performed in a flat urban environment and that is repeated at
different times of the day.
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Definition 3.1. Let us consider an Hermitian random matrix

A(n) of size n×n with random eigenvalues λ1, . . . , λn. Its av-

erage empirical spectral distribution is defined as F
(n)
A (z) =

1
n

∑n
i=1 E [1{λi ≤ z}] where 1{·} is the indicator function.

The limit FA(z) = limn→∞ F
(n)
A (z), if it exists, denotes the

Limiting Spectral Distribution of the sequence of matrices

{A(n)}n∈N. The corresponding asymptotic probability density

function, if it exists, is denoted by fA(z).

Definition 3.2. Let us consider the sequence of random

matrices {A(n)}n∈N of size n×n. If the limit exists, we define

its tracial state [22] as

φ(A) = lim
n→∞

1

n
Tr

{
E

[
A(n)

]}
. (1)

Definition 3.3. Let us consider the sequence of random

matrices {A(n)}n∈N of size n×n and a positive real number

γ. We will denote by

ηA(γ) = φ
(
(I+ γA)−1

)
(2)

the η-transform of a random variable that follows the Limiting

Spectral Distribution of the sequence {A(n)}n∈N.

For simplicity of notation, in the following we drop the

superscript (n) and A denotes the generic element of a

sequence of random matrices {A(n)}n∈N.

3.2 Signal model

We consider a two-dimensional signal. Thus, the signal can

be described in a general manner by defining a function s(x)
over the region R ∈ R

2. For simplicity of presentation, we

define R as a square region of side 1, i.e., R = [−1/2, 1/2)2,

although any more general sizes and shapes can be considered.

In our scenario, the non equally spaced samples of the phe-

nomenon are provided by m devices (factor F1), irregularly de-

ployed over R. We assume that sampling devices are equipped

with a positioning system (e.g., GPS), so that each sample

can be characterized by the location at which it has been

taken. Positioning is however affected by errors (factor F2). In

general, the position of the q-th sensing device, q = 1, . . . ,m,

can be described by the vector pq = [p1q, p2q]
T ∈ R given by

pq = p̂q + δq

where p̂q = [p̂1q, p̂2q]
T is the estimated position and δq =

[δ1q, δ2q]
T is the position error (or displacement). Here we

assume that δq are i.i.d. Gaussian distributed random variables,

with zero mean and covariance σ2
δI. We remark that σ2

δ is the

variance of the position error. Due to the mobility of pedestrian

and vehicular users, we can consider the positions p̂q’s as

instances of a random variable with distribution fp̂(x), x ∈ R
(factor F3). Such distribution depends on the specific scenario;

we will detail the procedure to derive fp̂(x) from experimental

data in Sec. 5. The sample taken by the q-th sensing device

(q = 1, . . . ,m) is then given by

yq = s(pq) + zq

where zq is the measurement error due, e.g., to sensing

noise and/or quantization inaccuracy (factor F4). The elements

z = [z1, . . . , zm]T are assumed to be zero-mean uncorrelated

random variables with known diagonal covariance matrix Σ.

Furthermore, z is independent of all other random variables

of the system. Note that the diagonal entries of Σ can take

different values due to the different accuracy of sensing de-

vices (e.g., sensors aboard vehicles or embedded in pedestrians

smartphones that can be handheld or carried in a bag). The

information on the operational conditions under which sensors

operate can be hardcoded in case of technological differences

(based, e.g., on the type of device), whereas it can be inferred

automatically [12] and communicated along with the sample,

in case of context-dependent diversity.

We then observe that any physical phenomenon can be

approximated by a band-limited signal, i.e., a finite number

of harmonics (factor F5). Thus, it can be written through its

Fourier series expansion as:

s(x) ≈ 1

2n+ 1

n∑

ℓ1=−n

n∑

ℓ2=−n

aℓ12e
j2π(ℓ1x1+ℓ2x2) (3)

where ℓ12 = ℓ1 + (2n + 1)ℓ2. Here the integer n (i.e., the

approximate one-sided bandwidth of the signal) is chosen so

that most part of the signal energy falls in the first 2n + 1
harmonics per dimension. In Eq. (3), the terms aℓ12 , −2n(n+
1) ≤ ℓ12 ≤ 2n(n+1), denote the signal spectrum coefficients,

while x = [x1, x2]
T with x ∈ R. We remark that the above

signal expression is very general and can represent different

phenomena.

The vector of signal samples at the true sampling points

s = [s1, . . . , sm]T (sq = s(pq)) can be approximated as s ≈
VH

Pa where a = [a−2n(n+1), . . . , a2n(n+1)]
T, VP is an n2×m

multifold Vandermonde matrix [9] with entries:

(VP)ℓ12,q
.
= (2n+ 1)−1 exp (−2πj(ℓ1p1q + ℓ2p2q)) (4)

and piq = (P)iq . The subscript P indicates that the matrix

VP is a function of the true positions of the sensing devices

P = [p1, . . . ,pm]. About spectrum a, since in general we

do not have any a priori information about its statistic, we

assume that its elements are uncorrelated with zero mean and

variance σ2
a. Without loss of generality and for normalization

reasons, we assume σ2
a = 1. We then define

βn,m
.
= (2n+ 1)2/m

as the ratio of the total number of the signal harmonics,

(2n+1)2, to the number of sensing devices, m. This parameter

also corresponds to the aspect ratio (ratio of the number of

rows to the number of columns) of matrix VP and plays an

important role in our analysis. Overall, the vector of samples,

y = [y1, . . . , ym]T, taken by the m devices, can be written as

y = s+ z = VH

Pa+ z (5)

where s = [s1, . . . , sm]T is the vector of signal values at the

true sampling points and z is the vector of measurement errors

at the sensing devices.
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4 ACCURACY OF SIGNAL RECONSTRUCTION

IN MOBILE OPPORTUNISTIC SENSING

We now investigate the accuracy of the signal that is recon-

structed from the irregular samples collected through mobile

opportunistic sensing. In particular, we present the MSE metric

representing the reconstruction accuracy and its analytical

expression, which accounts for all of the factors listed in

Sec. 3.

As detailed in Sec. 4.1, we assume that the well-known

LMMSE filter is used for signal reconstruction, and we tailor

our analysis to such reconstruction technique. The rationale

behind this choice is that linear estimators are commonly em-

ployed due to their simplicity and, among these, the LMMSE

filter is known to provide the best performance in terms of

MSE. Also, the LMMSE is a general-purpose filter that can

be adopted for the reconstruction of different phenomena, and

is used in practical applications [8]. This fact, along with the

LMMSE mathematical tractability, makes this reconstruction

methodology suitable for the study of the impact of the major

factors characterizing mobile opportunistic sensing and for

deriving guidelines for the system design. We remark that (i)

although the reconstruction technique is a standard one, the

expression of the LMMSE filter in a multidimensional scenario

is original, and (ii) our methodology could be extended to other

linear estimators as well.

In Sec. 4.2 we introduce our novel methodology to compute

the accuracy of the phenomenon reconstruction. Our approach

is based on the observation that the locations where the

phenomenon is sampled, i.e., the positions of the mobile

devices participating in the opportunistic sensing, are instances

of random variables. It follows that the analysis is based on

random – rather than deterministic – matrices. By leveraging

random matrix theory we are able to derive asymptotic ex-

pressions for the MSE, i.e., considering that the phenomenon

bandwidth and number of samples tend to infinity, while their

ratio is constant. These expressions represent a computation-

ally efficient way to characterize the MSE achieved through

opportunistic sensing, which proves to hold also for practical

finite scenarios. Additionally, in the following we highlight

how our expressions reflect the impact of the factors that play

a major role on the performance of opportunistic sensing, as

outlined in Sec. 3.

4.1 MSE performance metric

Once samples y and position estimates P̂ = [p̂1, . . . , p̂m] are

acquired, an estimate ŝ(x) of s(x), for x ∈ R, can be obtained

by applying a suitable signal reconstruction algorithm.

The reconstructed signal can as well be approximated by its

Fourier series and thus written as

ŝ(x) ≈ 1

2n+ 1

n∑

ℓ1=−n

n∑

ℓ2=−n

âℓ12e
j2π(ℓ1x1+ℓ2x2) (6)

where â = [â−2n(n+1), . . . , â2n(n+1)]
T denotes the estimated

spectrum. The reconstruction accuracy can be measured in

terms of MSE and is a function of positions P̂

MSE(P̂) = E

[∫

R
|ŝ(x) − s(x)|2 dx

]
(7)

where the operator E[·] averages over the randomness con-

tained in ŝ(x) and s(x). Replacing Eq. (3) and Eq. (6) in

Eq. (7), we obtain

MSE(P̂) = E

∫

R

∣∣∣∣∣∣

n∑

ℓ1,ℓ2=−n

âℓ12−aℓ12
(2n+1)e−j2π(ℓ1x1+ℓ2x2)

∣∣∣∣∣∣

2

dx

= E

n∑

ℓ1,ℓ2,ℓ3,ℓ4=−n

(âℓ12 − aℓ12)(âℓ34−aℓ34)

(2n+1)2

·
∫

R
ej2π(ℓ1x1+ℓ2x2−ℓ3x1−ℓ4x2) dx

=
E

[
‖â− a‖2

]

(2n+ 1)2
(8)

where ℓ34 = ℓ3 + (2n + 1)ℓ4. The last line of Eq. (8) shows

that the MSE depends on the estimate of the signal spectrum.

This is a general expression; in order to further proceed in

the MSE computation, we need to explicit the reconstructed

signal, or, equivalently, â.

In the literature, many estimators for a have been proposed.

As mentioned, we consider a linear estimator, i.e.,

â = BHy

where matrix B is called linear filter. Among linear estimators,

the LMMSE filter is derived by minimizing the MSE in Eq. (8)

over the possible choices of matrix B. In general, matrix B

should depend (among other system parameters) on the true

sampling positions P and on the measurement error covariance

matrix Σ. For simplicity in the following we assume Σ = σ2
zI,

i.e., all mobile devices exhibit the same level of accuracy.

Since the true sampling positions, P, are unavailable, the

estimated positions P̂ are to be used instead. This results in a

mismatch between the filter and the samples y, which depends

on P (see Eq. (5)). In particular, such mismatch depends on

the statistics of the displacements ∆ = [δ1, . . . , δq] and affects

the MSE by reducing the reconstruction accuracy.

Lemma 4.1. For the system model under consideration and

for any given realization of the random sampling positions P̂,

the expression of the LMMSE filter, B, is given by

B = VH

P̂
C(CV

P̂
VH

P̂
C+ γI)−1 (9)

where

γ = σ2
z + 1− Tr{C2}

(2n+ 1)2
(10)

is a signal-to-noise ratio which takes into account the penalty

introduced by the measurement error (σ2
z ) and the position

error (∆). Indeed, C is a (2n + 1)2 × (2n + 1)2 diagonal

matrix and its elements depend on the characteristic function

of the displacements. In particular, when δq , q = 1, . . . ,m,

are i.i.d. Gaussian with zero mean and covariance σ2
δI, the

elements of C are given by

(C)ℓ12,ℓ12 = exp
(
−2π2σ2

δ (ℓ
2
1 + ℓ22)

)
. (11)

In general, γ ≥ σ2
z and, in the special case σ2

δ = 0 (i.e., no

position errors), we have C = I, Tr{C2} = (2n + 1)2 and

γ = σ2
z .
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Proof: The proof can be found in the Supplemental

Material.

Using the LMMSE filter Eq. (9) in Eq. (8), the achieved

MSE is given by

MSE(P̂) =

Tr

{(
I+ 1

σ̂2
z

CV
P̂
VH

P̂
C
)−1

}

(2n+ 1)2
. (12)

Remark. The MSE in Eq. (12) corresponds to that achieved

by a system whose output signal

ŷ = VH

P̂
Ca+ ẑ (13)

is filtered by the LMMSE filter (in Eq. (9)), and where the

noise ẑ has covariance γI. Note that the LMMSE filter depends

on matrix VH

P̂
C and it is matched to ŷ. By comparing the

signals in Eqs. (5) and (13), we observe that the effect of

the uncertainty in measuring positions P is two-fold: (i) it

increases the noise variance from σ2
z to γ, and (ii) it modifies

the system transfer function through the weight matrix C.

4.2 Asymptotic analysis

In order to evaluate the performance of mobile opportunistic

sensing in large-scale scenarios, we resort to asymptotic anal-

ysis. The idea is to compute the MSE in the case where the

number of harmonics, (2n+1)2, and the number of samples,

m, grow to infinity, while their ratio βn,m is kept constant. The

rationale behind this choice is that the asymptotic MSE can

be handled much more easily than the MSE for finite values

of m and n, and that, as shown by our validation results, it

is an excellent approximation of the MSE already for small

values of m and n.

The asymptotic MSE is defined as

MSE(∞) = lim
n,m→∞E

P̂

[
MSE(P̂)

]

= lim
n,m→∞E

P̂


 1

n2
Tr





(
I+

CV
P̂
VH

P̂
C

γ

)−1







= φ

((
I+

1

γ(∞)
CRC

)−1
)

= ηCRC

(
1

γ(∞)

)
(14)

where the tracial state φ(·) and the η-transform have been

defined in Eq. (1) and Eq. (2), respectively. Furthermore, R =
V

P̂
VH

P̂
and γ(∞) = limn,m→∞ γ.

Note that, using Eq. (10), the asymptotic SNR is given by:

γ(∞) = lim
n,m→∞

(
σ2
z + 1− Tr{C2}

(2n+ 1)2

)

= σ2
z + 1− φ(C2) . (15)

In general, for an arbitrary integer h, the tracial state φ(Ch)
can be written as

φ(Ch) = lim
n→∞

1

(2n+1)2

∑

ℓ1,ℓ2

exp
(
−2hπ2σ2

δ (ℓ
2
1+ℓ22)

)

= lim
n→∞

2∏

j=1

1

2n+ 1

n∑

ℓ=−n

exp
(
−2hπ2σ2

δℓ
2
)

Now, by switching the limit and the product operator we get

φ(Ch) =

(
lim
n→∞

1

2n+ 1

n∑

ℓ=−n

exp
(
−2hπ2σ2

δ ℓ
2
)
)2

=

(∫ +1/2

−1/2

exp
(
−2hπ2ω2βw2

)
dw

)2

=

(
erf

(√
hβ
2 πω

))2

2πhβω2
(16)

where ω2 =
σ2

δ

(1/
√
m)2

= mσ2
δ is the ratio between the variance

of the position error σ2
δ and the average device separation,

1/
√
m and β = limn,m→∞ βn,m. Replacing Eq. (16) in

Eq. (15), we obtain:

γ(∞) = σ2
z + 1−

(
erf(

√
βπω)

)2

4πβω2
.

We are now interested in computing the asymptotic MSE,

i.e., ηCRC(1/γ
(∞)) in Eq. (14). We first observe that

ηCRC(1/γ
(∞)) = ηDR(1/γ(∞)) where D = C2. This is due

to the properties of the matrix trace appearing in the definition

of the tracial state φ(·). Indeed,

Tr

{(
I+

CRC

γ

)−1
}

= Tr

{
C−1

(
C−2+

R

γ

)−1

C−1

}

= Tr

{
C−2

(
C−2+

R

γ

)−1
}

= Tr

{(
I+

DR

γ

)−1
}
. (17)

By assuming that D and R are asymptotically free [22],

we can use the property in [22, Theorem 2.68, p.86], which

relates the η-transform of a matrix product to the η-transform

of each single matrix. In our case, we can write

η−1
DR(ζ) = η−1

D (ζ)η−1
R (ζ)

ζ

1 − ζ
. (18)

As detailed below, the term η−1
R (ζ) depends only on the mea-

surement error and on the spatial distribution of the sensors

while the term η−1
D (ζ) accounts for both the measurement and

position errors.

A simple expression for ηD(·) can be obtained by exploiting

Eq. (16), as follows:

ηD

(
1

σ2
z

)
= φ

((
I+

D

σ2
z

)−1
)

=

∞∑

h=0

(−σ2
z)

−hφ(Dh)

=

∞∑

h=0

(−σ2
z)

−h

[∫ 1

2

− 1

2

e−4hπ2ω2βw2

dw

]2
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By switching the integral and sum operators we then get

ηD

(
1

σ2
z

)
=

∫

[− 1

2
, 1
2
]2

∞∑

h=0

e−4hπ2ω2β(w2

1
+w2

2
)

(−σ2
z)

h
dw1 dw2

=

∫

[− 1

2
, 1
2
]2

1

1 + 1
σ2
z

e−4π2ω2β‖w‖2
dw (19)

where w = [w1, w2]
T and we recall that ω2 = mσ2

δ . Then,

as it can be seen from the definition of the η-transform given

in Eq. (2), the function ηR depends on the distribution of

the random matrix R. In turns, R = V
P̂
VH

P̂
is a Hermitian

matrix whose distribution depends both on the distribution of

V
P̂

and on its aspect ratio β. The entries of V
P̂

are driven

by the distribution of the estimates P̂, denoted by fp̂(x).
In conclusion, ηR depends on the distribution fp̂(x), on the

aspect ratio β, and on the parameter σ2
z . In the following,

it will be denoted by ηR

(
β, 1

σ2
z

, fp̂

)
. Such function can be

computed numerically by using the result in [23, Corollary

4.2]. This result links ηR

(
β, 1

σ2
z

, fp̂

)
to the η-transform

ηR

(
β, 1

σ2
z

, fu

)
, computed in the case where the distribution

of the estimates P̂ is uniform over the entire sampling area.

Specifically, we have

ηR

(
β,

1

σ2
z

, fp̂

)
= 1−|A|+|A|

∫ ∞

0

g(y)ηR

(
β

y
,
y

σ2
z

, fu

)
dy

(20)

where g(y) is the first derivative of the cumulative density

function G(y), defined as

G(y) = |A|−1 |{x ∈ R |fp̂(x) ≤ y }| .
In Eq. (20), |A| denotes the Lebesgue measure of the set A,

and A = {x ∈ R|fp̂(x) > 0}. More simply, g(y) represents

the spatial density distribution of the sensing devices.

Lastly, using Eqs. (18), (19) and (20), we can compute the

asymptotic MSE through Eq. (14). Note that the advantage

of using Eq. (20) to obtain the reconstruction accuracy (i.e.,

the MSE∞) is that function ηR

(
β, 1

σ2
z

, fu

)
can be computed

numerically very easily. In the next section, we exemplify how

fp̂(x) and g(y) can be derived from experimental data.

5 DESCRIPTION AND CHARACTERIZATION OF

THE OPPORTUNISTIC SENSING SCENARIO

We assume that sensing devices can be either located onboard

vehicles or embedded into handheld appliance, and we assess

the validity of our technique to estimate the quality mobile

opportunistic sensing in a real-world scenario. We focus on

the region of Cologne, Germany, and employ information on

the daily dynamics of the local population to infer realistic dis-

tributions of the mobile devices participating in the distributed

mobile sensing.

Our methodology is detailed in the remainder of this section.

We first present the datasets we leverage to characterize the

sensing device mobility within the Cologne region, in Sec. 5.1.

Then, in Sec. 5.2, we describe the process through which

we obtain the devices spatial density distributions, fp̂(x) and

g(y), required for signal reconstruction.

5.1 Device mobility datasets

As mentioned, we consider both onboard-vehicle sensing de-

vices and sensors embedded in, e.g., smartphones. We are thus

interested in both vehicular and pedestrian mobility dynamics,

as they drive the spatio-temporal presence of sensing devices

in the Cologne region.

We infer such dynamics mainly by leveraging results of the

Travel and Activity PAtterns Simulation (TAPAS) methodol-

ogy [24], which allows computing the movements of individ-

uals in a large-scale population. To that end, TAPAS exploits

information on (i) home locations and socio-demographic

characteristics of the actual population whose mobility is to

be modeled, (ii) land use in the target region, and (iii) the time

use patterns, i.e., habits of the locals in organizing their daily

schedule.

The TAPAS methodology was applied on real-world data

collected by the German Federal Statistical Office, including

30,700 daily activity reports from more than 7,000 households

in the Cologne region [25], [26]. The result is a faithful and

detailed representation of the local population daily activi-

ties [27]. We exploit such data for the characterization of the

vehicular and pedestrian mobility dynamics during a typical

weekday. The two representations are discussed separately in

the following.

On-vehicle devices. The movement of individual vehicles

in the Cologne region is extracted from a synthetic dataset

generated by blending different state-of-art tools. We provide

a brief description of the dataset below, while more details are

available in [28].

The vehicular mobility dataset combines three key com-

ponents that specify (i) the road topology and infrastruc-

ture, (ii) the microscopic-level driver behavior, and (iii) the

macroscopic-level traffic flows. The OpenStreetMap (OSM)

database is queried for the road network layout and infras-

tructure information (including, e.g., per-street speed limits,

lane capacity, and intersection signalization). The open-source

OSM database is contributed by a vast user community

leveraging satellite imagery and GPS logs as sources of

reference, and it is commonly regarded as the highest-quality

map database publicly available to date. The microscopic

mobility of vehicles is simulated with the Simulation of Urban

Mobility (SUMO) software. SUMO implements validated car-

following and lane-changing models and faithfully reproduces

drivers’ behavior in presence of complex road structures and

signalization. As a result, it is today the de-facto standard

among open-source microscopic vehicular mobility generators.

At the macroscopic road traffic level, vehicular flows in the

Cologne region are computed by coupling a traffic demand

model with a traffic assignment model. The former is used to

determine the locations at which each vehicle starts and ends

its trip: we inferred such information from the TAPAS dataset

introduced before. The latter computes the exact path followed

by each driver, and we implemented it via Gawron’s relaxation

technique [29]. Such a technique models the road topology as

a graph and iterates over a weighted shortest path algorithm,

re-assigning edge costs based on traffic congestion levels.

Gawron’s scheme is known to achieve a so-called dynamic
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Fluid

Moderate

Heavy

Fig. 1. Road traffic at 5 pm of a typical work day in

the Cologne region, as recorded in the real-world by the
ViaMichelin live traffic information service (left) and in the

synthetic vehicular mobility trace we used (right).

user equilibrium after a sufficient number of iterations.

Overall, the dataset describes 24 hours of road traffic over

an area of 400 km2, and includes more than 700,000 car

trips. The mix of tools employed to generate it allows for an

unprecedented combination of scale and realism – as proven

by the good match between the road traffic observed in the

synthetic dataset and that provided by live traffic information

services, in Fig. 1.

Handheld devices. We generated the mobility dynamics of

handheld appliance, such as sensing-enabled smartphones and

tablets, by merging different data sources.

First, we retrieved data from a recent demographic survey

information on the population density and age distribution

in each district (Stadtteile) of the Cologne region [30]. We

then coupled such data with global statistics on the usage of

smartphones for different age groups [31]. That way, we could

estimate the number of smartphones owners in the different

districts of the Cologne region.

Next, we leveraged again the TAPAS dataset, and extracted

the non-vehicular (mainly, pedestrian) trips, which amount to

around 800,000 individual source-destination descriptions. An

analysis of such trips allowed us to determine the volume of

non-vehicular movements between each pair of districts during

24 hours of a typical work day. By mapping the inter-district

mobility flows to the aforementioned per-district smartphone

user population, we could finally estimate the daily dynamics

of smartphone presence in the whole Cologne region.

An intuitive representation of the above dynamics is dis-

played in Fig. 2. There, each district is assigned a color

reflecting the smartphone user population variation during a

30-minute interval, expressed in users/km2. Lighter colors

indicate that users are leaving a district, i.e., that there is an

out-flow of users from the district. Darker colors indicate that

users are instead moving into the district, generating an in-

flow of handheld devices. We can easily observe the realistic

population dynamics obtained via our methodology. While no

appreciable variations are found at night (4 am), the morning

hours are characterized by significant flows from the outer

regions towards the city center (e.g., around 8 am). Reverse

flows mark instead the mid afternoon hours (e.g., starting from

4 pm). Detailed phenomena are reproduced as well, such as

flows of users returning home for lunch (out-flow from the

city center at 12 pm).

5.2 Device density distributions

Our study focuses on four different areas within the larger

Cologne region, highlighted by the light grey squares in

Fig. 3(a). Such areas cover 25 km2 each, and were selected so

as to consider environments of diverse nature. More precisely:

• area A maps to downtown Cologne, whose road layout is

detailed in Fig. 3(b); since Cologne is a typical mid-sized

European city of medieval origins, its center is a dense

web of minor urban roads inlaid in a sparser network of

arterial primary roads;

• area B represents a work/industrial area close to the city

center, in Fig. 3(c); the area is crossed by highways and

characterized by day-long intense car traffic over arterial

roadways;

• area C consists of the suburban area in Fig. 3(d); the vast

majority of road traffic passes by the highway junctions;

• area D is portrayed in Fig. 3(d), and represents a resi-

dential area in the outskirts of Cologne.

For each of such areas, we computed the time-varying den-

sities, fp̂(x) and g(y), of on-vehicle and handheld devices

that are required by our model. To that end, we processed the

datasets presented in Sec. 5.1, as follows.

On-vehicle devices. As far as on-vehicle sensing devices are

concerned, we extracted from the vehicular mobility dataset

information about the density fp̂(x) of cars, in each region

and at several times of the day. It is to be noted that we

performed such a process separately on three different road

categories:

• Highway roads include high-capacity highways and mo-

torways, as well as high-speed bypass and orbital roads;

• Primary roads are major traffic arteries that cover the

whole urban region and link it to the suburban areas;

• Urban roads represent the finer portion of the road net-

work mesh, interconnecting primary roads and granting

access to every location of interest in the region.

The rationale is that such heterogeneous road categories are

characterized by very dissimilar road traffic intensities. Ag-

gregating them would thus cause loss of information about

the actual density of on-vehicle sensing devices in the area.

Considering them separately allows instead for a more reliable

description of the on-vehicle sensing devices. Colors and line

widths in the maps of Fig. 3 outline the road classification in

each target area.

For every combination of area and daytime, we measured

the geographic car density (expressed in vehicles/km2), as a

function of the road category. Clearly, the density also depends

on the fraction of vehicles equipped with sensing devices

and participating in the system. Thus, we also considered

different participation ratios r, i.e., the fraction of mobile

devices present in the area that take part to the opportunistic

sensing of the atmospheric pollution.

Examples of the geographic on-vehicle sensing device den-

sity fp̂(x), observed over primary and urban roads at 8 am in

area A, are shown in Fig. 4, for a participation ratio r = 1.

The spatial densities fp̂(x) of on-vehicle sensing devices

were leveraged to derive the experimental distributions of the

same. We then employed the nonlinear least-squares (NLLS)
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Fig. 4. On-vehicle sensing device density (fp̂(x)) in area
A (downtown Cologne) at 5 pm, over primary (top) and

urban (bottom) roads. The participation ratio is r = 1.

Marquardt-Levenberg algorithm to fit a set of candidate theo-

retical distributions onto the experimental ones. This allowed

us to finally retrieve analytical expressions for the device den-

sity g(y) in Eq. (20), as required by the signal reconstruction

methodology presented in Sec. 3.

A representative sample of the fitting process is shown

in Fig. 5. The plots present fittings of the candidate theo-

retical distributions g(y) to the experimental complementary

cumulative distribution functions (CCDF) of the vehicular

densities, previously shown in Fig. 4. The top plot evidences

the exponential tail of the experimental distribution, appearing

linear in a linear-logarithmic plot. Therefore, the data is

best represented by exponentially tailed distributions, whereas

heavy-tailed distributions provide a poor fit. However, the

bottom linear-linear plot shows how the probability mass next

to the origin does not follow an exponential law. As a result,

these experimental distributions are best fitted by the Exponen-

tially Modified Gaussian (EMG) distribution that characterizes

the sum of two independent normal and exponential random

variables. The EMG distribution has indeed an exponential

tail, but is a tunable normal distribution around the origin.

A more complete summary of the fitting results is provided

in Tab. 1 in the Supplemental Material, for all combinations of

area, daytime and road category, under varying participation

ratios, r. The table allows comparing the quality of fittings

obtained through different candidate theoretical distributions,

in terms of the residual sum of squares (RSS) with respect to

the experimental data.

Interestingly, the aforementioned EMG distribution provides

a best fit in most situations. When it does not, it yields a

negligible RSS distance from the best fit. This allows us to

model, for on-vehicle sensing devices, the generic analytical

expression of g(y) in Eq. (20) as a set of EMG distributions

(one per road category), each to be weighted by the corre-

sponding road type surface.
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Fig. 2. Variation of handheld device population in each district (Stadtteile) of the Cologne region during a typical working

day, measured in users/km2. Darker colors indicate stronger in-flows of users, while lighter colors indicate stronger
out-flows of users. This figure is best viewed in colors.

(a) Cologne districts

Highway Primary Urban

(b) Area A

Highway Primary Urban

(c) Area B

Highway Primary Urban

(d) Area C

Highway Primary Urban

(e) Area D

Fig. 3. Geographical areas considered in our study. (a) Cologne region districts, with the surfaces of the four target
areas highlighted in light grey. (b) Area A: city downtown. (c) Area B: industrial/transit. (d) Area C: suburban highways.

(e) Area D: residential outskirts. This figure is best viewed in colors; in the Areas plots light blue, blue and red denote

highway, primary and urban roads, respectively.



10

10-3

10-2

10-1

100

 0  300  600  900  1200  1500  1800

C
C

D
F

Vehicular density (veh/km2)

Data
Exponential
EMG
Weibull
Log-logistic
Pareto

0.5

0.6

0.7

0.8

0.9

1.0

 0  50  100  150  200  250  300

C
C

D
F

Vehicular density (veh/km2)

Data
Exponential
EMG
Weibull
Log-logistic
Pareto

Fig. 5. Nonlinear least-squares fittings of theoretical prob-
ability distributions (g(y)) on two sample experimental

distributions. The latter are derived from the vehicular

densities (fp̂(x)) in Fig. 4, for urban (top) and primary
(bottom) roads.

Handheld devices. Following a similar procedure, the density

distribution g(y) of handheld devices participating in the

sensing process was inferred directly from the smartphone

user population dynamics presented in Sec. 5.1. In this case,

however, the spatial granularity of the data about the device

density is at the district level, i.e., too coarse for an analytical

distribution fitting. Therefore, we simply collected the infor-

mation about the time-varying user density in the districts that

(partially) fall within each of the four geographical areas, and

assumed a uniform distribution fp̂(x) of smartphone users in

each of such districts. We then modeled g(y) in Eq. (20) for

handheld devices as a set of Dirac delta functions at the density

values recorded in the districts within the target area. As it

happened for the on-vehicle device density distribution, the

probability mass of each Dirac delta is also weighted. This

time, weights are assigned according to the area surface ratio

occupied by the district corresponding to the delta function.

6 EVALUATION

The application use case of mobile opportunistic sensing

we consider for evaluation is that of atmospheric pollution

monitoring. Pollution thus represents the phenomenon that is

sensed by mobile devices, or, equivalently, the original signal

whose reconstruction accuracy we want to assess through our

proposed technique. To this end, accurately modeling pollution

in the Cologne region is paramount to the reliability of our

study. Unfortunately, traditional fixed stations for the mea-

surement of atmospheric pollutants are expensive to deploy

and maintain, and their number is typically limited to a few

units per city. As a result, such data does not allow building

the fine-grained map we need for our analysis.

However, techniques have been proposed that enable gath-

ering high-resolution pollution information through biomoni-

toring of natural vegetation. We thus retrieved data obtained

via magnetic analysis of pine needles within the Cologne

conurbation [32], and use it to build a more precise model

of the average long-term presence of atmospheric pollution in

the region. Among the measures available from that study, we

employed the Saturation Isothermal Remanent Magnetization

(SIRM), which has been shown to be an excellent proxy

for biomonitoring of combustion pollutants. The signal (i.e.,

pollution) map in the Cologne region, resulting from SIRM

data collected at 63 locations, is portrayed in Fig. 6(a). There,

dots represent the measurement locations, whereas colors and

isolines identify different levels of SIRM presence.

In order to generate samples at each device, we there-

fore link the dataset above with those describing the spatial

distribution of sensing devices in the area (see Sec. 5.1).

Specifically, from the mobility data set we obtain the estimated

device positions, p̂. Then, we remove the position error, i.e.,

the instances of a zero-mean Gaussian distributed random

variable with variance σ2
δ , which allows us to retrieve the true

device locations. We then associate the phenomenon samples

to each device depending on its true position.

Next, we proceed to the validation and exploitation of our

proposed approach, presented in Sec. 3, in the opportunistic

sensing and application use case scenarios detailed in Sec. 5.1

and above. Specifically, we compute the asymptotic MSE

obtained by evaluating Eq. (18), where ηD is given by Eq. (19)

and ηR is computed by using Eq. (20). The spatial density

distribution g(y) of mobile (on-vehicle and handheld) devices

that appears in Eq. (20) is obtained through distribution

fittings, as explained in Sec. 5.2. Ultimately, our model allows

obtaining a measure of the MSE of the atmospheric pollution

in the Cologne region, as estimated from samples collected by

devices in the area.

Concerning the system parametrization, unless otherwise

specified, we set σ2
δ = 25m, r = 1, σ2

z = 0.01, n = 13, and

a handheld fraction of 0.8. The latter is the fraction of mobile

devices participating in the sensing process that is handheld, as

opposed to that of on-vehicle devices (whose default fraction

is thus 0.2). Also, we denote by ρ the spatial density of mobile

devices participating to opportunistic sensing. As an example,

when r = 1 and and the handheld fraction is 0.8, in the data

sets corresponding to 5 pm we have ρ = 667, ρ = 230, ρ = 85,

and ρ = 98 samples/km2, in areas, A, B, C, and D, respec-

tively. Finally, note that, in our settings we assume the same

value for the variance of the position error at vehicular and

handheld devices. Indeed, on-board commercial GPS receivers

are typically combined with an error correction system that
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Fig. 6. Validation. (a) Heatmap of SIRM in the Cologne region. (b,c) Analytic and numeric MSE versus the variance of

the measurement error σ2
z , computed at different times of the day and over different geographical regions, respectively.

leverages other information provided by the vehicle itself (e.g.,

vehicle speed). Thus, in spite of the higher speed of vehicles,

on-board GPS devices provide performance similar to that of

GPS receivers in handheld devices.

6.1 Analytical framework validation

In order to validate our approach, we compare the MSE

indicated by our analytic model against that computed via a

numerical approach, in presence of multiple system settings.

The numerical MSE is obtained by computing Eq. (12), i.e., by

averaging over many instances of random variables distributed

as the density of sensing devices.

Fig. 6(b) depicts the dynamics of the MSE versus σ2
z ,

i.e., the variance of the measurement error. In other words,

σ2
z represents the quality of the data collected by mobile

devices. Values of σ2
z larger than 1 indicate that mobile

devices collect low-quality, error-prone records that are poorly

representative of the actual atmospheric pollution in their

proximity. Conversely, values of σ2
z below 0.1 indicate that

dependable measures of the phenomenon are gathered by

sensors embedded in the mobile devices. It is thus natural

that all the curves in Fig. 6(b) have a monotonic, decreasing

trend with respect to decrementing values of σ2
z : the accuracy

of the pollution map reconstructed at the data fusion center

cannot but improve (and thus its MSE decrease) as the mobile

devices provide more reliable samples. Notably, values of σ2
z

below 1 are already sufficient to reduce the MSE below 0.1

in all cases, and σ2
z ’s below 0.1 guarantee a MSE below 0.01.

What is especially interesting for us is the comparison of

the asymptotic MSE determined by our model (denoted by

analytic in the plot) with the MSE computed through the

numerical approach. We can observe that there is a very good

match between the curves referring to the two methodologies,

for any value of σ2
z . Interestingly, the match is consistent when

considering different hours of the day, which are characterized

by a diverse presence of on-vehicle and handheld devices, i.e.,

values of ρ.

The results in Fig. 6(b) refer to the case of the geographical

area denoted as A in Sec. 5.2, and portrayed in Fig. 3(b). In

fact, focusing on other areas of the Cologne conurbation does

not vary the outcome. Fig. 6(c) shows that the match between

the asymptotic MSE and that computed by the numerical

approach remains good throughout geographical areas with

distinctive and heterogeneous road layouts, such as those

depicted in Fig. 3. The diversity of such areas emerges when

observing the quality of the pollutant presence estimation,

in terms of absolute MSE, for a same value of σ2
z . Indeed,

the reconstructed information is significantly less accurate in

scarcely populated areas (low ρ) crossed by a limited number

of roads, such as areas C and D, than in crowded, highly

trafficked areas (high ρ) such as A.

Overall, no matter the topological features of the geo-

graphical area considered, nor the time at which the analysis

is performed, we remark that our model always provides a

reliable indication of the MSE of the atmospheric pollution

estimated from the samples collected by mobile devices. We

conclude that the proposed model can be safely employed

for the characterization of the phenomenon reconstruction

accuracy in the realistic opportunistic sensing and application

use case scenarios we consider.

The model becomes crucial to better investigate the per-

formance, in terms of signal reconstruction accuracy, of the

mobile opportunistic sensing process. Indeed, as also high-

lighted by the following results, the computational cost of

the numerical approach grows rapidly with increasing values

of the system parameters, and soon becomes unmanageable.

Instead, the model allows exploring the full parameter space,

as done in the remainder of the section.

Takeaways. Our model provides an excellent approximation

of the accuracy achieved by a mobile opportunistic sens-

ing system. Its scalability with respect to a wide range of

parameters makes it suitable to comprehensive performance

evaluations of such systems.

6.2 Accuracy of opportunistic sensing

In our performance evaluation, we focus on the densely

populated area A at 5 pm, representing an ideal scenario for

a participatory approach, as outlined by the previous results.

First, we study the impact of the desired quality of the

reconstructed atmospheric pollution signal at the data fusion
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Fig. 7. Exploitation. (a) Impact on the MSE of the measurement error (σ2
z ) and of the number of harmonics of the

reconstructed signal, (n). (b) Impact of the participation ratio on the MSE of the pollution estimate. (c) Impact of

different densities ρ and of on-vehicle/handheld ratios for σ2
z = 0.01.

center. Fig. 7(a) shows the MSE as a function of the number

of harmonics per dimension n of the final pollution map

estimated from the collected samples. As explained in Sec. 3, n
is a measure of the precision with which we try to reconstruct

the original phenomenon, and higher values lead to a more

detailed representation. Therefore, the MSE tends to increase

with n. However, the good news is that the growth is not

particularly rapid, i.e., mobile sensing can support a high-detail

estimation without reducing too much the accuracy of the

result. Moreover, disposing of higher quality samples allows

obtaining estimates that are both very accurate and precise,

as observed when comparing the curves for different values

of σ2
z . For the sake of completeness, Fig. 7(a) also includes

equivalent curves obtained with the numerical approach. We

stress how (i) the numerical curves are again very close to the

analytic ones obtained with our proposed model, which further

proves the quality of the latter, and (ii) the numerical curves

are interrupted at n = 25 harmonics per dimension due to

their computational cost, which demonstrates how our model

can be leveraged to explore portions of the parameter space

that cannot be studied otherwise.

The impact of the participation ratio, r, is presented in

Fig. 7(b). Different curves denote participation ratios of 0.25,

0.5, 0.75, and 1, respectively, and are plotted versus the

sample quality represented by the variance of the measurement

error σ2
z . As one could expect, an increased participation of

mobile users results in a lower MSE, i.e., a higher accuracy

of the estimated pollution map. Interestingly, the difference

among the curves remains constant in a logarithmic scale.

This implies that, for any value of σ2
z , a participation ratio

r = 1 can compensate for a difference of sample quality of

around one order of magnitude with respect to a participation

ratio r = 0.25. The same result also leads to the consideration

that the impact of a higher participation ratio is much more

important when the quality of samples is low. As an example,

the MSE drops from 0.40 to 0.10 for σ2
z = 10 when all mobile

devices take part in the sensing process with respect to the

case where one every four does so. The decrement between

the same two ρ scenarios is instead of just 0.04 for σ2
z = 1.

We further delve into the analysis, by assessing the impact

of the density and type of participating devices for σ2
z = 0.01,

in Fig. 7(c). There, the abscissa denotes the total density of

devices, indicated as ρ and measured in samples collected per

square kilometer. We recall that in area A at 5 pm, with

a handheld fraction of 0.8, the density corresponding to a

participation ratio r = 1 is ρ = 667 samples/km2, thus

higher values of ρ correspond to future scenarios where the

pervasiveness of sensing-enabled devices will be even larger.

Different curves represent instead diverse handheld fractions.

The main observation here is the super-exponential decay

of the MSE with ρ, which indicates that the total density

of sampling devices is the key factor towards an accurate

sensing process. In particular, ρ is especially critical at low

densities, where a difference of a few tens of devices per km2

can result in a MSE reduction of two orders of magnitude.

The effect is instead attenuated once ρ grows beyond a few

hundreds of devices per km2. Concerning the type of mobile

devices involved in the process, we note that handhelds prove

to be better samplers than on-vehicle ones. The reason is

that vehicles are constrained to roads in their movement, and

thus tend to collect data on the atmospheric pollution that

always refer to the same portions of the area. Thus, increasing

the presence on-vehicle devices does not bring a significant

advantage, as it only leads to over-sampling at a limited

number of locations. Instead, handheld devices can move more

or less freely around the area, and thus provide a much better

coverage of the original phenomenon. This translates into a

decreased MSE when their presence grows.

Takeaways. The accuracy of mobile sensing is mainly driven

by participation. A minimum critical threshold (e.g., ∼100

samples/km2 in our scenario) of uniformly distributed (e.g.,

handheld in our scenario) mobile devices that provide good-

quality measurements (e.g., error variance below 1% in our

scenario) is required to faithfully reconstruct the original

phenomenon.

6.3 Impact of position error

We also investigate the impact on the accuracy of the phe-

nomenon estimation of the position and measurement errors

affecting the collected samples. Results are shown in Fig. 8.
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Fig. 8. Exploitation: MSE as a function of the measurement error variance, σ2
z , for different values of the variance of

the position error affecting the collected samples. The scenario under study is area A at 5 pm with a handheld fraction

of 0.8, under r = 0.5 (left) and r = 1 (right).

The scenario under study is still area A at 5 pm with 80%

handheld devices and r = 0.5 (left) and r = 1 (right). Note

that values of position error variance, σ2
δ , from 4 to 225 m2

correspond to position errors ranging between 2 and 15 m,

which are typical values for GPS receivers. Interestingly, the

effect of the position error becomes noticeable only when the

impact of measurement errors is marginal, i.e, for values of

σ2
z smaller than 0.01 for r = 0.5 and 0.005 for r = 1.

This suggests that the measurement noise drives the system

performance and δ plays a role only when the measured

signal samples are very accurate. We further observe that

the position error contributes to determining the MSE floor,

i.e., the asymptotic value that we obtain as the measurement

error (or, equivalently, σ2
z ) tends to zero. The reason for this

behavior is that the LMMSE filter used for the phenomenon

reconstruction cannot be optimized with respect to δ (see

Sec. 4.1 for details). Specifically, the MSE floor increases

by almost one order of magnitude as the variance of the

positioning error σ2
δ varies from 25 to 225 m2. Furthermore,

in the region where σ2
z dominates, the accuracy decreases as

a power law function of the measurement error variance.

Takeaways. Typical GPS position errors do not affect the

accuracy of mobile opportunistic sensing in a significant way.

6.4 Impact of device deployment

In order to complete our analysis, we compare the perfor-

mance of the mobile sensing system to a traditional approach

using fixed monitoring stations [8]. The latter are uniformly

distributed over area A with two different densities, namely,

10 and 400 stations/km2. The first value is representative

of quite extensive real-world station deployment, while the

second coincides with the considered density of the mobile

sensing devices. Results are shown in Fig. 9.

Let us first focus on the three curves that have been obtained

for the same number of samples per km2 (i.e., ρ = 400). Recall

that in our scenario pedestrians are uniformly distributed in

the non-road zones, thus a higher handheld fraction implies a

larger number of uniformly distributed samples. We note that

the spatial distribution of samples has a significant impact

on the MSE: the more uniform the distribution, the better

the performance. This suggests that a massive monitoring

infrastructure would lead to a highly accurate reconstruction

of the phenomenon of interest. However, mobile opportunistic
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Fig. 9. Exploitation: Impact of the spatial deployment of
sensing devices over the geographical area (area A).

Different densities (10 and 400 stations/km2) of fixed

monitoring stations are compared to a mobile sensing
process (ρ = 400 samples/km2) with 0.5 and 0.8 handheld

fraction.

sensing yields performance that is very close to that of

a pervasive sensing infrastructure deployment, without the

associated costs.

Also, assuming large but more realistic values of fixed

stations density (e.g., 10 stations/km2), we clearly see that

the reconstruction accuracy achieved by the fixed infrastruc-

ture is severely reduced. It follows that mobile opportunistic

sensing can represent an excellent alternative to monitoring

infrastructures that are expensive to deploy and maintain.

Takeaways. Mobile opportunistic sensing has the potential

to provide phenomena representations that are much more

accurate (e.g., at least two orders of magnitude smaller MSE

in our scenario) than those achievable by quite extensive (e.g.,

10 stations/km2 in our scenario) sensing infrastructures, at a

much lower cost.

7 CONCLUSIONS

We addressed the problem of evaluating the accuracy of mobile

opportunistic sensing in urban environments. By using a signal

processing approach, we developed an analytical framework

that describes the relationship between the accuracy of the phe-

nomenon reconstruction and the mobile sensing parameters.

Our framework assumes that the well-known LMMSE filter is

used for signal reconstruction, and accounts for major factors
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such as position and measurement errors affecting the collected

samples, as well as the density and spatial distribution of

sensing devices. We validated our approach through numerical

results in a realistic scenario where both on-vehicle and

handheld mobile devices participate in the sensing process.

We then exploited the analytical expressions we derived to

investigate the impact of the mobile sensing parameters on

the accuracy of air pollution sensing. Our results highlight

that the noise level affecting the measurements collected by

the users is more critical than the sheer number of users,

and that pedestrian users are paramount to the quality of

the urban sensing process. Position errors instead play a role

only in presence of very accurate measurement of the sensed

phenomenon. Finally, given the type of phenomenon under

study, the number of samples to be collected can be modulated

according to the required level of accuracy.
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