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ABSTRACT 
 
Atmospheric turbulence induces significant variation on the angle-of-arrival of laser beams used in free space laser 
communication. Angle-of-arrival fluctuations of an optical wave in the plane of the receiver aperture can be described 
in terms of the phase structure function that already has been calculated by Kolmogorov’s power spectral density model. 
Unfortunately several experiments showed that Kolmogorov theory is sometimes incomplete to describe atmospheric 
statistics properly. In this paper, for horizontal path and weak turbulence, we carry out analysis of angle-of-arrival 
fluctuations using a non Kolmogorov power spectrum which uses a generalized exponent factor instead of constant 
standard exponent value 11/3 and a generalized amplitude factor instead of constant value 0.033. Also our non 
Kolmogorov spectrum includes both inner scale and outer scale effects. 
 
Keywords:  Atmospheric turbulence, structure function, non Kolmogorov spectrum, angle of arrival.                   
 

1. INTRODUCTION 
 
Since it has been introduced Kolmogorov’s power spectral density model has been widely used and accepted to describe 
wave propagation through atmospheric turbulence. It has been already used also to calculate free space laser system 
performance that is limited by atmospheric turbulence.  However, recent experimental data from space-based stellar 
scintillation, balloon-borne in-situ temperature, and ground-based radar measurements indicate turbulence in the upper 
troposphere and stratosphere deviates from predictions of the Kolmogorov model [5][9][10]. Further development of the 
turbulent theory of passive scalar transfer has shown that although the Kolmogorov spectrum is important, it constitutes 
only one part of the more general behavior of passive scalar transfer in a turbulent flow [6]. Some anomaly behavior [3] 
seem to occur when the atmosphere is extremely stable because under such condition the turbulence is no longer 
homogeneous in three dimensions since the vertical component is suppressed. It has been shown [4] that for such two 
dimensional turbulence, coherent vortices can develop that reduce rate of the energy cascade from larger to smaller 
scales. As a result Kolmogorov turbulence will not develop. In addition anisotropy in stratospheric turbulent 
inhomogeneities has been experimentally investigated [5][8][11][12]. We must accept de facto that turbulence is still an 
unsolved problem in classical physics and the scientific community must persist in doing more simulations, 
measurements and experiments [7].  
It is very important, therefore, to find new models more general than Kolmogorov spectrum in order to describe also  
non Kolmogorov turbulence.  In this paper we use a theoretical spectrum model which reduces to one of Kolmogorov 
only for a particular case of its exponent: the standard value 11/3. The exponent used here can assume all the values 
between the range 3 to 4. Using this new spectrum, following the same procedure already used from Andrews and 
Phillips [1], we have analyzed the impact of the exponent’s variation on the angle of arrival fluctuations for horizontal 
link in weak turbulence. We have done it for several outer scale values and for different collecting lens radius.  
 

2. NON KOLMOGOROV SPECTRUM 
 
We assume that in an atmosphere exhibiting non-Kolmogorov turbulence the structure function for the index of 
refraction is given by [1] 
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( ) 2,n nD R C Rγγ = β ⋅ ⋅                                                                                                                                                (1) 
 

where γ is the power law which reduces to 2/3 in the case of conventional Kolmogorov turbulence.  Here, β is a constant 

equal to unity when 2 3γ = , but otherwise has units 
2 / 3m−γ+

.  The corresponding power-law spectrum associated 
with  structure function, as  reported in [1][13],  takes the form  
 

( ) ( ) 2, , 0, 3 4n nA C −αΦ κ α = α ⋅ ⋅ κ κ > < α <% ,                                                                                              (2) 
 

where 3α γ= +  is the spectral index or power law, 2 2
n nC C= β ⋅%  is a generalized structure parameter with units 

m−γ
, and ( )A α  is defined by 

( ) 2
1 ( 1)cos , 3 4

24
A απ⎛ ⎞α = Γ α − < α <⎜ ⎟π ⎝ ⎠

.                                                                                                      (3) 

where the symbol ( )xΓ
 in the last expression is the gamma function.   

When 11 3α = , we find that ( )11 3 0.033A =  and the generalized power spectrum reduces to the conventional 

Kolmogorov spectrum.  Also, when the power law approaches the limiting value 3α = , the function 

( )A α approaches zero.  Consequently, the refractive-index power spectral density vanishes in this limiting case.  
In order to include both inner scale and outer scale effects in (2) we use the follow spectrum  
 

( ) ( )
( )

2
2

2
2 2 2

0

1, exp , 0 , 3 4n n
m

A C
α

⎛ ⎞κ
Φ κ α = α ⋅ ⋅ ⋅ − ≤ κ < ∞ < α <⎜ ⎟⎜ ⎟κ⎝ ⎠κ + κ

%                                                 (4) 

where:  

•  0
0

2
L
π

κ = , 0L  is outer scale parameter; 

• 
( )
0

m
c

l
α

κ = , 0l is the inner scale parameter and ( ) ( )
1

55 2
2 3

c A
α−⎡ ⎤− α⎛ ⎞α = Γ ⋅ α ⋅ π⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

   

We obtained the scaling constant ( )c α  by the procedure showed in Appendix 8.1 

Notice that the spectrum (4) reduces to (2) setting 0 0l = and 0L = ∞ . Finally it is interesting to observe that for 

11 3α =  the spectrum (4) reduces to the (modified) von Kàrmàn spectrum reported in [1].  
 

3. ANGLE OF ARRIVAL ANALYSIS 
 
Angle-of-arrival fluctuations of an optical wave in the plane of the receiver aperture are associated with image dancing 
in the focal plane of an imaging system. Fluctuations in the angle of arrival aβ can be described in terms of the phase 

structure function [1]. To understand this, let S∆ denote the total phase shift across a collecting lens of diameter 2 GW  

and l∆ the corresponding optical path difference. These quantities are related by  
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k l S∆ = ∆                                                                                                                                                                         (5) 
 
If we assume that aβ  is small so that sin a aβ β≅ , then, under the geometrical optics method (GOM), the angle of 
arrival is defined by 
 

[ ].
2 2a

G G

l S radian
W kW

β ∆ ∆
= =                                                                                                                                    (6) 

Further assuming the mean 0aβ = , we deduce the variance of the angle of arrival 
 

( )
( )

( )
( )

2

2
2 2

2 ,
,

2 2
S G

a

G G

S D W L

kW kW
β

∆
= =                                                                                                                          (7) 

where  ( )2 ,S GD W L  is the phase structure function  with the radial distance 2 GWρ = . 
 
 
 

3.1 Angle of arrival for Plane Wave Model 
 
Following the same procedure as discussed in [1] for the standard Kolmogorov spectrum, but this time using a non-
Kolmogorov power spectrum (4), our analysis for plane wave model leads to 

 

( ) ( ) ( )
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2 22
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24 1 1 1 ;1;
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⎧ ⎫α⎛ ⎞Γ −⎜ ⎟⎪ ⎪⎡ ⎤⎛ ⎞κ ρρ α α⎪ ⎪⎛ ⎞⎝ ⎠= π ⋅ α ⋅ ⋅ ⋅ ⋅ κ ⋅ ⋅ + Γ − ⋅ κ ⋅ − − −⎢ ⎥⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟α⎛ ⎞ ⎝ ⎠ ⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦Γ⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∫

%

              (8) 

where ( )1 1 ; ;F a b z−  is the Hypergeometric function defined in Appendix 8.2 

Replacing 2 GWρ =  and using this approximation that is true for low values of the inner scale parameter 0l   

( ) ( )
( ) [ ]1 1 ; ; , Re 1ac

F a c z z z
c a

−Γ
− ≅ >>

Γ −
                                                                                                              (9) 

we carry out the variance of angle of arrival  fluctuations for plane wave model 
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Notice that (10) is independent of optical wavelength, but this is true only if the Fresnel zone is sufficiently small 
compared with the receiver aperture diameter, 2 GL k W<< .  
 

 At this point, we plot the root mean square (rms) angle of arrival fluctuations for plane wave 2
a plane

β as a 

function of alpha for a particular horizontal case for several outer scale values. We take 
2 14 3

01 ; 1 10 ; 0.05 , 0.001n GL km C m W m l mα− − += = ⋅ = =%  
The results are shown in figure 1. 
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Figure 1- Rms angle of arrival for plane wave as a function of alpha and for different outer scale values 

 
We deduce from figure 1 that rms angle of arrival increases as outer scale increases and it is physically correct. In fact 
the angle of arrival, like the beam wander, is caused mostly by large-scale turbulence cells, therefore when outer scale 
assumes high value the laser beam meets a major number of large-scale turbulence cells along its propagation length 
and these cells leads to higher angle of arrival value with respect to the case of low outer scale value, where more large 

scale cells are cut out.   In addition for alpha value lower than Kolmogorov value 11 3α =  angle of arrival increase up 

to a maximum value. At this maximum point the curve changes its slopes because the term ( )A α
 assumes very low 

values and rms angle of arrival begins to decrease down to zero. Finally for alpha values higher than Kolmogorov value 
11 3α =  angle of arrival decreases mostly for low values of the outer scale, instead for high values of the outer scale 

this decrease tends to vanish. 
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We plot in figure 2 also a surface of the rms angle of arrival as a function of alpha and outer scale in order to have a 
three dimensional view of same case. 
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Figure 2 – Rms  angle of arrival for plane wave as a function of alpha and outer scale  

 We plot also rms angle of arrival for plane wave as a function of alpha for a particular horizontal case for several GW   
values. We take 
 

2 14 3
0 01 ; 1 10 ; 10 , 0.001nL km C m L m l mα− − += = ⋅ = =%  

 
The results are shown in figure 3. 
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Figure 3 – Rms angle of arrival for plane wave as a function of alpha  and for several Wg values 

We deduce from figure 3 that alpha variation has different impact on the angle of arrival for different collecting lens 

radius. In particular if GW  assumes small values there is a bump of the ‘rms angle of arrival’ for alpha value close to 

3.3, instead  large values of  GW  reduces rms angle of arrival values for every alpha value.  
 
 

3.2 Spherical Wave Model 
 
Following the same procedure as discussed in [1] for the standard Kolmogorov spectrum, but this time using a non-
Kolmogorov spectrum (4), our analysis for spherical wave model leads to 
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∫ ∫

%

  (11)   

where ( )2 2 , ; , ;F a b c d z−  is hypergeometric function defined in Appendix 8.3  
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Replacing 2 GWρ =  and using this approximation that is true for very low values of the inner scale parameter 0l   
 

( ) ( ) ( ) ( )
( ) ( ) ( )2 2 , ; , ; , ,ac d b a

F a b c d z z z a b
b c a d a

−Γ Γ Γ −
− ≅ → ∞ <

Γ Γ − Γ −
                                                                  (12)           

 
We carry out angle of arrival expression for spherical wave model 
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                (13) 

 
 
Notice that, like for plane wave model case, (13) is independent of optical wavelength, but this is true only if the Fresnel 
zone is sufficiently small compared with the receiver aperture diameter, 2 GL k W<< .  
 

 At this point, we plot the root mean square (rms) angle of arrival fluctuations for spherical wave, 2
a spherical

β , as a 

function of alpha for a particular horizontal case for several outer scale values. We take 
 

2 14 3
01 ; 1 10 ; 0.05 , 0.001n GL km C m W m l mα− − += = ⋅ = =%  

 
The results are shown in figure 4. 
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Figure 4– Rms angle of arrival for spherical wave as a function of alpha and for several outer scale values 

We deduce from figure 4 the same comments as for figure 1. However, setting the same parameters, rms angle of arrival 
values for plane wave model are higher than angle of arrival values for spherical wave model.   
We plot in figure 5 also a surface of rms angle of arrival as a function of alpha and outer scale in order to have a three 
dimensional view of same case. 
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Figure 5 – Rms angle of arrival for spherical wave as a function of alpha and of the outer scale for horizontal path  

 
We plot also rms angle of arrival for spherical wave as a function of alpha for a particular horizontal case for several 

GW   values. We take 
2 14 3

0 01 ; 1 10 ; 10 , 0.001nL km C m L m l mα− − += = ⋅ = =%  
The results are shown in figure 6. 
We deduce from figure 6 the same comments as for figure 3.  
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Figure 6 – Rms angle of arrival for spherical wave as a function of alpha for horizontal path and for several Wg  values 

 
4. DISCUSSION  

 
In this paper we have analyzed angle of arrival fluctuation using a non-Kolmogorov power spectrum, which uses both a 

generalized exponent and a generalized amplitude factor instead of a constant standard exponent value 11 3α =  and a 
constant amplitude factor 0.033  such is for Kolmogorov spectrum. This non-Kolmogorov spectrum has been carried 
out from a generalized structure function. It has been shown for horizontal path, in weak turbulence, angle of arrival  as 

variation  of  alpha exponent that assumes  values around the standard value of Kolmogorov 11 3α = . 
Both for plane wave model and spherical wave model, it has been shown that for alpha values lower than Kolmogorov 

value 11 3α =  the rms angle of arrival increases up to a maximum value. At these maximum points the curves 

changes their slopes because the term ( )A α
 assumes very low values and rms angle of arrival begins to decrease 

down to zero. In addition for alpha values higher than Kolmogorov value 11 3α =  the rms angle of arrival decreases 
especially for low values of the outer scale, instead for high values of the outer scale this decrease tends to vanish. 
Finally it has been shown that alpha variation has different impact on the angle of arrival for different collecting lens 

radius. In particular if GW  assumes small values there is a bump of the angle of arrival for alpha value close to 3.3, 

instead large values of  GW  reduces angle of arrival values for every alpha value.  
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8. APPENDIX 
 

8.1 Non Kolmogorov spectrum: c(α) scaling constant evaluation procedure 
 
 The structure function is given by [1] 

( ) 2

0

sin, 8 ( , ) 1n n
RD R d

R

∞ κ⎛ ⎞α = π κ ⋅Φ κ α ⋅ − κ⎜ ⎟κ⎝ ⎠∫  

By using the spectrum (4) with 0 0κ =  and retaining the first non zero term of the Maclaurin series representation 
 

( )
( )

1
2 2

1

1sin1
2 1 !

n
n nR R

R n

−∞ −κ
− = κ

κ +∑  
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( ) 2 2 52, 5 ( )
3 2n n mD R A C R −αα⎛ ⎞α = π ⋅Γ − ⋅ α ⋅ ⋅ ⋅ κ⎜ ⎟

⎝ ⎠
%  

By assuming 
( )
0

m
c

l
α

κ =  and using the asymptotic behavior of the structure function [1] 

( ) 2 5 2
0,n nD R C l Rα−α = ⋅ ⋅% ,                     00 R l≤ <<  

we deduce ( ) ( )
1

55 2
2 3

c A
α−⎡ ⎤− α⎛ ⎞α = Γ ⋅ α ⋅ π⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

 
8.2 Confluent Hypergeometric Functions of the first kind 

 
The series representation for the confluent hypergeometric function [1][14] of the first kind is given by 

( )
( )
( )1 1

0
; ; ,

!

n
n

n

a zF a b z z
b n

∞
= ⋅ < ∞∑  

where z may be real or complex. 
 

8.3 Generalized Hypergeometric Functions  
 

The series representation for the generalized hypergeometric function [1][14] is given by 
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n
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∞ ⋅
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