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Abstract

A novel one-dimensional refined model for the analysis of laminated structures is presented in this paper. The

Layer Wise approach in conjunction with the Carrera Unified Formulation (CUF) enables to create hierarchical

refined models which are capable of detecting both local and global mechanical behaviours. In the framework

of the CUF, the FEM matrices are obtained in the form of fundamental nuclei, which are independent of the

theory adopted for the model and the FEM discretization along the beam axis. A hierarchical set of expansions

above the cross-section is developed by adopting Legendre-class polynomials for the definition of the beam theory

kinematics. In this way, the polynomial order of the expansion can be introduced as a free-parameter, enabling

to vary the accuracy of the theory of structure in a straightforward manner. Compact cross-ply laminates

with different number of layers, as well as more complex composite cases like box beams have been adopted to

test the Hierarchical Legendre Expansions (HLE) adapted to the Layer Wise approach. The model has been

verified through published literature and also through the use of the commercial software MSC Nastran.

Keywords: Refined beam theories, Finite elements, Carrera unified formulation, Layered structures,

Layer Wise approach, Hierarchical Legendre Expansions.
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1 Introduction

This paper is devoted to the analysis of laminated beams by means of a novel one-dimensional refined model.

Nowadays composite materials are employed in many engineering applications, having a major role in the

development of new advanced structures. Indeed, in the last decade major aerospace companies have started

to introduce these materials not only in secondary components, but also in primary structures within the

wings and the fuselage (B787 and A350). The advantages of high-performance composites in comparison

with metal alloys are well-known, amongst them: high stiffness to weight ratio, high strength to weight

ratio, fatigue strength, corrosion resistance or ease of formability (see the book of Tsai [1]). The modelling

techniques of composite materials have become a very useful tool to develop high-performance components

for many industrial applications and they serve to get a better understanding of the behaviour of composites

under different conditions, such as concentrated loads, high temperatures, delamination or fatigue. In these

structures, the in-plane and shear stresses and strains of the laminate play a major role in the behaviour of the

material. In this context, one-dimensional models have demonstrated to be the most suitable tool in terms of

effectiveness when slender structures are considered (i.e. one dimension is much higher than the others). The

classical beam theories developed by Euler [2] and then by Timoshenko [3], are not adequate for the analysis

of composites since they do not correctly account for shear effects. Regarding two-dimensional theories, in

which the thickness is smaller than the other two dimensions, the extension of the classical plate theory to

laminated structures is represented by the Classical Lamination Theory (CLT) [4], which is based on the

Love-Kirchoff hypothesis and assumes perfect bonding between layers. However, the application of CLT to

composite structures is limited due to its low shear moduli in comparison with the axial moduli. The First-

order Shear Deformation Theory (FSDT), based on the plate theories developed by Reissner [5] and Mindlin

[6], assumes linear variation of the displacements across the thickness. Although FSDT accounts for shear

deformation effects, it lacks on foreseeing correctly the higher-order shear effects, which have an important

role in the behaviour of composite structures. On the other hand, 3D solid finite elements provide fairly good

results in representing these effects, but the elevated computational costs required to predict correctly the

effects on a laminate and the inherent limitations on the aspect ratio of the solid elements prevent in some

cases its use.

In order to overcome the limitations of classical theories, many refined theories have been developed over

the years for the analysis of multilayered composite structures. In the following, the attention is focused

on one-dimensional theories, which represent the main topic of the present paper. However, an excellent

review of the first developments in the analysis of laminated beams and plates was published by Kapania and

Raciti [7, 8]. The first work focused on the shear effects and buckling, while the second on vibrations and

wave propagation. Depending on the relation between the number of degrees of freedom of the mathematical

model and the number of layers of the laminate, two approaches can be formally utilized in the analysis of

composites:

• the Equivalent Single Layer, or ESL, in which the number of unknowns is independent of the number of

layers. The main drawback of this method is that the continuity of transverse shear and normal stresses

is not always assured. Reddy [9] introduced a higher-order shear deformation theory of laminated

plates which provides a parabolic distribution of the transverse shear strains along the thickness. These
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strains were null at the top and bottom surfaces. Khedeir and Reddy [10, 11] made use of this theory

to carry out static, dynamic and buckling analysis of symmetric and antisymmetric cross-ply beams,

accounting for classical, 1st, 2nd and 3rd order models. On the other side, Matsunaga [12] employed

the method of power series of expansion of the displacement field in the depth coordinate (z). The

effects of the transverse shear and normal stresses were calculated by integration of the 3D equations

of equilibrium in the z direction, ensuring the continuity conditions at the interface between layers and

stress boundary conditions at the top and bottom surfaces. This method was also used by the same

author in [13] to analyse the natural frequencies and buckling critical loads of laminated composite

beams. A higher-order mixed theory was used by Rao et al. [14] to evaluate the natural frequencies

of laminated and sandwich beams by using Taylor’s series of expansions for the displacement variables.

Karama et al. [15] presented a multi-layered laminated model for static and dynamic analysis assuring

transverse shear stress continuity at the layer’s interfaces by using Ossadzow’s kinematics. An analysis

of bi-dimensional laminated beams based on the Proper Generalized Decomposition was carried out by

Vidal et al. [16], where the displacement field is assumed as a sum of separated functions of the axial

and transverse components. Another work based on the ESL approach was done by Vidal and Polito

[17] on the influence of the use of the Murakamis zig-zag function in the sine model for the analysis of

laminated beams.

• the Layer-Wise, or LW, in which the number of degrees of freedom (hereinafter DOFs) depends directly

on the number of layers. This approach has been adopted in many studies as it aims to solve the

aforementioned issues by considering the properties of each single layer separately and then by imposing

the continuity of the displacements (and the transverse stresses in the case of mixed formulation) at the

intra-layer interfaces. The LW method was used by Pagano [18], who treated different class of problems

involving any number of layers under cylindrical bending. Recently, Shimpi and Ghugal [19] introduced

a new LW trigonometric shear deformation theory for two-layered laminated beams using sinusoidal

functions along the thickness coordinate for the kinematics and assuring the stress-free condition at

the edges and the shear stress continuity at the layers’ interfaces. Surana and Nguyen [20] presented a

two-dimensional curved beam formulation applied to linear static analysis using Lagrange interpolating

polynomials for the approximation in the transverse direction. The authors included the laminated

material behaviour in the integration for each lamina. Another two theories based on the displacement

field of LW theories were proposed by Tahani [21] for static and dynamic anaysis of laminated beams.

The first one was an adaptation of the plate theories to beams, whereas the second uses a straightforward

procedure similar to the one used on plate and shell theories. A layerwise shear deformation theory based

on the Radial Basis Functions method and a multiquadrics discretization was introduced by Ferreira [22],

who used this method to analyse laminated composite and sandwich plates. Other recent contributions

on this approach can be found in [23, 24, 25, 26, 27, 28].

In the present work, a new higher-order theory has been developed and assessed in the framework of

the Carrera Unified Formulation (CUF). This formulation enables to develop refined models in which the

approximation type and the theory order become free parameters that are introduced as inputs of the problem.

A review of the most significant beam models was recently done by Carrera et al. [29], paying a special
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attention to the applications of 1D CUF models. The CUF was devised to overcome the limitations of the

classical beam models by describing the kinematic field in a unified manner that will be then exploited to

describe the governing equations in a hierarchical and compact way. Initially, Carrera et al. [30, 31] proposed

CUF for two-dimensional (2D) structural and multifield problems. In their original paper the order of the

theory was left as a free parameter. The extension of CUF to beam modelling was carried out by Carrera

and Giunta [32], using a N-order approximation based on MacLaurin polynomial series of the displacement

unknown variables above the cross-section. This class of 1D CUF models, also used in other subsequent

works (see for example Carrera et al. [33, 34]), has been named as Taylor Expansions (TE). A new model

based on Lagrange polynomials and CUF was presented by Carrera and Petrolo [35]. In that work, the

enhanced capabilities of the LE (Lagrange Expansion) CUF models were discussed and particular attention

was given to the capability of LE to deal with 3D-elasticity solutions of various types of structures with

reduced computational costs.

Refined CUF models have been widely employed for the analysis of laminated structures by using both

ESL and LW approaches. The effectiveness of ESL and LW approaches in detecting both local and global

behavior of composite beams was demonstrated in [36], where TE were utilized to create ESL models and LE

to obtain both ESL and LW solutions. A number of refined beam theories were obtained in [37] by adopting

Taylor’s polynomials, trigonometric series, hyperbolic, exponential, and zig-zag functions as expansions of

the unknown displacement variables above the cross-section of thick multi-layer beams. A component-wise

analysis was carried out in [38], where combinations of single fibres, related matrices and single-to-multiple

layers are modelled separately, but using the same variable kinematic beam elements for each component. As

a result, accurate global-local solutions and geometrically exact approximations are obtained. Furthermore,

TE theories have been also used for the dynamic analysis of composite rotors in various works [39, 40, 41].

A multi-line approach for the analysis of laminated composite structures was introduced in [42]. In this

work, each layer is modeled by one beam discretization along the longitudinal axis, and the continuity of the

displacements at the interfaces is directed by using Lagrange multipliers. Pagani et al. [43] developed a method

based on the use of dynamic stiffness elements for the free vibration analysis of laminated composite beams. In

this study, the kinematic field is described as a truncated Taylor expansion series of the generalized unknowns,

and the governing equations are obtained through the strong form of the principle of virtual displacements. A

recent work devoted to the analysis of compact and thin-walled laminated beams was presented in [44]. Both

ESL and LW approaches are adopted in this paper by expanding the kinematic variables with TE and LE,

respectively. Filippi et al. [45] employed Chebyshev polynomials as expansion functions to obtain a new class

of refined beam models. Static and dynamic analysis of composite beams were carried out in this work, in

which the solutions calculated with the Chebyshev Expansions (CE) are compared with TE and LE, amongst

others.

A new approach for the analysis of 1D high-order models is presented in the present research, which

employs hierarchical Legendre-type polynomials as basis functions for the development of variable kinematic

theories of structures. This class of polynomials were presented by Szabó, Düster and Rank [46], who used

a Legendre-type basis to develop the p-version finite element method for one-dimensional, quadrilateral and

hexahedral elements. In the present paper, Hierarchical Legendre-type Expansion (HLE) models based on

these polynomials are developed in the framework of CUF to analyze composite structures. Hierarchical
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Figure 1: Reference system for a laminated beam

higher-order models can be developed thanks to the use of HLE in conjunction with the CUF, which allows

us to write the governing equations and FEM arrays in a compact and general manner. The Layer-Wise

approach is adopted to reproduce the laminate above the cross-section, and together with the properties of

HLE models, in which the order of the expansion remains as a free-parameter that can be optimized, both

local and global responses are obtained with higher levels of accuracy. The paper is structured as follows: a

brief introduction of the geometrical and constitutive relations for laminated structures is given in Section 2,

followed by a description of the variable kinematic models based on the CUF formulation in Section 3, with a

focus on the Hierarchical Legendre model. Section 4 is dedicated to the FE application of the different CUF

models and its implementation on laminates. The numerical results obtained in the different assessments

considered can be found in Section 5. Finally, the conclusions of this work are in Section 6.

2 Preliminaries

Let us consider the Cartesian reference system shown in Fig. 1 for a multi-layered beam with an arbitrary

number of layers. The longitudinal axis of the beam corresponds to the coordinate y (0 ≤ y ≤ L), whereas the

cross-section, denoted by Ω = Ω1
⋃

Ω2
⋃
...
⋃

Ωk
⋃
...
⋃

ΩNl , lays on the xz-plane. Superscript k refers to the

variables and parameters of each individual layer of the laminate and Nl is the total number of layers. The

parameter k will be omitted in the following formulation for the sake of simplicity. The three-dimensional

displacement field according to this reference system is:

u(x, y, z) =

 ux(x, y, z)
uy(x, y, z)
uz(x, y, z)

 (1)

According to classical elasticity, stress and strain tensors can be organized in six-term vectors with no lack of

generality. They read, respectively:

σσσT =
{
σyy σxx σzz σxz σyz σxy

}
εεεT =

{
εyy εxx εzz εxz εyz εxy

} (2)

Regarding to this expression, the geometrical relations between strains and displacements with the compact

vectorial notation can be defined as:

εεε = Du (3)
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Figure 2: Fiber rotations

where, in the case of small deformations and angles of rotations, D is the following linear differential operator:

D =



0 ∂
∂y 0

∂
∂x 0 0
0 0 ∂

∂z
∂
∂z 0 ∂

∂x

0 ∂
∂z

∂
∂y

∂
∂y

∂
∂x 0


(4)

In the case of fibre reinforced materials, it is well known that the mechanical properties depend on the

fibre orientation angle. According to the material reference system (1,2,3) shown in 2, the Hooke’s law states

that:

σmσmσm = CCC εmεmεm (5)

where CCC is the stiffness matrix of the material, defined as:

C =


C33 C23 C13 0 0 0
C23 C22 C12 0 0 0
C13 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

 (6)

Its coefficients Cij can be found in Appendix A. In this paper, the axis 3 is parallel to the fiber orientation,

whereas the axis 2 and 1 correspond to the transverse in-plane direction and the out-of-plane direction,

respectively. In the global coordinate frame aforementioned (see Fig. 1), the constitutive laws become:

σσσ = C̃εεε (7)

The coefficients C̃ij depend on the mechanical properties previously defined and on the fiber orientation angles:

θ and ψ, introduced in Fig. 2. For the sake of brevity, the material coefficients in the physical coordinates

are not included here, but the lector can find them in Carrera and Filippi [41].

3 Variable kinematic CUF models

Classical models (see [2] and [3]) represent the first attempts on the analysis of beams and they are dedicated

to describe the mechanics of slender isotropic structures under the action of bending loads. These models

neglect (EBBT) or assume a uniform shear distribution (TBT) along the cross-section, which limit its use in

the modelling of composite structures. The correct analysis of multilayered beams requires the use of more
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sophisticated theories in which new terms are added to the kinematic field. The Carrera Unified Formulation

(CUF, see Carrera et al. [47]) solves this issue by describing the kinematic field in a unified manner that

will be then exploited to derive the governing equations in a compact manner. The displacement field of

one-dimensional models in the CUF framework is, in fact, described as a generic expansion of the primary

mechanical variables through the use of arbitrary functions of the cross-section coordinates:

u(x, y, z) = Fτ (x, z)uτ (y) τ = 1, 2, ...,M (8)

where uτ (y) is the vector of general displacements, M is the number of terms in the expansion and Fτ (x, z)

defines the 1D model to be used. In fact, depending on the choice of Fτ (x, z) functions, different classes of

beam theories can be implemented. Three of them are here described: TE, LE and the novel HLE.

3.1 Taylor Expansions

Taylor Expansion (TE) models make use of 2D polynomials of the type xiyj as Fτ (x, z). For example, the

third-order model, N = 3, leads to the following displacement field, where constant, linear, parabolic and

quadratic functions are used:

ux = ux1 + x ux2 + z ux3 + x2 ux4 + xz ux5 + z2 ux6 + x3 ux7 + x2z ux8 + xz2 ux9 + z3 ux10

uy = uy1 + x uy2 + z uy3 + x2 uy4 + xz uy5 + z2 uy6 + x3 uy7 + x2z uy8 + xz2 uy9 + z3 uy10

uz = uz1 + x uz2 + z uz3 + x2 uz4 + xz uz5 + z2 uz6 + x3 uz7 + x2z uz8 + xz2 uz9 + z3 uz10

(9)

It is important to underline that the kinematic fields of the classical beam theories can be defined as particular

cases of the first order TE model (N=1), which includes just the constant and the linear terms of Eq. (9). A

more detailed description of TE models can be found in [47, 48, 29].

3.2 Lagrange Expansions

Lagrange Expansions (LE) are based on the use Lagrange polynomials as generic functions above the cross-

section. The cross-section is therefore divided into a number of local expansion sub-domains, whose polynomial

degree depends on the type of Lagrange expansion employed. Three-node linear L3, four-node bilinear L4,

nine-node cubic L9, and sixteen-node quartic L16 polynomials can be used to formulate refined beam theories

(see Carrera and Petrolo [35]). For example, the interpolation functions of a L9 expansion are defined as:

Fτ = 1
4 (r2 + r rτ )(s2 + s sτ ) τ = 1, 3, 5, 7

Fτ = 1
2s

2
τ (s2 + s sτ )(1− r2) + 1

2r
2
τ (r2 + r rτ )(1− s2) τ = 2, 4, 6, 8

Fτ = (1− r2)(1− s2) τ = 9

(10)

where r and s vary above the cross-sectional natural plane between −1 and +1, and rτ and sτ represent the

locations of the roots. The kinematic field of the single-L9 beam theory is therefore

ux = F1 ux1
+ F2 ux2

+ F3 ux3
+ ...+ F9 ux9

uy = F1 uy1 + F2 uy2 + F3 uy3 + ...+ F9 uy9
uz = F1 uz1 + F2 uz2 + F3 uz3 + ...+ F9 uz9

(11)

Refined beam models can be obtained by adopting higher order Lagrange polynomials or by using a combina-

tion of Lagrange polynomials on multi-domain cross-sections. More details about Lagrange-class models can

be found in [49, 35, 48, 29].
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3.3 Hierarchical Legendre Expansions

HLE (Hierarchical Legendre Expansion) models represent the object of the study of the present work. The

theoretical basis of the Legendre-like functions that are adopted in this paper were presented by Szabó et

al. [46, 50]. In those papers, the authors introduced how to use these polynomials to create sets of finite

element shape functions, which will be here applied to develop hierarchical refined structural theories. The

one-dimensional Legendre polynomials can be defined in several ways, being the most useful for our purposes

the recurrent definition:

L0 =1

L1 =x

Lp =
2p− 1

p
xLp−1(x)− p− 1

p
Lp−2(x), p = 2, 3, ...

(12)

being p the polynomial degree. This set of polynomials represents an orthonormal basis, and their roots

are identical with integration points of Gauss quadrature rules. They also satisfy the Legendre differential

equation. A set of 1D functions can be defined out of this polynomials as:

L̃1(r) =
1

2
(1− r) (13)

L̃2(r) =
1

2
(1 + r) (14)

L̃i(r) = φi−1(r), i = 3, 4, ..., p+ 1 (15)

where

φj(r) =

√
2j − 1

j

∫ r

−1

Lj−1(x) dx, j = 2, 3, 4, ... (16)

The first two functions, i.e. Eqs.13 and 14, are the nodal modes and they correspond to the linear Lagrange

1D polynomials. Equation 15 includes all the internal modes. This Legendre-based set of functions maintains

the orthogonal properties of the Legendre polynomials, in fact,∫ 1

−1

dL̃i
dr

dL̃j
dr

dx = δij , for i ≥ 3 and j ≥ 1 or i ≥ 3 and j ≥ 1 (17)

where δij is the Kronecker’s delta.

Two-dimensional polynomial expansions can be then defined by extending the above procedure to quadri-

lateral domains. In this case, nodal, edge and internal polynomials are used as interpolation functions over

the domain. They are all included in Fig. 3 until the 7th order. The vertex modes are four in total, one per

vertex, and they vanish at all nodes but one. Secondly, the edge modes vanish for all sides of the domain

but one. Finally, the internal modes vanish at all sides, and they are just included from the fourth order

expansion and higher.

Vertex expansions

The nodal or vertex modes correspond to the first-order, quadrilateral Lagrange polynomials:

Fτ =
1

4
(1− rτr)(1− sτs) τ = 1, 2, 3, 4 (18)

where, as for LE models, r and s vary above the domain between −1 and +1, and rτ and sτ represent the

vertex coordinates in the natural plane. In fact, the same cross-sectional functions were used to develop

bilinear, LE beam theories in [35], and they were referred to as L4.

9



1

2

3

4

5

6

7

P
o

ly
n

o
m

ia
l 
d

e
g

re
e

vertex expansions

side expansions

internal expansions

τ=1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

18 19 20 21

24 25 26 27

31 32 33 34

17

22 23

28 29 30

35 36 37 38

Figure 3: Hierarchical modes for quadrilaterals, including all polynomials up to the 7th order

Side expansions

The side modes are defined for p ≥ 2 and they are defined in the natural plane as follows

Fτ (r, s) =
1

2
(1− s)φp(r) τ = 5, 9, 13, 18, ... (19)

Fτ (r, s) =
1

2
(1 + r)φp(s) τ = 6, 10, 14, 19, ... (20)

Fτ (r, s) =
1

2
(1 + s)φp(r) τ = 7, 11, 15, 20, ... (21)

Fτ (r, s) =
1

2
(1− r)φp(s) τ = 8, 14, 16, 21, ... (22)

where p represents the polynomial degree (see Fig. 3). It is possible to note that the above functions are

expressed in such a way that they satisfy the side-continuity in multi-domain beam theories.

Internal expansions

Fτ internal expansions are built by multiplying 1D internal modes. There are (p − 2)(p − 3)/2 internal

polynomials for p ≥ 4 and they vanish at all the edges of the quadrilateral. As an example, the set of

sixth-order polynomials contains 3 internal expansions (see Fig. 3), which are

F28(r, s) = φ4(r)φ2(s) (23)

F29(r, s) = φ3(r)φ3(s) (24)

F30(r, s) = φ2(r)φ4(s) (25)

It is important to note that the hierarchical properties of this model are related to the fact that the set

of functions of a particular order contains all the polynomials of the lower degrees. As far as the sixth-order

HLE model is concerned, for example, the set of functions used to define the kinematic terms of expansion

includes the internal polynomials introduced in Eqs. (24), (25) and (25), and all the other internal, side and

vertex functions of the same polynomial order and below, i.e τ = 1, ..., 30. In fact, the variable kinematics of

hierarchical CUF models define the possible deformations, shown ni Fig. 3, that the cross-section can adopt
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as the polynomial order of the theory is increased: linear deformation for p = 1, quadratic for p = 2, cubic

for p = 3, ..., until a required level of precision.

4 FE formulation

Various numerical methods can be developed in the framework of the CUF to solve 1D problems. The finite

element formulation has been selected in the present work due to its advantages in the study of arbitrary

geometries and boundary conditions. The generalized displacements are in this way described as functions of

the unknown nodal vector, uτi, and the 1D shape functions, Ni.

uτ (y) = Ni(y)uτi, i = 1, 2, ..., nelem (26)

where nelem is the number of nodes per element and the unknown nodal vector is defined as

uτi =
{
uxτi uyτi uzτi

}T
(27)

Different sets of polynomials can be used to define FEM elements. Lagrange interpolating polynomials have

been chosen in this work to generate cubic one-dimensional elements. For the sake of brevity, its expressions

are not included, but they can be found in the book of Carrera et.al [47], in which two-node (B2), three-node

(B3) and four-node (B4) elements are described.

Finally, by introducing Eq. (8) of the cross-section expansions into the Eq. (26) of the FE discretization

along the y-axis, the displacement field results:

u(x, y, z) = Fτ (x, z)Ni(y)uτi, τ = 1, 2, ...,M i = 1, 2, ..., nelem (28)

4.1 FEM Fundamental nucleus

The governing equations are obtained via the principle of virtual displacements. This variational statement

sets as a necessary condition for the equilibrium of a structure that the virtual variation of the internal work

has to be the same than the virtual variation of the external work, or:

δLint = δLext (29)

The internal work is equivalent to the elastic strain energy

δLint =

∫
l

∫
Ω

δεεεTσσσ dΩ dy (30)

where l stands for the length of the beam and Ω is the cross-section domain. In a compact notation, the

internal work can be rewritten as:

δLint = δuTsjK
τsijuτi (31)

where Kτsij is the fundamental nucleus of the stiffness matrix. It is important to remark that this 3×3 matrix

is invariant with the order and type of structural theory. Its components, defined for the case of orthotropic
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Figure 4: Differences between various refined 1D CUF finite elements

materials, are the following:

K τs ij
xx = C̃22 I ij Eτ,xs,x + C̃44 I ij Eτ,z s,z + C̃26 I ij,y Eτ,xs + C̃26 I i,y j Eτ s,x + C̃66 I i,y j,y Eτ s

K τs ij
xy = C̃23 I ij,y Eτ,xs + C̃45 I ij Eτ,z s,z + C̃26 I ij Eτ,xs,x + C̃36 I i,y j,y Eτ s + C̃66 I i,y j Eτ s,x

K τs ij
xz = C̃12 I ij Eτ,xs,z + C̃44 I ij Eτ,z s,x + C̃45 I ij,y Eτ,z s + C̃16 I i,y j Eτ s,z

K τs ij
yx = C̃23 I i,y j Eτ s,x + C̃45 I ij Eτ,z s,z + C̃26 I ij Eτ,xs,x + C̃36 I i,y j,y Eτ s + C̃66 I ij,y Eτ,xs

K τs ij
yy = C̃33 I i,y j,y Eτ s + C̃55 I ij Eτ,z s,z + C̃36 I ij,y Eτ,xs + C̃36 I i,y j Eτ s,x + C̃66 I ij Eτ,xs,x

K τs ij
yz = C̃13 I i,y j Eτ s,z + C̃55 I ij,y Eτ,z s + C̃45 I ij Eτ,z s,x + C̃16 I ij Eτ,xs,z

K τs ij
zx = C̃12 I ij Eτ,z s,x + C̃44 I ij Eτ,xs,z + C̃45 I i,y j Eτ s,z + C̃16 I ij,y Eτ,z s

K τs ij
zy = C̃13 I ij,y Eτ,z s + C̃55 I i,y j Eτ s,z + C̃45 I ij Eτ,xs,z + C̃16 I ij Eτ,z s,x

K τs ij
zz = C̃11 I ij Eτ,z s,z + C̃44 I ij Eτ,xs,x + C̃55 I i,y j,y Eτ s + C̃45 I ij,y Eτ,xs + C̃45 I i,y j Eτ s,x

(32)

where the E terms are the integrals of the transverse expansions above the cross-section surface and the

expressions I ij , I ij,y , I i,y j , and I i,y j,y refer to the integrals of the interpolation functions along y. The

expressions of both kinds of integrals are included in Appendix B. The derivation of the fundamental nucleus

of the loading vector from the virtual variation of the external load is not reported here for the sake of brevity,

but it can be found in [47].

It should be noted that the formal expressions of the components of the fundamental nucleus of the

stiffness matrix are independent on the choice of the cross-sectional functions Fτ , which determine the theory

of structure, and shape functions Ni, which determine the numerical accuracy of the FEM approximation

(see Fig. 4). This means that any classical to higher-order beam element can be automatically formulated by

opportunely expanding the fundamental nuclei according to the indexes τ , s, i, and j.

4.2 FE application of CUF beam elements to laminated structures

In the CUF framework, the stiffness matrix of the beam elements are defined as an expansion of the fundamen-

tal nucleus. This formulation enables to create unified beam elements, which, exploding the characteristics of

the fundamental nucleus, are formally independent of the order and structural theory class. The concept of

the unified beam elements is illustrated in Fig. 4. The displacement unknowns that conform the kinematic

field are spread over the cross-section surface by means of Fτ functions, which defined a particular theory of
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Figure 5: Assembly procedure of the stiffness matrix through ESL and LW approaches

structure. Since the formal expressions of the FEM arrays are the same for each class of beam theory, its

choice (e.g. TE, LE or HLE) becomes independent of the type of finite element discretization used along the

beam axis.

In the case of composites, the CUF provides a method to model laminates, fibers and matrices using

1D elements on the longitudinal direction and transverse expansions on the cross-section. As introduced in

Section 1, two modeling approaches can be adopted for the analysis of laminated one-dimensional structures:

the Equivalent Single-Layer approach, referred to as ESL, and the Layer-Wise approach, referred to as LW.

Their application by means of CUF is conceptually described in Fig. 5. A brief description of each approach

is provided in the following lines, extending the procedures presented in Carrera and Petrolo [36] for TE and

LE to the novel HLE.

4.2.1 Equivalent Single Layer models

By using the ESL approach, the contribution of each layer of the laminate is summed when conforming the

stiffness matrix, homogenizing the properties of the different layers into a single one. The result is that the

multi-layer configuration is modelled as a single-layer having a set of variables assumed for the entire cross-

section. ESL can be obtained through the use of any model based in CUF (e.g TE, LE and HLE). Obviously,

ESL lacks in representing correctly some effects intrinsic of each layer and in their interfaces.

4.2.2 Layer-Wise models

On the other hand, LW considers separately the variables of each one of the layers. The continuity of the

displacement solutions at the interfaces between layers is assured by the correspondence of the shared sides of

the cross-section expansion domains. The differences between the assembly procedures for ESL and LW are

shown in Fig. 5. It should be underlined that, for merely practical reasons, ESL models are obtained by means

of TE in the present work, whereas LW models are obtained by employing LE and HLE. In fact, thanks to

the multi-domain nature of the two latter models, LW can be implemented straightforwardly by considering

13



(a) 2 layers (b) 3 layers

Figure 6: Cross-section domain configurations of the antisymmetric and symmetric laminated beams

one or several local expansions for each individual layer. Moreover, taking advantage of the aforementioned

characteristics of HLE, the kinematics within the single layer can be varied hierarchically. On the other hand,

in the case of LE-based LW models, the addition of mathematical layers may be necessary to improve the

model capabilities to include higher-order effects. It should be added that LW can be also obtained by means

of TE, but special attention must be given to the interface conditions in this case (see [51, 42]).

5 Numerical results

This section presents the results obtained from the static analysis of laminated beams through the use of

one-dimensional HLE models based on CUF. Simple to complex geometries are considered in the different

assessments proposed here to validate the accuracy of the present model. The first cases are related to the

study of compact rectangular cross-ply beams with an increasing number of layers of the laminate, whereas

the second part includes thin-walled laminated box beams under different load cases.

5.1 Antisymmetric laminated beam

A two-layer antisymmetric beam is considered first. This kind of assessment has been already discussed in

various works, amongst them: Khdeir et al. [10], Vo and Thai [52], Pagano [53], Vidal and Polito [17] and

Carrera et al. [37]. The dimensions of the beam are: width, b = 0.2 m, height, h = 0.1 m, and length,

L = 2 m, being the slenderness ratio, L/b, equal to 10. According to the LW approach, LE and HLE

models are developed by dividing the cross-section in two sub-domains, one per layer, as shown in Fig. 6

(a). An orthotropic material is employed for the two layers with the following properties: EL = 25.0 GPa,

ET = Ez = 1.0 GPa, νLT = νLz = νTz = 0.25, GLT = 0.5 and GTz = GLz = 0.2 GPa. An antisymmetric

[0◦, 90◦] cross-ply laminate is analyzed. The beam is clamped at y = 0 and loaded at y = L with four point

forces applied at the corners of the tip cross-section. Each force has a value of 25 N and is oriented downwards

in the z-direction.

The displacements and stresses are evaluated for various HLE models, including polynomial orders up to

8 (see Table 1). Seven four-node B4 elements are employed for the longitudinal discretization. A biquadratic

LE model and a 3D MSC Nastran model are used as references. The displacements are evaluated at the top

edge of the tip, while the stresses at the middle section of the beam. The distribution of normal and shear

stresses along the z-axis at mid span are plotted in Fig. 7. Out of these results, it is possible to see that

the displacements obtained through HLE models are almost the same as the one calculated with the solid

model, whereas the normal and shear stress distributions coincide in great manner with the solid ones from

the third polynomial order. Regarding the latter graph, the 2L9 model is not able to represent the parabolic

14



model −uz × 103 m σyy × 10−3 [Pa] σyz × 10−3 [Pa] DOFs
[0, L, h/2] [0, L/2, h/2] [0 , L/2, -h/4]

SOLID 3.48 93.30 −11.36 132300
LE models

2L9 3.48 88.84 −8.18 990
HLE models

2HL1 3.46 90.54 −8.19 396
2HL2 3.47 88.95 −8.17 858
2HL3 3.48 89.01 −11.15 1320
2HL4 3.48 89.99 −11.15 1914
2HL5 3.48 89.11 −11.15 2640
2HL6 3.48 89.18 −11.15 3498
2HL7 3.48 89.22 −11.15 4488
2HL8 3.48 89.27 −11.15 5610

Table 1: Deflections and stresses of the antisymmetric laminated beam

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

-0.04 -0.02  0  0.02  0.04

σ y
y 

x 
10

-6

z

2HL1
2HL2
2HL3
2HL4
2HL5
2HL6
2HL7
2HL8

2L9
Solid

(a) Normal stresses

-1

-0.8

-0.6

-0.4

-0.2

 0

-0.04 -0.02  0  0.02  0.04

σ y
z 

x 
10

-4

z

2HL1
2HL2
2HL3
2HL4
2HL5
2HL6
2HL7
2HL8

2L9
Solid

(b) Shear stresses

Figure 7: Normal and shear stresses along the height of the antisymmetric laminated beam at mid-span

distribution of the shear stresses along z, whereas the HLE model provides very accurate results from the third

expansion order. As mentioned before, unlike HLE models, LE models do not have variable order kinematics,

requiring a multi-domain description of the layers in order to obtain the correct distribution of the stress

solutions.

In order to assess the quality of the FEM approximation, four discretizations of four-node B4 elements

considered: 7, 14 and 21. Table 2 shows the values of displacements and stresses for a growing number of

beam elements and different expansion orders. Out of this study, it is possible to see that all the solutions

are in good agreement with the solid model independently of the longitudinal mesh, with the exception of

the shear stresses, σyz, at the top of the cross-section. In this case, the solutions return to values close to

zero as the number of FEM elements increases, satisfying the stress-free conditions at the edge. Moreover,

the convergence of these solutions depend also on the polynomial order of the model, being necessary to use

more beam elements as the expansion order increases. Figure 8 represents the shear stresses at the upper

side of the cross-section at mid-span for an increasing number of FEM elements along y. As a consequence

of these results, at least 20 FEM elements are employed in all the assessments to obtain the shear stress
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model n uz × 103 σyy × 10−3 σyz × 10−3 σyz × 10−3

elements [0, L, h/2] [0, L/2, h/2] [0, L,−h/4] [0, L/2, h/2]
2HL3 7 −3.48 89.01 -11.50 0.16

14 −3.48 88.92 -11.50 0.02
21 −3.48 88.93 -11.50 0.02

2HL5 7 −3.48 89.11 -11.51 1.44
14 −3.48 88.83 -11.51 -0.02
21 −3.48 88.83 -11.51 0.00

2HL8 7 −3.48 89.27 -11.51 4.14
14 −3.48 88.92 -11.51 -0.65
21 −3.48 88.90 -11.51 0.04

Table 2: Various solutions of displacements and stresses for different numbers of beam elements
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Figure 8: Shear stress at [0, L/2, h/2] for different FEM discretizations

distributions, whereas the tabled results are in all cases calculated with the minimum number of B4 elements

used in the literature, which is indicated for each model. It should be added that this mathematical issue,

that typically occurs in equispaced interpolation points, has been already studied and different procedures

have been proposed to mitigate its effects. It could be minimized, for instance, by calculating the solutions at

the Chebyshev interpolation points, as it was done by Kulikov and Plotnikova [54], for which the oscillation

is minimum.

5.2 Symmetric laminated beam

The same geometry as in the previous case is considered again for a tree-layer symmetric laminate. Material,

loads and boundary conditions remain also unaltered. The cross-section domain division for LE and HLE

models is shown in Fig. 6 (b). Table 3 displays the HLE solutions of displacements, normal stresses and

shear stresses at different points of the beam. A 3L9 model and and the solid solutions obtained with the

commercial code MSC Nastran are also included. The normal and shear stresses distributions along z at the

mid span section are plotted in Fig. 9 for all the models considered. It is possible to see how the 3HL2 and

the 3L9 models provide nearly the same linear-shape distribution. Moreover, HLE models are able to capture

the parabolic distribution of the shear stresses from the 3rd expansion order (3HL3). It should be noted that,

unlike the LE model, the HLE solutions satisfy the intra-laminar shear stress continuity at the interfaces of
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model −uz × 103 m σyy × 10−3 [Pa] σyz × 10−3 [Pa] DOFs
[0, L, h/2] [0, L/2, h/2] [0 , L/2, 0]

SOLID 0.72 311.07 −6.92 195300
LE models

3L9 0.72 296.24 −6.91 1386
HLE models

3HL1 0.71 296.46 −6.93 528
3HL2 0.72 296.17 −6.91 1188
3HL3 0.72 296.28 −6.91 1848
3HL4 0.72 296.31 −6.92 2706
3HL5 0.72 296.34 −6.94 3762
3HL6 0.72 296.41 −6.94 5016
3HL7 0.72 296.58 −6.90 6468
3HL8 0.72 296.74 −6.90 8118

Table 3: Deflections and stresses of the symmetric laminated beam
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Figure 9: Normal and shear stress distribution along the z-axis at mid-span for the symmetric beam

the layers. This can be observed for all polynomial orders but the first (3HL1), whose linear Fτ expansions

provide an almost constant distribution of the shear stresses.

5.3 Eight-layer composite beam

For the third test of the HLE on laminates, a thick eight layer cantilever beam is considered. The beam is

90 mm long and its rectangular cross-section is 10 mm high and 1 mm wide. Figure 10 shows the vertical

distribution of the layers. A single-domain per layer is used to obtain Layer Wise model based on HLE and

LE. Two different materials are employed for the lamination, labelled 1 and 2. Both have the same elastic

modulus in the transversal direction (ET ), equal to 1 GPa, shear modulus (GTL), equal to 0.5 GPa, and

poisson ratio (ν), equal to 0.25. They differ in the longitudinal elastic modulus, which is 30 GPa for material

1 and 5 GPa for material 2. The poisson ratio and the shear modulus are assumed to be constant in all

directions. Four equal loads are applied at the corners of the beam’s tip, summing a total of −0.2 N in the

vertical direction.

Displacements and stresses are again compared with other solutions of the same case found in the literature
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Figure 10: Representation of the eight-layer beam and the lamination sequence
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Figure 11: Normal and shear stress distribution along the z-axis at mid-span for the eight-layer composite
beam

(Surana and Nguyen [20], Davalos and KimBarbero [55], Xiaoshan Lin [56], Vo and Thai [52] and Carrera

et al. [37]). The results are displayed both in numerical and graphical form. Table 4 shows the maximum

deflections and the normal stresses, σyy, at the mid span for all the models considered. CBT stands for

Classical beam theory and FOBT stands for First-order beam theory. TE models and zig-zag functions

expansions based on CUF are also used as reference results. The theories which contain the zig-zag term

are identified with zz. Layer-wise solutions based on LE ([44]) and a Multi-Line (ML) model ([42]) are also

included here. The latter model was implemented by employing 8 beam-lines (one per layer), being the two

central layers modeled with a N = 2 TE and the rest with a N = 3 TE. The Figure 11 (a) displays the normal

stress distributions along the z-axis at mid-span, whereas Fig. 11 (b) shows the shear stresses along the same

axis. The analytical solutions, calculated according to the equations of Lekhniskii [57], are also shown in both

graphs. The maximum defections reach higher values with the HLE models than with all the other models

considered as references, increasing with the polynomial order. On the other hand, it is possible to state

that the stress distributions obtained with the HLE models overcome the results calculated through the TE

models, being almost equal to the analytical solutions previously mentioned.

5.4 Single-cell box beam

After assessing the results of HLE models on compact rectangular beam cases against other theories of

structure, as well as analytical and solid solutions, it is possible to step forward to the analysis of thin-walled
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model −uz × 105 m −σyy × 102 DOFs
Surana and Nguyen [20] 3.031 720
Davalos and KimBarbero [55] 3.060 750
Xiaoshan Lin [56] 3.031 720
Vo and Thai [52] 3.024
CBT 2.629 730 279
FOBT 2.988 730 279

TE based and zig-zag models [37]
N = 1 zz 2.992 730 279

2.992 730 372
N = 2 zz 2.985 730 558

2.986 730 651
N = 3 zz 3.032 729 930

3.033 729 1023
N = 9 zz 3.039 661 5115

3.040 661 5208
Multi-line model based on TE [42]

ML 3.026 731 6696
LE models [44]

8L9 3.029 730 4743
HLE models

8HL1 3.053 731 1674
8HL2 3.073 730 3999
8HL3 3.075 730 6324
8HL4 3.087 730 9393
8HL5 3.091 729 13206
8HL6 3.094 726 17763
8HL7 3.100 725 23064
8HL8 3.104 723 29109

Table 4: Maximum deflection and longitudinal stress at mid span, σyy, of the eight-layers composite beam

b

h
t

Figure 12: Box section geometry

(a) 8 sub-domains (b) 12 sub-domains

Figure 13: Cross-section domain distributions
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cross-sections, in which the capabilities of this type of local expansions can be better exploited. Figure

12 represents the cross-section geometry of the box beam studied for this assessment. The cross-section

dimensions are: width, b, equal to 24.2 mm, height, h, equal to 13.6 mm and thickness, t, equal to 0.762 mm.

Three different slenderness ratios, L/b, are considered: 10, 20 and 30. Each wall of the beam consists in a two-

layer lamination: [0◦, 90◦] for the flanges and [−45◦, 45◦] for the webs, being the 0◦ and −45◦ fiber-direction

layers placed outwards. The mechanical characteristics of the orthotropic material used for the lamination

are: EL = 69.0 GPa, ET = Ez = 10.0 GPa, νLT = νLz = νTz = 0.25, GLT = GLz = GTz = 6 GPa. Two

domain configurations for HLE models are accounted for (see Fig. 13). The first one adopts a 12 sub-domain

distribution above the cross-section, whereas the second one only uses 8 sub-domains. The beam is clamped

at one edge and loaded with two vertical forces of 50 N each applied at the top corners of the tip.

The results of displacements and stresses are evaluated in the most determinant points of the beam.

Classical models, LE and TE solutions (see Carrera et al. [44]) are included together with the solutions

obtained with a MSC/Nastran solid model. Tables 5, 6 and 7 show the results for displacements and stresses

for the different slenderness ratios considered. Out of these results, it is possible to state that:

• As expected, although classical models reach acceptable results for displacements in pure bending cases,

they are not capable to deal with the calculation of the shear stresses, since by assumption they neglect

some of the kinematic terms required for it.

• On the other hand, higher-order TE and LE models provide good results for both displacements and

stresses with much lower computational costs than the 3D model. HLE models converge to the solid

solution for low expansion orders even when the number of cross-section sub-domains is less than the

LE model.

• An interesting fact can be observed regarding the 8HLE model (see Table 5), in which the flanges are

modeled with just one sub-domain per layer. Less than 5% error in displacements and normal stresses

for all expansion orders (but the first) has been obtained using this simplified cross-section configuration,

proving the capability of this model of increasing the accuracy of the results through an enrichment of

the kinematic field and not through a refinement of the cross-section layer domain. Although the values

of the shear stresses of the 8HLE models are similar to those of the 12HLE models, they oscillate around

the solid solution with slightly higher error rates. Again, this numerical issue could be solved by refining

the longitudinal mesh, as explained in the convergence analysis of the first assessment (see Section 5.1).

Figure 14 (a) shows the normal stress distribution at the top flange along the z-axis at the middle section,

whereas Fig. 14 (b) the distribution of shear stresses along the right exterior flange. Regarding the latter one,

it is possible to appreciate how HLE models provide good results for the shear stresses even when employing

just one element along the flange (8HL8 model). Finally, Figs. 15 and 16 show the normal and shear stresses

of the two models considered, respectively, above the cross-section at mid span in a color-scaled plot.

5.5 Multi cell box beam

For the last assessment, a two-cell cantilever beam with a cut is considered. The section is forced to open

at the cut placed in one of the cells. This configuration allows to test not only the bending capabilities, but
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model −uz × 103 σyy × 106 σyy × 106 σyz × 106 DOFs
[0,L,+h/2] [0,L/2,+h/2] [0,0,+h/2] [b/2,L/2,+h/4]

SOLID [44] 7.17 85.40 165.4 −8.93 360000
Classical and refined models based on TE [44]

EBBM 7.09 85.24 170.48 0 155
TBM 7.15 85.27 170.51 −6.40 600
N = 3 7.09 84.44 163.50 −9.64 930
N = 6 7.16 85.30 165.77 −8.94 2604

LE models [44]
16L9 7.16 85.80 167.74 −8.31 7740

HLE models
12HL1 7.04 84.40 170.41 −8.13 1674
12HL2 7.19 85.35 166.75 −8.51 4464
12HL3 7.13 85.32 166.13 −9.32 7254
12HL4 7.17 85.21 165.77 −9.17 11160
12HL5 7.17 85.22 166.27 −8.15 16182
12HL6 7.17 85.37 166.55 −8.17 22320
12HL7 7.17 85.45 166.66 −8.92 29574
12HL8 7.24 85.33 166.53 −9.01 37944
8HL1 6.82 82.23 166.84 −13.12 1116
8HL2 7.15 85.02 173.20 −8.00 2976
8HL3 7.16 84.94 171.30 −7.92 4836
8HL4 7.18 85.18 166.45 −8.37 7440
8HL5 7.19 85.07 167.31 −9.53 10788
8HL6 7.19 84.92 171.89 −9.26 14880
8HL7 7.19 85.08 172.01 −8.61 19716
8HL8 7.20 85.32 168.80 −7.92 25296

Table 5: Displacements and stresses of the single-cell beam for both domain configurations (L/b=10)

model −uz × 103 σyy × 106 σyy × 106 σyz × 106 DOFs
[0,L,+h/2] [0,L/2,+h/2] [0,0,+h/2] [b/2,L/2,+h/4]

SOLID [44] 56.80 170.90 338.10 −12.85 360000
Classical and refined models based on TE [44]

EBBM 56.43 170.48 340.96 0 155
TBM 56.51 170.48 340.96 −10.30 600
N = 3 55.86 169.19 331.75 −14.74 930
N = 6 56.25 170.88 332.18 −13.66 2604

LE models [44]
16L9 56.70 170.52 336.49 −12.11 7740

HLE models
12HL1 55.98 168.21 336.04 −11.77 1674
12HL2 56.62 170.84 336.35 −13.05 4464
12HL3 56.68 170.98 336.22 −15.33 7254
12HL4 56.71 170.90 336.0 −14.94 11160
12HL5 56.74 170.91 336.68 −12.25 16182
12HL6 56.75 170.72 337.04 −12.43 22320
12HL7 56.76 170.81 337.31 −13.72 29574
12HL8 56.77 170.72 337.27 −13.80 37944

Table 6: Displacements and stresses of the single-cell beam for the 12HLE model (L/b=20)
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model −uz × 103 σyy × 106 σyy × 106 σyz × 106 DOFs
[0,L,+h/2] [0,L/2,+h/2] [0,0,+h/2] [b/2,L/2,+h/4]

SOLID [44] 191.28 256.37 509.14 −16.77 360000
Classical and refined models based on TE [44]

EBBM 191.45 255.72 511.45 0 155
TBM 191.71 255.72 511.45 −14.21 600
N = 3 189.39 253.92 499.62 −19.66 930
N = 6 190.59 256.71 500.89 −18.36 2604

LE models [44]
16L9 191.85 256.23 504.25 −15.63 7740

HLE models
12HL1 188.73 252.57 502.52 −15.04 1674
12HL2 190.74 256.22 504.38 −17.63 4464
12HL3 190.89 256.57 504.50 −22.15 7254
12HL4 190.95 256.68 504.41 −21.86 11160
12HL5 191.05 256.67 505.18 −18.21 16182
12HL6 191.06 256.57 505.51 −18.22 22320
12HL7 191.11 256.71 505.87 −19.53 29574
12HL8 191.12 256.51 505.90 −19.54 37944

Table 7: Displacements and stresses of the single-cell beam for the 12HLE model (L/b=30)
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Figure 14: Normal stress distribution, σyy, along the thickness of the top flange (a) and shear stress distribu-
tion, σyz, along the inner layer of the right web (b) of the single-cell box beam (L/b = 10)
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Figure 15: Normal and shear of the single-cell 8HL5 model
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Figure 16: Normal and shear of the single-cell 12HL5 model
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Figure 17: Cross-section domain distribution of the two-cell beam

also the in-plane deformations at the cross-sectional level. The lamination and the dimensions are the same

as the single-cell beam, but a third web is added in the middle of the section, dividing the central space in

two equal cells. The cut is placed at the bottom of the right cell. As for the previous assessments, the LW

approach has been conducted by using a 22 sub-domain configuration at cross-section level (see Fig. 17).

Two vertical and two horizontal point loads of 50 N each are applied at the tip section. The two vertical

forces are directed upwards and they are located at the two corners of the top flange, whereas the two horizontal

loads have opposite directions: the load applied at the bottom right corner is oriented to the positive direction

of the x-axis, while the other one, applied and the bottom left corner, is directed towards the negative values

of the x-axis. Figure 18 displays the deformed of the tip cross-section. HLE models are capable to capture

both the bending curvature upwards along the y-axis caused by the vertical loads, and the in-plane opening

of the right cell caused by the horizontal loads. Finally, both normal and shear stress section distributions at

the mid span are displayed in Fig. 19.

6 Conclusions

The aim of the present work has been to introduce, test and validate a Hierarchical Legendre-type one-

dimensional model applied to the analysis of composite structures. The model, developed in the framework

of the Carrera Unified Formulation (CUF), have demonstrated to be a powerful tool for the analysis of

composite structures. Many examples have been carried out in order to compare the results with others from

the literature, including compact cross-ply laminates, thin-walled boxes and open beams. MSC/Nastran solid

elements solutions have also been used as a reference due to its high accuracy in thin-walled cases. The

Hierarchical Legendre Expansions (HLE) have shown their potential and liability. Out of these results, it is
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Figure 18: Deformed cross-section at the tip of the two-cell beam
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Figure 19: Normal and shear stresses of the 22HL5 model at mid span

possible to state:

• HLE have demonstrated to be highly adequate to obtain Layer Wise models. While Lagrange-based

CUF model requires the use of multi-domain layers to improve the theory kinematics, HLE variable

kinematics allows to develop single-domain Layer Wise models, in which each layer is described by only

one local expansion. The precision of the solutions can be tuned by just changing the polynomial order,

which is, in fact, a free-parameter of the model.

• According to the results obtained in this work, the HLE have shown its advantages in the modelling of

composite structures, representing accurately the local behaviour of the single layers while diminishing

the number of expansion domains above the section in comparison with the other models taken as a

reference.

This work set the basis of the HLE applications to the modelling of composite structures. Here, only

straight geometries have been considered, but the variable kinematic order employed in this formulation can

eventually be used to generate curved domains. This capability represents one of the main potentials of HLE

and opens the path to further developments regarding the modelling of curved slender structures, such as

fuselages and wings, and multi-scale fiber-matrix systems.
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A Material coefficients in the material coordinate system

C11 = E1(1−ν23ν32)
∆ C12 = E1(ν21+ν23ν31)

∆ C13 = E1(ν31+ν21ν32)
∆

C21 = E2(ν12+ν13ν32)
∆ C22 = E2(1−ν13ν31)

∆ C23 = E2(ν32+ν12ν31)
∆

C31 = E3(ν13+ν12ν23)
∆ C32 = E3(ν23+ν13ν21)

∆ C33 = E3(1−ν12ν21)
∆

C44 = G21 C55 = G31 C66 = G23

(33)

where

∆ = 1− ν12ν21 − ν12ν21 − ν12ν21 − ν12ν21ν31 − ν12ν21ν31 (34)

being the engineering modulus defined as

Ei = σi
εi

Gij =
σij
εij

νij = − εjεi (35)

B Stiffness matrix integrals

The integrals of the transverse expansions above the cross-section surface, E, are defined as:

Eτ,xs,x =

∫
Ω

Fτ,xFs,x dΩ, Eτ,zs,z =

∫
Ω

Fτ,zFs,z dΩ, Eτs =

∫
Ω

FτFs dΩ,

Eτ,xs,z =

∫
Ω

Fτ,xFs,z dΩ, Eτ,zs,x =

∫
Ω

Fτ,zFs,x dΩ, Eτ,xs =

∫
Ω

Fτ,xFs dΩ,

Eτs,x =

∫
Ω

FτFs,x dΩ, Eτ,zs =

∫
Ω

Fτ,zFs dΩ, Eτs,z =

∫
Ω

FτFs,z dΩ,

(36)

and the expressions I ij , I ij,y , I i,y j , and I i,y j,y of the integrals of the shape functions along the physical

coordinate y are:
I ij =

∫
l
NiNj dy I ij,y =

∫
l
NiNj,y dy

I i,y j =
∫
l
Ni,y Nj dy I i,y j,y =

∫
l
Ni,y Nj,y dy

(37)
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