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Abstract

Resources such as Web pages or videos that are published in the Internet are re-

ferred to by their Uniform Resource Locator (URL). If a user accesses a resource

via its URL, the host name part of the URL needs to be translated into a routable

IP address. This translation is performed by the Domain Name System service

(DNS). DNS also plays an important role when Content Distribution Networks

(CDNs) are used to host replicas of popular objects on multiple servers that are

located in geographically different areas. A CDN makes use of the DNS service to

infer client location and direct the client request to the optimal server. While most

Internet Service Providers (ISPs) offer a DNS service to their customers, clients

may instead use a public DNS service. The choice of the DNS service can impact

the performance of clients when retrieving a resource from a given CDN. In this

paper we study the impact on download performance for clients using either the

DNS service of their ISP or the public DNS service provided by Google DNS. We

adopt a causal approach that exposes the structural dependencies of the different

parameters impacted by the DNS service used and we show how to model these

dependencies with a Bayesian network. The Bayesian network allows us to ex-

plain and quantify the performance benefits seen by clients when using the DNS

service of their ISP. We also discuss how the further improve client performance.

Keywords: Causality, CDN, DNS, Traffic performance, Bayesian networks,

Optimization, Monitoring, Knowledge inference, Computer networks.
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1. Introduction

Each time an Internet user wants to access a resource, he uses a human read-

able name called Uniform Resource Locator (URL), containing the domain name

of the administrative entity hosting this resource. However, a domain name is not

routable and needs to be translated into the IP address of a server hosting the re-

source the client wants to access. This is taken care of by the DNS service. At the

same time, many popular services such as YouTube, iTunes, Facebook or Twitter,

rely on CDNs, where objects are replicated on different servers, and in different

geographical locations to optimize the performance experienced by their users.

When a client accesses an object hosted by a CDN, its default DNS server contacts

the DNS server of the CDN that hosts the resource the client is requesting. Based

on the origin of the request, the authoritative CDN DNS redirects the client to the

optimal server. Most of the ISPs provide a DNS service, but it is now common

to see customers using a public DNS service instead [Otto et al., 2012]. Clients

using the DNS service of their ISP are served by a local DNS server that often

provides a more accurate location information to the CDN compared to the infor-

mation communicated by a public DNS service such as the Google DNS service.

Indeed, public DNS servers are usually further away from the clients of a given

ISP than the default ISP DNS server. There have been several studies suggesting

that public DNS services do not perform as well as local DNS services provided

by ISPs, mainly because of the impossibility of public DNS to correctly commu-

nicate the location of the clients originating the request [Huang et al., 2011; Ager

et al., 2010]. This problem is addressed with ECS (edns-client-subnet) [Streibelt

et al., 2013] but Akamai does not support it currently.

Studying the performance of the users accessing resources in the Internet is

a complex task. Many parameters influence the end user experience and the re-

lationships between these parameters is not always observable or intuitive. It is

therefore necessary to use a simple, yet formal model that allows us to under-

stand the role of a given parameter and its dependencies with other parameters.

Bayesian networks offer a simple and concise way to represent complex sys-

tems [Darwiche, 2009]. In this paper, we use a Bayesian network to represent

the causal model that captures the impact of the DNS service on the throughput

performance experienced by clients accessing resources hosted by the Akamai

CDN. Bayesian networks capture the dependencies between the different param-

eters impacting the throughput of the clients. One very interesting property of

causal models is their stability under intervention. Causal models can be used

to predict how the throughput of CDN users would evolve if we would intervene
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on the different parameters influencing the performance of CDN users. Here an

intervention consists in isolating a given parameter of the system being studied,

removing all its direct and remote causes and fixing its variations to a pre defined

value or distribution. Being able to predict the effect of interventions, we can use

causal models to understand the observed performance of a given system and to

design strategies to improve its performance. In this work, we infer and use the

causal model of CDN performance to understand the impact of choosing one DNS

service instead of another. From such a model we are able to explain why clients

using the DNS service of their ISP experience better download performance than

clients using the Google DNS service. We are also able to indicate how to further

improve the performance of the clients using the DNS service of their ISP.

Our work differs from previous studies of DNS services in several important

points:

• We use a causal approach that formally models the structural dependencies

of the different parameters influencing the throughput obtained.

• Observing that the clients using the DNS service of their ISP (referred to as

local DNS) experience higher throughput than the clients using the public

DNS service (referred to as Google DNS), we can show that this perfor-

mance difference is due to the fact that clients using the DNS service of their

ISP are redirected to closer servers. We are also able to precisely quantify

this performance improvement.

• The causal model of our system also reveals that the parameterization of

TCP (initial congestion window) of the servers accessed by the users of

the Google DNS plays a key role in their throughput performance. Besides

fully explaining the observed performance, this result also indicates how to

further improve the performance of the clients using the local DNS.

Overall, the main contribution of our work resides in the methodology adopted

and in its use of counterfactuals to understand the causal dependencies of a com-

plex system.

In Section 2, we introduce causal models and their use to predict interventions,

summarizing some of the main concepts from [Pearl, 2009; Spirtes et al., 2001].

We then present, in Section 3, the environment of our study and the description

of the parameters constituting our system. Section 4 presents our study of the

DNS impact on the throughput. In particular we present the causal model of our

system where we can observe the impact of the choice of the DNS service on the
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throughput. Our approach also allows us to predict the improvement that could be

achieved by modifying the parameterization of the servers accessed by the users

of the local DNS service. Section 5 compares our approach to the related work

and Section 6 summarizes our work and proposes directions to further extend our

work.

Several methods mentioned in this paper were designed and validated with

parallel studies that are presented in an Appendix. The Appendix is available with

the online version of this paper.1 We give references to these studies in the paper.

2. Causal model: Definitions and usage

To model a complex system such as a communication network and to organize

the knowledge obtained from its passive observation is very challenging. Existing

work typically looks for the presence of correlation between different events ob-

served simultaneously (see [Mayer-Schönberger, 2013] and references therein).

However, correlation is not causation and the detection of correlation between

two parameters A and B does not inform us on how they are related. A can im-

pact B, or the other way around, or an unobserved parameter can impact both A

and B simultaneously. The difference between correlation and causation plays an

important role if we want to find out how to improve our system by partly modify-

ing its behavior. A causal approach uncovers the structural dependencies between

the parameters of the system under study. The ability to predict the effects of a

manipulation of the parameters of a system is a major strength of causal models

as they are stable under intervention. Stability under intervention means that a

causal model, inferred from the observations of a system in a given situation, is

still valid if we manually change the system mechanisms, redefining the systems

laws. The manual modification of the system parameters is called an intervention.

Interventions consist in modifying the behavior of a component of the system,

removing the influence of its direct and remote causes and manually setting its

variations. The inference of a causal model and of a causal effect [Pearl, 2009;

Spirtes et al., 2001] is made using passive observations only. The causal theory

allows us to predict the behavior of the various parameters of the inferred model

after an intervention without the need of additional observations.

In this section we present the PC algorithm [Spirtes and Glymour, 1991] that

is used to infer the causal model of our system. We also describe the different

properties of a causal model as described in [Pearl, 2009; Spirtes et al., 2001].

1http://linkincreation.com
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2.1. Causal model: Inference

For our work, we use the PC algorithm [Spirtes and Glymour, 1991] to build

the Bayesian graph representing the causal model of our system. This algorithm

takes as input the observations of the different parameters that characterize our

system and infers the corresponding causal model. In our representation of a

causal model as a Bayesian network, each node represents one parameter of our

system and the presence of an edge from a node X to a node Y (X → Y) represents

the existence of a causal dependence of parameter Y on parameter X.

The PC algorithm starts with a fully connected and unoriented graph, called

skeleton, where each parameter is represented by a node and connected to ev-

ery other parameter. The PC algorithm then trims the skeleton by checking for

independences between adjacent nodes:

• First, the unconditional independences (X y Y) are tested for all pairs of pa-

rameters and the edges between two nodes whose corresponding parameters

are found to be independent are removed.

• For the parameters whose nodes are still adjacent, the PC algorithm then

checks if there exists a conditioning set of size one that makes two adjacent

nodes independent. If this is the case, it removes the edge connecting the

corresponding two nodes, otherwise the edge is kept.

• The previous step is repeated, increasing the conditioning set size by one

at each step, until the size of the conditioning set reaches the maximum

degree of the current skeleton (the maximum number of adjacent nodes for

any node in the current graph), which means that no more independences

can be found.

The final step of the PC algorithm consists in orienting the edges. First, the PC

algorithm orients all the V-structures, i.e. subgraphs X − Z − Y where X and Y

are not adjacent, and then orients as many edges as possible without creating new

colliders or cycles [Pearl, 2009]. A node Z is a collider if it is part of an oriented

subgraph X → Z ← Y where X and Y are not adjacent. An illustration of the

different steps of the PC algorithm is presented in the Appendix A.1.

2.2. Causal model: Properties and theorems

In this section we assume that we have the causal model of our system that is

represented by a Bayesian network. We focus on two parameters X and Y , where Y

represents the performance of our system and we are interested in the global effect
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on Y when intervening on X, including the effects mediated by external parameters

also impacted by this intervention. We call this causal effect the total causal effect.

Details of the implementation of the methods presented in this section can be

found in the Appendix B.

2.2.1. Atomic interventions

We denote by do(X = x) (or do(x)) the intervention that consists in interven-

ing on the the parameter X by fixing its value to be x. An intervention that simply

assigns to X a fixed value is called an atomic intervention. The difficulty of pre-

dicting the effect of an intervention comes from the possible presence of spurious

associations between the intervention variable and the response variable. A spuri-

ous association between X and Y is an association between X and Y due to external

parameters (< {X, Y}). To obtain an unbiased estimation of the effect of an inter-

vention, we need to remove the effect of spurious associations. As an intervention

is equivalent to isolating a given parameter from its direct and remote causes and

to assigning it a fixed value, we need to remove the effects of direct and remote

causes in our estimations. Such estimation is complex if one needs to consider all

the possible inter dependencies between the different parameters influencing the

performance of the system being studied. However, the use of a graphical causal

model, where the different dependencies are present, makes it easy to estimate the

outcome of interventions. Different criteria (c.f. [Pearl, 2009]) can be used to

identify the minimum set of parameters that block the effects of direct and remote

causes when estimating the effect of a given intervention.

If G denotes the Bayesian graph that represents the causal relationships be-

tween the parameters of our system, we use GX to denote the sub-graph of G

where all the edges entering X are removed and GX the sub-graph of G where all

the edges exiting X are removed. We can use the rules of do-calculus [Pearl, 2009]

to estimate the distributions of the parameters of our system after an intervention

based on their distributions prior to this intervention. Note that these rules do not

make any assumption regarding the distributions or functional dependencies of

the parameters.

We briefly recall the Rules of do calculus that will be used in Section 4.2 to

predict the interventions we are interested in this work. Let P denote a (possibly

multivariate) probability distribution specified by the probability mass function or

probability density function, depending on the nature of the parameters.

Theorem 1 (3.4.1 from [Pearl, 2009]). (Rules of do calculus) Let G be the di-

rected acyclic graph associated with a causal model [...] and let P(·) stand for the
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probability distribution induced by that model. For any disjoint subsets of vari-

ables X, Y and Z we have the following rules.

Rule 1(Insertion/deletion of observation):

P(y|do(x), z,w) = P(y|do(x),w) if (Y y Z | X,W)G
X

(1)

Rule 2(Action/observation exchange):

P(y|do(x), do(z),w) = P(y|do(x), z,w) if (Y y Z | X,W)G
XZ

(2)

Rule 3(Insertion/deletion of intervention):

P(y|do(x), do(z),w) = P(y|do(x),w) if (Y y Z | X,W)G
XZ(W)
, (3)

where Z(W) is the set of Z-nodes that are not ancestor of any W-nodes in GX.

2.2.2. Enforcing intervention with a given probability

To study the impact of the DNS service on the performance seen by the clients

(c.f. Section 4) we must estimate the effect of interventions on the parameters in-

fluenced by the DNS service and on the parameters influencing the throughput. To

do so, we cannot use atomic interventions since we intervene on a given param-

eter by changing its distribution. If we want to predict how an intervention on X

affects Y , where the intervention on X is enforced with the conditional probability

distribution f ∗(X|Z), we obtain [Pearl, 2009, Section 4.2]:

f (y)| f ∗(x|z) =

∫

DX

∫

DZ

fY |do(X),Z(y, x, z) f ∗(x|z) f (z)dxdz. (4)

2.3. D-separation

The d-separation criterion is a graphical criterion to decide, by looking at

the graph, if two parameters, represented by their nodes, are independent. D-

separation associates the notion of connectedness with dependence. If there exists

a directed path between two nodes, the nodes are said to be d-connected and their

corresponding parameters are dependent. On the other hand, if we condition on

one of the nodes in the path from X to Y , then this node is said to block the path

and X and Y are conditionally independent relative to this path. For X and Y to be

independent, one must block all the paths d-connecting X and Y . When studying

d-separation, an important notion is the one of collider. The presence of a collider

on a undirected path blocks this path. While conditioning on a collider unblocks

the path which can be explained by the fact that two independent causes become

dependent if one conditions on their common consequence.
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2.4. Density estimation

The theory of causality Pearl [2009] makes no assumption on the distribution

of the parameters. We estimate the multidimensional probability density functions

via Copulae [Jaworski et al., 2010], using the Sklar theorem.

The Sklar theorem stipulates that, if F a is multivariate cumulative distribution

function with marginals (F1, . . . , Fi, . . . , Fn), there exists a copula C such that

F(x1, . . . , xi, . . . , xn) = C(F1(x1), . . . , Fi(xi), . . . , Fn(xn)). (5)

There are different types of copulae, in our work we focus on T-copulae [De-

marta and McNeil, 2005] and G-copulae [Pitt et al., 2006]. T-copulae present the

advantage that, by tuning the different parameters of the T-copula, one can bet-

ter capture the tail dependencies between the different components of the multi-

variate distribution that is modeled. This is highly useful in our case where the per-

formance (e.g. the throughput of a Web user) can be strongly affected by changes

to the characteristics of the network such as packet loss or delay. Unfortunately,

T-copulae are complex to parameterize, which implies that more data is needed to

fit such model to our problem. In this paper, we are interested in counterfactuals

such as “How would the system behave under the condition C1 if one of its param-

eter was to behave as it has done under the condition C2, knowing that C1 and

C2 are exclusive ?”. Counterfactuals correspond to the predictions of complex

interventions, each of which requires conditioning on several variables in order to

block the different spurious associations.

We decided to use Gaussian copulae [Pitt et al., 2006], which are known to be

less sensitive if the amount of data available is limited (see Appendix C).

In the bivariate case, the Gaussian copula is defined as:

Cρ(u, v) = Φρ(Φ
−1(u),Φ−1(v)), (6)

where ρ represents the correlation matrix and Φ the CDF of the standard normal

distribution. The marginals, Fi(xi), are estimated using normal kernels.

The choice of Gaussian copulae as well as the methods and their implementa-

tion to compute the conditional PDFs have been designed and validated based on

studies made on artificial datasets that are presented in the Appendix C.

3. Experimental set up

In this section, we present how we do the data collection and how we extract

the parameters of interest. We define our system as the set of parameters (see

Section 2.1) and observe these parameters in different situations to capture their

dependencies and infer the corresponding graphical causal model.
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3.1. Experiment design

We collect IP packet traces at a Point of Presence (PoP) of a large European

ISP and extract all the traffic directed to or coming from the Akamai CDN. To

model the impact of the choice of DNS service on the client throughput, we make

three choices: i) We only focus on the traffic carried by the TCP protocol. ii) To

eliminate the impact of TCP slowstart, we only consider large TCP connections

that carry at least 2MBytes of data. iii) As more than 90% of the observed con-

nections use either Google DNS (GDNS) or the DNS of the local ISP (LDNS) we

consider only these two DNS services.

The probe capturing the traffic is placed between the client and the server. We

call internal network, denoted as isp network, the part of the network between the

client and the probe. We call external network the part of the network between

the probe and the server, assimilated to the Internet network and denoted as inet

network. The traffic was captured on two different days, a Thursday and a Sunday,

from 5.30 pm to 9.30 pm.

3.2. Parameters of our model

We use the Tstat software [Finamore et al., 2011] to extract from the packet

traces relevant information on a per connection basis. We have about 7000 con-

nections. We use domain knowledge to select a subset of the information obtained

from Tstat that represents the parameters known to impact the throughput. In ad-

dition to the information obtained from Tstat we collect for each connection addi-

tional information such as the DNS service used, the number of hops between the

client and the server and the server address.2 The packet traces used for this study

are confidential and cannot be shared publicly.

3.3. Summary of our data

Each connection is described by 19 parameters. In Table 1, we present the

average (µ), minimum (min), maximum (max), standard deviation (σ) and coeffi-

cient of variation (CoV = σ
µ

) of each of the 19 parameters.

Since we are interested in comparing the performance of LDNS users and

GDNS users, Table 2 presents the statistics for the connections where the LDNS

is being used and for the connections where the GDNS is being used.

We use the following notations:

2Since the addresses were anonymized we represented the server address by the Autonomous

System (AS) number of the AS the server is located in.
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Table 1: Summary of the different parameters

Parameter µ min max σ CoV

dstip N.A. 1300 34000 N.A. N.A

dns N.A 1 3 N.A. N.A.

dow N.A. 4 7 N.A. N.A.

tod (s) 7100 52000 78000 4400 0.1

isprttavg (ms) 76 0 19000 460 6.1

isprttstd (ms) 100 0 37000 960 9.2

ispnbhops 1.8 1 3 0.51 0.3

inetrttavg(ms) 26 0.48 660 27 1.0

inetrttstd (ms) 8.2 0 4700 61 7.5

inetnbhops 9.4 2 21 2.8 0.3

rwin0 0.83 0 360 11 13

rwinmin (kB) 31.3 0.004 65 22.5 0.9

rwinmax (kB) 213 17.5 2625 150 0.7

cwinmax (kB) 150 7.3 1625 103 0.7

cwinmin (kB) 0.9 0.001 1.5 0.6 0.7

retrscore 0.005 0 0.19 0.009 1.9

rto (bool) 0.11 0 1 0.32 2.8

nbbytes (MB) 23.8 2.1 3875 138 5.7

tput (Mbps) 3.2 0.006 35 2.6 0.8

Table 2: Summary of the different metrics for the two DNS: Local DNS (LD) and Google DNS

(GD) (dow and tod are similar and provide no insight, so they were removed)

Par µ min max σ CoV

LD GD LD GD LD GD LD GD LD GD

isprttavg (ms) 80 61 0 0 19000 15000 470 440 5.9 7.2

isprttstd (ms) 1100 76 0 0 32000 37000 920 1100 8.3 14.0

ispnbhops 1.8 1.9 1 1 3 3 0.53 0.4 0.3 0.2

inetrttavg (ms) 20 48 0.48 11 510 660 20 38 1.0 0.8

inetrttstd (ms) 8.6 6.5 0 0 4700 1400 65 44 7.6 6.8

inetnbhops 8.7 12 2 5 17 21 2.4 2.7 0.3 0.22

rwin0 0.97 0.29 0 0 330 360 12 9.2 12.0 32.0

rwinmin (kB) 35 12 0.004 0.03 65 65 28 14 0.8 1.1

rwinmax (kB) 213 213 18 18 2625 2000 150 138 0.3 0.7

cwinmax (kB) 163 118 7.3 7.8 1625 738 108 72 0.7 0.6

cwinmin (kB) 0.9 1.2 0.001 0.001 1.5 1.5 0.6 0.5 0.7 0.4

retrscore 0.005 0.004 0 0 0.19 0.06 0.01 0.01 1.9 1.8

rto (bool) 0.11 0.11 0 0 1 1 0.32 0.31 2.8 2.9

nbbytes (MB) 29 7 2.1 2.1 3875 1375 150 44 5.3 6.5

tput (Mbps) 3.2 3 0.006 0.007 35 29 2.7 2 0.9 0.7
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• Parameters with the prefix isp represent the isp network statistics, while the

ones with the prefix inet represent the inet network statistics.

• The suffix avg represents the average value of a given parameter for a single

connection (for example the average Round Trip Time between the client

and the probe is denoted isprttavg).

• The suffix std represents the standard deviation of a given parameter for a

single connection (for example the standard deviation of the Round Trip

Time between the probe and a server is denoted inetrttstd).

• The rto parameter is set to true if there was at least one packet retransmis-

sion due to a time out and to false otherwise

• The retrscore parameter represents the fraction of retransmitted packets for

a single connection (= retransmissions
total transmissions

).

• The parameters rwin* and cwin* represent receiver window and congestion

window metrics respectively.

• The day of the week and time of the day are captured by the variables dow

and tod respectively.

Destination IP (dstip), DNS (dns) and days (dow) are categorical data for

which the average value, standard deviation or coefficient of variation do not exist.

Without discussing in detail the values of the different parameters in Table 1,

we would like to draw the attention to the difference in the RTT values observed

inside the ISP network and the RTT values observed in the Internet: the average

RTT value isprttavg is almost three times as high as the average RTT value inetrt-

tavg. The use of an ADSL on the access link and the large buffers used in ADSL

networks not only increase the RTT but also result in high variations of the RTT

values observed that correspond to a standard deviation of the isprttstd being more

than ten times bigger than the inetrttstd.

4. Causal study of the impact of the DNS service used on throughput

4.1. Modeling causal relationships

We use the PC algorithm [Spirtes and Glymour, 1991] and the kernel based

independence test from [Zhang et al., 2012] to obtain the Bayesian network show-

ing the causal model of our system (c.f. Figure 1). We briefly discuss some of the

most interesting dependencies exhibited by this model.
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dstip

inetrttavg inetnbhops

dns

cwinmin

dow

cwinmax

tod

rwinmax

retrscore

inetrttstd

tput

ispnbhops

isprttavg

isprttstd

rwin0

rwinmin

rto

nbbytes

Figure 1: Bayesian network representing the causal model of Web performance using two different

DNS: the public Google DNS and the DNS of the local ISP with the following parameters: Day

of the Week (dow), Number of bytes exchanged during the connection (Nbbytes), first advertised

receiver window (rwin0), minimum advertised receiver window (rwinmin), maximum advertised

receiver window (rwinmax), minimum server congestion window (cwinmin), maximum server

congestion window (cwinmax), time of the day (tod), retransmission score (retrscore), presence of

time outs (rto), server IP address (dstip), number of hops between client and probe (ispnbhops),

number of hops between probe and server (inetnbhops), average external delay (inetrttavg), stan-

dard deviation external delay (inetrttstd), average internal delay (isprttavg) and standard deviation

internal delay (isprttstd)

The day of the week (dow) and the time of the day (tod) are two nodes that

have no parents, which is not surprising. The time of the day (tod) influences the

RTT between the probe and the server (inetrttavg), which captures the peak hour

effect in the Internet.

In Table 1 we saw that that the variance of the internal RTT (isprttstd ) was

much higher than the one of the Inet RTT (inetrttstd) . This may lead one to expect

that isprttstd has a stronger impact on the throughput than the inetrttstd. However,

the causal model shows something different: we have a direct dependence between

(inetrttstd) and the throughput (tput) but not between the standard deviation of the

internal RTT (isprttstd) and the throughput. This example illustrates the ability of

causal model to exhibit non intuitive dependencies.

We observe that the day of the week (dow) influences the DNS service used

by the clients (dns). As our observations are made on two days (a Thursday and a

Sunday), our conclusions are a bit limited. However, it appears that on Thursday

72% of the connections use the LDNS service against 28% using the GDNS ser-

vice, while on Sunday 93% of the connections use the LDNS service against 7%

using the GDNS service. It would be interesting to identify the clients using one
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DNS service and compare their locations with the ones of the clients using the the

other DNS service to better understand this dependence. The day of the week may

capture the difference in the Internet usage and the devices used at home and at

work. However, for privacy reasons, the IP addresses of the clients are obfuscated,

which prevents us from investigating this hypothesis.

One of the most interesting dependencies, which motivated this work, is the

one between the DNS service (dns) and the external RTT (inetrttavg). Our data

show that most of the time, clients using the DNS of their ISP are redirected to

an Akamai server located in the same AS. On the other hand, the clients using the

Google DNS service are often redirected to servers located outside the client AS

and even, in some cases, to a server outside of Europe.

It has been previously shown [Huang et al., 2011] that clients using the local

DNS service benefit from a redirection to servers closer than the ones of the clients

using a public DNS service. Our data (see Table 2) corroborate this observation

since the average external RTT for the LDNS service users is of 20 ms, while the

users of the GDNS service experience an average external RTT of 48 ms.

We can also see that congestion window metrics (cwinmin, cwinmax) have

a direct impact on the throughput (tput). Additionally, the minimum congestion

window (cwinmin) has the DNS (dns) as direct parent. Its average value for clients

using GDNS is 1.2kB against 0.9kB for users served by the LDNS, see Table 2.

A parameter present in a causal model represents also the mechanisms cap-

tured by such parameter. This is the case of the cwinmin that also captures the

tuning of the TCP parameters at the server side. Clients using the LDNS often

access their objects from servers that are located inside the ISP network. These

servers could have a configuration different from the servers accessed by the users

of the GDNS. This hypothesis could also explain the fact that both DNS services

result in a similar throughput performance despite the difference in the RTTs ob-

served. Other reasons could be the impact of losses on the congestion window or

the load of the servers being accessed by the clients. To capture the server load, we

estimate the server processing time defined from the time at which a server sends

the acknowledgment of the client HTTP/GET message and the time at which it

sends the first data packet. However, the server processing time shows an ex-

pected value of 43 ms for the LDNS users against 64 ms for the GDNS users.

A higher processing time for the servers accessed by the GDNS users suggests

that they are more loaded. On the other hand, the congestion window is impacted

by the loss. However in our data set, very few losses actually happen and no

dependence is found between the loss (retrscore) and the DNS service (dns).

It is to be expected that the internal RTT (isprttavg) is a parent of the through-
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put. Also, the absence of a dependence between the time of the day (tod) and the

internal RTT can be explained by the fact that all the observed users are using the

same “internal” path (the path from the users to the probe).

We see that the maximum receiver window advertised by the client (rwinmax)

has the time of the day as one of its parents (tod). This could be due to the TCP

buffer auto tuning mechanism [Ford et al., 2002] that adjusts the receiver window

according to the quantity and frequency of data received by the client, which is

influenced by the time of the day.

There is no edge between the DNS (dns) and the destination IP address (dstip)

and the object size (nbbbytes) is not connected at all. This may be explained by the

fact that the number of users of the LDNS service (80%) is much higher than the

number of users of the GDNS service (20%). The same percentages are observed

for the number of servers accessed by the users of the LDNS service (80%) and

the number of servers accessed by the users of the GDNS service. The difference

between these percentages weakens the dependence between dns and dstip. A

solution to detect weaker dependences is to increase the acceptance rate in the

independence tests. However, increasing the acceptance rate implies a higher risk

of failing to reject weak independences and should be used with caution. The

independence of the object size from other parameters influencing the throughput

is not necessarily surprising as we consider long connections.

The two loss parameters (retrscore and rto) and the two RTT parameters (in-

etrttstd and isprttavg) are four of the six direct parents of the throughput, which

is in line with our domain knowledge of TCP. The additional parents are the con-

gestion window parameters of the server (cwinmin and cwinmax).

The fact that none of the receiver window metrics (rwin*) is a direct parent of

the throughput (tput) is not surprising. By comparing the throughput of a given

connection with the minimum and the maximum quantity of information that the

client can handle (see Figure 2), it appears that the receiver window advertised by

the client is never limiting the throughput.

4.2. Asking what-if questions

We have seen that the Bayesian network reveals a rich set of causal relation-

ships that indicate how the different parameters impact the throughput. We will

now use this model to answer what-if questions using only the already collected

data, i.e. without the need to collect more data or perform additional experiments.

This reasoning used to answer what-if questions is referred to as counterfac-

tual thinking. By asking “What would be the performance of a user of the LDNS

service if one of her parameter was to behave as it does when the GDNS is used,
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Figure 2: Comparison of the throughput with the quantity of data a client can handle (rwin*)

knowing that the use of the LDNS and the GDNS are exclusive ?”, we can estimate

the impact of the choice of a DNS service on user performance. Such an approach

allows to estimate the impact of choosing one DNS service instead of another and,

even more interesting, allows us to estimate the impact of this choice on a given

parameter that, in turn, impacts the user performance. In our work, we focus on

the impact of the choice of a DNS service on the user throughput via the impact

of the DNS service on the CDN server location (c.f. Section 4.2.1), and via the

impact of the DNS service on the CDN server configuration (c.f. Section 4.2.2).

Since we deal with probabilities, we will compare the expected values of the

throughput3 instead of its average values4 as we did in the previous section.

4.2.1. Distance and delay

To investigate the impact of the RTT on download performance we investigate

the question: “What would have been the performance of a user served by the

local DNS if it would have been redirected to a server whose inetrtt corresponds

3
E[T PUT ] =

∫

DT PUT
fT PUT (tput) · tput · dtput, with DT PUT the throughput domain

4µT PUT =
1
N

N∑

i=1

throughputi, with N the total number of observations
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to the one the Google DNS service would have redirected him to ?”.

To answer this question is equivalent to predicting the effect of an intervention

where the external delay (RTT) experienced by clients served by the LDNS is

modeled by the the distribution of the delay experienced by clients served by the

GDNS; the distribution of the rest of the parameters being kept identical for the

LDNS service users.

More formally, if RTT denotes the inetrttavg parameter, LD the local DNS and

GD the Google DNS, we need to estimate the following distribution:

f
(

T PUT = tput|DNS = LD, do(RTT ∼ fRTT |do(DNS )(·,GD))
)

(7)

The causal graph in Figure 1 (cf the explanation of d-separation in Section 2.3)

tells us that (RTT y DNS )GDNS
, which implies (Rule 2 from Theorem 1):

fRTT |do(DNS )(rtt,GD) = fRTT |DNS (rtt,GD). (8)

To predict how an intervention on X affects Y , where the intervention on X

is enforced with the conditional probability distribution f ∗(X|Z) we use Equation

(4). The causal graph in Figure 1 (cf the explanation of d-separation in Sec-

tion 2.3) tells us that (RTT y T PUT |DNS , TOD)GRT T
. It follows, from Rule 2 of

Theorem 1 that

fT PUT |do(RTT ),TOD,DNS (tput, rtt, tod, dns) =

fT PUT |RTT,TOD,DNS (tput, rtt, tod, dns). (9)

As a consequence, we can rewrite Equation (7) as:

f (tput|LD) f (rtt|do(GD)) =
∫

DRT T

∫

DT OD

f (tput|do(rtt), LD, tod) f (tod) f (rtt|do(GD))P(GD) =

∫

DRT T

∫

DT OD

f (tput|rtt, LD, tod) f (tod) f (rtt|GD)P(GD) (10)

using Equation (8) and Equation (9).

The result of the intervention is presented in Figure 3. The CDF of the through-

put for the LDNS before intervention is plotted as blue solid line and the CDF of

the throughput for the LDNS service users after an intervention setting their exter-

nal delays distribution to the delay distribution seen by the GDNS users is plotted

as red dotted line. The throughput after invention is degraded due to the higher
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Figure 3: Evolution of the throughput distribution before and after intervening on the external

delay experienced by Local DNS (LDNS) clients

RTTs experienced by the clients’: The expected throughput for clients using the

local DNS service prior to intervention is 3.5 Mbps and 3.0 Mbps after inter-

vention (14% decrease). This result quantifies the gain in performance that the

redirection to closer CDN servers, provided by the use of the local DNS service,

represents.

This result also illustrates the use of counterfactual thinking. We can deduce

the gain in performance for a user who chose the LDNS service by estimating the

change in performance if the GDNS would have been chosen instead.

The results obtained cannot be validated in practice as this would require the

modification of the behavior of the local DNS servers. In fact, this difficulty nicely

illustrates the benefit of the causal approach: it offers the possibility to predict

the effect of interventions that are impossible to perform experimentally. Our

approach allows us to estimate what would have been the effect on a user perfor-

mance if she would have chosen the GDNS service, knowing that in reality the

LDNS was used.

Figure 4 shows the distribution of the external RTT for GDNS users and LDNS

users. Both conditional probability distributions present a long tail and very few

values are actually observed for a RTT > 200 ms. It is important to mention that

RTT values are observed for the LDNS users for the range [0.5ms,200ms] and for

GDNS users for the range [10ms,200ms]. This condition is necessary to perform

the prediction preformed in this section, which is a limitation of the method used:

The prediction formulated in Equation (7) is only possible since the range of the
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Figure 4: Histogram of the external RTT for the local DNS (LDNS) and Google DNS (GDNS)

external RTT values observed for GDNS users represents a subset of the range of

values observed for the LDNS users.

If one wants to study the opposite intervention, where the users of the GDNS

service would be given access to servers placed at the locations of the servers the

LDNS service users are redirected to, the prediction would be more complex. We

do not have samples to estimate f (tput|rtt,GD, tod) for some of the smallest RTT

values (RTT < 10 ms) for which we have f (RTT |LDNS ) > 0. However, this

limitation should not surprise us, since it is common to many machine learning

problems where the amount of available information determines the predictions

we can make. The reason why we cannot predict the opposite intervention is

due to the use of kernels to estimate distributions, which requires the presence of

samples in a given region to estimate the value of the distribution in this region.

One possible way to overcome this problem would be to develop a parametric

model that allows to extrapolate the different PDFs beyond the value range where

the variables of our system are observed.

It is important to note that our model considers the impact of the change in the

delay distribution but also the impact of the servers themselves, captured by the

minimum congestion window and parameters such as the loss (retrscore) that are

different between the two DNS services. In fact, the influence of these parameters

may explain that the throughput experienced, in the original dataset, by the users

of the GDNS service is only 7% smaller than for the users of the local DNS ser-

vice. To evaluate the impact of the servers on download performance we focus on

the impact of the minimum congestion window since cwinmin is a direct parent
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of the throughput (tput) and is influenced by the DNS service choice (dns). Also,

other parameters such as the loss parameters (retrscore and rto), the delay param-

eters (isprttavg and isprttstd) or the maximum congestion window (cwinmax) are

not influenced by the choice of the DNS service (dns) (c.f. Figure 1).

4.2.2. Minimum congestion window

The minimum congestion window (cwinmin) is a direct parent of the through-

put (tput), see Figure 1. Its average value is higher for the clients using the GDNS

service than for the clients using the LDNS service (1.2kB and 0.9kB respec-

tively). The difference in the expected value of the throughput of LDNS users

(3.5 Mbps) and GDNS users (3.3 Mbps) is 6%, smaller than the gain for the

LDNS users being redirected to closer server, that is estimated to be 14%. Our

hypothesis is that the minimum congestion window represents a difference in the

configuration of the servers accessed by the LDNS users and the configuration of

the servers accessed by the GDNS users. To evaluate this hypothesis we estimate

the causal effect of the minimum congestion window on the throughput, mediated

by the choice of the DNS service. This is equivalent to asking the question: “What

would be the throughput for the clients using the local DNS if the servers they are

redirected to would present the same minimum congestion window as the ones

Google DNS users are redirected to ?”.

We observe from the causal graph of Figure 1 (cf the explanation of d-separation

in Section 2.3):

• (CWINMIN y DNS )GDNS

• (CWINMIN y T PUT |DNS , INETRTTS T D)GCWINMIN

For space reasons, and because the approach is the same as in section 4.2.1 for

the external delay (inetrttavg), we only present the final equation.

Let denote cmin the minimum congestion window (called cwinmin in our

model) and σrtt the standard deviation of the external rtt (called inetrttstd in our

model). As before LD refers to the local DNS and GD to the Google DNS. We

obtain the following equation:

f (tput | LD) f (cmin|do(GD)) =
∫

DCMIN

∫

DσRT T

f (tput|do(cmin), LD, ts) f (σrtt) f (cmin|do(GD))P(GD) =

∫

DCMIN

∫

DσRT T

f (tput|cmin, LD, σrtt) f (σrtt) f (cmin|GD)P(GD) (11)
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Figure 5: Evolution of the throughput distribution before and after intervening on the minimum

congestion window of servers of the users of the local DNS

Equation (11) allows the prediction of the distribution of the throughput for

the LDNS users after an intervention when we use for the minimum congestion

window the distribution seen by GDNS users. The CDFs of the pre-intervention

throughput (solid line) and post-intervention throughput (dotted line) are pre-

sented in Figure 5. We can see the gain in throughput due to the intervention on

the minimum congestion windows of the LDNS servers. The expected through-

put for LDNS service users after the intervention is 4.6 Mbps (compared to 3.5

Mbps prior to intervention), which represents an increase of more than 30%. This

increase is due to the fact that the servers GDNS service users are redirected to

use higher values for their minimum congestion window.

The study of the opposite intervention, where GDNS service users are redi-

rected to servers with a minimum congestion window following the distribution

of the minimum congestion window seen by the LDNS service users, in the orig-

inal dataset, is not possible. The reason is the same as the one mentioned in

Section 4.2.1. If we compare the distribution of the minimum congestion win-

dows for LDNS service users and GDNS service users, Figure 6, we can notice

the absence of cmin values for GDNS users to estimate f (tput|cmin,GD, σrtt) for

values of cmin where f (cmin|LD) > 0.

If we summarize the findings of the last two sections, we can say that by using

a causal model and its graphical representation we were able to quantify that it is

not only the proximity of the server that has an important impact on the throughput

but also the configuration of the server hosting the content a client wants to access.
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In a causal model such as the one presented in Figure 1, a given node X also

represents the influence that external factors impacting only this parameter have

on the rest of the system. This means that the difference in behavior of Akamai

servers that the Google DNS redirects the clients to compared to the behavior

of the servers the LDNS redirects the clients to may not be solely the effect of

the minimum congestion window but may also be the effect of other un-observed

parameters of TCP such as the additive increase value for each acknowledged

packet. Unfortunately, we have no means to validate this hypothesis.

5. Related work

The two works closest to ours are WISE [Tariq et al., 2008] and Nano [Tariq

et al., 2009].

WISE uses, as does our work, the PC algorithm [Spirtes and Glymour, 1991]

to infer a graphical causal model from which interventions are then predicted.

However, WISE requires a lot of domain knowledge in its feature selection and

in the definition of external causes that guide the inference of the causal model.

Also, WISE uses the Z-Fisher independence, which assumes linear dependencies.

We have tested the Z-Fisher independence criterion in our work and obtained very

poor results as the test fails to detect parameter independences resulting in in-

correct models [Hours et al., 2015]. In addition, WISE considers much simpler

scenarios of intervention and requires a much larger data set. Our approach takes
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full advantage of the causal theory developed by Pearl [Pearl, 2009; Spirtes et al.,

2001] to predict interventions and counterfactuals. Counterfactuals are very useful

to understand the role of the different parameters of a system and, to our knowl-

edge, scenarios such as the ones presented in Section 4.2 have not been treated so

far.

Nano tries to detect network neutrality violation by assessing the direct causal

effect between the quality of experience of a user from a given ISP and the type

of content being accessed. A performance baseline is defined based on observa-

tions made for different ISPs sharing similar configurations and then compared

to the one observed for a particular scenario. Again, this approach uses domain

knowledge to define the possible confounders and to condition on these variables

to remove spurious associations. Since Nano has not derived a formal causal

model, its approach has serious limitations since one of the confounders could

be a collider in the corresponding causal graphical model. Also, conditioning on

a common effect induces a dependence between two independent causes whose

influence tries to be canceled, questioning the obtained results.

Several papers study how the choice of the DNS service impacts client perfor-

mance [Ager et al., 2010; Huang et al., 2011; Otto et al., 2012]. These works rely

on active measurements and differ greatly in their approach and objectives from

our work.

In our previous work [Hours et al., 2015] we presented solutions to the prob-

lem of causal model inference and to the prediction of atomic interventions for

cases where the assumptions of normality and linearity do not hold. We also

validated our approach and showed for simple systems and scenarios that it was

possible to use a causal approach to study communication network performance.

The work presented in this paper goes much further. First, we study a more

complex system with more parameters and diverse categories of data (including

categorical data). We use the causal model obtained to explain non intuitive ob-

servations (namely a similar throughput for connections experiencing a different

RTT). Second, the major contribution of the work presented in this paper is due

to the use of counterfactuals and counterfactual thinking, Section 4.2. The use

of counterfactuals gives us access to a deeper understanding of the causal mecha-

nisms ruling the performance of the system and it allows us to quantify the impact

of each of these mechanisms on the performance of this system.
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6. Concluding remarks

The main contribution of our paper resides in the methodology based on the

inference and in the usage of a causal model that allows us to estimate the causal

effect of the DNS service on user performance. Using a causal approach and infer-

ring the causal model, which is then represented as a Bayesian graph, we are able

to study the causal effect of a DNS service on the TCP throughput. We compare

the performance of clients using their ISP local DNS service to the performance of

clients using the Google DNS service. The causal model allows to unveil depen-

dencies that would be very difficult, if not impossible, to extract otherwise from

the data. We showed that the choice of the DNS service has a strong impact on

the location of the servers the clients are redirected to, which in turn impacts not

only the distance from clients to servers but also the type of configuration of the

servers. Distance and configuration are captured by the dependence between the

DNS and the RTT and the dependence between the DNS and the server minimum

congestion window.

A very interesting property of causal models is their “stability under interven-

tion”. The model inferred from data following a given distribution is still valid

when we predict the effect of modifying this distribution. When comparing the

performance of the users of the local DNS and the users of the Google DNS, we

can observe that the performance difference cannot simply be explained by the

redirection of Google DNS users to more distant Akamai servers. Based on the

causal graph obtained, we can formulate the hypothesis that the configurations

of the Akamai servers Google DNS users are redirected to allow them to expe-

rience a performance close to the one of the local DNS service users. This hy-

pothesis is confirmed by our prediction where we give to Akamai servers serving

the local DNS users a minimum congestion window equivalent to the one of the

Akamai servers serving Google DNS users. We estimate the gain in throughput

corresponding to this intervention to be 32%. By comparison, the gain in terms

of throughput corresponding to the redirection of the local DNS users to closer

servers is estimated to be only 14%.

We demonstrated the potential of adopting a causal approach using counter-

factuals. Counterfactuals are one of the possible way to approach Causality and

we use this technique to evaluate the effect of a parameter on the system perfor-

mance by predicting the effect that changing its parent would have with the rest

of the system parameters left unchanged. We manage to answer questions such

as “How would the system behave under the condition C1 if one of its parameter

was to behave as it has done under the condition C2, knowing that C1 and C2
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are exclusive ?”. The ability to make predictions for such scenarios illustrates

the power of the inherent mechanisms underlying the development of Causality.

Counterfactuals are relatively complex to study, explain and even more so to pre-

dict. However, thanks to the Bayesian network as a representation of the causal

model of our system, using counterfactuals becomes easier.

Complex interventions, where many parameters are modified simultaneously,

require important resources in terms of the amount of data and computational

power. The results presented in this paper document a first successful attempt.

Based on this work, we are confident that the underlying tools and methods can

be improved to reduce the required resources and increase both, the accuracy of

such predictions and the range and complexity of the interventions that one can

consider.

We see the following directions for future work:

• By fitting a parametric model we could extend the prediction of counter-

factuals for cases where the two conditional probabilities have only partial

overlap .

• The weight of an edge, X → Y , corresponds to what is known as the direct

effect of one parameter, X on another, Y . However, in the absence of lin-

earity, the estimation of the direct effect of X on Y is complex and requires

predicting the effects of several interventions [Pearl, 2013] for each direct

effect, which requires a lot of computational resources.

• Regarding a selection criterion, the absence of any assumption regarding the

distribution of the parameters and the nature of their dependencies prevents

us from using a classical selection criterion such as maximum likelihood.

Two possibilities could be used instead: (i) A Bootstrap approach, where,

by re-sampling the original dataset to create new datasets, we could infer

one causal model for each dataset and, by comparison, derive a confidence

level for our model. This approach is simple to implement. However, the

inference of the causal model presented in this paper took up to one week

running on a cluster of 30 machines. Therefore, a bootstrap approach re-

quires important resources in terms of computation time. On the other hand,

when creating sub-datasets, we work with smaller datasets, which has an

impact on the accuracy of the results. (ii) We could use the independence

test p-values to obtain a confidence in the presence or absence of any edge

in the graph we obtain to give us a confidence in the model. This approach
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becomes complex due to the number of tests to consider for a given pair of

nodes and no general criterion has been designed as this stage of our work.

• We had to design several solutions to build a reliable framework for causal

knowledge inference [Hours et al., 2015] that implied an increase in com-

plexity and resource requirements. While we have used very small datasets

to validate our approach and to show its benefits, there are many directions

to explore to make Causal reasoning work more efficiently on large quanti-

ties of data thanks to the use of distributed computing. The parallelization

of the independence testing for causal model inference [Hours et al., 2015]

and the parallelization of the estimation of interventions (see Appendix B.2)

fit very well a Big Data approach. Working with a bigger and partitioned

dataset on which parallel computing could be done, would improve the per-

formance of the Causal knowledge inference framework we presented in

this work.
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Streibelt, F., Böttger, J., Chatzis, N., Smaragdakis, G., Feldmann, A., 2013. Exploring edns-client-

subnet adopters in your free time. In: IMC. ACM, pp. 305–312.

Tariq, M., Motiwala, M., Feamster, N., Ammar, M., 2009. Detecting network neutrality violations

with causal inference. In: CoNEXT. ACM, pp. 289–300.

Tariq, M., et al., 2008. Answering what-if deployment and configuration questions with WISE. In:

SIGCOMM. ACM, pp. 99–110.

Zhang, K., Peters, J., Janzing, D., B., S., 2012. Kernel-based conditional independence test and

application in causal discovery. CoRR abs/1202.3775.

26



Appendix

A Study of the Impact of DNS Resolvers on CDN

Performance Using a Causal Approach

Hadrien Hoursa,b, Ernst Biersackc, Patrick Loiseaua,

Alessandro Finamored,e, Marco Melliae

a EURECOM, email: firstname.lastname@eurecom.fr
b ENS Lyon, email: firstname.lastname@ens-lyon.fr

c Caipy, email: erbi@e-biersack.eu
d Telefonica, email: firstname.lastname@telefonica.com

e Politecnico di Torino, email: firstname.lastname@polito.it



Appendix A. Causal model inference

Appendix A.1. PC algorithm

We have described the PC algorithm in Section 2.1. In Figure A.7 we now illustrate the

different steps. In this example we try to infer the causal model of the system corresponding to

four parameters, W, X, Y, Z. We could detect two independences: I1 = (X y Y |W) and I2 = (W y

Z|{X, Y}). In Figure A.7b and Figure A.7c the edge between X and Y and the edge between W and

Z are removed for the independences detected with a conditioning set size of 1 and 2 respectively.

Because of detected X y Y but X 6y Y |Z but we can orient X – Z – Y. However, the orientation of

the second V-structure, X – W – Y, cannot be deduced from the set of detected independences. The

three orientations presented in Figure A.7e, Figure A.7f and Figure A.7g verify the independences

I1 and I2.

(a) Complete

graph

(b) X y Y |W (c)

W y Z|{X, Y}

(d) Orientation

V-structure

(e) Orientation

V-structure

choice 1

(f) Orientation

V-structure

choice 2

(g) Orientation

V-structure

choice 3

Figure A.7: Different steps of the inference of causal model corresponding to a system of four

parameters, {W, X, Y, Z} with the detected independences I1 = (X y Y |W) and I2 = (W y Z|{X, Y})

Appendix A.2. Independence test

The accuracy of the PC algorithm comes from the accuracy of the test used to test parameter

independences. Compared to our previous works [Hours et al., 2015], one difference comes from

the presence of a categorical variables, like the DNS service used by the clients observed in our

study or the destination IP address. The test we use in our study is the KCI test [Zhang et al., 2012]

combined with a bootstrap approach to solve numerical issues in its use of Cholesky factorization

and to parallelize computations and decrease the algorithm completion time [Hours et al., 2015].
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To validate the use of the KCI test in the presence of categorical variable, we generate two

artificial datasets as follows:

• Dataset 1:

– X1 is a categorical variable with 4 levels: X1 ∼ U{c1, c2, c3, c4}.
– X2 is a deterministic mapping of X1, adding 20% of Gaussian noise: X2 = f2(X1)+ε.

– X3 is a deterministic mapping of X1, adding 20% of Gaussian noise, X3 = f3(X1)+ε.

– X4 is a function of X2 and X3, adding 20% of Gaussian noise: X4 = f4(X2, X3) + ε.

– with

∗ f2 and f3 defined as fi(c j) = ci, j for j ∈ {1, 2, 3, 4}, with ci j , ci′ j′ if i , i′ or

j , j′

∗ f4(x, y) =
√

x + y.

∗ ε an error terms following normal distribution with a mean equals to 0 and a

variance equals to 0.2 × σ fi(Xi).

• Dataset 2:

– X1 is a categorical variable with 4 levels: X1 ∼ U{c′
1
, c′

2
, c′

3
, c′

4
}.

– X2 is a deterministic mapping of X1, adding 20% of Gaussian noise: X2 = f ′
2
(X1)+ε.

– X3 is a categorical variable with 4 levels, the probability of each level depends on

X1: X3 = f ′
3
(X1) + ε.

– X4 is a function of X2 and X3, adding 20% of Gaussian noise: X4 = f ′
4
(X2, X3) + ε.

– with

∗ f ′
2

defined by, f ′
2
(c′

j
) = c2, j for j ∈ {1, 2, 3, 4},

∗ f ′
3
(c′

j
) ∈ {c′′

1
, c′′

2
, c′′

3
, c′′

4
}, each value c′′

k
drawn from 4 different distributions,

chosen base on the value of c′
j

∗ f ′
4
(x, y) = c(x)+

√
y, with c(x) defined as a deterministic mapping of x, similarly

to f ′
2
.

∗ ε an error terms following normal distribution with a mean equals to 0 and a

variance equals to 0.2 × σ fi(Xi).

The graphical causal model corresponding to these dependencies is presented in Figure A.8.

The definition of the two datasets leads to two independences I1 = (X2 y X3|X1) and I2 = (X1 y

X4|{X2, X3}).
We test different independences for 20 artificial datasets of size 1000, generated according the

definitions given above. The average p-values of the different tests for the two classes of artificial

datasets are presented in Table A.3. We can see that the KCI performs correctly even in the

presence of complex dependencies including the presence of categorical variables. The conclusion

of this study is that the KCI performs as expected in the presence of categorical variable and can

be used in our study.
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Figure A.8: Graphical causal model illustrating the dependencies of the artificial dataset parame-

ters

Table A.3: Results of the KCI test when testing independences with the presence of categorical

parameters

Independence p-value dataset 1 p-value dataset 2

X1 y X2 0 0

X1 y X3 0 0

X1 y X4 0 0

X2 y X3 0 0

X2 y X4 0 0

X3 y X4 0 0

X1 y X2|X3 0 0

X1 y X2|X4 0 0

X2 y X3|X1 0.4 0.6

X2 y X3|X4 0 0

X3 y X4|X1 0 0

X3 y X4|X2 0 0

X1 y X4|X2 2e-14 2e-2

X1 y X4|X3 0 3e-4

X1 y X4|{X2, X3} 0.7 0.5

Appendix A.3. Markov Equivalence class

In our study of the impact of the DNS service choice on the Akamai CDN performance,

we obtain the Bayesian network represented in Figure A.9. Using our understanding of CDN

and the parameters present in our model, we orient the undirected edges and obtain the Bayesian

network representing the causal model of our system represented in Figure A.10. Using the Tetrad

software [Spirtes et al., 2001], it is easy to represent all the members of what is called the Markov

Equivalence Class. There can be several graphs that represent the set of independences that were

detected from the tests performed on a given series of observations. The set of all these graphs

can be represented by a partially oriented graph, Figure A.9. In Figure A.11 we represent the eight

members of the Markov Equivalence Class corresponding to the set of independences that were

3
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Figure A.9: Output of the PC algorithm when no domain knowledge is used
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Figure A.10: Bayesian network representing the causal model of Web performance using two

different DNS: the public Google DNS and the DNS of the local ISP

detected from the series of tests performed on the observations of the parameters of our system.

Appendix B. Predicting interventions

Appendix B.1. Theory

Appendix B.1.1. Atomic interventions
The description of atomic intervention was presented in Section 2.2.1. In this section, we only

repeat the rules of Do-calculus that will be used in the following sections to present the details of

our method.

If we use G to denote the Bayesian graph that represents the causal relationships between the

parameters of our system, we use GX to denote the sub-graph of G where all the edges entering

X are removed and GX the sub-graph of G where all the edges exiting X are removed. We can

use the rules of do-calculus from [Pearl, 2009] to estimate the distributions of the parameters of
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our system after an intervention based on their distributions prior to this intervention. Note that

these rules do not rely on any assumption regarding the distributions or functional dependencies

of the parameters. In particular, P represents the (possibly multivariate) probability distribution

specified by the probability mass function or probability density function depending on the nature

of the parameters.

Theorem 2 (3.4.1 from [Pearl, 2009]). (Rules of do calculus) Let G be the directed acyclic graph

associated with a causal model [...] and let P(·) stand for the probability distribution induced by

that model. For any disjoint subsets of variables X, Y and Z we have the following rules.

Rule 1(Insertion/deletion of observation):

P(y|do(x), z,w) = P(y|do(x),w) if (Y y Z | X,W)GX
(B.1)

Rule 2(Action/observation exchange):

P(y|do(x), do(z),w) = P(y|do(x), z,w) if (Y y Z | X,W)GXZ
(B.2)

Rule 3(Insertion/deletion of intervention):

P(y|do(x), do(z),w) = P(y|do(x),w) if (Y y Z | X,W)G
XZ(W)
, (B.3)

where Z(W) is the set of Z-nodes that are not ancestor of any W-nodes in GX .

Appendix B.1.2. Enforcing intervention with a given probability
In our study of the impact of the DNS service on CDN performance (throughput), we are

interested in estimating the effect of interventions on parameters influenced by the DNS service

and influencing the throughput. In such case, we do not limit ourselves to atomic interventions but

we are interested in intervening on a given parameter to change its distribution.

From [Pearl, 2009, Section 4.2], if we want to predict how an intervention on X affects Y,

where the intervention on X is enforced with the conditional probability distribution f ∗(X|Z), we

obtain:

f (y)| f ∗(x|z) =

∫

DX

∫

DZ

fY |do(X),Z(y, x, z) f ∗(x|z) f (z)dxdz. (B.4)

From Equation (B.4), one should notice that we need to integrate on the intervention param-

eter, X. For performance reasons, the estimations of fY |do(X),Z) are made in parallel on different

machines. Therefore, the estimation of fY |do(X),Z(y, x, z) is done on a different machine for each x.

As the data used in our study is not publicly available, we do not present the different parameteri-

zations of the density estimation used for predicting f (y)| f ∗(x|z).

Appendix B.2. Adapting the theory to our problem

Appendix B.2.1. Intervening on the DNS service
To understand how choosing one DNS service instead of another impacts CDN performance,

we want to predict the throughput of a client who used a DNS service s1 if the same client would

have used a different DNS service, s2, instead. To do so, we are interested in the impact of the DNS

service on a given parameter, X, that in turn influences the throughput. We use the Theorem 2 and
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Equation (B.4) to estimate the distribution of the throughput of a client using a given DNS service,

s1, if we intervene on the distribution of a parameter X, forcing its distribution to follow the one of

X if the DNS service s2 would have been used instead. This study is equivalent to study the impact

of the parameter X for clients using the DNS service s1 when intervening on the parameter X

enforcing this intervention with the distribution fX |DNS=s2
. If we denote Y the parameter capturing

the performance of CDN users5, we want to estimate:

f (Y |DNS = s1, do(X ∼ f (X|DNS = s2))). (B.5)

If we denote W the set of parameters blocking the spurious associations between X and Y,

according to Theorem 2, we have

f (Y | DNS = s1|do(X ∼ f (X|DNS = s2))) =

∫

X

f (Y |DNS=s1 ,do(X=x))
︷                                          ︸︸                                          ︷
∫

W

f (Y | X = x,DNS = s1,W) f (W)

f (X = x | DNS = s2)P(DNS = s2) (B.6)

We can see from Equation (B.6) that the distribution of Y for users of the DNS s1, if we

intervene on X and fix its distribution to follow the distribution of X seen by the users of DNS

s2, is a weighted sum of the distribution of Y for DNS = s1 after an atomic intervention on X

(do(X=x)) with weights being the probability of observing X = x under DNS = d2.

Such approach allows to (i) Capture the effect of the DNS on a given mechanism influencing

the performance of CDN users; (ii) Divide our prediction in a set of predictions of atomic inter-

ventions that can be estimated from the results of Theorem 2. Finally, we can use Equation (B.4)

to estimate the final distribution of Y for the intervention on X that modifies its distribution.

Appendix B.2.2. Interventions and conditional multivariate distributions
It should be noticed that, as X is a continuous variable, the probability of observing a given

value is 0. Therefore, instead of selecting samples for which X = x is observed, we define an

interval Ix corresponding to [x−δX; x+δX] and assume that the samples for which the X parameter

falls into this interval can be approximated to take the value x.

From the samples where X ∈ Ix and DNS = s1, we estimate the cumulative distribution

function (CDF) of Y and W conditionally to DNS = s1. We then estimate f (Y |X = x,W =

w,DNS = s1) using the Sklar theorem.

The Sklar theorem stipulates that, if F is a multivariate cumulative distribution function with

marginals (F1, . . . , Fi, . . . , Fn), there exists a copula C such that

F(x1, . . . , xi, . . . , xn) = C(F1(x1), . . . , Fi(xi), . . . , Fn(xn)). (B.7)

If we take the example of the bivariate distribution of two parameters X1 and X2, which

marginals are denote F1 and F2 and f1 and f2 for the CDFs and PDFs respectively, we obtain,

taking the derivative of Equation (B.7) with respect to X1 and X2:

f (x1, x2) = c(F1(x1), F2(x2)) f1(x1) f (x2), (B.8)

5In our study, we use the throughput to measure user performance
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with f the bivariate PDF of X1 and X2.

As we have:

fX1 |X2
(x1, x2) =

f (x1, x2)

f2(x2)
, (B.9)

for values of X2 for which f2(x2) , 0, we can deduce that:

fX1 |X2
(x1, x2) = c(F1(x1), F2(x2)) f1(x1). (B.10)

We can then estimate the conditional CDFs, F(Y |X = x,DNS = s1) and F(W |X = x,DNS =

s1), using kernels and the samples where X ∈ Ix and DNS = s1, and use the previous formula to

estimate f (Y |X = x,W = w,DNS = s1):

f (Y |X = x,W = w,DNS = s1) =c(F(Y |X = x,DNS = s1), F(W |X = x,DNS = s1))

f (Y |X = x,DNS = s1), (B.11)

Finally, by integrating Equation (B.6) on W we obtain the distribution f (Y |do(X = x),DNS = s1).

We then select the samples for which DNS = s2 and use normal kernels to estimate f (X|DNS =

s2) and frequencies to estimate P(DNS = s2).

After these steps, we have all the factors present in Equation (B.6) and we can integrate over

X to obtain the distribution of Y post intervention.

Appendix B.2.3. Estimation of marginals
Some practical issues are silenced in the sequence of steps described in Appendix B.2.2:

1. How to define the intervals IX ?

2. As we are working with continuous variables, the two distributions conditionally to dif-

ferent DNS values might not have the same support. How do we define the conditional

probability so that we have common values to integrate on ?

The last point is solved by always defining the PDFs domains as equally spaced points be-

tween the minimum and maximum observed value of the corresponding parameter in the whole

dataset (DNS = s1 or DNS = s2). We use normal kernels to estimate the different distributions.

The first point, however, is more complicate as many possibilities exist and there is the con-

straint of finding enough samples in each interval to estimate the CDFs from which the copula

parameters will be estimated and the conditional distributions derived.

Several solutions have been tested

• Variable bin width histogram,

• Fixed bin width and interpolation,

• Fixed bin width, filtering, rescaling.
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Variable bin width histograms. The first method consists in fixing an objective number of sam-

ples and, starting from a fixed width bin histogram, merging adjacent bins until obtaining bins of

different size but with a minimum number of samples:

Pros This method ensures the maximum number of atomic predictions being successful.

Cons As many of the parameters we observe have a long tail distribution, and as it is often in

the tail of the parameter distributions that we find the values for interesting predictions,

we obtain very large bins for the extreme values of the intervention parameter. The ap-

proximation stating that this bin represents a single value is then too strong. Additionally,

when multiplying the atomic intervention fixing X parameter to the value x by the value of

the PDF conditionally to the other DNS for X = x (Equation (B.6)) we need to take into

account the actual range of X that the atomic intervention represents to have a consistent

approximation.

Fixed bin width. The second method is going in the opposite direction. We use histograms with

fixed bins and then try to make predictions of f (Y |do(x)) with the number of samples we found

in a given bin corresponding to a X value. If the estimation of the prediction fails, then we use

interpolation of the f (Y |do(x) for the X values where the post intervention PDF of Y could be

estimated.

Pros This method solves the issues of approximation inconsistency of the variable bin width

method. We fix the bin width and decide on the approximation of assimilating an interval

to a given value.

Cons It can often happen that we manage to predict f (Y |do(x) even when there are few sample

in the interval Ix corresponding to the x value. However, with very few samples, it is very

likely that this estimation is not accurate. This lack of accuracy impacts in a very negative

way the overall post intervention PDF accuracy, as the PDF of Y post intervention that

could be computed with few values will be used in the interpolation to recover the PDF Y

for x values where the estimation of the post intervention PDF failed.

Fixed bin width and high pass filter. The last method, the one eventually adopted, is based on the

fact that, if there are very few samples in a given area of the distribution of X|DNS = s1 then this

value is very unlikely to be observed and, as the previous method will impact negatively the overall

results by including these samples, we consider that the PDF of X|DNS = s1 in the domains with

few samples is null.

This method uses a fixed bin histogram and selects only the bins where a minimum number

of samples is observed to predict atomic interventions. After predicting the distribution of Y after

intervention we rescale it based on the following observation:

∫

Y

f (Y |do(X = x),DNS = s1)dY = 1 (B.12)

In practice, instead of varying the bin width and threshold we do the following: We select an

objective number of samples, ∆S , under which the atomic intervention f (Y |X2 = 0, do(X = x)) is

considered as null, and search for the optimal quantization leading to the maximum bins with a

number of samples ≥ ∆S . To do so we use this very simple algorithm:
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Data: Vector X

Result: Set of bins (X f inal) with fixed width (δ) defining the intervals around the values on

which atomic interventions will be predicted:

nB = 10;

nVold = 0;

nVcur = 1;

Xold =[];

Xcur = [];

Hold = [];

Hprev = [];

while nVcur > nVold do
Ht, Et = hist(X, nB);

nVold = nVcur;

nVcur = nvalues(Ht > ∆S );

Xold = Xcur;

Xcur = Et;

Hold = Hcur;

Hcur = Ht;

nB = 2 ∗ nB;
end

nV f inal = nVold;

X f inal = Xold;

H f inal = Hold ;

δ = X f inal(2) − X f inal(1);

Algorithm 1: Dynamic quantization
This method solves the previous issues. There is a risk of not having any prediction for

values in the tail of the distribution of X|DNS = s1, that can represent the zone of overlap of

the two distributions X|DNS = s1 and X|DNS = s2. However, limitations due to the lack of

samples cannot be overcome by simple approximations as seen in the second method. The only

way to solve this issue is to use parametric distributions (for example a mix of normal, gamma,

beta, log-normal distributions). The studies made so far have shown that the approximation of

the distributions of the parameters of our systems for values that are actually observed offers an

acceptable accuracy. However, these models become inaccurate as soon as we try to use them to

estimate the distribution of a parameter for values that have not been observed.

Appendix C. Parameterization of the method

In this section, we present a study that aims to answer the following questions:

1. How to choose the copula family that will model the dependencies between the different

marginals ?

2. In which proportion the absence of values observed for both conditional distributions im-

pacts the prediction accuracy and how to improve the accuracy in this case ?

3. As discussed previously, we estimate a complex intervention as the weighted average of

atomic (simpler) interventions. Each atomic intervention is estimated on a sub domain
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corresponding to an (small) interval around the value corresponding to our atomic inter-

vention. On one hand, the bigger the interval is the more data we have to calibrate our

model and the better prediction for the corresponding atomic intervention will be. On the

other hand, if we manage to estimate many atomic interventions, we will have more inputs

for estimating the global intervention we are interested in. The question boils down to find-

ing the trade-off between the number of atomic interventions we estimate and the quality

of each of these estimates.

To study these aspects we need a ground truth to estimate the accuracy of our prediction for

different strategies and parameterization. Therefore, we generate a set of artificial datasets where

the intersection between the two conditional distribution (DNS = s1 and DNS = s2) domains is

modified and its impact on the accuracy of our method is studied.

Appendix C.1. Simulated dependencies

To simulate the same situation as the one met in the study of DNS service impact on the CDN

performance, we randomly generate 4 parameters, X1, X2, X, Y, with dependencies illustrated by

the graph presented in Figure C.13. To be closer to the situation observed in our study of the

impact of DNS on CDN performance, we generate X1 by randomly re-sampling the throughput

observed in this study and we generate X2 by randomly re-sampling the observed DNS from the

same study. We eventually convert X2 to binary value (0 or 1). The presence of a categorical data

(the DNS in the corresponding study) is an important aspect that we want to keep in this study.

Appendix C.2. Intervention prediction

First, from the causal model, G, represented by the Bayesian network of Figure C.13, we can

use the d-separation criterion to deduce the following independences:

• (X y Y |X1, X2)GX

• (X2 y X)GX2

From the do-calculus rules from [Pearl, 2009] we can deduce that the distribution of Y under

the condition X2 = 0 intervening on X to fix its distribution to X ∼ X|do(X2 = 1) is given by

f (Y |X2 = 0, do(X ∼ X|do(X2 = 1))) =

∫

X

∫

X1

fY |X,X1 ,X2
(x, x1, 0) fX1

(x1) fX |X2
(x, 1)Pr(X2 = 1)dx1dx

(C.1)

Appendix C.3. Ideal situation

In this case we generate our first artificial dataset as follows:

X1 = random re-sampling(Throughput)

X2 = random re-sampling(DNS)

X ∼





Γ(k1, θ1) +
√

X1 ∗ µ1

2
+ ε : X2 = 0

Γ(k2, θ2) +
√

X1 ∗ µ2

2
+ ε : X2 , 0
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Y ∼





10.
√

5.X + 10.X1 + ε : X2 = 0

25.
√

3.X + 6.X1 + ε : X2 , 0

with ε representing an error term.

In this first case we chose the following values {k1 = 5, θ1 = 1.0, k2 = 2.0, θ2 = 2.0, µ1 =

5, µ2 = 8}. The resulting distributions are presented in the Figure C.14. To make sure that the

parameters are correctly generated, we infer the corresponding causal model using the PC algo-

rithm [Spirtes and Glymour, 1991] with the independence test from [Zhang et al., 2012].

Notice that, for testing our method under the same main constraint we limit our sample size

to 10000 (against 7500 in the real case scenario) and we keep the ratio between the number of

samples where X2 = 0 is observed and the number of samples where X2 = 1 is observed equal to

the ratio between the number of connections where the ISP DNS service was observed (80%) and

the number of connections where the Google DNS service was observed (20%) in the real case

scenario.

Appendix C.3.1. Prediction of Y given X2 = 0 after intervention on X giving it the

distribution of X given X2 = 1
Using the Equation (C.1) we are able to compute the PDF f (Y |X2 = 0, do(X ∼ X|X2 = 1)) and

obtain the expected value E[Y |X2 = 0, do(X ∼ X|X2 = 1)].

As mentioned in Appendix B.2.3, the choice of the number of bins and the threshold to decide

or not to estimate the post atomic intervention PDF, should have an impact on the prediction

accuracy. Consequently, in this ideal scenario where the two distributions of X|X2 = 0 and X|X2 =

1 have very similar domains, we vary these two parameters and study their impact on the prediction

accuracy.

To obtain the distribution of fY |X2=0,do(X∼X |X2=1) we generate X and Y as following:

X ∼ Γ(k2, θ2) +
√

X1 ∗
µ2

2
+ ε : X2 = 0

Y ∼ 10.
√

5.X + 10.X1 + ε (C.2)

We obtain an expected value of E[Y|X2 = 0, do(X ∼ X|X2 = 1)] of 101.5.

We summarize the different results we obtained in Table C.4.

We can see that the use of a T-copula (T-cop) in the modeling of the multi dimensional PDF

gives slightly better results, in terms of accuracy, than the modeling of multidimensional PDF

with a Gaussian copula (G-cop). An interesting advantage of the T-copula comes from its ability

to capture tail dependencies between the different components of the multivariate distribution.

If X is a d-dimensional random vector following a multivariate t -distribution with ν degrees

of freedom, mean vector µ and a positive-definite dispersion Σ, denoted X ∼ td(ν, µ,Σ), [Demarta

and McNeil, 2005] showed that the tail dependency coefficient is given by:

λ = 2tν+1(
√
ν + 1

√

1ρ/
√

1 + ρ) (C.3)

where ρ is the off-diagonal element of the correlation matrix implied by the normalization of the

scatter matrix Σ.

This result shows that, by tuning the different parameters of the T-copula we can better capture

the tail dependencies between the different components of the multi-variate distribution we want to
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Table C.4: Effect of varying ∆S on the prediction accuracy for the first artificial dataset for two

different multi dimensional PDF modeling, using a T-copula (T-cop) and Gaussian copula (G-cop).

#AI stands for the number of Atomic Interventions

∆S Ê[Y|X2 = 0, do(X ∼ X|X2 = 1)] Error #A.I. #Failures

G-cop T-cop G-cop T-cop G-cop T-cop

20 93.80 96.22 7.8% 5.5% 195 0 (0%) 5 (2.6%)

30 93.28 95.90 8.6% 6.0% 118 0 (0%) 3 (2.5%)

50 95.40 96.79 6.5% 5.2% 76 0 (0%) 2 (2.6%)

70 94.41 96.94 7.5% 5.0% 54 0 (0%) 1 (1.9%))

100 94.24 96.74 7.6% 5.2% 39 0 (0%) 0 (0 %)

model. This property is really interesting when modeling communication networks performance,

namely the throughput, as it is often the case that we find dependencies in the tail of parameter

distributions, such as the one of delay or loss, with the throughput. As stated previously, the

counter part of the T-copulae in practice comes from the higher sensitivity to data shortage.

Very likely due to the functions used for generating the artificial dataset and the use of a

Gamma distribution, the T-copula is not always able to model the PDFs fY |X,X1 ,X2
(y, x, x1, 0) that

are necessary to compute the post intervention PDF of Y in Equation (C.1).

It is also important to notice that the choice of using a Gaussian copula was motivated by

the prediction of an intervention in the opposite case ( fY |do(X X |X2=0),X2=1(y)), see next section. In

addition, we generated the artificial dataset in order to have the same domains for X|X2 = 0 and

X|X2 = 1 and do not observe the same tail dependence as we would have for the throughput in

the real case. From this perspective, the usage of T-copula is not fully justified and the usage of a

Gaussian copula, for this particular dataset, should still be preferred.

Appendix C.3.2. Prediction of Y given X2 = 1 after an intervention on X giving it

the distribution of X given X2 = 0
Without repeating the explanations given in the previous section, we use Equation (C.1) to

predict the expected value of E[Y |X2 = 1, do(X ∼ X|X2 = 0)].

The results are presented in Table C.5 in which we compared the expected value obtained

using Equation (C.1) and G-copulae or T-copulae with the value obtained from the definitions

of the parameters, Equation (C.2). We also study the impact of the number of samples used for

estimating the atomic post-intervention distribution, ∆S . Note that by increasing the minimum

number of samples required to estimate a given atomic intervention we decrease the number of

atomic interventions used for predicting the distribution of f (Y |X2 = B, do(X ∼ X|X2 = ¬B) (with

B ∈ 0, 1), represented by the parameter #AI.

Several important remarks can be made from the results we obtain:

• The usage of a T-copula for modeling the PDF of fY |X,X1,X2
(y, x, x1, 0) for different values

of X fails more than 50% of the times.

• The utilization of wider bins, gathering more data to approximate X = x, does not improve

the the success rate of the predictions of the PDFs post-intervention.
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Table C.5: Effect of varying ∆S on the prediction accuracy for the first artificial dataset for two

different multi dimensional PDF models, using a T-copula (T-cop) and Gaussian copula (G-cop).

#AI stands for the number of Atomic Interventions

∆S Ê[Y|X2 = 1, do(X ∼ X|X2 = 0)] Error #A.I. #Failures

G-cop T-cop G-cop T-cop G-cop T-cop

20 173.9 N.A. 2.5% N.A. 43 0 (0%) 23 (53%)

30 173.9 N.A. 2.5% N.A. 32 0 (0%) 20 (63%)

50 175.7 N.A. 1.4% N.A. 17 0 (0%) 13 (76%)

70 175.7 N.A. 1.6% N.A. 13 0 (0%) 10 (77%)

100 174.0 N.A. 2.3% N.A. 9 0 (0%) 8 (89%)

• The usage of a G-copula gives better results (in terms of prediction accuracy) than the

previous predictions of interventions.

Remarks. It should be noticed that, despite the apparent symmetry between the prediction of Y

conditionally to X2 = 1 if we perform an intervention on X where we fix its distribution to the one

of X|X2 = 0 and the one of the prediction of the value of Y conditionally to X2 = 0 if we perform an

intervention on X where we fix its distribution to the one of X|X2 = 1, the problematic is different.

From an external point of view, looking at the completion time and success rate, Gaussian copulae

are less data demanding. We generated X2 by randomly re sampling the DNS parameters from our

real dataset. Doing so, we have 80% of the samples where X2 = 0 is observed against 20% where

X2 = 1 is observed.

This second scenario shows the sensitivity of our approach to resource limitation. Even in this

“optimal scenario” where both conditional PDF of X|X2 = 0 and X|X2 = 1 have the same domains,

the shortage of data for the second conditional PDF prevents us from using a model which could be

more accurate (T-copula). This can be seen when comparing the predictions made in this section

with the ones made when we had more data ( Appendix C.3.1) where the T-copula model gave

more accurate predictions.

Appendix C.3.3. Concluding remarks
In this section we presented the optimal case where we have both conditional PDFs having

almost perfectly overlapping domains. We tried to predict interventions where we condition on

one value of the categorical parameter, X2, and intervene on another parameter, X, and fix its

distribution to follow the conditional distribution corresponding to the complementary value of

the categorical parameter. The results of this study represent two important findings:

• Our method works and makes an accurate prediction (error < 3%) when enough data is

present

• The use of T-copulae better captures the multi dimensional PDFs dependences but fails as

soon as the data becomes scarcer, while G-copulae still give an accurate prediction.

Again, these conclusion are made using an artificial dataset (see definition in Appendix C.3)

where we could not faithfully mimic the tail dependencies of the parents of the throughput that
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Table C.6: Effect of varying ∆S on the prediction accuracy for the second artificial dataset for two

different multi dimensional PDF modeling, using a T-copula (T-cop) and Gaussian copula (G-cop).

#AI stands for the number of Atomic Interventions

∆S Ê[Y|X2 = 0, do(X ∼ X|X2 = 1)] Error #A.I. #Failures

G-cop T-cop G-cop T-cop G-cop T-cop

20 96.73 97.12 4.7% 4.3% 195 0 (0%) 5 (2.6%)

40 95.97 96.13 5.5% 5.3% 97 0 (0%) 2 (2.1%)

60 96.39 96.69 5.1% 4.8% 60 0 (0%) 1 (1.7%)

80 95.16 95.87 6.3% 5.6% 48 0 (0%) 1 (2.1%)

100 94.24 95.05 7.2% 6.4% 39 0 (0%) 0 (0.0%)

we observed in our real case scenario nor the variability of the observed values. These choices are

inherent to the design of an artificial dataset and should not be seen as a limitation of the presented

method.

Appendix C.4. Removing samples for X | X2 = 1 outside of the zone of the con-

centration of the distribution fX|X2=0

To estimate the impact of the absence of some values in both domains of the conditional PDFs

of X|X2, we remove some samples from the dataset where X2 = 1. For this second artificial dataset,

we do not remove samples in the domain where the distribution fX |X2=0 takes its biggest values.

Figure C.16 represents the original distributions of X|X2 (our first artificial dataset) and Figure C.17

presents the resulting distributions of X|X2 after removing samples from the distribution of X|X2 =

1 (we remove the samples for X2 = 1 where X ∈ [0, 5] ∪ [15, 20]).

As in Appendix C.3.1 and Appendix C.3.2, we estimate the expected value of Y conditionally

to X2 = 0 when we intervene on X and we fix its distribution to the one of X ∼ X|X2 = 1. We also

estimate the expected value of Y conditionally to X2 = 1 when we intervene on X and we fix its

distribution to the one X ∼ X|X2 = 0

We first estimate the effect of intervening on X to fix its distribution to the one of X ∼ X|X2 =

1. We can see from Table C.6 that the conclusions drawn previously are still valid when we remove

samples from the distribution of X|X2 = 1. We can make the following remarks:

• The precision decreases with the increase of ∆S and the decrease of the number of atomic

interventions,

• The number of failures of the multidimensional PDF modeling using a T-copula is sensibly

similar to the number of failures that were observed for the first dataset.

When looking at the opposite case (conditioning on X2 = 1 and giving to X the distribution of

X ∼ X|X2 = 0) we can observe that the modeling of the conditional PDFs using a T-copula fails

often and prevents the estimation of the post-intervention PDF, see Table C.7. The estimation of

conditional PDF when we use G-copulae gives very good results.
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Table C.7: Effect of varying ∆S on the prediction accuracy for the second artificial dataset for two

different multi dimensional PDF modeling, using a T-copula (T-cop) and Gaussian copula (G-cop).

#AI stands for the number of Atomic Interventions

∆S Ê[Y|X2 = 1, do(X ∼ X|X2 = 0)] Error #A.I. #Failures

G-cop T-cop G-cop T-cop G-cop T-cop

20 176.63 N.A. 0.6% N.A. 40 0 (0%) 23 (57.5%)

40 176.95 N.A. 0.4% N.A. 22 0 (0%) 14 (63.6%)

60 178.21 N.A. 0.3% N.A. 12 0 (0%) 10 (83.3%)

80 179.73 N.A. 1.2% N.A. 10 0 (0%) 9 (90.0%)

100 177.43 N.A. 0.1% N.A. 9 0 (0%) 8 (88.9%)

Appendix C.4.1. Concluding remarks
In this scenario we removed samples from our initial dataset to study the impact of data short-

age on our method precision. In this case, we removed samples from the conditional distribution

X2 = 1 corresponding to x values where the conditional probability distribution fX |X2=0 takes small

values. We predicted the effect on Y |X2 = b when intervening on X|X2 = b and enforcing this

intervention with probability fX |X2=b̄, where b can take the value 0 or 1 and b̄ is b complementary.

The prediction of this intervention consists in i) Predicting the effect, on Y, of the atomic

intervention fY |do(X=x),X2=b ii) Assign to each atomic intervention a probability being fX |X2=b̄.

f (Y |do(X ∼ X|do(X2 = b̄), X2 = b) =

∫

X

f (Y |do(X = x), X2 = b) f (X = x|X2 = b̄)dx (C.4)

Therefore, the prediction is more complex in the case where we give to fY |do(X=x),X2=b(y, x) a prob-

ability fX |X2=b̄(x) > 0 but no value is actually observed for X = x|X2 = b.

This appears in the second case where we want to predict the distribution fY |X2=1,do(X∼X |X2=0).

As there are x values for which X|X2 = 1 is not observed, we cannot enforce the conditional

distribution fY |do(X=x)|X2=1(y, x) with the distribution fX |X2=0(x).

Nevertheless, because we removed observation corresponding to x values where fX |X2=0(x)

takes small values, the impossibility to compute the result of Equation (C.4) for some x values

has a relatively small impact on the estimation of the overall post-intervention distribution and our

method keeps performing well.

The next section presents a more complex scenario where we remove samples in intervals

where the PDF of X|X2 = 0 takes important values (values of x where X|X2 = 0 has a high

probability).

Appendix C.5. Removing samples X | X2 = 1 at the zone of the concentration of

the distribution fX|X2=0

We generate a third artificial dataset with a distribution X|X2 as represented in Figure C.18.

For this new dataset, we remove samples from the domain where the distribution fX |X2=0 takes its

biggest values. The results for the two interventions are presented in Tables C.8- C.9 with:

• The prediction of expected value of Y after intervention corresponding to PDF of Y:

fY |X2=0,do(X∼X |X2=1)(y) in Table C.8
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Table C.8: Effect of varying ∆S on the prediction accuracy for the third artificial dataset for two

different multi dimensional PDF modeling, using a T-copula (T-cop) and Gaussian copula (G-cop).

#AI stands for the number of Atomic Interventions

∆S Ê[Y|X2 = 0, do(X ∼ X|X2 = 1)] Error #A.I. #Failures

G-cop T-cop G-cop T-cop G-cop T-cop

20 66.79 80.81 34.2% 20.4% 195 0 (0%) 5 (2.6%)

40 76.15 85.80 25.0% 15.5% 97 0 (0%) 2 (2.1%)

60 67.07 82.14 33.9% 19.1% 60 0 (0%) 1 (1.7%)

80 69.55 83.08 31.5% 18.2% 48 0 (0%) 1 (2.1%)

100 N.A. N.A. N.A. N.A. 39 0 (0%) 0 (0.0%)

Table C.9: Effect of varying ∆S on the prediction accuracy for the third artificial dataset for two

different multi dimensional PDF modeling, using a T-copula (T-cop) and Gaussian copula (G-cop).

#AI stands for the number of Atomic Interventions

∆S Ê[Y|X2 = 1, do(X ∼ X|X2 = 0)] Error #A.I. #Failures

G-cop T-cop G-cop T-cop G-cop T-cop

20 153.68 N.A. 13.5% N.A. 12 0 (0%) 7 (58.3%)

40 154.50 140.18. 13.0% 21.1% 6 0 (0%) 3 (50.0%)

60 157.90 N.A. 11.1% N.A. 5 0 (0%) 3 (60.0%)

80 163.52 N.A. 8.0% N.A. 3 0 (0%) 2 (66.7%)

100 157.25 N.A. 11.5% N.A. 2 0 (0%) 1 (50%)

• Prediction of expected value of Y after intervention corresponding to PDF of Y: fY |X2=1,do(X∼X |X2=0)(y)

in Table C.9

Appendix C.5.1. Concluding remarks
We can observe the accuracy of the prediction of the expected value of Y conditionally to X2

when setting X distribution to the one of X|X2 = 1 is highly impacted by the absence of samples

in the zone where the PDF fX |X2=0 takes important values. The usage of a T-copula for conditional

PDF gives slightly better results than the predictions based on the usage of a Gaussian copula.

However with 20% error rate, we cannot use our method any more.

For the prediction of the expected value of Y conditionally to X2 = 1 when intervening on

X and fixing its distribution to fX |X2=0(x), we penalize the usage of T-copula for modeling con-

ditional PDFs more than the G-copula. Gaussian copulae seem to require less data to estimate a

parameterization offering an acceptable modeling of the dependencies between the marginals of

the multivariate distribution we need to estimate our model.

Appendix C.6. Conclusion

The questions we wanted to answer were:
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• How to choose the copula family that will model the dependencies between the different

marginals ?

• In which proportion the absence of values observed for both conditional distributions im-

pacts the prediction accuracy and how to improve the accuracy in this case ?

• Should we favor the number of atomic predictions from which the final distribution is

estimated or the quality of the atomic intervention predictions by increasing the number of

samples from which these atomic predictions are computed ?

The first question can be answered by “data dictates the choice”. In our case, as we are

working with a limited amount of data, Gaussian copulae are used to capture the dependencies

between the marginals of the multivariate distributions we need to estimate to predict the effect of

interventions on parameters impacted by the DNS parameter.

The absence of values observed for both conditional distributions can be overcome using

Gaussian copulae if we observe enough values in the zones corresponding to high probabilities for

the conditional distributions. T-copulae suffer more from data shortage than G-copula but if the

observations of the conditional distributions are too sparse then both models become inaccurate

and cannot be used.

The number of atomic interventions should be preferred to the number of samples used for

estimating a given intervention but a minimum number of samples should be present (≥ 30).

Given these conclusions, we have defined and parameterized the methods that can be used to

study the impact of DNS on CDN performance.
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(a) First member (b) Second member

(c) Third member (d) Fourth member

(e) Fifth member (f) Sixth member

(g) Seventh member (h) Eighth member

Figure A.11: The eight members of the Markov Equivalence Class corresponding to the set of

independences that were detected from our observations. These graphs were obtained using the

Tetrad software [Spirtes et al., 2001] 18



(a) G (b) GX (c) GX

Figure B.12: Illustration of the different subgraphs GX and GX for a Bayesian network representing

the causal model of a four parameter system {W,X,Y,Z}

X1 X2

X

Y

Figure C.13: Artificial dataset dependencies

Figure C.14: Distribution of the different parameters for both values of X2
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Figure C.15: Causal Model of the first dataset
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Figure C.16: Conditional probability density function of X conditional on X2 in the original dataset
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Figure C.17: Conditional probability density function of X conditional on X2 after removing sam-

ples from X2 = 1 in the domain of X|X2 = 0 where the distribution fX |X2=0 is not taking high values,

second artificial dataset
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Figure C.18: Conditional probability density function of X conditional on X2 after removing sam-

ples from X2 = 1 in the domain of X|X2 = 0 where the distribution fX |X2=0 is concentrated, third

artificial dataset
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