
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Increasing the Efficiency of Latency-Driven DVFS with a Smart NoC Congestion Management Strategy / Escamilla, José
Vicente; Flich, José; Casu, MARIO ROBERTO. - ELETTRONICO. - (2016), pp. 241-248. (Intervento presentato al
convegno IEEE 10th International Symposium on Embedded Multicore/Many-core Systems-on-Chip tenutosi a Lyon,
France nel 21-23 September 2016) [10.1109/MCSoC.2016.42].

Original

Increasing the Efficiency of Latency-Driven DVFS with a Smart NoC Congestion Management Strategy

Publisher:

Published
DOI:10.1109/MCSoC.2016.42

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2654496 since: 2016-10-27T17:41:24Z

IEEE Computer Society

Increasing the Efficiency of Latency-Driven DVFS
with a Smart NoC Congestion Management Strategy

José V. Escamilla and José Flich
Grupo de Arquitecturas Paralelas, DISCA

Universitat Politècnica de València
joseslo@gap.upv.es, jflich@disca.upv.es

Mario R. Casu
Department of Electronics and Telecommunications

Politecnico di Torino
mario.casu@polito.it

Abstract—Dynamic Voltage and Frequency Scaling (DVFS) can
be a very effective power management strategy not only for on-
chip processing elements but also for the network-on-chip (NoC).
In this paper we propose a new approach to DVFS in NoC, which
combines a congestion management strategy with a feedback-
loop controller. The controller sets frequency and voltage to the
lowest values that keep the NoC latency below a predetermined
threshold. To cope with burstiness and hotspot patterns, which
may lead the controller to overdrive the NoC with too high
frequencies and voltages, leading to excessive power consumption,
the congestion management strategy promptly identifies the flows
that caused the abnormal traffic situation and eliminates them
from the latency calculation, leading to a significantly higher
power saving. Compared to a baseline DVFS strategy without
congestion management, our results show that our proposal saves
up to 53% more power when bursty or hotspot-based traffic
patterns are detected. In addition, since we also apply power-
gating to make an efficient use of the network buffers, we achieve
an improvement of up to 38% in power savings when no bursts
or hotspots are present.

I. INTRODUCTION

Integrating a large number of processing elements into
a single chip (CMPs, MPSoCs) is becoming the standard
design choice in industry. This strategy offers good perfor-
mance/power tradeoff while saves costs. These systems must
be delivered with built-in networks, known as network-on-
chip (NoCs) [1]. Usually, the NoC is designed with strict
requirements in terms of throughput and latency so it becomes
one of the most important chip components to guarantee
the expected chip performance. In addition, the NoC may
represent up to 20% of the overall chip power consumption [2].

The current trend is to increase the number of processing
units as long as technology shrinks. Examples of this trend
are the 72-cores Tile-Gx [3] or the 256-cores Kalray MPPA-
256 (Bostan) [4]. With the number of processing elements
increasing, it is mandatory to use strategies that reduce over-
all power consumption without affecting significantly system
performance. One of the most successful mechanism to per-
form this is DVFS [5], which drives voltage and frequency
dynamically at runtime to fit the workload requirements.

DVFS-based mechanisms essentially collect metrics from
the system to find out how it is performing. According to
this, the system reacts by increasing or decreasing frequency
and voltage to meet the system requirements, thus saving
power when requirements are low. The application of this

mechanism to the NoC is not trivial. One main issue is to
find the frequency that fits the whole NoC requirements. For
small systems or systems with a very regular workload, it may
become trivial. However, in larger or non-balanced workloads,
that target may be difficult to achieve since some parts of the
network may be overloaded while the rest of the network is
completely underutilized.

On the other hand, an emerging trend is, instead of us-
ing several identical cores, to manufacture heterogeneous
chips [6]. This paradigm is based on the fact that specialized
processing units are more efficient at performing specific jobs.
However, due to this heterogeneity the network load becomes
very unbalanced and unpredictable, characterized by hotspots-
based traffic patterns [7]. In addition, some application traffic
patterns may naturally generate abrupt traffic bursts [8] and
generate congested network regions.

Because of these reasons, it becomes apparent that guar-
anteeing acceptable performance levels while reducing power
consumption is a real challenge. To illustrate this issue, in
Figs. 1-3 we can see how a system that uses the NoC latency
as metric to drive the DVFS mechanism (DMSD) [9] behaves
under a critical traffic pattern. This pattern mixes a back-
ground traffic generated by regular nodes in a 8x8 2D mesh
(e.g. general purpose processing units) with a hotspot traffic
injected by four nodes towards a single node. This hotspot is
representative of traffic generated by device hardware accelera-
tors [10] or irregular traffic generated by some applications [8],
both characterized by short and heavy-weight data bursts
from/to neighbor nodes. Specifically, the background traffic
is generated and received by all nodes not belonging to the
hotspot following an uniform distribution pattern. Accordingly,
the hotspot traffic is generated by injecting traffic at a high data
rate to a given node from all of its neighbors.

The results reported in Figs. 1-3 have been obtained with a
cycle-accurate NoC simulator which models 4-stages pipeline
routers: IB (input buffer), RT (routing), VA/SA (virtual chan-
nel and switch allocation), X (link crossing). In Tab. I the rest
of configuration parameters are described. The values in Tab. I
are used to obtain our baseline results1. To obtain our power
results we used a modified version of Orion v3.0 [11].

1We also evaluated the robustness of our solution when some of these
parameters are varied, as we will see in Sec. III-E.

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600 700 800

F
re

q
u

e
n

c
y
 (

M
H

z
)

Generated traffic (f/ns/nic)

Frequency

Frequency

Fig. 1: Frequency for DMSD under
hotspot traffic.

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600 700 800
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

B
a
c
k
g

ro
u

n
d

/A
v
e
ra

g
e

 l
a

te
n

c
y
 (

n
s
/m

e
s
s
a

g
e

)

H
o

ts
p

o
t

la
te

n
c
y
 (

n
s
/m

e
s
s
a

g
e

)

Generated traffic (f/ns/nic)

End-to-end latency

background
hotspot

average
latency target

Fig. 2: End-to-end latency per traffic
type for DMSD under hotspot traffic.

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600 700 800

P
o

w
e
r

(m
W

)

Generated traffic (f/ns/nic)

Power

power

Fig. 3: Power consumption for DMSD
under hotspot traffic.

Fig. 1 shows the frequency increase as the hotspot is
activated at 300µs. Fig. 2 shows how this increase differently
affects the latency of two different traffic classes: congested
traffic (hotspot traffic) and regular traffic (background traffic).
The regular traffic is unnecessarily accelerated and its latency
becomes less than a predetermined target (highlighted with
a horizontal green dashed line), whereas the latency of the
congested traffic increases significantly in spite of the high
NoC clock frequency. As shown in Fig. 3, the consequence is
a net power waste for an unwanted decrease of latency of the
real productive traffic (the background one in our example).

In this paper we tackle such problem. We combine a latency-
driven DVFS strategy (DMSD, as proposed in [9]), with a
congestion management mechanism (ICARO [12]). Our goal
is to use the congestion management strategy to discriminate
and separate both traffic types, allowing the network to apply
frequency and voltage policies based on the real productive
traffic, hence allowing the DVFS strategy to guarantee a given
end-to-end latency while optimizing power consumption.

The paper is organized as follows. First, we briefly describe
DMSD and the methodology we used to obtain our results.
Then, we describe ICARO. After presenting the combined
strategy and its internal arrangement, we show the results.
Then we revisit the related work. Finally we plot the con-
clusions and the future work plans.

II. ANALYSIS OF THE DMSD DVFS POLICY

The purpose of the Delay-based Max Slow Down (DMSD)
DVFS policy is to decrease the NoC frequency and voltage
as much as possible without compromising the system perfor-
mance [9]. To achieve this, DMSD uses the average end-to-end
latency as a performance metric, and a Proportional-Integral
(PI) controller that adapts frequency and voltage so as to keep
that metric close to a latency target. The higher the latency
target, the larger is the power saving. In our experiments, we
set it equal to the latency that is obtained with an injection rate
5% less than the saturation point under uniform traffic, which
is obtained by running simulations in which the injection rate
is increased until saturation. However, in a real system the
latency target can be obtained by means of profiling.

In Fig. 4 an overview of an NoC provided with DMSD is
depicted. Each node stores in a register the average end-to-
end latency, updated each time a flit is received. Periodically,

+ -

Latency
Target

PI
controller

F(U)

U

FnocNoC
Clock & Voltage

DVFS
controller

Average
Latency

E
(Error)NoC

Controller node average delay computation

Node packet delay measurement

Fig. 4: All nodes in the network send latency measures to the
PI controller to set the new frequency.

Fmax

Fmin

Umin Umax

F

Uminsat Umaxsat U

Fig. 5: Conversion from U to frequency.

all nodes send the average latency to a given node, which
computes the overall end-to-end latency for the whole system.
In addition, this node contains the PI controller and the voltage
and frequency controllers. Upon receiving all latencies, the
overall latency at time n, Ln, is computed and the noise filter
described by (1) is applied to obtain L′n. Then, the error En
is computed by subtracting the latency target Lt from L′n as
shown in (2). The error is then passed to the PI controller,
which generates the signal Un according to (3).

L′n = α L′n−1 + (1− α)Ln (1)
En = L′n − Lt (2)
Un = Un−1 +KIEn +KP (En − En−1) (3)

In (3), KI and KP are the integral and proportional gains
determined empirically and used to adjust the PI controller

TABLE I: Robustness analysis scenarios configuration.

Network configuration
Topology 8x8 2D regular mesh

Routing policy XY
Switching technique Wormhole (flit-level)

Flow control credits
Flit size 128 bits

Message size 10 flits
Switch queue size 4 flits
Virtual Channels 4 per Virtual Network

DMSD configuration
Frequency range 333 - 1000 MHz

Voltage range [0.56, 0.9] V
Ki, Kp 0.025, 0.0125

U saturation range [-15, 15]
α 0.7

behavior while guaranteeing stability.
Finally, U is used to determine the frequency. For this, U

is bounded within Uminsat
and Umaxsat

and the range from
Umin to Umax is linearly translated to frequency, as shown in
Fig. 5. A voltage-to-frequency mapping is then used to apply
the correct voltage for a given clock frequency.

DMSD performs well under stationary traffic patterns [9].
As shown in Figs. 1-3, however, the high intensity of a few
data flows (hotspots) which are not representative of the whole
system load, disrupts the DVFS strategy, leading to a waste of
power by increasing the frequency and voltage unnecessarily.

Notice that this effect could be avoided by implementing
Voltage and Frequency Islands (VFIs) [13][14]. However, this
would imply extra silicon area and power to implement the
VFIs separate DVFS controllers, and it would require to either
know at design-time where hotspots will be located, or the
ability to confine the hotspot traffic in a separate voltage island
at run-time. In contrast, our approach consists in implementing
a congestion control mechanism (ICARO) to detect hotspots
and filter them out, regardless their location and intensities.

Orion does not directly support the industrial 28-nm CMOS
technology that we used for the implementation of routers
with support for congestion management and buffer power-
gating. By using the post-synthesis results of our RTL version
of the router, we modified Orion in such a way that its results
are compatible with our technology. Moreover, we added the
support for including the effect of buffer power-gating in the
computation of power consumption.

III. IMPLEMENTING CONGESTION MANAGEMENT

Hotspot flows mask the overall system performance, in-
creasing significantly the overall latency while the network
resources not used by the hotspot flows may be underutilized.
Our approach consists in identifying those hotspot flows,
and separating them from the rest of the network traffic
(background traffic). For this purpose, we pick ICARO, a
congestion-control mechanism that detects, identifies, and iso-
lates congestion within the network.

A. ICARO

ICARO removes the Head-of-Line (HoL) blocking by first
identifying congestion, and then by isolating the congested
flows involved in it into dedicated Virtual Networks (VNs). As

SW0 SW1 SW2 SW3

SW4 SW5 SW6 SW7

SW8 SW9 SW10 SW11

SW12 SW13 SW14 SW15

CaL register

Network Interface

Fig. 6: Congestion Notification Network for a 4x4 mesh.

the congested traffic is delivered through separate resources, it
does not share buffer resources with the non-congested traffic,
so HoL-blocking is removed. ICARO consists of three stages:
congestion detection, notification and isolation.

1) Congestion Detection: The congestion is detected at
the routers level, by keeping track of which input ports are
requesting any output port. If more than one input port is
requesting a given output port for too much time, that output
port is marked as oversubscribed, so congestion at that output
port is declared. However, two or more input ports could be
requesting a given output port at a low data rate, not leading
to congestion. Because of this, only input ports exceeding a
given utilization threshold are considered.

2) Congestion Notification: Once congestion is detected, it
must be notified to the NIs to isolate the traffic that causes the
congestion before being injected into the network. To perform
this, ICARO uses a dedicated congestion notification network
(named CaL network2), which consists of a ring of N registers
connected by links of log2(N) + p+ 1 width, where N is the
number of nodes and p the routers radix. An example of a
CaL network is shown in Fig. 6. Other mechanisms for fast
notification delivery include express channels [15] and circuit-
switched networks. However, express channels may imply high
area overhead while circuit-switched networks suffer from
high latency penalties when establishing circuits.

3) Congestion Isolation: In absence of congestion, the NI
allocates all messages in regular-VNs, as determined by the
NI allocator. Once notifications are received, the NI uses the
congestion information and calculates a message route to know
whether that message will cross any of the congested points
(CPs). If so, the message is reallocated into a special VN
(extra-VN) to be injected and delivered through it along all the
path to destination. Otherwise, the message is injected through
the current regular-VN. By doing this, flows contributing to
the congestion are isolated into the extra-VN, keeping the non-

2This network is called CNN in [12] but we modify it to deliver also other
messages, hence the name CaL (Congestion and Latency) network.

Regular-VN

Extra-VN

Dst=1Dst=7

NoC

ICARO CPs
memory

Message reallocated

Message no reallocated

Network Interface 4

Dst=11

SW Port

5 East

- -
ICARO

Arbiter

Fig. 7: NI with ICARO for reallocating congested messages.

CaL in

CaL out

CaL.type

N
o

ti
fi

ca
ti

o
n

in
je

ct
io

n

N
o

ti
fi

ca
ti

o
n

re
ce

p
ti

o
n

𝑙𝑜𝑔2 𝑁 + 𝑅𝑎𝑑𝑖𝑥 + 𝑒𝑥𝑡 + 3

2 · (𝑙𝑜𝑔2 𝑁 + 𝑅𝑎𝑑𝑖𝑥 + 𝑒𝑥𝑡)

2

𝑙𝑜𝑔2 𝑁 + 𝑅𝑎𝑑𝑖𝑥 + 𝑒𝑥𝑡

1

0

Reg n

FSM
Router n

NI n

Latency meassures
010b

001b

2

CaL.busy

La
te

n
ci

es
av

ai
la

b
le

011 0…0b

Fig. 8: CaL network register associated logic for regular nodes
adapted to DMSD.

congested traffic into the regular-VNs. In this way, DMSD
will be able to measure the latency of the non-congested
traffic (data flowing through the regular-VNs). Fig. 7 depicts
an example of this process for the NI 4 in a 4x4 2D mesh.

When congestion ends, the conditions leading to detect
CPs at routers will not occur anymore. Therefore, all the
routers that previously detected CPs will detect this end of
congestion and notify this event to the NIs, which will react by
removing those CPs from their congestion notification board.
Accordingly, since the messages pending to be injected at NIs
will not cross any stored CP, those messages will be normally
injected through the regular-VN.

B. Delivering latency measurements with the CaL network

In the original DMSD formulation, packets containing the
measured end-to-end latency are sent to the controller node
via piggybacking [9]. Intense congestion situations, however,
may delay the delivery of those packets and the reaction of the
PI controller, potentially causing the PI controller to oscillate.
On the other hand, ICARO implements the CaL dedicated
network, which we modified to support the delivery of those
latency values in addition to congestion notifications. By doing
this, the metrics necessary to set the frequency properly are
guaranteed to timely arrive at destination (with low aggregated
overheads, as we show in Sec. III-D).

In a DMSD-based system there are two types of nodes:
those that send their latency metrics, and one that receives
them. Thus, we implement two slightly different logic blocks
to connect to the CaL network. Fig. 8 shows the logic of

Reg n

NI n
PI

controller

CaL in

CaL out

CaL.busy

CaL.type

N
o

ti
fi

ca
ti

o
n

in
je

ct
io

n

N
o

ti
fi

ca
ti

o
n

re
ce

p
ti

o
n

Node n
latency

𝑙𝑜𝑔2 𝑁 + 𝑅𝑎𝑑𝑖𝑥 + 𝑒𝑥𝑡 + 3

2 · (𝑙𝑜𝑔2 𝑁 + 𝑅𝑎𝑑𝑖𝑥 + 𝑒𝑥𝑡)

2

𝑙𝑜𝑔2 𝑁 + 𝑅𝑎𝑑𝑖𝑥 + 𝑒𝑥𝑡

1

FSM

Router n

𝑙𝑜𝑔2 𝑁 + 𝑅𝑎𝑑𝑖𝑥 + 𝑒𝑥𝑡

PGC

Fig. 9: CaL network register associated logic for the node
provided with the PI/DVFS controller adapted to DMSD.

a typical router/NI that sends and receives ICARO notifica-
tions and sends DMSD latencies. Note that, despite ICARO
notifications are sent in one cycle, we modified the logic to
serialize the transmission of 32-bit latencies through the CaL
network by extending its links width by (ext=8-Radix) bits.
Congestion notifications can be seamlessly interleaved with
DMSD latency notifications because one bit identifies the type
of CaL message. DMSD notifications from different nodes are
guaranteed to arrive in order since nodes will send them after a
fixed (and different for each node) time offset. Similarly to the
sender node in Fig. 8, Fig. 9 shows the logic for the receiver
node. This node sends and receives ICARO notifications like
any other CaL node, adds its own latency measurements to
the received ones, and forwards them to the PI controller.

C. Power-Gating Extra-VN Buffers

To avoid wasting power when there is no congestion, we
implement a mechanism to power-off the extra-VN buffers via
a centralized Power-Gating Controller (PGC), which resides
in the same node that implements DMSD. All the buffers of
an extra-VN (in all NIs as well as in all routers) are powered
on/off simultaneously. Power-on is easy: the PGC node snoops
the CaL network and when it catches the first congestion
notification it broadcasts a power-on message through the CaL
network. On the contrary, power-off is not trivial. Snooping the
CaL network in search of the “end of congestion” messages
is not a valid strategy because there might still be messages
in the extra-VN, either in the NIs pending to be injected, in
the routers on their way to destination, or both. Therefore,
to safely turn off the extra VNs, the PGC must be informed
through the CaL network by both all NIs and routers about
their detection of a congestion-free situation:

1) Network Interfaces detection: To make sure that no
congested traffic will be injected into the network from a
given NI, two conditions must be satisfied. First, the extra-
VN buffers must be empty. In addition, the NI congestion
notification board must be clean (no new notifications). If both
conditions are met, the NI notifies its congestion-free status to
the PGC with a special message sent through the CaL network.

n21

PGC

…

…

n21 …

CaL

In

Out

CaL.srcType

1

Lo
g
2
(N
)+
1

…

1

Nis
bitmap

Routers
bitmap

CaL.srcId

CaL.srcId

PGC

Fig. 10: Power-gating controller.

 0

 2

 4

 6

 8

 10

 12

NI Router

%

Area overhead

5x5

8x8

16x16

Fig. 11: ICARO+DMSD area overhead of different meshes.

2) Routers detection: At routers the mechanism is simpler.
Each time the extra-VN buffer utilization increases from 0 to
1, the router sends a message to the PGC to inform that is
storing congested traffic. On the other hand, when the buffer
utilization decreases from 1 to 0, the router sends another
message to inform that is congestion-free.

The PGC is provided with two N-width bitmaps, where
N is the number of nodes in the network: one bitmap for
the NIs and one for the routers. These bitmaps are updated
any time a NI or a router notifies the PGC about its status
(0=no congested traffic stored, 1=congested traffic stored).
In this way, the PGC has a complete congestion picture
of the network. When the PGC detects that all NIs and
routers are congestion-free, it commands to power-off the
extra-VN buffers; otherwise, it commands to power-on the
buffers. Fig. 10 sketches the PGC bitmaps, the logic to power-
on/off the buffers, and its connection to the CaL network. We
quantify the advantage of using power-gating in Sec. III-E.

Note that area and power consumed by the PGC are
negligible since its implementation only requires N -width
demultiplexers, 1 N -width multiplexer, 1 N -width NOR gate
and 2N registers for a complete mesh.

We are aware that turning on/off all the extra-VN buffers is
suboptimal since several buffers could not be reached by any
congested flow. Because of this, as a future work we plan to
implement a new policy to turn the buffers on/off selectively.

D. Area Overhead Analysis

The bars in Fig. 11 illustrate the area overhead for a NI and
a router with support for ICARO, with respect to a baseline
implementation (no DMSD, no ICARO)3. The results have

3We obtained overhead results only for ICARO since DMSD and the PG
controller overheads are negligible compared to the ICARO’s overhead.

been obtained after synthesis on our 28-nm technology, in the
conditions of Tab. I, except for the mesh size that we let vary.
We notice that the overhead is small, less than 10%, even for
the case of a large 16×16 mesh.

E. Experimental Results

In this section we first report simulation results obtained in
the baseline configuration of Tab. I. These results show that
our combined DVFS and congestion management strategies
can effectively solve the problem outlined in Sec. I that is at
the basis of our work. Then, we report results obtained with
a sensitivity analysis in which we varied several configuration
parameters to check the robustness of our solution. Note
that, for our experiments DMSD as well as ICARO are
provided with the same amount of VNs in order to compare
both solutions with the same amount of resources, providing
each VN with the same amount of VCs. However, since
DMSD does not require several VNs to work properly and
these additional resources may affect negatively to its power
consumption we perform an additional experiment comparing
against the baseline with only 1 VN.

Figs. 12-14 compare the DMSD and the DMSD+ICARO
cases in terms of latency, frequency, and power, in the baseline
scenario. Notice that to properly compare the two cases, the
two systems have the same total buffering resources. Note also
that, in the case of ICARO, the extra-VN is composed of as
many VCs as the regular-VNs.

Since ICARO effectively separates the background traffic
from the hotspot one, DMSD can effectively measure only the
latency of the background traffic. Therefore, thanks to the PI
controller, DMSD keeps the latency of the background traffic
around the 76-ns latency target, as shown in Fig. 12. In fact,
as Fig. 13 shows, the NoC clock frequency is not influenced
anymore by the activation of the hotspot traffic. This, in
addition to the use of power-gating, results in a significant
improvement of the power consumption, as shown in Fig. 14.
When the hotspot is not active (from time 0µs to 300µs,
and then again after around 380µs), the extra-VN buffers are
powered-off, resulting in lower power for the DMSD+ICARO
case. When the hotspot is active, the extra-VN buffers are
switched on, hence the power increases. Still, since the clock
frequency in the DMSD+ICARO case is less than the DMSD
case, the power consumption is also significantly reduced.

To validate our results under different network configu-
rations, we changed several network parameters: mesh size,
router buffers queues size, number of virtual channels, mes-
sage length, number of hotspots, and hotspot duration. All
the cases analyzed are described in Tab. II, in which every
case is assigned a label that is used next in the graph keys.
As Fig. 15 shows for all the configurations analyzed, in the
DMSD+ICARO case the background traffic correctly tracks
the prescribed target, hence avoiding the excessive power
consumption that characterizes the reference DMSD case. Note
that, since the goal of our approach is to keep the background
latency around the latency target, for better understanding,
hotspot latencies have been omitted in the graphs. Also note

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500 600 700 800
 0

 2000

 4000

 6000

 8000

 10000

B
a
c
k
g

ro
u

n
d

 l
a
te

n
c
y
 (

n
s
/m

e
s
s
a

g
e

)

H
o
ts

p
o
t

la
te

n
c
y
 (

n
s
/m

e
s
s
a

g
e

)

Generated traffic (f/ns/nic)

End-to-end latency

DMSDonly BG
DMSDonly HS

DMSD+ICARO BG
DMSD+ICARO HS

latency target

Fig. 12: End-to-end latencies for the
background and the hotspot traffic.

 0

 200

 400

 600

 800

 1000

 0 100 200 300 400 500 600 700 800

F
re

q
u

e
n

c
y
 (

M
H

z
)

Generated traffic (f/ns/nic)

Frequency

DMSDonly
DMSD+ICARO

Fig. 13: Frequencies for DMSD and
DMSD+ICARO.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500 600 700 800

P
o

w
e

r
(m

W
)

Generated traffic (f/ns/nic)

Power

DMSDonly
DMSD+ICARO

Fig. 14: Power consumption for DMSD
and DMSD+ICARO.

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600 700 800

B
a

c
k
g

ro
u

n
d

 l
a
te

n
c
y
 (

n
s
/m

e
s
s
a

g
e

)

Generated traffic (f/ns/nic)

End-to-end latency mesh size

DMSD 5x5
DMSD+ICARO 5x5

DMSD 8x8
DMSD+ICARO 8x8

DMSD 16x16
DMSD+ICARO 16x16

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600 700 800

B
a

c
k
g

ro
u

n
d

 l
a
te

n
c
y
 (

n
s
/m

e
s
s
a

g
e

)

Generated traffic (f/ns/nic)

End-to-end latency queue size

DMSD qs2
DMSD+ICARO qs2

DMSD qs4
DMSD+ICARO qs4

DMSD qs8
DMSD+ICARO qs8

DMSD qs16
DMSD+ICARO qs16

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600 700 800

B
a

c
k
g

ro
u

n
d

 l
a
te

n
c
y
 (

n
s
/m

e
s
s
a

g
e

)

Generated traffic (f/ns/nic)

End-to-end latency virtual channels

DMSD vcs2
DMSD+ICARO vcs2

DMSD vcs4
DMSD+ICARO vcs4

DMSD vcs8
DMSD+ICARO vcs8

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600 700 800

B
a

c
k
g
ro

u
n

d
 l
a

te
n

c
y
 (

n
s
/m

e
s
s
a
g

e
)

Generated traffic (f/ns/nic)

End-to-end latency message length

DMSD ml5
DMSD+ICARO ml5

DMSD ml10
DMSD+ICARO ml10

DMSD ml20
DMSD+ICARO ml20

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600 700 800

B
a

c
k
g
ro

u
n

d
 l
a

te
n

c
y
 (

n
s
/m

e
s
s
a
g

e
)

Generated traffic (f/ns/nic)

End-to-end latency number hotspots

DMSD 1HS
DMSD+ICARO 1HS

DMSD 2HS
DMSD+ICARO 2HS

DMSD 3HS
DMSD+ICARO 3HS

 0

 50

 100

 150

 200

 0 100 200 300 400 500 600 700 800

B
a

c
k
g
ro

u
n

d
 l
a

te
n

c
y
 (

n
s
/m

e
s
s
a
g

e
)

Generated traffic (f/ns/nic)

End-to-end latency hotspot duration

DMSD short
DMSD+ICARO short

DMSD medium
DMSD+ICARO medium

DMSD large
DMSD+ICARO large

Fig. 15: End-to-end latency for different configuration parameters

TABLE II: Robustness analysis scenarios configuration.

Scenarios
Label Mesh Queue Msg. Num. HS Lat.

Size Size VCs Length HS Dur. target
(nodes) (flits) (flits) (ns) (ns)

Baseline 8x8 4 4 10 1 50us 76
5x5 5x5 4 4 10 1 50us 66

16x16 16x16 4 4 10 1 50us 105
qs2 8x8 2 4 10 1 50us 79
qs8 8x8 8 4 10 1 50us 81
qs16 8x8 16 4 10 1 50us 72
vcs2 8x8 4 2 10 1 50us 60
vcs8 8x8 4 8 10 1 50us 97
ml5 8x8 4 4 5 1 50us 62

ml20 8x8 4 4 20 1 50us 96
2HS 8x8 4 4 10 2 50us 76
3HS 8x8 4 4 10 3 50us 76
short 8x8 4 4 10 1 25us 76
large 8x8 4 4 10 1 100us 76

that the hotspot start/stop time is highlighted with vertical
bars and that in the hotspot duration graph the three different
hotspot ending times are highlighted with different colors.
Please note that the latency target value for a given scenario
depends not only on the saturation point, which is highly
correlated with the system configuration, but also on the la-
tency curve gradient. Therefore, in some system configurations

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

no-HS HS

%

Power consumption improvement

baseline
mesh5x5

mesh16x16
qs2
qs8

qs16
vcs2
vcs8
ml5

ml20
2HS
3HS

short
large

Fig. 16: Power consumption improvement with respect to
DMSD for all configurations.

the calculated latency target seems not to follow an intuitive
progression like in the VCs analysis graph shown in Fig. 15.

Fig. 16 summarizes the improvement of power consumption
of the DMSD+ICARO case, in all the configurations of Tab. II.
Two different improvement values are reported. The first one
is due to the extra-VN power-gating (no-HS in the graph),
measured at time 290µs (just before the hotspot activation);
the second one corresponds to the power-saving during the

-30

-20

-10

 0

 10

 20

 30

no-HS HS

%
Power consumption improvement (DMSD=1VN)

baseline
mesh5x5

mesh16x16
qs2
qs8

qs16
vcs2
vcs8
ml5

ml20
2HS
3HS

short
large

Fig. 17: Power consumption improvement with respect to
DMSD (provided with 1VN) for all configurations.

hotspot duration (HS in the graph) and is calculated by
averaging the power spent from time 300µs to time 600µs,
since this is the time range in which the hotspots affect any
of the cases analyzed. Note that the power overhead due to
the additional hardware required by our proposal is already
included in the power consumption graphs.

As Fig. 16 shows, for all the cases considered, the com-
bination of DMSD and ICARO leads to a significant power
improvement over the DMSD baseline when hotspot is active.
When no hotspot is active, by switching the extra-VN off we
achieve up to 38% power saving and an average of 28%.
When congested traffic is detected, ICARO manages this sort
of traffic and DMSD tunes the frequency properly saving up
to 53% power consumption and 38% on average. In the results
obtained when the hotspot is present, we observe a larger
variance. This is expected as, for calculating the average, we
take values from the same range of time for all cases but
the duration of the effects of the hotspots are not the same
for those cases, therefore, the weight of those values over the
average is not the same.

In the final experiments we analyze our proposal against
DMSD provided with 1VN. Unlike ICARO, DMSD does not
require several VNs to perform properly, so we performed the
same robustness analysis shown above but providing DMSD
with 1VN. Nonetheless, as ICARO does not require the extra-
VN to be provided with several VCs, for this simulations we
configured ICARO with the same number of VCs for the
regular-VN as the DMSD case and only 1VC for the extra-
VN. The power results in Fig. 17 show that in absence of
congestion, ICARO consumes more power than DMSD due
to the ICARO logic power consumption. When hotspot is
active, however, despite the additional buffers ICARO saves
a significant amount of power under the most part of the
analysis, achieving up to 20% power saving. Nevertheless,
some scenarios present characteristics (amount of resources,
message length, etc.) for which DMSD does not overreact to
keep the latency under the target, resulting in less power con-
sumption for DMSD. Still, the congestion in those scenarios
triggers the ICARO mechanism, causing to switch the extra-
VN buffers on, increasing power consumption, and ultimately
reducing the power saving compared to the baseline.

IV. RELATED WORK

Most of the literature focuses on a fine-grain applica-
tion of DVFS to NoCs, with routers and even links in-
dividually powered at different voltages and frequencies
[16][17][18][19][20][21]. These works, however, do not con-
sider the overhead of having multiple voltage regulators and
PLLs for the various NoC components, not to mention the
latency penalty due to multiple clock-domain crossings. We
share the view of other authors that consider more practical
to have a single voltage and frequency domain for the whole
NoC [22][23][24][25].

It is apparent that a fine-grain DVFS approach would lead to
better power savings, but the implementation cost would be too
high. For these reasons researchers explored a middle ground
that we can classify as coarse-grain NoC DVFS, in which
either multiple NoC planes (typically two planes) powered
at different voltages and/or frequencies are used [26][27], or
routers that can individually choose between only two voltages
are employed [28]. Our approach can be easily adapted to the
case of multiple NoC planes.

In terms of implementation of the DVFS controller, our
work has features in common with [24], in which a PI-based
DVFS is applied to the NoC and the last-level cache of a Chip
Multi-Processor (CMP). A different approach to this problem
is proposed in [25], in which the DVFS controller is based
on an artificial neural network trained with the help of a PI
controller. Differently from these works, we do not restrict our
study to the CMP case and analyze the effect of hotspot traffic
on the behavior of the PI-based DVFS controller.

Regarding congestion management, most of the solutions
in the literature are based on monitoring congestion metrics
and using them to make routing decisions. Following this
paradigm, RCA [29] uses multiple global metrics collected
from the whole network to select at each router the output port
which messages are forwarded through. Differently from our
approach, RCA collects metrics delivered through the regular
network. Thus, if some metrics travel along already congested
routes, this may slow down the metrics collection, causing the
mechanism to make wrong decisions. Besides, adapting the
routes to avoid hotspots may result in moving the location
of such hotspots from one place to another. Finally, avoiding
hotspots may be impossible if all the flows are bound to the
same destination (e.g. the memory controller).

The authors of [30] propose HPRA, a hotspot-formation pre-
diction mechanism. HPRA uses an Artificial Neural Network-
based (ANN) hardware that gathers buffer utilization data to
predict the formation of hotspots. Then, HPRA classifies the
traffic into two classes: hotspot-destined traffic (HSD) and
non-hotspot-destined traffic (nonHSD). HSD traffic is throttled
at source while the nonHSD traffic is routed avoiding paths
containing hotspots routers. However, in the cases in which
the ANN fails to predict hotspots, it may redirect traffic to
an unpredicted hotspot, causing an even worse degradation of
the system performance. Besides, HPRA suffers from the same
metrics delivering issue of previously described RCA.

In [31], the authors propose a mechanism to monitor the
state of the network in order to select the best path to deliver
each packet. To select the best next router for a given packet at
each hop, each router in the network must know the best path
to follow from the current node to the packet’s destination.
This requires sending back a special message with the route
status information for each message sent from a given node
to a given destination. This may cause a waste of network
bandwidth and, in presence of several or sudden congestion,
it may be affected by the same problem of delayed metrics
delivery described before. In addition to this, this mechanism
requires that each node keeps a table composed of one entry
for each node in the network. This means that the total stored
aggregated data in the whole network grows quadratically with
the number of nodes, which clearly hampers scalability for
large mesh sizes. In contrast, in our case every node only
stores a 32-bit latency value, which results in a linear growth
with the number of nodes.

V. CONCLUSIONS AND FUTURE WORK

In this paper we present an integrated approach for sav-
ing power while guaranteeing latencies in NoCs under non-
stationary traffic patterns. We demonstrate that by integrating
a congestion management strategy and a loop-based DVFS
controller to tune the frequency for saving power while guar-
anteeing a latency target, we obtain a power-effective strategy.
As our results show, we save up to 53% power compared with
the baseline DVFS system in presence of hotspots. In addition
to this, we propose a power-gating mechanism to power-off
buffers when not needed, resulting in up to 38% power saving
in absence of congested traffic. To obtain these results, our
approach requires a small area overhead, less than 10%.

As future work we plan to compare the approach reported
in this paper with another one that separates traffic classes
using physically distinct networks with two different DVFS
controllers rather than different virtual networks. In addition
to this, as already mentioned, we plan to implement a smarter
mechanism to power buffers on/off selectively to achieve best
power saving results.

ACKNOWLEDGMENTS

This work was supported by the Spanish Ministerio de
Economı́a y Competitividad (MINECO) and by FEDER
funds under Grant TIN2015-66972-C05-1-R and by Ayudas
para Primeros Proyectos de Investigación from Universitat
Politècnica de València under grant ref. 2370. We also want
to thank especially the HiPEAC project that supported the
internship during which this work was developed.

REFERENCES

[1] L. Benini and G. De Micheli, “Networks on chips: a new soc paradigm,”
Computer, vol. 35, no. 1, pp. 70–78, Jan 2002.

[2] S. Mukherjee, P. Bannon, S. Lang, A. Spink, and D. Webb, “The alpha
21364 network architecture,” in Hot Interconnects 9, 2001, pp. 113–117.

[3] T. Corp., “Tilera tile multicore processors,” Available at
http://www.tilera.com/products/processors/TILE-Gx Family.

[4] Kalray. (2014) Kalray, mppa-256 bostan. [Online]. Available:
http://www.kalrayinc.com/IMG/pdf/FLYER MPPA MANYCORE.pdf

[5] P. Macken, M. Degrauwe, M. Van Paemel, and H. Oguey, “A voltage
reduction technique for digital systems,” in 37th IEEE International
Solid-State Circuits Conference (ISSCC), Feb 1990, pp. 238–239.

[6] R. Kumar, D. Tullsen, N. Jouppi, and P. Ranganathan, “Heterogeneous
chip multiprocessors,” Computer, vol. 38, no. 11, pp. 32–38, Nov 2005.

[7] A. Bakhoda, J. Kim, and T. Aamodt, “Throughput-effective on-chip
networks for manycore accelerators,” in 43rd IEEE/ACM Int. Symp. Mi-
croarchitecture (MICRO), Dec 2010, pp. 421–432.

[8] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder, “Dis-
covering and exploiting program phases,” Micro, IEEE, vol. 23, no. 6,
pp. 84–93, Nov 2003.

[9] M. R. Casu and P. Giaccone, “Rate-based vs delay-based control for
dvfs in noc,” in Proc. DATE, 2015, pp. 1096–1101.

[10] R. Hou et al., “Efficient data streaming with on-chip accelerators:
Opportunities and challenges,” in Proc. HPCA, 2011, pp. 312–320.

[11] A. Kahng, B. Lin, and S. Nath, “Orion3.0: A comprehensive noc router
estimation tool,” Embedded Systems Letters, IEEE, vol. 7, no. 2, pp.
41–45, June 2015.

[12] J. Escamilla, J. Flich, and P. Garcia, “Icaro: Congestion isolation in
networks-on-chip,” in Proc. NoCS, 2014, pp. 159–166.

[13] D. Lackey et al., “Managing power and performance for system-on-chip
designs using voltage islands,” in Proc. ICCAD, 2002, pp. 195–202.

[14] U. Ogras, R. Marculescu, D. Marculescu, and E. G. Jung, “Design and
management of voltage-frequency island partitioned networks-on-chip,”
IEEE Trans. VLSI Syst., vol. 17, no. 3, pp. 330–341, March 2009.

[15] A. Kumar, L.-S. Peh, P. Kundu, and N. K. Jha, “Express virtual channels:
Towards the ideal interconnection fabric,” SIGARCH Comput. Archit.
News, vol. 35, no. 2, pp. 150–161, Jun. 2007.

[16] A. K. Mishra et al., “A case for dynamic frequency tuning in on-chip
networks,” in Proc. MICRO-42, 2009, pp. 292–303.

[17] L. Guang, E. Nigussie, L. Koskinen, and H. Tenhunen, “Autonomous
DVFS on supply islands for energy-constrained NoC communication,”
in Proc. ARCS 2009, ser. Lect. Notes Comput. Sc., 2009, vol. 5455, pp.
183–194.

[18] L. Shang, L.-S. Peh, and N. K. Jha, “Dynamic voltage scaling with links
for power optimization of interconnection networks,” in Proc. HPCA,
2003, pp. 123–124.

[19] J. Zhan et al., “Optimizing the NoC slack through voltage and frequency
scaling in hard real-time embedded systems,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 33, no. 11, pp. 1632–1643,
Nov. 2014.

[20] R. Hesse and N. E. Jerger, “Improving DVFS in NoCs with coherence
prediction,” in Proc. NOCS, 2015, pp. 24:1–24:8.

[21] X. Wang et al., “Fine-grained runtime power budgeting for networks-
on-chip,” in Proc. ASPDAC, 2015, pp. 160–165.

[22] P. Salihundam et al., “A 2 Tb/s 6x4 mesh network for a single-chip cloud
computer with DVFS in 45 nm CMOS,” IEEE J. Solid-State Circuits,
vol. 46, no. 4, pp. 757–766, Apr. 2011.

[23] X. Chen et al., “In-network monitoring and control policy for DVFS of
CMP networks-on-chip and last level caches,” ACM Trans. on Design
Automation of Electronic Systems, vol. 18, no. 4, pp. 1–21, Oct. 2013.

[24] ——, “Dynamic voltage and frequency scaling for shared resources in
multicore processor designs,” in Proc. DAC, 2013, pp. 114:1–114:7.

[25] J.-Y. Won, X. Chen, P. Gratz, J. Hu, and V. Soteriou, “Up by their
bootstraps: Online learning in artificial neural networks for cmp uncore
power management,” in Proc. HPCA, 2014, pp. 308–319.

[26] A. Bianco, P. Giaccone, M. R. Casu, and N. Li, “Exploiting space
diversity and dynamic voltage frequency scaling in multiplane network-
on-chips,” in Proc. GLOBECOM. IEEE, 2012, pp. 3080–3085.

[27] J. Henkel et al., “Dark silicon: From computation to communication,”
in Proc. NOCS, 2015, pp. 23:1–23:8.

[28] M. K. Yadav, M. R. Casu, and M. Zamboni, “LAURA-NoC: Local
automatic rate adjustment in network-on-chips with a simple DVFS,”
IEEE Trans. Circuits Syst. II, vol. 60, no. 10, pp. 647–651, Oct. 2013.

[29] P. Gratz, B. Grot, and S. W. Keckler, “Regional congestion awareness for
load balance in networks-on-chip,” in Proc. HPCA, 2008, pp. 203–214.

[30] E. Kakoulli, V. Soteriou, and T. Theocharides, “Hpra: A pro-active
hotspot-preventive high-performance routing algorithm for networks-on-
chips,” in Proc. ICCD, 2012, pp. 249–255.

[31] F. Farahnakian, M. Ebrahimi, M. Daneshtalab, P. Liljeberg, and
J. Plosila, “Q-learning based congestion-aware routing algorithm for on-
chip network,” in Proc. NESEA, 2011, pp. 1–7.

