
13 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Energy-efficient Traffic Allocation in SDN-based Backhaul Networks: Theory and Implementation / Tadesse, SENAY
SEMU; Casetti, CLAUDIO ETTORE; Chiasserini, Carla Fabiana; Landi, G.. - STAMPA. - (2017), pp. 209-215. (Intervento
presentato al convegno The 14th Annual IEEE Consumer Communications & Networking Conference (IEEE CCNC
2017) tenutosi a Las Vegas (USA) nel 08-11 January 2017) [10.1109/CCNC.2017.7983107].

Original

Energy-efficient Traffic Allocation in SDN-based Backhaul Networks: Theory and Implementation

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/CCNC.2017.7983107

Terms of use:

Publisher copyright

©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2679630 since: 2017-09-11T12:35:02Z

IEEE

Energy-efficient Traffic Allocation in SDN-based
Backhaul Networks: Theory and Implementation

Senay Semu Tadesse, Claudio Casetti, Carla Fabiana Chiasserini
Politecnico di Torino, Italy

Giada Landi
Nextworks, Italy

Abstract—5G networks are expected to be highly energy
efficient, with a 10 times lower consumption than today’s systems.
An effective way to achieve such a goal is to act on the
backhaul network by controlling the nodes operational state and
the allocation of traffic flows. To this end, in this paper we
formulate energy-efficient flow routing on the backhaul network
as an optimization problem. In light of its complexity, which
impairs the solution in large-scale scenarios, we then propose
a heuristic approach. Our scheme, named EMMA, aims to
both turn off idle nodes and concentrate traffic on the smallest
possible set of links, which in its turn increases the number of
idle nodes. We implement EMMA on top of ONOS and derive
experimental results by emulating the network through Mininet.
Our results show that EMMA provides excellent energy saving
performance, which closely approaches the optimum. In larger
network scenarios, the gain in energy consumption that EMMA
provides with respect to the simple benchmark where all nodes
are active, is extremely high under medium-low traffic load.

I. INTRODUCTION

The 5G-Infrastructure Public-Private Partnership (PPP), cre-
ated to design and deliver architectures, technologies and
standards for 5G communication, has set the following Key
Performance Indicators (KPI) for energy management [1], [2]:
(i) energy efficiency improvement by at least a factor of 3 and
(ii) reduction of energy cost per bit by a factor of 10. Of
course, no single solution can achieve such ambitious goals.
Instead, they should be achieved through orchestrated actions,
involving a fully-unified, automated control and management
plane, that oversees radio resources as well as computation
and transport resources in the the fronthaul and backhaul. A
key role is played by Software-Defined Networking (SDN)
and Network Functions Virtualization (NFV), tasked with the
control and coordination of hundreds of nodes that need to
be reconfigured on the fly in order to optimize utilization and
QoS, in view of rapidly changing traffic flows. Among the
coordinated actions that can be taken are the de-activation or
decommissioning of scarcely used network portions, including
links and switches, and the flexible re-routing of existing flows
so as to jointly address energy saving and QoE requirements.

In this paper, we address the latter action, by designing and
evaluating an Energy Monitoring and Management Applica-
tion (EMMA), that can minimize energy consumption of the
backhaul network. Consistently with the pervasive use of SDN
solutions expected in 5G networks, EMMA natively interacts
with the Northbound interface of ONOS [3], a popular carrier-
grade network operating system, whose Southbound interface
is used to control OpenFlow switches. The design of EMMA

hinges upon heuristic algorithms for the dynamic routing of
flows and the management of the resulting link and switch
activity. These algorithms represent a heuristic solution to a
non-linear integer problem that aims at minimizing the instan-
taneous power consumption of nodes and links. Performance
evaluation has been done by comparing the optimum obtained
through the above optimization formulation, with practical
results derived by implementing the algorithms in an SDN
network emulation environment.

The rest of the paper is organized as follows. Section II
introduces the power model for OpenFlow switches that we
adopt and formalizes the problem under study. Our heuristic
scheme is presented in Section III, while its implementation
on top of ONOS, as well as the required interactions between
ONOS and the underlying network, are described in Section
IV. Emulation results and the comparison between EMMA
and the optimum solution are shown in Section V. A detailed
discussion of previous work and of our novel contribution with
respect to that, is provided in Section VI. Finally, Section
VII draws some conclusions and highlights future research
directions.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Energy consumption of the backhaul network can be mini-
mized by limiting the number of active links and nodes, i.e.,
by (i) turning off link drivers whenever possible, resulting in
proportional (possibly non-linear) changes, and (ii) turning off
those nodes whose links are inactive.

Both approaches can be studied by building a directed
network graph whose vertices represent the network core
switches, and edges correspond to links connecting the
switches. Let us then consider that the network includes N
core switches and L links and denote by N and L the set
of switches and links, respectively. Let a link (i, j) ∈ L, with
i, j ∈ N , have a capacity C(i, j) bits/s. Let F(t) denote the set
of flows at time t, with each flow, fαω ∈ F(t), characterized
by the pair of end1 core switches α and ω, and by QoS
constraints that in our case correspond to the required data
rate R(fαω).

Let xij(t) be a binary variable indicating whether link
(i, j) ∈ L is “on” (xij(t) = 1) or “off” (xij(t) = 0), at time
t. Likewise, yi(t) is a binary variable indicating whether node

1Since we do not consider edge switches, the end core switches are those
where the flow, respectively, starts and ends in the backhaul.

TABLE I
MODEL NOTATIONS

N , L No. of core
switches and
links

N , L Set of switches
and links

(i, j) ∈ L Link from switch
i to switch j

C(i, j) Capacity of link
(i, j)

F(t) Set of active traf-
fic flows at time t

fαω ∈ F(t) Active flow be-
tween end core
switches α and ω

R(fαω) Rate requirement
for flow fαω

π Generic path as
an ordered se-
quence of links

Pidle Power consump-
tion of an idle
switch

Psw(i, j, t) Power consump-
tion due with link
(i, j) at t

xij(t) Takes 1 if link
(i, j) is on at t,
0 else

yi(t) Takes 1 if switch
i is “on” at t, 0
else

zπ,fαω (t) Takes 1 if fαω

is routed through
path π at t, 0 else

τij(t) Traffic flowing
over link (i, j)
at t

i ∈ N is active at time t (yi(t) = 1) or not (yi(t) = 0). Also,
let a path π be an ordered sequence of links. We indicate
by the binary variable zπ,fαω (t) whether flow fαω ∈ F(t)
is routed through path π at time t (zπ,fαω (t) = 1) or not
(zπ,fαω (t) = 0).

We consider that the generic core switch i has zero power
consumption when “off”, and Pidle when “on” but idle. The
power consumption associated with a link, (i, j), at time t
linearly depends on the traffic that flows over the link. It
follows that the total power consumption of an active core
switch i is given by:

P (i, t) = Pidle + Esw
∑

j∈N ,j 6=i

τij(t) (II.1)

where the second term on the right hand side of the above
equation represents the power consumption at i due to traffic
switching. In particular, Esw is the energy consumption per bit
due to traffic switching and τij(t) is the total traffic (expressed
in bit/s) flowing over link (i, j) at time t. We have:

τij(t) =
∑

fαω∈F(t)

∑
π:(i,j)∈π

R(fαω)zπ,fαω (t) ; (II.2)

Note that in Eq. (II.1) we accounted only for outgoing links
since we consider core switches, which cannot be source
or destination of traffic flows. Furthermore, incoming traffic
equals outgoing traffic and only one of them should be
considered since the switch processes that traffic only once.

Below, we first present the power consumption model we
adopt in order to determine realistic values for Pidle and Esw,
for OpenFlow switches. Then, we formalize the problem under
study by using standard optimization.

A. Power Model

The power consumption of an IP router or an Ethernet
switch that is “on” is the sum of the power consumed by
its three major subsystems [4]: Pctr + Pevn + Pdata, where

Pctr accounts for the power needed to manage the switch
and the routing functions, Pevn is the power consumption
of the environmental units (such as fans), and Pdata indi-
cates the data plane power consumption. The latter can be
decomposed into (i) a constant baseline component, and (ii)
a traffic load dependent component. In other words, when a
switch is powered on but it does not carry any data traffic, it
consumes a constant baseline power. When a device is carrying
traffic, it consumes additional load-dependent power for header
processing, as well as for storing and forwarding the payload
across the switch fabric. Combining the power model in [4]
with that for OpenFlow switches in [5], we can write Pidle as
the sum of Pctr, Pevn and the base line component of Pdata.
The load-dependent component of Pdata instead contributes
to the per-bit energy consumption due to traffic switching. In
particular, we have:

Esw =
Elookup
σ

+ Erx + Exfer + Etx (II.3)

In the above expression,

• Elookup/σ is the energy consumed per bit in the lookup
stage of a switch. Elookup is the energy consumption
due to searching the TCAM for the received flow-key
and retrieving the forwarding instructions, while σ is the
packet size;

• Erx is the energy consumed per bit in the switch re-
ception stage, which involves receiving a packet from
the physical media, extracting important fields to build a
flow-key and streaming the packet into the input memory
system;

• Exfer is the energy consumed per bit in the xfer stage,
which involves reading a packet from the inbound mem-
ory, all of the logic required to initiate a transfer across
the fabric, driving the fabric connections and crossbar,
as well as writing the packet into the remote outbound
memory;

• Etx is the energy consumed per bit in the switch trans-
mission stage, which involves reading a packet from the
outbound memory and transmitting it on the physical
media.

In the following, we set: Erx = Etx = 0.2 nJ/bit, Exfer =
0.21 nJ/bit, Elookup = 17.4 nJ/bit, and Pidle = 90 W [6].

B. Minimum-energy Flow Routing

The problem of energy-efficient flow allocation can be
modeled similarly to what done in [7], [8]. However, we
stress that, using the accurate power model introduced above,
optimal flow routing becomes a non-linear integer problem
(see our discussion at the end of this section). Furthermore,
in order to achieve the minimum energy expenditure, we
aim at minimizing the instantaneous power consumption of
the network, i.e., the flow routing problem should be solved
whenever a new flow starts or an existing flow ends. Typically,
this is impractical in real-world networks but our goal here is
to set the best performance that could be achieved. We report

below the formulation of the optimization problem adapted to
our scenario.

Objective. The goal is to minimize the instantaneous power
consumption, which is the sum of the power consumption due
to the nodes being “on” and to active link drivers:

min
∑
i∈N

yi(t)Pidle + Esw
∑

j∈N ,j 6=i

xij(t)τij(t)

 (II.4)

where recall that τij(t) depends on the binary variable
zπ,fαω (t), as reported in Eq. (II.2).

Constraints.
• Flow conservation constraint, for any j ∈ N :∑

i∈N ,i6=j

τij(t)xij(t)−
∑

k∈N ,k 6=j

τjk(t)xjk(t)

=
∑

fαω∈F(t):j=ω

R(fαω)−
∑

fαω∈F(t):j=α

R(fαω) .(II.5)

• The total traffic flowing on a link must not exceed the
link capacity:

τij(t) ≤ Cij , ∀(i, j) ∈ L . (II.6)

• A link between two nodes, i and j, can be active only if
i and j are both active:∑

j∈N ,j 6=i

[xij(t) + xji(t)] ≤Myi(t) , ∀i ∈ N (II.7)

where M is an arbitrary constant s.t. M ≥ 2(N − 1).
The input parameters of the above problem are the set of

nodes, links and traffic flows, along with their characteristics,
while the decision variables are: xij(t), yi(t), and zπ,fαω (t).
Thus, the problem is an integer non-linear problem, due to the
product of xij(t)’s and zπ,fαω (t)’s in the objective function
and in the flow-conservation constraints, which appears when
τij(t) is expressed as a function of zπ,fαω (t) (see Eq. (II.2)).
Also, it is akin to the bin packing problem2, which is a
combinatorial NP-hard problem. Thus, obtaining the optimal
problem solution in large-scale scenarios is not viable. Below
we propose a heuristic algorithm that has low computational
complexity and whose performance results to be very close to
the optimum.

III. EMMA: A HEURISTIC APPROACH

In order to design an efficient algorithm to solve the above
problem, we first observe that an efficient heuristic for the
solution of the bin packing problem is the First Fit algorithm
[9], [10]. Given the set of items to be inserted into the bins,
the First Fit algorithm processes an item at a time in arbitrary
order and attempts to place the item in the first bin that can
accommodate it. If no bin is found, it opens a new bin and
puts the item in the new bin.

2In the bin packing problem, objects of different volumes must be packed
into a finite number of bins, each of a given capacity, in a way that the number
of used bins is minimized.

We leverage the First Fit algorithm and design a heuristic
scheme, named Energy Monitoring and Management Appli-
cation (EMMA), which: (i) monitors the network status, (ii)
efficiently allocates traffic flows as they come, and (iii) and re-
routes the existing flows when necessary and possible. Flows
are (re-)routed by EMMA with the aim to minimize the length
of the flow path and the energy consumption of the overall
network. In particular, upon the arrival of a new flow, EMMA
first tries to fit the flow into the current “active network” while
meeting the flow traffic requirements. It then turns on other
links and/or nodes only if no suitable path is found. Every
time a new link and/or node are added to the active network,
EMMA looks for a better alternative path for flows that have
been (re-)allocated long enough (more than half their expected
duration) ago. If a more energy-efficient allocation is found,
then a flow is diverted on the new path, provided that its traffic
requirements are still met. Note that EMMA differs from the
First Fit algorithm since it tries to find a better path for already
allocated flows whenever any change in the active topology
occurs.

More in detail, the EMMA scheme is composed of two
algorithms. Algorithm 1 presents the sequence of actions to
be taken whenever a new flow is activated in the network. Input
to the algorithm is the network topology and the information
on the new flow to be allocated, the power state of the
network devices and the traffic crossing every link. Initially,
the computation of the possible paths for the incoming flow is
done considering the nodes and links that are currently active
(namely, the active network) (line 2). Then if there exists a
path that meets the flow traffic requirements, the flow can
be successfully allocated (lines 3-5). Otherwise, the whole
network should be considered and the search for a suitable
path repeated (lines 6-7). If a path is found, the links and
nodes that need to be added are activated (lines 8-11).

Algorithm 1 New flow allocation
Require: Topology, new flow, network power state, traffic load

1: for each new flow do
2: Compute all shortest paths across active topology
3: if suitable path is found then
4: % if more than one, select one at random
5: Allocate the flow
6: else
7: Compute shortest paths considering the whole network
8: if suitable path is found then
9: % if more than one, select one at random

10: Turn on the selected links and nodes that are off
11: Allocate the flow
12: installation time ← current time
13: Run Algorithm 2
14: % It moves previous flows to a better path if any

Algorithm 2 states the steps followed during re-routing of
existing traffic. This algorithm is run whenever there is a
change in the active network topology, i.e., if nodes and/or
links become active while finding a path for a new flow.

Input to the algorithm are the network topology and the
information on the current flows. The algorithm selects all

Fig. 1. Interaction between EMMA and ONOS, and between ONOS and
Mininet. The interactions are labeled with numbers corresponding to the
sequence of events described in the text.

flows that have started or re-allocated at least Ta time ago
(line 1). For each flow satisfying the time hysteresis Ta, it
computes a path on the current topology starting with the
flows with higher rate requirements (lines 2-4). If the cost
of the computed path is less than that of the flow current
path, it diverts the flow to the new path and updates the flow
installation time (lines 5-7). If the process of moving flows to
a different path results in some links and/ or nodes being idle,
those links and/or nodes are turned off (lines 8-9). Similarly,
upon the termination of a flow, nodes and links which are idle
will be switched off to save energy.

Algorithm 2 Move flows to a better path
Require: Topology, information on current flows

1: S ← {flows s.t. installation time ≥ Ta}
2: Order flows in S with decreasing rate requirements
3: for each flow in S do
4: Search a path on the active topology
5: if suitable path exists ∧ (new path cost < old path cost) then
6: Move flow from old to new path
7: installation time ← current time
8: if there are links and/or nodes no longer carrying traffic then
9: Turn them off

IV. EMMA IMPLEMENTATION IN ONOS

We consider a system architecture including:
• a network of OpenFlow switches and links interconnect-

ing them;
• an SDN controller;
• an application on top of the SDN controller that imple-

ments EMMA.
The system has to:
• keep track of the set of active network elements, and the

set of current traffic flow routes;
• route traffic (i.e., check routing paths for traffic flows and

push routes into the network);
• monitor and toggle the power state of the network ele-

ments.
In SDN, traffic forwarding rules are created by the controller

and are installed into the switches. The flow rule installation
could be either proactive, e.g., flows rules are installed into
the switches prior to the actual flow arrival, or reactive, e.g.,

flows rules are created upon every new flow coming into the
switches. In the latter case, the switches at the network edge
will need to be always active, in order to receive the traffic that
a host may generate. When an edge switch receives a packet
for which it has no rule, it directly sends the packet to the
controller. Then the controller gets from EMMA a path for
such kind of packets and installs a flow rule into the switches.
Afterwards, all packets of that kind will be forwarded based
on the flow rule just installed.

In the implementation of our algorithms we followed a
reactive approach. The algorithms are tested using the Mininet
SDN network emulation environment [11] as forwarding
plane, and a controller whose functions are supported by the
Open Network Operating System (ONOS) [3]. The algorithm
is developed based on ONOS built-in Reactive Forwarding
application, which uses the shortest path to route incoming
traffic. However, we recall that the topology considered for the
shortest path search is not always the whole topology. Indeed,
EMMA first tries to find a path on the nodes/links which are
already carrying traffic thus concentrating all the traffic in the
active infrastructure whenever possible. If no path is found
using the active network, EMMA considers the whole network
to route the traffic.

Also, it is worth mentioning here that EMMA implements
the PacketProcessor interface of ONOS, running below it in
the architecture, in order to process packets, i.e., we replicated
the processing function at the PacketProcessor interface of
ONOS within EMMA. In this way, EMMA can distinguish
between traffic and control packets, as well as between unicast
and multicast packets, thus further processing only unicast
traffic packets.

Finally, we consider that initially all network nodes and
links are “on” and that ONOS provides EMMA with the
whole network topology. Specifically, EMMA gets the network
topology via the TopologyService application of ONOS, to
which EMMA has registered. EMMA can then use the network
topology for path computation and flow provisioning. If there
are idle core switches, EMMA will instruct ONOS to turn
them off.

Figure 1 highlights the main components, chain of events
and interactions in the implemented system. The description
of the set of actions taken by EMMA and the list of events
happening in the network are detailed below (the labels
associated with the arrows in the figure correspond to the
numbers of the listed events/actions).

1) Whenever a switch receives a packet for which it does
not have a forwarding rule, it sends the packet of the flow
directly to ONOS. EMMA intercepts the packet using
the requestPacket method of the PacketService interface
of ONOS.

2) EMMA processes the packet and, if it carries unicast
traffic, it computes a flow path according to Algorithm
1. Then it creates a forwarding rule using a set of ONOS
applications. Initially, it uses TrafficSelector.builder, to
form the part of the rule specifying the pair of source
and destination IP addresses to be matched when pro-

cessing the packet at the switch. It then resorts to
TrafficTreatment.builder in order to express a set of
instructions, namely, forwarding the packet toward the
intended output port and decrementing the packet TTL.
Finally, it invokes ForwardingObjective.Builder to create
the forwarding rule based on the TrafficSelector and
TrafficTreatment outputs.

3) The ONOS application FlowObjectiveService is used to
send the rule and install it in the switch.

4) A FLOW ADDED event will be generated by the switch
after the flow rule has been installed. Following the
blueprint of the FlowRuleListener interface of ONOS,
we built a FlowListener interface within EMMA. Such
an interface allows EMMA to detect a FLOW ADDED
event, after which EMMA starts accounting for the
power consumption due to the newly added flow.

5) A FLOW REMOVED event will be generated by a
switch whenever a flow finishes, or the application
removes a flow from a switch when a better path is
found. As for the FLOW ADDED event, EMMA is
able to detect a flow removal through the FlowListener
interface we developed and, hence, to correctly compute
the energy consumption of the active network. Note that
when a FLOW REMOVED event corresponds to a flow
termination (i.e., it has not been triggered by an EMMA
re-routing action), EMMA will check whether existing
flows can be re-routed, according to Algorithm 2, thus
performing a further step similar to step 2).

We remark that any change in the network topology or
related to new/finishing traffic flows will be detected by the
south bound ONOS providers, which will notify the Manager
residing in the ONOS core about such events. Then EMMA
will become aware of an event thanks to the TopologyListener
and the FlowListener interfaces that we developed on top of
ONOS.

We conclude by remarking that EMMA keeps track of the
power usage in the network by computing the power at the
FLOW ADDED and FLOW REMOVED events sent from
nodes. In our implementation, EMMA computes the active net-
work power consumption based on the packet size and the flow
rate, as explained in Section II-A. Such values are obtained as
the ratio of, respectively, the number of bytes to the number
of packets, and the number of packets to the flow duration.
The number of packets, number of bytes and flow duration are
provided to EMMA by ONOS. Specifically, EMMA exploits
the getDevice method of DeviceService in ONOS to get the list
of available switches, and the getFlowEntries method of the
FlowRuleService of ONOS to get information (i.e., number of
bytes, number of packets and flow duration) about each flow
handled by a given switch.

V. EXPERIMENTAL RESULTS

We evaluated the EMMA performance against the optimal
solution, as well as versus the simple case where no power
saving strategy is adopted and the whole network is always
active (hereinafter referred to as No Power Saving). The

TABLE II
DEFAULT SETTINGS

Parameter Value
Flow arrival rate 0.1 flows/s
Average flow duration 20 s
Number of core switches 12
Number of edge switches half the no. of core switches
Link Capacity 10 MB/s
Hysteresis (Ta) 10 s
Pidle 90 W [6]
Esw 0.644 nW [6]
Number of hosts per edge switch 10
Link prob. b/w switches 0.5
Packet size 1500 bytes
Experiment duration 500 s

performance of EMMA and of the No Power Saving schemes
are obtained by emulation, in the system we implemented
and that is described above. The solution of the optimization
problem in Eq. (II.4) is instead obtained using the Gurobi
solver, considering the same network as that emulated in our
experiments with Mininet.

We derived the results assuming a default number of core
and edge switches equal to 12 and 6, respectively; 10 hosts are
connected to each edge switch. Links between any two core
switches are set with probability 0.5 and the link capacity is set
to 10 Mbytes/s. TCP traffic flows are generated using the Iperf
tool, using 1500-byte packets. For each traffic flow, source
and destination are selected at random among all possible
hosts. Note that this is a worst case assumption for EMMA,
while it favours the No Power Saving strategy. The inter-arrival
time of newly generated flows follows a negative exponential
distribution with a default mean arrival rate of 0.1 flows/s.
The traffic flow duration is also exponentially distributed with
mean equal to 20 s. The complete list of default values that
we adopted for the system parameters is reported in Table II.

In the following figures, we show the average power con-
sumption per flow, as the flow arrival rate and the number
of network switches vary. The results have been obtained
by averaging over 20 experiments. Note also that power
consumption is computed based on traffic statistics and nodes
operational states, consistently in all cases.

Figure 2 compares the performance of EMMA to the
optimum as well as to that of the No Power Saving scheme,
as the flow arrival rate varies and for the default number of
core switches (namely, 12). Observe that EMMA matches the
optimum very closely, for any value of flow arrival rate. The
power saving it provides with respect to the case where all
network switches are always on is very noticeable. Clearly,
the power gain tends to shrink when many flows have to be
allocated (high flow arrival rate), i.e., as an increasing number
of switches and links have to be used. Also, we observed that
the energy saved by turning off the nodes is significantly larger
than that saved by turning off the links.

The behavior of EMMA compared to the No Power Saving
scheme, as the network size varies, is presented in Figure
3. Here we do not show the optimum performance, as we

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0.01 0.05 0.1 0.5 1 2

A
v
e
.
P

o
w

e
r

C
o
n
s
u
m

p
ti
o
n
/F

lo
w

 [
W

]

Flow Arrival Rate [no. flows/s]

Optimum

EMMA - Emulation

No Power Saving - Emulation

Fig. 2. Comparing EMMA against the optimum and the No Power Saving
scheme: Average power consumption per flow as a function of the flow arrival
rate (no. core switches = 12).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

4 10 16 20 26 30 36 40

A
v
e
.
P

o
w

e
r

C
o
n
s
u
m

p
ti
o
n
/F

lo
w

 [
W

]

No. of Core Switches

EMMA - Emulation

No Power Saving - Emulation

Fig. 3. Average power consumption per flow vs. number of core switches:
comparison between EMMA and No Power Saving (flow arrival rate = 0.1)

 0

 0.2

 0.4

 0.6

 0.8

 1

4 10 16 20 26 30 36 40

P
o
w

e
r

C
o
n
s
u
m

p
ti
o
n
 G

a
in

No. of Core Switches

Flow Arrival Rate 0.05
Flow Arrival Rate 0.10
Flow Arrival Rate 0.50
Flow Arrival Rate 1.00

Fig. 4. Gain in average power consumption per flow (derived by emulation)
provided by EMMA with respect to No Power Saving, as the number of core
swicthes and the flow arrival rate vary.

could not solve the optimization problem for a number of
core switches significantly larger than the default value. All
results are therefore derived by emulation, under a flow arrival
rate equal to 0.1. The plot confirms the excellent performance
of EMMA: it reduces the power consumption per flow by a
factor ranging from 2 (for 10 core switches) to 8 (for 40 core
switches). As noted before, a smaller improvement is obtained
only when the network size is small compared to the flow
arrival rate (e.g., for 4-5 core switches).

Finally, Figure 4 depicts the gain that we can achieve with
EMMA with respect to the No Power Saving strategy, as a
function of the number of core switches and for a flow arrival
rate equal to 0.05, 0.1, 0.5, 1. The gain is computed as the
difference in power consumption between No Power Saving
and EMMA, normalized to the power consumption of the
former scheme. As expected, the gain that EMMA provides
is higher for a lower value of flow arrival rate and a larger
network size, since it is possible to aggregate more flows on
the same links and there are more idle switches that can be
turned off. Interestingly, the gain we obtain is always quite
high, with peak values that approximate 1.

VI. RELATED WORK

Energy-efficient traffic routing in wired networks has been
largely addressed in the literature. Here, we limit our discus-
sion to the studies that are most relevant to ours. In particular,
at the end of the section we highlight our major contributions
with respect to those that are closest to our study.

One of the first works to investigate energy-efficient man-
agement of nodes and links in backbone networks, can be
found in [7]. The optimization problem they present to ob-
tain an energy-efficient traffic allocation is an integer linear
problem ILP, thus a heuristic is proposed too. Their algorithm
first turns off nodes with the smallest traffic load and re-
routes traffic consequently, then it tries to de-activate links.
An opposite approach with respect to [7] is adopted in [12],
[13], where the least congested links are turned off first.

In [9], both virtual machine (VM) placement and traffic
flow routing are optimized so as to turn off as many unneeded
network elements as possible. In particular, the authors use
traffic-aware VM grouping to partition VMs into a set of
VM-groups so that the overall inter-group traffic volume is
minimized while the overall intra-group traffic volume is
maximized. An approach based on the greedy bin-packing
algorithm is proposed to route the traffic, and to put as many
network elements as possible into sleep mode. A similar
approach is adopted in [14], which focuses on the case where a
sudden surge in traffic occurs after an off-peak period, during
which most of the nodes have been turned off. The work tries
to minimize the number of nodes/links that have to be activated
and to reduce service disruption by avoiding turning off links
that are critical to guaranteeing network connectivity.

Relevant to our work are also the studies in [8], [15], which
minimize the power consumption of a data center network. In
particular, [15] considers a hierarchical topology and proposes
a hierarchical energy optimization technique: all edge switches

connecting to any source or destination server in the traffic
matrix must be “on”. Also, the network is divided into several
pod-level subnetworks and a core-level subnetwork, and traffic
is re-organized accordingly. [8] instead assumes that each
traffic flow can be split over different paths. Interestingly,
they have used OpenFlow to collect the flow matrix and port
counters, which are used as input to their routing scheme. The
work in [16] extends [8] by introducing a monitoring module
that collects statistics, such as switch state, link state, active
topology and traffic utilization.

Finally, physical characteristics of the links are accounted
for in [17], [18]. The former considers network routers
connected by multiple physical cables forming one logical
bundled link, and it aims at turning off the cables within
such links. The problem [17] poses accounts for the bundle
size, besides the network topology and the traffic matrix,
and it consists in maximizing the spare network capacity by
minimizing the sum of loads over all links. Instead, in [18]
the focus in on optical links and the minimum-energy traffic
allocation is solved taking into account their peculiarities.

We remark that [7], [9] are the closest works to ours,
nevertheless the study we present significantly differs from
them. In particular, we recall that our problem formulation re-
sembles that in [7], but it accounts for the instantaneous power
consumption and for a more realistic model of the nodes power
consumption, which changes the nature of the optimzation. As
far as our heuristic is concerned, we leverage [9] but design
an algorithm that, unlike [9], aims to find a better route for
all existing flows whenever there is a change in the active
topology. In addition, our focus is on the implementation of
energy-efficient flow routing: our algorithms are implemented
on ONOS, we define and implement the interactions that our
application requires between ONOS and the network emulated
through Mininet, and we derive emulation results by letting
ONOS and Mininet interact.

VII. CONCLUSIONS

We addressed energy-efficient flow allocation in the 5G
backhaul where traffic forwarding rules are created by an
SDN controller, which can also turn switches on or off. We
first formalized flow allocation by formulating an optimization
problem whose complexity, however, results to be unbear-
able in large-scale scenarios. We therefore used a heuristic
approach and developed an application, named EMMA. We
implemented EMMA on top of ONOS and derived exper-
imental results by emulating the network through Mininet.
The comparison between EMMA and the optimal solution
(obtained in a small-scale scenario) showed that the EMMA
performance is very close to the optimum. Also, in larger
scale scenarios, emulation results highlighted that EMMA can
provide a dramatic energy improvement with respect to our
benchmark where switches are always on.

Future research will address the problem of energy-efficient
allocation and migration of virtual machines, and it will
combine the solution with the EMMA scheme proposed in
this paper for flow routing.

ACKNOWLEDGMENT

This work has received funding from the 5G-Crosshaul
project (H2020-671598).

REFERENCES

[1] The 5G Infrastructure Public Private Partnership, KPIs, https://5g-ppp.
eu/kpis/.

[2] “5G Use cases and Requirements,” White Paper, http://networks.nokia.
com/file/28771/5g-white-paper.

[3] ONOS, http://onosproject.org
[4] A. Vishwanath, K. Hinton, R. Ayre, R. Tucker, “Modeling Energy

consumption in High-Capacity Routers and Switches,” IEEE Journal
on Selected Areas in Communications, vol. 32, no. 8, 2014.

[5] P. Congdon, P. Mohapatra, M. Farrens, V. Akella, “Simultaneously
Reducing Latency and Power Consumption in OpenFlow Switches,”
IEEE/ACM Transactions on Networking, vol. 22, no. 3, 2014.

[6] Cisco Catalyst 3750 Series Switches Data Sheet, http://www.cisco.
com/c/en/us/products/collateral/switches/catalyst-3750-series-switches/
product data sheet0900aecd80371991.html.

[7] L. Chiaraviglio, M. Mellia, F. Neri, “Reducing Power Consumption in
Backbone Networks,” IEEE ICC, June 2009.

[8] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis , P. Sharma,
S. Banerjee, N. McKeown, “Elastictree: Saving Energy in Data Center
Networks,” USENIX NSDI, 2010.

[9] W. Fang, X. Liang, S. Li, L. Chiaraviglio, N. Xiong, “VMPlanner: Opti-
mizing Virtual Machine Placement and Traffic Flow Routing to Reduce
Network Power Costs in Cloud Data Centers,” Computer Networks,
vol. 57, no. 1, pp. 179–196, 2013.

[10] A. Gyárfás, J. Lehel, “On-line and First-fit Colorings of Graphs,” Journal
of Graph Theory, vol. 12, no. 2, pp. 217-227, 1988.

[11] B. Lantz, B. Heller, N. McKeown, “A Network in a Laptop: Rapid
Prototyping for Software-Defined Networks,” ACM HotNets, 2010, http:
//mininet.org.

[12] R. Carpa, O. Glück, L. Lefevre, “Segment Routing based Traffic
Engineering for Energy Efficient Backbone Networks,” IEEE ICC, 2014.

[13] F. Giroire, D. Mazauric, J. Moulierac, B. Onfroy, “Minimizing Rout-
ing Energy Consumption: From Theoretical to Practical Results,”
IEEE/ACM ICC, 2010.

[14] O. Okonor, N. Wang, Z. Sun, S. Georgoulas, “Link Sleeping and Wake-
up Optimization for Energy Aware ISP Networks,” IEEE ISCC, 2014.

[15] Y. Zhang, N. Ansari, “HERO: Hierarchical Energy Optimization for
Data Center Networks,” IEEE Systems Journal, vol. 9, no. 2, pp. 406–
415, 2015.

[16] T. M. Nam, N. H. Thanh, N. Q. Thu, H. T. Hieu, S. Covaci, “Energy-
Aware Routing based on Power Profile of Devices in Data Center
Networks using SDN,” IEEE ICC, 2015.

[17] W. Fisher, M. Suchara, J. Rexford, “Greening Backbone Networks:
Reducing Energy Consumption by Shutting Off Cables in Bundled
Links,” ACM SIGCOMM Workshop on Green Networking, 2010.

[18] A. Coiro, M. Listanti, A. Valenti, F. Matera, “Reducing Power Consump-
tion in Wavelength Routed Networks by Selective Switch Off of Optical
Links,” IEEE Journal of Selected Topics in Quantum Electronics, vol.
17, no. 2, pp. 428–436, 2011.

