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Abstract—We address the problem of reducing the size of
Craig interpolants used in SAT-based Model Checking. Craig
interpolants are AND-OR circuits, generated by post-processing
refutation proofs of SAT solvers. Whereas it is well known that
interpolants are highly redundant, their compaction is typically
tackled by reducing the proof graph and/or by exploiting stan-
dard logic synthesis techniques. Furthermore, strengthening and
weakening have been studied as an option to control interpolant
quality.

In this paper we propose two interpolant compaction tech-
niques: (1) A set of ad-hoc logic synthesis functions that, revisiting
known logic synthesis approaches, specifically address speed and
scalability. Though general and not restricted to interpolants,
these techniques target the main sources of redundancy in
interpolant circuits. (2) An interpolant weakening technique,
where the UNSAT core extracted from an additional SAT query
is used to obtain a gate-level abstraction of the interpolant. The
abstraction introduces fresh new variables at gate cuts that must
be quantified out in order to obtain a valid interpolant. We show
how to efficiently quantify them out, by working on an NNF
representation of the circuit.

The paper includes an experimental evaluation, showing the
benefits of the proposed techniques, on a set of benchmark
interpolants arising from both hardware and software model
checking problems.

I. INTRODUCTION

Craig interpolants (ITPs) [1], introduced by McMillan [2]

in the Unbounded Model Checking (UMC) field, have shown

to be effective on difficult verification instances.

From a Hardware Model Checking perspective, Craig in-

terpolation is an operator able to compute over-approximated

images. The approach can be viewed as an iterative refinement

of proof-based abstractions, to narrow down a proof to relevant

facts. Over-approximations of the reachable states are com-

puted from refutation proofs of unsatisfied Bounded Model

Checking–like runs, in terms of AND-OR circuits, generated

in linear time and space, w.r.t. the proof.

From the perspective of Software Model Checking, instead,

interpolants are used to strengthen the results of predicate

abstraction [3]. In case the inductive invariant representing a

program is insufficient to prove a given property, interpolants

can be used as predicates to refine such an abstraction [4].

The most interesting features of Craig interpolants are

their completeness and the fact can be used as an automated

abstraction mechanism, whereas one of their major drawbacks

is the inherent redundancy of interpolant circuits, as well

as the need for fast and scalable techniques to compact

them. Improvements over the base method [2] were proposed

in [5], [6], [7], [8] and [9], in order to push forward applica-

bility and scalability of the technique.

Craig interpolants can be computed as AND-OR circuits,

generated by post-processing refutation proofs of SAT solvers.

Modern SAT solvers are capable, without incurring into large

additional cost, to generate a resolution proof from unsatisfi-

able runs [10]. Due to the nature of the algorithms employed

by SAT solvers, a resolution proof may contain redundant parts

and a strictly smaller resolution proof can be obtained.

Although a Craig interpolant is linear in the proof size, the

proof itself may be large and highly redundant. SAT solvers

are not usually targeted to produce proofs of minimal size,

therefore they may be deemed ultimately responsible for Craig

interpolant size and redundancy. This is the main reason why

most efforts on interpolant size reduction have been addressed

as SAT solver improvement and/or proof reduction.

A. Contributions

In this paper we propose a fast and scalable logic syn-

thesis approach, as well as a novel interpolant weakening

(and strengthening) technique that also addresses circuit com-

paction. The main contributions are thus two interpolant

compaction techniques:

• A set of ad-hoc logic synthesis functions specifically

addressing speed and scalability. Though general and not

limited to interpolants, they target the main sources of

redundancy int interpolant circuits;

• An interpolant weakening technique, where an additional

SAT query is performed in order to obtain a gate-

level abstraction of the interpolant. Although fresh new

variables are introduced at gate cuts, clearly outside the

set of shared symbols, we show how to quantify them

out by working on an NNF encoding of the circuit.

B. Related works

Interpolant compaction has been addressed in [11] and [12].

With respect to [11], we present additional techniques ad-

dressing scalability and interpolant compaction by weaken-

ing/strengthening. Interpolant weakening/strengthening is the

subject of many papers, with little relation with our work.

Among them, we consider [13] for an interesting discussion

on the relationship between interpolant strength and quality.



The notion of dominance between nodes of a directed graph

is central in this work. Dominators have been used in the

context of logic synthesis before, such as [14], [15].

C. Outline

Section II introduces background notions and notation about

Boolean circuits, Craig interpolants, gate-level abstraction

and circuit compaction techniques. Section III describes the

proposed ad-hoc logic synthesis functions, whereas our in-

terpolant weakening technique is illustrated in Section IV.

Section V presents and discusses the experiments we per-

formed. Finally, Section VI concludes with some summarizing

remarks.

II. BACKGROUND

A. Combinational Boolean Circuits

Definition 1. A Boolean circuit (or network) is a directed

acyclic graph G = (V,E), where a node v ∈ V represents

either a logic gate, a primary input (PI) or a primary output

(PO) of the circuit and each directed edge (u, v) ∈ E

represents a signal in the circuit connecting the output of node

u to an input of node v. The fanin (fanout) of a node is the

set of incoming (outgoing) edges of that node. Primary inputs

are nodes with no fanin, whereas primary outputs are nodes

with no fanout. Every logic gate v ∈ V is associated with

a Boolean function fv : Bn → B, where n is its number of

inputs.

The fanin (fanout) sets are typically represented by lists.

With abuse of notation we use the terms fanin and fanout to

identify both edges and the related sets of adjacent nodes.

Given a gate node v, type(v) is used to indicate the type of

logic function associated with v (AND, OR, NOT, etc.).

Definition 2. Given a circuit G = (V,E), a node u dominates1

a node v iff every path from v to any of the primary outputs

of G contains u. A node u that dominates a node v is called

a dominator of v.

Definition 3. Given a circuit G = (V,E) and a node r, a

cone C = (VC , EC) rooted in r is a sub-graph of G consisting

of r and some of its non–primary input predecessors such that

any node in C has a path to r that lies entirely in C. The fanin

(fanout) of a cone is the number of nodes u not in C that are

inputs (outputs) of a node t in C.

Node r is called root of the cone C, and denoted by root(C),
non-root nodes of the cone are called internal nodes, whereas

nodes in the fanin of the cone are called cut nodes of C and

denoted by cut(C). Nodes of C that have at least one cut

node v in their fanin are called entry points in C for v. The

Boolean function fv associated with the cone root is called

cone function. With abuse of notation we sometimes use v ∈ C
to mean that v ∈ VC .

1Note that the notion of dominance as defined here corresponds to the dual
notion of post-dominance from graph theory. For the sake of conciseness, we
herein use the term dominance, with the definition provided above, to refer
to the actual notion of post-dominance.

Definition 4. A cluster is a cone C rooted in r such that, for

each node v in C, v has unit fanout and is dominated by r in

G.

Note that cut nodes of a cluster C are either a PI or fanout

branches, and the root r of C is either a PO or a fanout stem.

Note also that the sub-graph of the circuit that defines a cluster

C is a tree. Given a node v ∈ C, every successor u of v in C
is a dominator of v in G.

Definition 5. A macrogate is a cluster M such that every node

v in M represents the same associative Boolean function. An

OR-macrogate (AND-macrogate) is a macrogate composed of

logical disjunction (conjunction) nodes.

The definitions provided for cones are naturally extended to

clusters and macrogates. An example of clusters and macro-

gates appears in Figure 1, where one cluster includes one OR-

and two AND-macrogates.
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Fig. 1: A subcircuit partitioned in clusters (enclosed by a blue

dashed line) and macrogates (enclosed by a dotted red line).

Definition 6. Given a cone C rooted in r and a variable a ∈
cut(C), variable a is not observable on fr iff fr(X,⊥) ≡
fr(X,⊤), with X = cut(C) \ a.

A literal is either a Boolean variable or its negation. A

clause is a disjunction of literals. A Boolean formula F is

in Conjunctive Normal Form (CNF) if it is a conjunction of

clauses. Given a Boolean formula F , we denote with supp(F )
the set of Boolean variables over which F is defined.

A Boolean formula F is in Negation Normal Form (NNF)

if the negation operator (¬) is only applied to its variables,

and the only other operators allowed are conjunction (∧) and

disjunction (∨). Any formula can be transformed to NNF in

linear time through direct application of De Morgan’s laws

and the elimination of double negations. In the worst case, the

size of the circuit implementing a formula F might double

when F is transformed into NNF.

B. Craig Interpolants

Let A and B be two inconsistent Boolean formulas, i.e.,

such that A ∧ B ≡ ⊥. A Craig interpolant I for (A, B)

is a formula such that: (1) A ⇒ I , (2) I ∧ B ≡ ⊥, and

(3) supp(I) ⊆ supp(A) ∩ supp(B).

We use ITP to denote the interpolation operation. An inter-

polant I = ITP(A,B) can be derived, as an AND-OR circuit,

from the refutation proof of A∧B. Most modern SAT solvers



are capable of producing resolution proofs. A resolution proof

provides evidence of unsatisfiability for a CNF formula F as

a series of applications of the binary resolution inference rule.

Given two clauses C1 = (l∨ l1 ∨ ...∨ ln) and C2 = (¬l∨ l′1 ∨
...∨l′m), a resolvent C is computed using a resolution operator,

defined as: C = Res(C1, C2) = (l1 ∨ ... ∨ ln ∨ l′1 ∨ ... ∨ l′m).
Starting from the clauses of F , such a rule is applied until the

empty clause is derived.

Craig interpolants are generated from resolution proofs as

described in [2]. The resulting ITP circuit is isomorphic to

the proof: where original clauses are translated as either OR

gates or constants and resolutions steps are translated as either

AND or OR gates. Interpolants in the range between A and

¬B depend on SAT solver decisions, thus their resulting

strength/weakness is not under user control. This motivated

research on ex-post interpolant strengthening/weakening.

C. Combinational Circuit Compaction

This subsection briefly overviews, without any claim of

completeness and generality, some combinational synthesis

techniques our circuit compaction approach is based upon.

Redundancies affecting non canonical combinational cir-

cuits are removed by structural hashing, cut-based [16], BDD-

based [17] and SAT-based [18] sweeping. The above methods

basically rely on finding and merging classes of functionally

equivalent circuit nodes. Other reduction efforts exploit various

decomposition, rewriting and balancing strategies. In [19]

a mix of locally canonical transformations and DAG-aware

rewritings on technologically independent circuits have been

first proposed. [14] introduces a technique for preprocess-

ing combinational logic before technology mapping. We fol-

low [14] in its use of And-Inverter Graphs (AIGs), composed

of two-input ANDs and inverters2. Scalability is achieved by

making all operations local, and moving to a global scope by

iterated application of local reductions. The result is that the

cumulative effect of several rewriting steps is often superior

to traditional synthesis in terms of quality.

Redundancy removal under Observability Don’t Cares

(ODCs) is a powerful variant of redundancy removal, where

node equivalences are established taking into account their ob-

servability at circuit outputs. All ODC-based approaches rely

on a computation of don’t care conditions for nodes involved

in redundancy checks. As exact computation is prohibitively

expensive, approximate techniques have been proposed. BDD-

based Compatible Observability Don’t Care (CODC) sets were

computed in SIS [21]. Approximated ODCs (by “windowing”)

were introduced in [22], where scalability was achieved by

restricting the sub-circuit environment to a locality. SAT-based

quantifier elimination [23], augmented with random sampling,

is a further attempt to exploit the power of SAT solvers.

D. Gate-Level Abstraction

Abstraction techniques are a well known area of research in

Model Checking. Our paper is related to a form of localization

2Another motivation for our choice is the fact that AIGER is the netlist
interchange format chosen for Hardware Model Checking Competitions [20].

abstraction [24] called Gate-Level Abstraction [25]. Abstrac-

tion by localization is based on removing circuit components

(i.e. cutting wires) not necessary for a proof. Detection of

unnecessary parts has been proposed following two main

schemes:

• Counterexample-Based Abstraction-refinement (CBA)

[26], where an initially weak abstraction is iteratively

refined (strengthened) based on spurious counterexample

analysis;

• Proof Based Abstraction (PBA), exploiting the ability of

modern SAT solvers to generate proofs of unsatisfiability,

is a more recently followed variant, investigated in stand-

alone mode or combined with CBA, as in [27].

In most model checkers, localization is done at register

boundaries. Gate-Level Abstraction [25] is a particular abstrac-

tion scheme (compatible in principle with both CBA and PBA

strategies), where localization is done at gate nodes.

III. INTERPOLANTS COMPACTION BY AD-HOC LOGIC

SYNTHESIS

In this section we present a set of procedures to reduce

the size of Boolean circuits, based on local simplification

techniques arising from logic synthesis. Although applicable

to any Boolean circuit, our approach specifically targets the

main sources of redundancy of interpolant circuits: gates that

can be replaced by a constant value, or sub-circuits that can

be merged being functionally equivalent (though topologically

distinct). We consider an interpolant as a single-output circuit

G. Starting, from an AIG representation of the circuit, we:

• Identify AND and OR gates;

• Partition G into a set of maximal clusters;

• Group trees of AND (resp. OR) gates in macrogates.

Our target is to address gate redundancies by fast operations,

where circuit transformations are performed within clusters.

The reason for limiting our scope to clusters is related to the

fact that fanout stems propagate shared subformulas through

different paths within the circuit graph. Simplifications affect-

ing multiple fanout paths are both complex and of limited

impact.

The circuit G is partitioned into a maximal set of clusters,

each of which is in turn partitioned into a set of macrogates.

This is done by means of a depth-first visit of G starting

from its root node r. Each node v is associated with two

pieces of information: its cluster dominator, domC(v), and its

macrogate dominator, domG(v). As long as the visited nodes

have unit fanout, cluster dominator information in propagated.

As long as the visited nodes have unit fanout and are of the

same type, macrogate dominator information in propagated.

Performing such an operation requires O(|E|) time.

We thus propose a procedure based on two kinds of local

simplifications:

• Redundancy removal (gates equivalent to a constant)

based on ODC-like implications within clusters.

• Enforcement of sub-formula sharing (equivalent gates

merging) through macrogate refactoring.



A. ODC Implications Removal

The first simplification technique we propose aims at finding

local ODC implications that can be exploited to replace a gate

with a constant. Such a technique relies on the following two

identities:

f(X, a) = a ∧ g(X, a) ≡ a ∧ g(X,⊤)

f(X, a) = a ∨ g(X, a) ≡ a ∨ g(X,⊥)

Let us consider a Boolean function f(X, a) expressed as the

conjunction (resp. disjunction) of a variable a and a function

g of a. Then a can be replaced by the ⊤ (resp. ⊥) constant in

g. Note that the instance of variable a in the support of g is

not observable on f . From a circuit graph perspective, given

G implementing f , a is an input variable and g is a subcircuit

of G with a in its fanin. There are at least two re-convergent

paths from node a to the output node of f .

We call such cases ODC implications for f , as the impli-

cations f → a and ¬a → ¬f (resp. ¬f → ¬a and a → f )

dually hold in each of the two respective cases.

We exploit the notion of ODC implications to perform local

simplification of functions in the Boolean circuit. This is done

by detecting cones C in the circuit whose function can be

expressed as either a∧ g(X, a) or a∨ g(X, a). In these cases,

C can be simplified by disconnecting the redundant edge from

a to its entry point in C and injecting a constant. Detection

of ODC implications is restricted at macrogate and/or cluster

boundaries in order to avoid problems arising from shared

elements.

We consider both direct ODC implications and transitive

ODC implications. Direct ODC implications arise when the

input of a function f is directly implied by f . Figure 2

exemplifies a direct ODC implication. Input b is a direct

ODC implication for ft since ft(a, b, c) = b ∧ g(a, b, c) with

g(a, b, c) = c ∧ (a ∨ b), and therefore ft → b. Transitive

ODC implications occur when the input of a function f is

transitively implied by f through another of its inputs. Figure 3

provides an example of transitive ODC implication. Input b is

a transitive ODC implication for ft, in fact, d is a direct ODC

implication for ft and b is a direct ODC implication of fd,

therefore, ft → d → b.
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Fig. 2: Example of direct ODC implication.

The DIRECTODCSIMPLIFY procedure (Algorithm 1) tries

to identify cluster inputs that are made redundant by direct

ODC implications. Given a cluster C rooted in r and one of

its inputs v, the algorithm tries to find a node d in C such that
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Fig. 3: Example of transitive ODC implication.

v is a direct ODC implication for fd. Considering the cluster

as a tree of macrogates, this corresponds to finding a common

successor d for two of the entry points of v in C, called u and

t, so that d is a direct successor of either u or t. Since we are

considering a tree of macrogates, d being a direct successor of

t means that t is connected to d through either a chain of only

AND or OR gates. For each cluster Ci, the algorithm scans

each of its cut nodes. For each v ∈ cut(Ci), every pair u, t of

distinct entry points of v in Ci is considered. In order to find a

common successor for u and t, first each macrogate dominator

of u is marked by the procedure MARKDOMINATORS. Then,

the algorithm checks if the macrogate dominator of t is

marked. If that is the case, being d = domG(t), we have

either fd(X, v) = v ∧ g(X, v) or fd(X, v) = v ∨ g(X, v)
for some g. Therefore, v in g is not observable on fd and

the circuit can be simplified by calling function SIMPLIFY.

Such a function takes a couple of nodes and a gate type

as arguments, removes the edge (v, u) from the circuit and

injects an appropriate constant value in the newly created free

input. The injected constant is ⊤ if the gate type passed as

argument is AND, ⊥ if is OR. After injecting the constant,

the circuit is simplified accordingly. Otherwise, if domG(t)
is not marked, the algorithm proceeds with the next pair of

entry points. Time complexity of DIRECTODCSIMPLIFY is

O(|V |max
Ci∈G

{|cut(Ci)|}).

DIRECTODCSIMPLIFY(G)
1: for all clusters Ci ∈ G do
2: for all nodes v in cut(Ci) do
3: for all pair (u, t) in fanout(v) ∩ Ci with u 6= t do
4: MARKDOMINATORS(u)
5: if domG(t) is marked then
6: SIMPLIFY(v,u, type(t))
7: UNMARKDOMINATORS(u)

Algorithm 1. DIRECTODCSIMPLIFY(G)

The TRANSITIVEODCSIMPLIFY procedure (Algorithm 2)

tries to identify cluster inputs that are made redundant by

transitive ODC implications. Two lists are maintained for each

cluster: a direct implication list and a transitive implication list.

Given a cluster C rooted in r, its direct implication list, denoted

as Impl(C), contains all cluster inputs v for which at least one

of the entry points of v in C has r as macrogate dominator.

Therefore, for each v ∈ Impl(C) either fr → v, if type(r) is



AND, or ¬fr → ¬v, if type(r) is OR. Direct implication lists

are provided as an argument to TRANSITIVEODCSIMPLIFY.

Transitive implication lists, denoted as Trans(C), are used to

collect those nodes v for which there exists a sequence of

clusters C0, . . . , Cn such that the following conditions hold:

• C0 = C;

• Ci+1 ∈ Impl(Ci) for each 0 ≤ i < n;

• type(Ci+1) = type(Ci) for each 0 ≤ i < n;

• v 6∈ Impl(Ci) for 0 ≤ i < n;

• v ∈ Impl(Cn).

Transitive implication lists are computed while TRANSI-

TIVEODCSIMPLIFY runs and used to detect transitive ODC

implications w.r.t. the root of each cluster.

In TRANSITIVEODCSIMPLIFY clusters are scanned in topo-

logical order. For each cluster Ci, its transitive implication

list is first computed. This is done by conjoining the current

Trans(Ci) with every node that is either in the transitive or

direct implication list of the clusters that are in Impl(Ci) and

are of the same type of Ci. Once the transitive implication

list for Ci has been computed, the procedure scans each node

v ∈ cut(Ci) that is in Trans(Ci). These nodes are inputs

of Ci for which a transitive ODC implication exists (through

some of the other inputs of Ci). Therefore, each entry point u

of these nodes can be simplified by calling SIMPLIFY. Time

complexity of Algorithm 2 depends on the size of the transitive

lists: O(|V |max
Ci∈G

{|Trans(Ci)|}). Although the sizes of such

lists, in the worst case, could be quadratic in the number of

nodes, experimentally it is possible to notice that in our context

of application the size of these lists stays within O(|V |).

TRANSITIVEODCSIMPLIFY(G, Impl)
1: for all clusters Ci ∈ G in topological order do
2: Trans(Ci)← ∅
3: for all clusters Ck in Impl(Ci) do
4: for all v in Trans(Ck) ∪ Impl(Ck) do
5: if type(Ck) = type(Ci) then
6: Trans(Ci)← Trans(Ci) ∪ {v}
7: for all nodes v in cut(Ci) do
8: if v in Trans(Ci) then
9: for all node u in fanout(v) ∩ Ci do

10: SIMPLIFY(v,u, type(Ci))

Algorithm 2. TRANSITIVEODCSIMPLIFY(G, Impl)

B. Macrogate Refactoring

The second simplification approach we propose tries to

refactor portions of the circuit implementing the same type

of Boolean function in order to explicit sub-functions imple-

mented by nodes already present in the circuit. If successful,

sharing can be enforced to reduce the overall size of the circuit.

This technique is applied to macrogates in order to guarantee

that each node removed by means of refactorization has unit

fanout and thus the size of the circuit actually decreases.

As an example, consider an AND-macrogate in Figure 4,

implementing the function ft(a, b, c, d) = (a ∧ b) ∧ (c ∧ d).
The idea is to identify a couple of inputs (i, j), such that

the node realizing i ∧ j does not appear in the macrogate but

it exists in a different point of the circuit. Suppose a node m

implementing fm = c∧b exists, the macrogate function ft can

be refactored as ft(a, b, c, d) = m ∧ (a ∧ d) so that the gate

m can be shared. The final result of such a step of refactoring

is a reparenthesization of the original macrogate function, for

which the number of nodes decreases by one, one being now

shared. A similar reasoning applies to OR-macrogates as well.
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Fig. 4: Example of macrogate refactoring.

Note that refactoring a macrogate may change the current

circuit partitioning as a previously non-shared node becomes

shared.

The MACROGATEREFACTOR procedure (Algorithm 3) tries

to refactor macrogates of the circuit in order to enforce better

sharing. For each macrogate Mi, first its cut nodes are marked.

Then, for each input node of Mi, the procedure scans all

the nodes in its fanout list that do not appear in Mi but

are of the same type. Those nodes u are gates of the same

type of Mi that share an input with Mi. For each of those

nodes, the algorithm checks whether its other input node is

shared with Mi, by testing if such a node is marked. In

such a case, Mi can be refactored to enforce sharing with

u. Function REFACTOR handles macrogate refactoring. It also

updates any other macrogate that could have been affected by

the refactoring. Time complexity of MACROGATEREFACTOR

is O(|V |max
v∈V

{|fanout(v)|}).

MACROGATEREFACTOR(G)
1: for all macrogate Mi ∈ G do
2: Mark nodes in cut(Mi)
3: for all v in cut(Mi) do
4: for all u in fanout(v) do
5: if domG(v) 6= domG(u) and type(v) = type(u)

then
6: if left(u) 6= v and left(u) is marked then
7: REFACTOR(Mi, u, left(u))
8: else if right(u) 6= v and right(u) is marked then
9: REFACTOR(Mi, u, right(u))

10: Unmark nodes in cut(Mi)

Algorithm 3. MACROGATEREFACTOR(G)

IV. SAT-BASED WEAKENING

Previously described reductions follow the trend of fast

circuit-based optimizations. We now present a novel approach

combining the ideas of interpolant compaction and weakening.

Given an interpolant I = ITP(A,B), a weaker (resp.

stronger) interpolant Iw (resp. Is) is another interpolant, such



that I → Iw (Is → I). Interpolant weakness and strength are

dual concepts. Considering an interpolant I for A,B, its com-

plement ¬I is an interpolant for B,A. A weaker interpolant

for A,B corresponds to a stronger interpolant for B,A. As

mentioned in section I, interpolant strength and/or weakness

can be related to the quality of the interpolant itself [13]. State-

of-the-art approaches to interpolant strengthening/weakening

are based on SAT proof transformations [28]. Interpolant

re-computation is another straightforward and practical way

to compact an interpolant and change its strength. Given

I = ITP(A,B), we can generate a weaker interpolant Iw =
ITP(I, B) or a stronger one Is = ITP(A,¬I). Empirically,

we spend extra time, performing an additional interpolant

computation, in order to obtain a better interpolant, where bet-

ter could mean weaker/stronger and possibly more compact.

Unfortunately, compaction is not guaranteed, as the size of the

final interpolant depends on a SAT solver run. Experimentally,

we have observed both increases and decreases in terms of

interpolant size.

Our strategy is to spend extra time by re-running a SAT

solver query (either A ∧ ¬I or I ∧ B), while computing the

new interpolant in a different way, that guarantees compaction.

In the following, we outline the main steps of our weakening

approach (strengthening is dual):

• I is encoded as NNF , producing INNF

• A Gate-Level Abstraction of INNF is performed, using

a PBA approach:

– SAT query INNF ∧B, guaranteed UNSAT, is solved

and used to generate the UNSAT core C(INNF ∧B),
the full proof is not necessary

– Using the UNSAT core, a proof-based abstraction of

INNF is computed: Ipba = PBA(INNF , C)

• As a result of PBA, fresh new variables ∆ at all cut (ab-

straction) points are introduced. So, supp(Ipba) = Γ∪∆,

with Γ = supp(A) ∩ supp(B). The presence of these

extra variables prevents Ipba from being a correct inter-

polant. Efficient existential quantification of ∆ variables

can be performed exploiting NNF encoding. In particular,

∃∆ Ipba is performed by replacing all variables in ∆ with

a ⊤ constant: Iw,NNF = Ipba|
∆={⊤,⊤,...⊤}.

• The compacted interpolant Iw,NNF is converted back to

the (non NNF) AIG encoding.

Encoding a circuit as NNF implies a certain cost in terms of

size. However, we experimentally observed (see section V) that

this cost is negligible for interpolants, since they originate as

pure AND-OR circuits with negations limited at input bound-

aries. Conversely, we have the advantage of quantification

by substitution. Given a Boolean function f(X,∆) in NNF

form, with ∆ appearing only in non-negated form, ∆ can be

existentially (resp. universally) quantified by substitution:

∃δ f(X,∆) = f(X,⊤)

∀δ f(X,∆) = f(X,⊥)

The top-level procedure is described in Algorithm 4. Given

a node v, the function CNF (v) is used to retrieve the CNF

representation of fv.

ITPWEAKEN(I,B)
1: INNF ←AIG2NNF(I)
2: C ← SATWITHUNSATCORE(INNF ∧B)
3: for all nodes v in INNF do
4: if CNF (v) 6∈ C then
5: REPLACE(v,⊤)
6: Iw,NNF ← RECOMPUTECIRCUIT(INNF)
7: Iw ←NNF2AIG(Iw,NNF )

Return Iw

Algorithm 4. ITPWEAKEN(I, B)

The algorithm shows weakening of I w.r.t. B, being

strengthening with A dual. Furthermore, we use PBA-based

abstraction, whereas a CBA-based approach is possible as

well. The proposed code unifies GLA (Gate-Level Abstrac-

tion) with existential quantification, as, given the UNSAT core

(C), circuit nodes with a corresponding CNF variable not in C

are immediately abstracted and replaced with the ⊤ constant.

V. EXPERIMENTAL RESULTS

We implemented a prototype version of our interpolant

compaction procedures on top of the PdTRAV tool [29], a

state-of-the-art verification framework. Experimental data in

this section provide an evaluation of the techniques proposed.

Experiments were run on an Intel Core i7−3770, with 8 CPUs

running at 3.40 GHz, 16 GBytes of main memory DDR III

1333, and hosting a Ubuntu 12.04 LTS Linux distribution. We

set memory limits to 900 seconds (3600 for the weakening

experiments) and 8 GB, respectively.

We performed an extensive experimentation on a selected

subset of interpolants used in [11]. These interpolants are

extracted from publicly available benchmarks from the past

HWMCC [20] suites and are represented as AIGs. We took

into account also interpolants derived from software verifi-

cation problems [12]. The former set is composed of 2472
instances, ranging from 1.1 × 105 to 8.5 × 106 nodes. The

latter set is composed of 1872 instances, ranging from 4×102

to 6× 104 nodes3.

We gathered initial data from the first set of interpolants

in order to purge easy instances. We considered easy those

instances with less than 1.5 × 104 nodes and for which our

logic synthesis procedure was able to reach a fix-point within

150 seconds. The purged set of benchmarks, comprising 87
instances ranging from 4× 105 to 8.5× 106 nodes, was used

to conduct a more in-depth experimentation.

Figures 5 and 6 show the results obtained for compaction

with logic synthesis (section III) and GLA-based weakening

(section IV), respectively. Compaction techniques are applied

incrementally, i.e., we always apply simplifications described

in [11]4, followed by the techniques described in this paper.

3The interpolant circuits are available at
http://fmgroup.polito.it/index.php/download.

4With the exception of the most time-consuming, and less scalable, ITE-
based decomposition.



A. Compaction by Logic Synthesis

In our experiments, we evaluated techniques of section III

by applying them as follows. First the circuit is partitioned into

clusters and macrogates. A trivial simplification is performed

by removing each duplicated input from macrogates. Then

DIRECTODCSIMPLIFY, MACROGATEREFACTOR and TRAN-

SITIVEODCSIMPLIFY are iterated in this order, recomputing

the circuit partition between each call, until two consecutive

iterations reduce the circuit size for less than 1%.

For each benchmark, we first apply the AIG balancing

procedure of ABC prior to applying any of the aforementioned

techniques. We consider the size of interpolants after balancing

as baseline for the following experimentation. In order to

test individual contributions of the proposed techniques we

performed an initial run with all simplifications enabled, we

call this run ITPSIMPLIFY, followed by a set of runs in

which we selectively disabled them one at a time: NODIREC-

TODCSIMPLIFY, NOMACROGATEREFACTOR and NOTRAN-

SITIVEODCSIMPLIFY respectively. As a last test, we disabled

our techniques altogether and performed ITP compaction using

only standard logic synthesis (rewriting/refactoring, using the

state-of-the-art ABC [30] tool).

Figures 5a and 5b illustrate the cumulative size and execu-

tion time, respectively, over all the benchmarks. In both cases,

the closer a line is to the x axis, the better the result.

The two figures easily illustrate the compromise between

execution time and potential size reduction obtained. On the

one hand the purely ABC-based simplification is the best

performing one, but it requires a significant amount of time.

Different compaction rates are achievable with less computa-

tional effort adopting less aggressive approaches. We excluded

timeouts from the visual representation.

As mentioned in section II-D, the size of implication lists

could be a limit to the scalability of the proposed methods,

as well. Although such lists could theoretically grow quadrat-

ically in the number of nodes, experimentally we noticed at

worst a multiplicative factor of 20.

B. Compaction by Weakening

In order to characterize the rate of ITP compaction achiev-

able through SAT-based weakening/strengthening, we raised

the time limits to 3600 seconds. Such an approach is conceived

to be used when ITP size reduction is crucial, and/or weak-

ening/strengthening are actually the target, which motivates a

bigger effort in terms of total execution time.

A preliminary step for all the proposed techniques requires

to convert a given interpolant into NNF form. This step could

lead to an increase in circuit size up to a factor of 2, in the

general case. Given the nature and structure of interpolants

themselves the increase in size is almost negligible. Taking

into account all the experiments conducted, the biggest ex-

perienced increase was below 0.5%, confirming the intuitive

arguments in section IV.

We conducted a set of experiments taking into account the

same subset of 87 interpolants, iterating sequences of weak-

ening (labelled B) and/or strengthening (labelled A) steps in

different patterns. We propose an experimental evaluation for

six different sequences: A, B, AB, BA, ABAB and BABA.

We run our logic synthesis compaction procedure before any

weakening/strengthening attempt (baseline). Figures 6a and 6b

illustrate the cumulative size and execution time, respectively,

over all the benchmarks. It is fairly noticeable the impact on

the choice of the first kind of chosen compaction: starting with

B tends to produce better results, related to the fact that most

of the interpolants proposed have more room for weakening

than strengthening.

Overall, it is fairly clear that SAT-based abstraction leads to

dramatic compaction, though paid in terms of time.

VI. CONCLUSIONS

We addressed the problem of optimizing interpolants size

for SAT-based UMC. Our main contribution is to provide

an integrated approach, that targets interpolation compaction,

providing different tradeoffs between time and memory ac-

cording the proper context of application. We work both at the

level of logic synthesis and at SAT level, proposing different

techniques aimed at interpolant size reduction. Overall, our

main target is to increase the scalability of existing UMC

approaches, taking into account resource limitations and com-

promising between optimal results and applicability of the

proposed methods. We experimentally observed that the pro-

posed optimizations can be beneficial to existing reachability

schemes, based on interpolation.
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