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ABSTRACT 
 
It is well known that free space laser system performance is limited by atmospheric turbulence. Most theoretical 
treatments have been described for many years by Kolmogorov’s power spectral density model because of its 
simplicity. Unfortunately several experiments have been reported recently that show the Kolmogorov theory is 
sometimes incomplete to describe atmospheric statistics properly, in particular, in portions of the troposphere and 
stratosphere. In this paper, using a non Kolmogorov spectrum and following same procedure already used for horizontal 
path analysis, we extend free space optical system performance analysis to uplink and downlink paths. Our non 
Kolmogorov spectrum uses a generalized exponent instead of constant standard exponent value 11/3 and a generalized 
amplitude factor instead of constant value 0.033. Therefore, in non-Kolmogorov weak turbulence, we carry out, for a 
uplink and a downlink paths, analysis of Long Term Beam Spread, Scintillation index, Probability of fade, mean SNR 
and mean BER as variation of the spectrum exponent. 
 
Keywords:  Atmospheric turbulence, structure function, Kolmogorov spectrum, non Kolmogorov spectrum, beam 
spread, scintillation, fade, SNR, BER, uplink, downlink.                  
 

1. INTRODUCTION 
 
Since it has been introduced Kolmogorov’s power spectral density model has been widely used and accepted to describe 
wave propagation through atmospheric turbulence. It has been already used also to calculate free space laser system 
performance that is limited by atmospheric turbulence.  However, recent experimental data from space-based stellar 
scintillation, balloon-borne in-situ temperature, and ground-based radar measurements indicate turbulence in the upper 
troposphere and stratosphere deviates from predictions of the Kolmogorov model [5][9][10]. Further development of the 
turbulent theory of passive scalar transfer has shown that although the Kolmogorov spectrum is important, it constitutes 
only one part of the more general behavior of passive scalar transfer in a turbulent flow [6]. Some anomaly behavior [3] 
seem to occur when the atmosphere is extremely stable because under such condition the turbulence is no longer 
homogeneous in three dimensions since the vertical component is suppressed. It has been shown [4] that for such two 
dimensional turbulence, coherent vortices can develop that reduce rate of the energy cascade from larger to smaller 
scales. As a result Kolmogorov turbulence will not develop. In addition anisotropy in stratospheric turbulent 
inhomogeneities has been experimentally investigated [5][8][11][12]. We must accept de facto that turbulence is still an 
unsolved problem in classical physics and the scientific community must persist in doing more simulations, 
measurements and experiments [7].  
It is very important, therefore, to find new models more general than Kolmogorov spectrum in order to describe also 
non Kolmogorov turbulence. In this paper we present a theoretical spectrum model which reduces to one of 
Kolmogorov only for a particular case of its exponent: the standard value 11/3. Exponent can assume all the values 
between the range 3 to 4. Using this new spectrum, following the same procedure already used from Andrews and 
Phillips [1][2], we have analyzed the impact of the exponent’s variation on Long Term Beam Spread, Scintillation 
index, Probability of fade, mean Signal to Noise Ratio (SNR) and Mean Bit Error Rate (BER) for uplink and downlink 
paths. Horizontal link has been already analyzed in [13]. 
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2. NON KOLMOGOROV SPECTRUM 
 
We assume that in an atmosphere exhibiting non-Kolmogorov turbulence the structure function for the index of 
refraction is given by [1][13] 

( ) 2
n nD r C r γ= β ⋅ ⋅                                                                                                                                                       (1) 

where γ is the power law which reduces to 2/3 in the case of conventional Kolmogorov turbulence.  Here, β is a constant 

equal to unity when 2 3γ = , but otherwise has units 
2 / 3m−γ+

.  The corresponding power-law spectrum associated 
with structure function, as reported in [1][13],  takes the form  

( ) ( ) 2, , 0, 3 4n nA C −αΦ κ α = α ⋅ ⋅ κ κ > < α <% ,                                                                                               (2) 

where 3α γ= +  is the spectral index or power law, 2 2
n nC C= β ⋅%  is a generalized structure parameter with units 

m−γ
, ( )A α  is defined by 

( ) 2
1 ( 1)cos , 3 4

24
A απ⎛ ⎞α = Γ α − < α <⎜ ⎟π ⎝ ⎠

.                                                                                                       (3) 

the symbol ( )xΓ
 in the last expression is the gamma function. When 11 3α = , we find that ( )11 3 0.033A =  and 

the generalized power spectrum reduces to the conventional Kolmogorov spectrum.  Also, when the power law 
approaches the limiting value 3α = , the function ( )A α approaches zero.  Consequently, the refractive-index power 
spectral density vanishes in this limiting case.  

 
3. LONG TERM BEAM SPREAD 

 
The analytical form of Long Term Beam Spread for a Gaussian beam wave is [1]    
 

( ) ( )2 2 2 1e LTW W W Tα α⎡ ⎤= = ⋅ +⎣ ⎦                                                                                                                    (4) 

where W is the diffraction limited spot size radius and 
( )T α

 is the term which includes small scale beam spreading 
and beam wander atmospheric effects. In order to carry out Long Term Beam Spread analysis we need to calculate the 

( )T α
 term both for uplink and downlink. A horizontal link has been analyzed in [13]. 

For slant paths, the parameter 2
nC  that appears inside the relation 2 2

n nC Cβ= ⋅%  is not constant, but it changes with 

altitude. Utilizing the Hufnagle-Valley ( )2
nC h

 profile model and following the same procedure of Andrews and 
Phillips [1]  but  using the non Kolmogorov spectrum, we carry out   
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( ) ( )
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− − −

⎛ ⎞⎡ ⎤⎛ ⎞⎛ ⎞⎜ ⎟Λ −⎢ ⎥⎜ ⎟⎜ ⎟
⎜ ⎟⎝ ⎠⎢ ⎥⎜ ⎟= ⋅ ⋅ − −⎜ ⎟⎢ ⎥⎜ ⎟
⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠

⎛ ⎞ ⎛ ⎞= − ⋅ ⋅Γ − ⋅ Λ ⋅ ⋅ ⋅ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫ ∫

∫ %

                                                                   (5)       
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where z  is the propagation distance and  22L kWΛ = . 
In particular for downlink and uplink paths, introducing zenith angle  ζ  that is the angle between satellite-ground 

station axis and the normal respect to the ground, 0h that is the height above ground level of uplink transmitter and/or 

downlink receiver and H that is satellite altitude, it is easy to carry out 
 

( ) ( ) ( ) ( ) ( )
0

2
3 1 12 2 02 2 22

0
0

2 1 sec
2

H

ndownlink
h

h h
T A k H h C h dh

H h

αα α αααα π α ζ
−

− − − ⎛ ⎞−⎛ ⎞= − ⋅ ⋅Γ − ⋅ Λ ⋅ − ⋅ ⋅⎡ ⎤ ⎜ ⎟⎜ ⎟ ⎣ ⎦ −⎝ ⎠ ⎝ ⎠
∫ %       (6)    

                  

( ) ( ) ( ) ( ) ( )
0

2
3 1 12 2 02 2 22

0_
0

2 1 sec 1
2

H

nup link
h

h h
T A k H h C h dh

H h

αα α αααα π α ζ
−

− − − ⎛ ⎞−⎛ ⎞= − ⋅ ⋅Γ − ⋅ Λ ⋅ − ⋅ ⋅ −⎡ ⎤ ⎜ ⎟⎜ ⎟ ⎣ ⎦ −⎝ ⎠ ⎝ ⎠
∫ %        (7)        

At this point, we plot in figure 1 the ( )T α  term as a function of alpha for uplink and downlink using  two different 

0W values . We take: ( )2 14 3
0350 ; 0 7 10 ; 1.55 ; 0, 0nH km C m m hα λ µ ζ− − += = ⋅ = = =% . 

 
Figure 1- T(alpha)  as a function of alpha for uplink and downlink paths 

 
 

We deduce from figure 1 that, for uplink path, the slopes of the curves remarkable depends not only from alpha but also 

from the 0W  value. In fact, for 0 0.05W m= , if alpha decreases from Kolmogorov value 11 3α = , then 

( )T α
decreases. In particular, for 3α = , ( )T α

approaches zero because the term ( )A α
assumes null value and the 

long term beam spread eW   approaches the diffraction limited spot size radius. We deduce also that, if alpha increases 

from 11 3α = , then the ( )T α
increases. The rise of the curve is more remarkable close to  4α =  because the term 
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1
2
α⎛ ⎞Γ −⎜ ⎟

⎝ ⎠  assumes high values close to its asymptote. However, for lower 0W , for instance 0 0.015W m= , the slope 

of the curve is different. In fact, if alpha decreases from 11 3α =  then ( )T α
 increases up to a maximum value. At 

this point the curve changes its slope because of the term ( )A α
 that assumes very low values.  However, if alpha 

increases from 11 3α =  then ( )T α
decreases down to a minimum value. At this point the curve changes its slope 

because of the term 
1

2
α⎛ ⎞Γ −⎜ ⎟

⎝ ⎠  that assumes high values close to its asymptote.                                                                                            
For downlink path we do not have long term beam spread, but this was predictable because in downlink case the beam 
does not spread beyond that for diffraction [1].  
 

 4. SCINTILLATION INDEX 
 
An important parameter that is necessary in order to calculate the system performance is the scintillation index. In our 
analysis we include aperture averaging effects of the receiver aperture, so we carry out the flux variance in the plane of 

the detector of diameter GD . In addition, we will use the scintillation index of plane wave for the downlink case and 
the scintillation index of a spherical wave for the uplink case. We presume very similar results with respect to Gaussian 
scintillation index [1]. Finally, in our analysis we assume that beam wander induced scintillation is negligible which is 
true when we consider either a plane wave or a spherical wave, but the situation may be different for focused beams [1].  
 
4.1 Downlink: plane wave model 

In this case the parameter 
2
nC  that appears inside the realation 

2 2
n nC Cβ= ⋅%

 is not constant, but it changes with 

altitude. Utilizing the Hufnagle-Valley ( )2
nC h

 profile model and following the same procedure of Andrews and 
Phillips [1] but this time using a non Kolmogorov spectrum, we obtain for plane wave model  
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⋅⎢
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∫ ∫

∫ %
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α
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         (8) 

 
in particular,  for downlink we obtain 
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    (9)           

 
4.2 Uplink: spherical wave model 

In this case the parameter 
2
nC  that appears inside the realation 

2 2
n nC Cβ= ⋅%

 is not constant, but it changes with 

altitude. Utilizing the Hufnagle-Valley ( )2
nC h

 profile model and following the same procedure of Andrews and 
Phillips [1] but this time using a non Kolmogorov spectrum, we obtain for spherical wave model  
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     (10)                

 
in particular, for uplink we obtain 
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   (11)             

 

At this point, we plot both ( )2
_I plane GDσ

and ( )2
_I spherical GDσ

 as a function of alpha respectively for downlink and 
uplink case. We take 

( )2 14 3
0350 ; 0; 0; 0 7 10 ; 1.55 ; 0.1 .n GH km h C m m D mας λ µ− − += = = = ⋅ = =%   

The results are shown in figure 2. 
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Figure 2- Scintillation index as a function of alpha for uplink and downlink paths           

                                                                                                     

We deduce from figure 2 that for alpha values lower than Kolmogorov value 11 3α =   there is an increase of 
scintillation both for the spherical wave model (uplink) and the plane wave model (downlink). Consequently 
scintillation in this case leads to a penalty on the system performance. We deduce also that there are two maximum 
values of scintillation around the same alpha values close to 3.35. At this point the curves change their slopes because 

the term ( )A α
 begins to decrease to zero. In addition for alpha values higher than 11 3α = , scintillation slightly 

decreases for both the plane wave model and spherical wave model and consequently  it will lead to a slight gain on the 
system performance.  

5 PROBABILITY OF FADE 
 

Given a PDF model for irradiance fluctuations ( )Ip I , the probability of fade describes the percentage of time the 

irradiance of the received signal is below some prescribed threshold value TI . Hence, the probability of fade as a 
function of threshold level is defined by the cumulative probability [1] 
 

( ) ( )
0
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I T Ip I I p I dI< = ∫
                                                                                                                                           (12) 

 
The PDF most often used under weak irradiance fluctuations is the lognormal model and the resulting probability of 
fade leads to 
 

( )
( )

( )

21 , 0.231 21
2 2 ,

I G T

I T
I G

D F
p I I erf

D

σ α

σ α

⎧ ⎫⎡ ⎤⋅ − ⋅⎪ ⎪⎢ ⎥⎪ ⎪< = ⋅ +⎨ ⎬⎢ ⎥
⋅⎪ ⎪⎢ ⎥

⎪ ⎪⎣ ⎦⎩ ⎭

,                                                                                            (13) 
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where ( )erf x
is the error function, and TF is the fade threshold parameter, given in decibels [ ]dB

, which represents 
the dB level below the on-axis mean irradiance that the threshold  is set [1]. 
 
5.1 Downlink: plane wave model 
 
Using the plane wave model scintillation index (9), we plot the Probability of Fade as a function of alpha and a fixed 
fade threshold parameter for a particular downlink case in which 

( )2 14 3
0350 ; 0; 0; 0 7 10 ; 1.55 ; 0.2 ; 3n GH km h C m m D m Ft dBας λ µ− − += = = = ⋅ = = =%  

The plot is shown in figure 3.  
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Figure 3- Probability of fade as a function of alpha for downlink path 

5.2 Uplink: spherical wave model 
 
Using the spherical wave model scintillation index (11), we plot the Probability of Fade as a function of alpha and a 
fixed fade threshold parameter for a particular uplink case in which   

( )2 14 3
0350 ; 0; 0; 0 7 10 ; 1.55 ; 0.1 ; 3n GH km h C m m D m Ft dBας λ µ− − += = = = ⋅ = = =%  

The plot is shown in figure 4. 
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Figure 4- Probability of fade as a function of alpha for uplink path 

6. MEAN SIGNAL TO NOISE RATIO  
 
In this section we examine the Mean Signal to Noise Ratio in the presence of atmospheric turbulence using a non 
Kolmogorov power spectrum. The received irradiance over long measurement intervals must be treated like a random 
variable because of the turbulence.  

Based on [1][2], the mean Signal to Noise Ratio 
SNR

 at the output of the detector in the case of a shot-noise limited 
system assumes the form 

( )
0

2 2
01 ,I G

SNR
SNR

D SNRσ α
=

+ ⋅
                                                                                                                     (14) 

where 0SNR is the signal to noise ratio in the absence of turbulence.  
 

6.1 Downlink: plane wave model 
 
We plot in dB units the Mean Signal to Noise Ratio as a function of the signal to noise ratio without turbulence for 
several alpha values and using the plane wave model for scintillation (9).                                                                                                       
We take follow parameters 

( )2 14 3
0350 ; 0; 0; 0 7 10 ; 1.55 ; 0.2 .n GH km h C m m D mας λ µ− − += = = = ⋅ = =%   

The plot is shown in figure 5. 
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Figure 5-Mean Signal to Noise (dB unit) as a function of no-turbulence Signal to Noise ratio 
(dB unit) for different alpha values for downlink path 

6.2 Uplink: spherical model 
 
We plot the Mean Signal to Noise Ratio as a function of signal to noise ratio without turbulence for several alpha values 
using spherical wave model for scintillation (11).  We take  

( )2 14 3
0350 ; 0; 0; 0 7 10 ; 1.55 ; 0.1 .n GH km h C m m D mας λ µ− − += = = = ⋅ = =%   

The plot is shown in figure 6. 
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Figure 6 -Mean Signal to Noise (dB unit) as a function of no-turbulence Signal to Noise ratio 
(dB unit) for different alpha values for uplink  
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7. MEAN BIT ERROR RATE  

 
In the presence of optical turbulence, the probability of error is considered a conditional probability that must be 
averaged over the PDF of the random signal to determine the unconditional mean BER. In terms of a normalized signal 
with unit mean, this leads to the expression [1] 
 

( ) ( )
0

1Pr ,
2 2 2I

SNR u
E BER p u erfc du

∞ ⎛ ⋅ ⎞
= = ⋅ ⋅ ⎜ ⎟

⋅⎝ ⎠
∫

                                                                                         (15) 

where ( )Ip u
 is taken to be the  log normal distribution with unit mean [1][13]. 

 
7.1 Downlink: plane wave model 

We plot the Mean Bit Error Rate as a function of 
SNR

 for several alpha values using the plane wave model for 
scintillation (9). 
We take the same parameters 

( )2 14 3
0350 ; 0; 0; 0 7 10 ; 1.55 ; 0.2 .n GH km h C m m D mας λ µ− − += = = = ⋅ = =%   

The plot is shown in figure 7 
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Figure 7 – Mean Bit Error Rate (BER) as a function of Mean  Signal to Noise ratio  for different alpha values for downlink path 

 

It is shown the impact of the alpha variation on 
BER

 performance. Also in this analysis when alpha is lower than 
11 3α =  there is a penalty, but for alpha higher than 11 3α =  there is a improvement on the system performance. 
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However when alpha assumes values close to 3α =  there is a gain on the 
BER

 performance with respect to 
BER

 value correspondent to 11 3α =  because the scintillation approaches zero. 
 
 
7.2 Uplink: spherical wave model 

We plot the Mean Bit Error Rate as a function of 
SNR

 for several alpha values using the spherical wave model for 
scintillation (11). We take the same parameters  

( )2 14 3
0350 ; 0; 0; 0 7 10 ; 1.55 ; 0.1 .n GH km h C m m D mας λ µ− − += = = = ⋅ = =%   

The plot is shown in figure 8. 
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Figure 8 – Mean Bit Error Rate (BER) as a function of Mean  Signal to Noise ratio  for different alpha values for uplink path 

From the figure above we deduce the same considerations of downlink case. 
 

8. DISCUSSION  
 
In this paper we have introduced a non-Kolmogorov power spectrum which uses both a generalized exponent and a 

generalized amplitude factor instead of a constant standard exponent value 11 3α =  and a constant amplitude factor 
0.033 associated with the conventional Kolmogorov spectrum. This non-Kolmogorov spectrum has been developed  
from a generalized structure function. It has been shown, for uplink and downlink paths, the beam spread, Scintillation, 
Probability of fade,  mean SNR and mean BER as variations depending on the alpha exponent lead to results somewhat 

different than obtained with the standard value of Kolmogorov 11 3α = . 

For uplink and downlink, it has been shown that for alpha values lower than 11 3α = , but not  for alpha close to 
3α = , there is a remarkable increase of scintillation and consequently a major penalty on the system performance. 

However when alpha assumes a value close to  3α =  the amplitude factor ( )A α  assumes a very low value and 
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consequently the long term beam spread and scintillation decrease leading an improvement on the system performance.  
Finally also for alpha values higher than 11 3α =  the scintillation decreases and consequently it improves the system 
performance.  
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