

Electrophoretic deposition of Sr-containing mesoporous bioactive glass particles produced by spray-drying

<u>G. Molino^a</u>, S. Fiorilli^a, A. Bari^a, F. Baino^a, C. Vitale-Brovarone^a ^a Politecnico di Torino, Department of Applied Science and Technology, Corso Duca degli Abruzzi 24, 10129 Turin, Italy chiara.vitale@polito.it

Introduction

Mesoporous bioactive glasses (MBGs) have exceptional biological and textural characteristics (high surface area, high pore volume and highly ordered mesoporosity), which allow these glasses to be successfully applied in bone tissue regeneration [1]. In this work we adopted an **aerosol-based spray-drying synthesis to** obtain MBG particles doped with **strontium (SD_Sr-MBG)**, element known for its osteogenic and bone antiresorptive properties [2]. Later these particles have been deposed by **electrophoretic deposition (EPD)** on almost **biologically inert glass-ceramic scaffolds** (SCNA; 57SiO₂–34CaO–6Na₂O–3Al₂O₃ %mol.) fabricated by the polymer sponge replication method [3], in order to transfer their bioactive behavior to scaffolds and consequently to obtain an excellent solution for bone tissue regeneration.

SCNA scaffold preparation

PU cubic sponges (10 x 10 x 10 mm) are

The PU template is extracted from the

60% in thickness along three orthogonal

 $6Na_2O-3Al_2O_3$ mol.%)

spatial directions 3 times.

treated at 1000°C for 3 h

immersed in a SCNA slurry (57SiO₂-34CaO-

SCNA:PVA:distilled water = 30:6:64 wt%

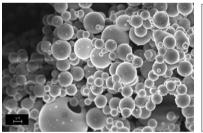
solution and compressed (50 kPa for 1 s) up to

Scaffolds are dried at RT overnight and after

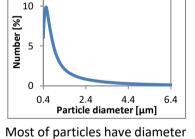
Spray-drying synthesis of SD_Sr-MBG

 Pluronic P123, used as template, is dissolved in bidistilled water

 Tetraethyl orthosilicate (TEOS) is hydrolysed under acidic conditions (pH adjusted to 2)

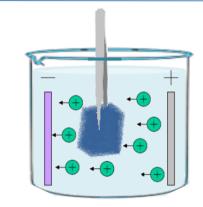

- Mixing of the two solutions
- Addition of strontium chloride and of calcium nitrate tetra-hydrate (CaNT)
- Spraying of the final synthesis solution (pH ~ 3.5)
- The powder is calcined in air at 600 °C for 5 h

MBG particles and scaffolds characterization


- Morphological and chemical analysis (FESEM, EDS, nanoCT)
- Textural analysis (adsorption and desorption of N₂, laser diffraction and UV-VIS absorbance spectroscopy)
- Strontium release test in SBF
- Bioactivity test in SBF

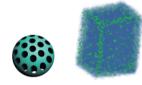
Results and discussion

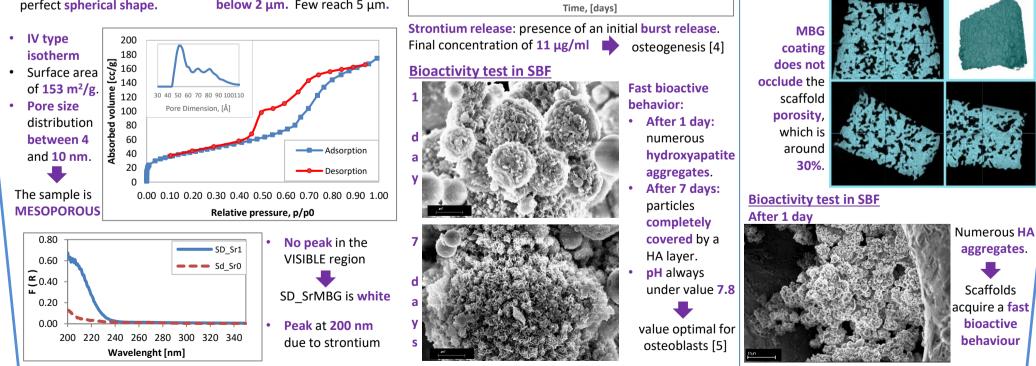
SD_Sr-MBG particles



FESEM image: particles have a

14.00 12.00 ع 10.00 concentration 8.00 6.00 4.00 B 2.00 Mean Sr ²⁺ ······ Log. (Mean) 0.00 7 8 9 10 11 12 13 14 0 2 3 4 5 6


EPD process



EPD parameter	Value
Solvent	Ethanol
Dispersant	2,5 g/l
concentration (TEA)	
SD_Sr-MBG	4 g/l
concentration	
Voltage	120 V, 150 V,
	180 V
Duration	5 min
Electrodes	15 mm
separation	
Electrodes material	Stainless steel
Electrodes	40 mm x 15 mm
dimensions (HxLxT)	x 0,35 mm

SCNA scaffold + SD_Sr-MBG

Abundant deposition on the pore wall, but not homogeneous. Best result at 150 V.

Conclusions

MBGs synthetized with aerosol-based spray-drying process and doped with strontium have **excellent textural properties and a bioactive behaviour**. After electrophoretic deposition, they maintain these properties and consequently they **improve the bioactivity of SCNA scaffolds**, which initially are almost biologically inert. In this way we demonstrate that it is possible to obtain a **successful construct** for bone tissue engineering with both

excellent regenerative and mechanical properties.

Acknowledgement

The activity leading to this research has received funding from H2020- NMP-PILOTS-2015 under grant agreement no. 685872 (MOZART).

www.mozartproject.eu

References

- [1] Vallet-Regi M; J. Internal Medicine; 267 (2009) 22-43;
- [2] Jones J; Acta Biomaterialia, 9 (2013) 4457-4486;
- [3] Ma H, Baino F, Fiorilli S, Vitale Brovarone C; J. European Ceramic Society,
- 33 (2013) 1535-1543
- [4] Zhu Y. Zhu M. He X. Acta Biomaterialia 9 (2013) 6723-6731.
- [5] Kaysinger K. K. Ramp W. K. J. ; Cell. Biochem 68 (1998)83-89.