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ABSTRACT 

 
Free space laser system performance is limited by atmospheric turbulence that has been described for many years by 
Kolmogorov’s power spectral density model because of its simplicity. Unfortunately several experiments have been 
reported recently that show Kolmogorov theory is sometimes incomplete to describe atmospheric statistics properly, in 
particular in portions of the troposphere and stratosphere. In this paper we present a Non-Kolmogorov power spectrum 
which uses a generalized exponent instead of constant standard exponent value 11/3 and a generalized amplitude factor 
instead of constant value 0.033. Using this new spectrum in weak turbulence, we carry out, for horizontal path, analysis 
of Long Term Beam Spread, Scintillation index, Probability of fade, mean SNR and mean BER as variation of the 
spectrum exponent.  
 
Keywords:  Atmospheric turbulence, structure function, Kolmogorov spectrum, beam spread, scintillation, fade, SNR, 
BER .                   
 

1. INTRODUCTION 
 
For a long time, the structure function has been modeled according to Kolmogorov’s power spectrum of refractive index 
fluctuations which is widely accepted and has been applied extensively in studies of optical and radio wave propagation 
in the atmosphere. However, recent experimental data from space-based stellar scintillation, balloon-borne in-situ 
temperature, and ground-based radar measurements indicate turbulence in the upper troposphere and stratosphere 
deviates from predictions of the Kolmogorov model [5][9][10]. Further development of the turbulent theory of passive 
scalar transfer has shown that although the Kolmogorov spectrum is important, it constitutes only one part of the more 
general behavior of passive scalar transfer in a turbulent flow [6]. Some anomaly behavior [3] seems to occur when the 
atmosphere is extremely stable because under such condition the turbulence is no longer homogeneous in three 
dimensions since the vertical component is suppressed. It has been shown [4] that for such two dimensional turbulence, 
coherent vortices can develop that reduce the rate of the energy cascade from larger to smaller scales. As a result 
Kolmogorov turbulence will not develop. In addition anisotropy in stratospheric turbulent inhomogeneities has been 
experimentally investigated [5][8][11][12]. We must accept de facto that turbulence is still an unsolved problem in 
classical physics and scientists community must persist in doing more simulations, measurements and experiments [7].  
It is very important, therefore, to find new models more general than Kolmogorov spectrum in order to describe 
experimental data also in non Kolmogorov turbulence. In this paper we present a theoretical spectrum model which 
reduces to one of Kolmogorov only for a particular case of its exponent: the standard value 11/3. Exponent can assume 
all the values between the range 3 to 4. Using this new spectrum, following the same procedure already used from 
Andrews and Phillips [1][2], we have analyzed the impact of the exponent’s variation on Long Term Beam Spread, 
Scintillation index, Probability of fade, mean Signal to Noise Ratio (SNR) and mean Bit Error Rate (BER) for horizontal 
path, that is for constant value of the refractive index structure parameter. 
 

2. NON KOLMOGOROV SPECTRUM 
 
The basic power-law spectrum of Kolmogorov is defined by  
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( ) 11
320.033n nC −Φ κ = ⋅ ⋅ κ

                                                                                                                                        (1) 

where 
2
nC  is the refractive-index structure parameter. The validity of the Kolmogorov spectrum is restricted to the 

inertial range although in some analyses it is extended to all spatial wave numbers. Here we examine a more general 
power spectrum model that describes non-Kolmogorov atmospheric turbulence in which the power law exponent 11/3 is 
allowed to deviate somewhat from this value.  
 We assume that in an atmosphere exhibiting non-Kolmogorov turbulence the structure function for the index of 
refraction is given by 
 

( ) 2
n nD r C r γ= β ⋅ ⋅                                                                                                                                                     (2) 

 
where γ is the power law which reduces to 2/3 in the case of conventional Kolmogorov turbulence.  Here, β is a constant 

equal to unity when 2 3γ = , but otherwise has units 
2 / 3m−γ+

. Following same procedure reported in [1], the 
corresponding  power-law spectrum associated with  structure function takes the form  
 

( ) ( ) 2, , 0, 3 4n nA C −αΦ κ α = α ⋅ ⋅ κ κ > < α <% ,                                                                                               (3) 
 

where 3α γ= +  is the spectral index or power law, 2 2
n nC C= β ⋅%  is a generalized structure parameter with units 

m−γ
, and ( )A α is defined by 

 

( ) 2
1 ( 1)cos , 3 4

24
A απ⎛ ⎞α = Γ α − < α <⎜ ⎟π ⎝ ⎠

                                                                                                      (4) 

 

and the symbol ( )xΓ
 in the last expression is the gamma function. When 11 3α = , we find that ( )11 3 0.033A =  

and the generalized power spectrum reduces to the conventional Kolmogorov spectrum. Also, when the power law 
approaches the limiting value 3α = , the function ( )A α  approaches zero.  Consequently, the refractive-index power 
spectral density vanishes in this limiting case.  

 
3. LONG TERM BEAM SPREAD 

 
The first important quantity that shows total average beam spot size radius on the receiver lens is the Long Term Beam 
Spread. It can be written as the sum of three terms: diffraction limited beam spreading, beam spreading due to small 
turbulence scales and beam wander which can be described by the variance of the instantaneous center of the beam in 
the receiver plane.  
The analytical form of Long Term Beam Spread for a Gaussian beam wave is [1]    
 

( ) ( )2 2 2 1e LTW W W Tα α⎡ ⎤= = ⋅ +⎣ ⎦                                                                                                                     (5) 

 

where W is the diffraction limited spot size radius and 
( )T α

 is the term which includes small scale beam spreading 
and beam wander atmospheric effects. 

In order to carry out Long Term Beam Spread analysis we need to calculate the 
( )T α

 term.  
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For horizontal path the parameter 2
nC  that appears inside the relation 2 2

n nC Cβ= ⋅%  is constant. Following same 
formula reported in [1] but using the Non Kolmogorov spectrum (3), we carry out 
 

( ) ( ) ( )

( ) ( )

1 1 2 2
2 2

0 0 0 0

1 22

4 , , exp

116 1
1 2

n n

R

LT k L d d d d
k

A
α

κ ξα π κ φ α κ κ ξ κ φ α κ κ ξ

αα σ α
α

∞ ∞

−

⎛ ⎞⎛ ⎞Λ
= ⋅ ⋅ − ⋅ −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

⎛ ⎞= − ⋅ ⋅ ⋅ Γ − ⋅ Λ ⋅⎜ ⎟− ⎝ ⎠

∫ ∫ ∫ ∫

%

                                 (6)                           

where 1 z
L

ξ = −  ( z is the propagation distance), 2

2L
kW

Λ = and we have defined a Non Kolmogorov Rytov variance  

 

( )
32 2 2 21.23R nC k L

α α

σ α
−

= ⋅ ⋅ ⋅%%                                                                                                                                      (7) 
 

It is interesting to observe that for 11 3α =  we obtain the particular case of the Kolmogorov spectrum already 
reported in [1]. 
At this point,  we plot in figure 1 the  long term beam spread for a particular case,  taking: 
 

2 14 3
01 ; 7 10 ; 1.55 ; 0.01 .nL km C m m W mα λ µ− − += = ⋅ = =%  
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Figure 1- Long Term Beam Spread as a function of alpha for horizontal path 

Proc. of SPIE Vol. 6457  64570T-3



 

 We deduce from figure 1 that if alpha decreases from 11 3α =  than long term beam spread eW  increases up to a 

maximum value. At this point the curve changes its slope because of the term ( )A α  that assumes very low values. In 

addition it is shown that if alpha increases from 11 3α =  than long term beam spread eW  decreases up to a minimum 

value. At this point the curve changes its slope because of the term 1
2
α⎛ ⎞Γ −⎜ ⎟

⎝ ⎠
 that assumes high values close to its 

asymptote.                                                                                                                              
 
  

4. SCINTILLATION INDEX 
 
Another important parameter that is necessary in order to calculate the system performance is the scintillation index. In 
our analysis we include aperture averaging effects of the receiver aperture, so we carry out the flux variance in the plane 

of the detector of diameter GD . We presume very similar results with respect to Gaussian scintillation index [1]. 
Finally, in our analysis we assume that beam wander induced scintillation is negligible which is true when we consider 
either a plane wave or a spherical wave, but the situation is different for focused beams [1].  
 

4.1 Horizontal path: plane wave model and spherical wave model 
 

Following the same procedure as discussed in [1] for the standard Kolmogorov spectrum, but this time using a Non-

Kolmogorov spectrum and introducing receiver diameter GD , our analysis for plane wave model leads to 
 

( ) ( )
1 2 2 2

2 2 2
_

0 0

, 8 Re , exp 1 exp
16

G
I plane G n

D LD k L j d d
k

κ κ ξσ α π κ κ α κ ξ
∞⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞⋅ ⋅ ⋅⎪ ⎪= ⋅ ⋅ ⋅ ⋅Φ ⋅ − ⋅ − −⎨ ⎬⎜ ⎟ ⎢ ⎥⎜ ⎟

⎝ ⎠⎪ ⎪⎝ ⎠ ⎣ ⎦⎩ ⎭
∫ ∫   

 

( ) ( )
1 2 42 22

2 2
2

1 166.5 1 1 sin
2 2 16 16 2

G G
R

G

k D k D LA arctg
L L k D

αα

α α απ α σ α
α

−⎧ ⎫
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪⋅ ⋅ ⋅⎛ ⎞ ⎢ ⎥= ⋅ ⋅ ⋅ ⋅ Γ − ⋅ ⋅ ⋅ − + ⋅ ⋅⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⋅ ⋅ ⋅⎝ ⎠ ⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎣ ⎦

⎩ ⎭

% (8) 

 
                                                                                            

Also in this case it is interesting to observe that for 11 3α =  we have a particular case of Kolmogorov spectrum 
already reported in [1]. 
Our analysis for spherical wave model leads to  
 
 

( ) ( ) ( )21 2 2 2
2 2 2

_
0 0

1
, 8 Re , exp 1 exp

16
G

I spherical G n

LD
D k L j d d

k
κ ξ ξκ ξ

σ α π κ κ α κ ξ
∞⎧ ⎫⎡ ⎤⎛ ⎞⋅ ⋅ ⋅ −⎛ ⎞⋅ ⋅⎪ ⎪= ⋅ ⋅ ⋅ ⋅Φ ⋅ − ⋅ − −⎢ ⎥⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭
∫ ∫           

                                                                                                                                                                                       (9) 

( ) ( ) 11 1 22
2 2 2 2

2 2
0

16 116 14 1 Re
2 1n

G G

L
k L A C j d

D k D

αα

ξ ξαπ α ξ ξ
α
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⋅ ⋅ −⎛ ⎞⎛ ⎞ ⎪ ⎪ ⎪⎪⎛ ⎞= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Γ − ⋅ − +⎨ ⎨ ⎜ ⎟ ⎬⎬⎜ ⎟ ⎜ ⎟ − ⋅⎝ ⎠⎝ ⎠ ⎝ ⎠⎪ ⎪ ⎪⎪⎩ ⎭⎩ ⎭
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At this point, we can plot both ( )2
_I plane GDσ

 and ( )2
_I spherical GDσ

as a function of alpha for a particular horizontal 
case. We take 

2 14 31 ; 7 10 ; 1.55 ; 0.1 .n GL km C m m D mα λ µ− − += = ⋅ = =%  
The results are shown in figure 2. 
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Horizontal: scintillation index as a function of alpha for Cn2=7e-14,L=1km,Dg=0.1m
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Figure 2 -Scintillation index as a function of alpha for horizontal path using spherical wave  model and plane wave model 

We deduce from figure 2 that for alpha values lower than Kolmogorov value 11 3α = , there is a increase of 
scintillation both for spherical model and plane model, but for spherical model it is more remarkable. It will be shown 
subsequently like increase of scintillation leads to a penalty on the system performance. We deduce also that there are 
two maximum values of scintillation respectively for alpha values close to 3.3 for plane model and close to 3.2 for 

spherical model. At these points the curves change their slopes because of the term ( )A α
 that assumes very low 

values and scintillation begins to decrease up to zero. In addition for alpha values higher than  11 3α = , scintillation 
slightly decreases for both the wave model and spherical model and consequently  it leads to a slight gain on the system 
performance.                                 
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5 PROBABILITY OF FADE 
 

Given a PDF model for irradiance fluctuations ( )Ip I , the probability of fade describes the percentage of time the 

irradiance of the received signal is below some prescribed threshold value TI . Hence, the probability of fade as a 
function of threshold level is defined by the cumulative probability [1] 
                                                                                                                                                

( ) ( )
0

TI

I T Ip I I p I dI< = ∫
                                                                                                                                               (10)                           

The PDF most often used under weak irradiance fluctuations is the lognormal model and the resulting probability of 
fade leads to 
                                                                                                                                               

( )
( )

( )

21 , 0.231 21
2 2 ,

I G T

I T
I G

D F
p I I erf

D

σ α

σ α

⎧ ⎫⎡ ⎤⋅ − ⋅⎪ ⎪⎢ ⎥⎪ ⎪< = ⋅ +⎨ ⎬⎢ ⎥
⋅⎪ ⎪⎢ ⎥

⎪ ⎪⎣ ⎦⎩ ⎭

,                                                                                     (11)                 

 

where ( )erf x
is the error function. In arriving at this expression we have introduced the fade threshold parameter 

 

[ ]1010 logT
T

I
F dB

I
⎛ ⎞

= ⋅ ⎜ ⎟
⎝ ⎠

                                                                                                                                     (12) 

The fade parameter TF , given in decibels [ ]dB
, represents the dB level below the on-axis mean irradiance that the 

threshold TI  is set. 
 
5.1 Horizontal link: plane wave model and spherical wave model 
 
Using scintillation index for plane wave model (8) and for spherical wave model (9) into equation (11), we calculate the 
Probability of Fade as a function of alpha for a fixed fade threshold parameter for a particular horizontal case.   
We take  

2 14 31 ; 7 10 ; 1.55 ; 0.1 , 6n G TL km C m m D m F dBα λ µ− − += = ⋅ = = =%   
The plot is shown in figure 3 where are reported both plane wave model and spherical wave model. 
It is clear now that alpha variation has impact on the fade probability for both spherical and plane wave models, in 
particular lower alpha values lead to a penalty on the fade performance.  In addition we can observe that the spherical 
model predicts higher probability of fade than plane wave model for alpha values lower than alpha value intersection 
point (around  3.72α = ); for alpha values higher than alpha value intersection point the situation is opposite. Also for 
this diagram there is a maximum point where the curves change their slope because of the scintillation that begins to 
decrease up to zero.  
Under the same conditions we plot the Probability of Fade as a function of fade threshold parameter for several alpha 
values.  Both plane wave and spherical wave cases are illustrated respectively in figure 4 and figure 5. 
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Figure 3 – Probability of fade as a function of alpha using the log-normal PDF and two different models for the scintillation index: 
plane wave model and spherical wave model 
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Figure 4 – Probability of fade as a function of Threshold level for several values of alpha  using  plane wave scintillation index. 
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Figure 5 – Probability of fade as a function of Threshold level for several values of alpha using spherical wave scintillation index. 

 
6. MEAN SIGNAL TO NOISE RATIO  

 
In this paragraph is shown the Mean Signal to Noise Ratio in presence of atmospheric turbulence using Non 
Kolmogorov power spectrum. The received irradiance over long measurement intervals must be treated like random 

variable because of the turbulence. Based on [1][2], the mean Signal to Noise Ratio 
SNR

 at the output of the 
detector in the case of a shot-noise limited system assumes the form 

( )
0

2 2
01 ,I G

SNR
SNR

D SNRσ α
=

+ ⋅
                                                                                                                     (13) 

where ( )2 ,I GDσ α
 has been defined before, 0SNR is the signal to noise ratio in absence of turbulence.  

 
6.1 Horizontal link: plane wave model  

We plot in dB units Mean Signal to Noise Ratio 
SNR

 as a function of Signal to Noise Ratio without turbulence 

0SNR  for several alpha values, using plane wave model for scintillation. We take follow parameters 
2 14 31 ; 7 10 ; 1.55 ; 0.1 .n GL km C m m D mα λ µ− − += = ⋅ = =%   

The plot is shown in figure 6. It is shown the impact of the alpha variation on the 
SNR

 performance. Again, when 

alpha is lower than 11 3α =  there is a translation of the curves toward the bottom or in other words there is a penalty 

on the system performance. From another side for alpha value higher than 11 3α =  there is a gain on the system 

performance with respect to the case of Kolmogorov 11 3α = . Finally also there is a gain on system performance 

with respect to Kolmogorov  11 3α =  when alpha assumes values very close to 3α =  because of the amplitude 
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factor ( )A α  that assumes very low values and consequently the scintillation reported before in figure 2 approaches to 
zero. 
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Figure 6 -  Mean Signal to Noise Ratio  as a function of Signal to Noise Ratio without turbulence for several alpha values, using 
plane wave model for scintillation. 
 

7. MEAN BIT ERROR RATE  
 
In the presence of optical turbulence, the probability of error is considered a conditional probability that must be 
averaged over the PDF of the random signal to determine the unconditional mean BER. In terms of a normalized signal 
with unit mean, this leads to the expression [1] [2] 

( ) ( )
0

1Pr ,
2 2 2I

SNR u
E BER p u erfc du

∞ ⎛ ⋅ ⎞
= = ⋅ ⋅ ⎜ ⎟

⋅⎝ ⎠
∫

                                                                                         (14) 

where ( )Ip u
 is taken log normal distribution with unit mean 

( )
( )

( ) ( )

( )

2
2

2

1ln ,
1 2exp , 0

2 ,, 2

I G

I
I GI G

u D
p u u

Du D

σ α

σ ασ α π

⎧ ⎫⎡ ⎤+ ⋅⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦= ⋅ − >⎨ ⎬
⋅⋅ ⋅ ⋅ ⎪ ⎪

⎪ ⎪⎩ ⎭                                                (15) 

We plot the Mean Bit Error Rate as a function of the  
SNR

  for several alpha values. 
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7.1 Horizontal link: plane wave model  

We plot the Mean Bit Error Rate as a function of 
SNR

 for several alpha values using plane wave model for 
scintillation. We take same parameters 

2 14 31 ; 7 10 ; 1.55 ; 0.1 .n GL km C m m D mα λ µ− − += = ⋅ = =%   
The plot is shown in figure 7 
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Figure 7 -  Mean Bit Error Rate  as a function of  Mean Signal to Noise Ratio for several alpha values, using plane wave model for 
scintillation. 
 

It is shown the impact of the alpha variation on 
BER

 performance. Also in this analysis when alpha is lower than 
11 3α =  there is a penalty, but for alpha higher than 11 3α =  there is a improvement on the system performance. 

However when alpha assumes values close to 3α =  there is a gain on the 
BER

 performance with respect to 
BER

 value correspondent to 11 3α =  because of the scintillation approaches to zero. 
 

8. DISCUSSION 
 
It has been introduced a Non-Kolmogorov power spectrum which uses both a generalized exponent and a generalized 

amplitude factor instead of a constant standard exponent value 11 3α =  and of  a constant amplitude factor 0.033 
such is for Kolmogorov spectrum. This Non-Kolmogorov spectrum has been carried out from a generalized structure 
function. It has been shown, for horizontal link, Long Term  Beam Spread, Scintillation, Probability of fade,  mean SNR 
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and mean BER as variation  of  alpha exponent that assumes  values around the standard value of Kolmogorov 
11 3α = . 

For horizontal links, it has been shown that for lower alpha values than  11 3α = , but not  for alpha close to 3α = , 
there is a remarkable increase of scintillation and consequently a major penalty on the system performance. However 
when alpha assumes value close to  3α =  the amplitude factor ( )A α  assumes very low value and consequently 
Long Term Beam Spread and Scintillation decrease leading an improvement on the system performance.  Finally also 
for higher alpha values than 11 3α =   Scintillation decreases and consequently it improves the system performance.  
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