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Abstract—Here we investigate how to characterize chaotic
reverberation chambers on a spectral basis by experimentally
investigating the distribution of resonance widths and comparing
it with a theoretical prediction in the weak coupling limit of open
chaotic cavities. Those predictions are deduced from the Random
Matrix Theory and depend on two parameters, namely the modal
overlap and an effective number of open channels. We find a good
agreement between those predictions and the distribution of the
extracted widths even below the Lowest Useable Frequency in
case of sufficiently chaotic reverberation chambers.

I. INTRODUCTION

Even if normalized criteria have been proposed to charac-
terize the well operation of a reverberation chamber, they are
not ideally suited to understand the influence of the physical
properties of the cavity on its electromagnetic behavior. In
order to master the different influent parameters, it is therefore
necessary to characterize the behavior of the cavity in regard to
its intrinsic characteristics, in particular in the case of chaotic
cavities [1], [2].

The approach we propose is based on a statistical inves-
tigation of the resonances of the cavity, as they allow to
characterize the behavior of its electromagnetic response. The
distribution of the resonance frequencies has been investi-
gated in [3]: we showed the agreement between experimental
and theoretical distributions of the nearest-neighbor resonant
frequency spacings and how this correlates with the respect
of the standard criteria in the case of chaotic cavities. A
second aspect of the resonance characteristics is examined
here, namely the distribution of their frequency widths.

II. STUDIED REVERBERATION CHAMBERS

A. Chaotic reverberation chambers

Based on an analogy between reverberation chambers and
chaotic cavities, we showed in our previous works [1], [2]
that the field uniformity and isotropy within a reverberation
chamber can be improved thanks to simple geometrical mod-
ifications inspired from chaotic cavities.

Fig. 1. Commercial reverberation chamber trimmed by (left) three and (right)
six metallic hemispheres.

The present paper continues the investigation of the behavior
of chaotic reverberation chambers by taking advantage of the
theoretical studies on chaotic cavities.

B. Modification of a conventional reverberation chamber

The commercial reverberation chamber in which measure-
ments were performed consists in a cubic metallic cavity of
dimensions W = 2.95 m, L = 2.75 m and H = 2.35 m
equipped by a mode-stirrer made of six assembled thin metal-
lic sheets in rotation around a vertical axis and located in a
corner (see Fig. 1). The Lowest Useable Frequency (LUF) of
this reverberation chamber is given by the manufacturer to be
around 300 MHz. The corresponding working volume is about
19 m3.

In our previous studies based on simulations and measure-
ments we showed that the field uniformity can be improved
in this cavity by adding metallic hemispheres on its metallic
walls [1], [2], [4], [5]. The basic idea of this geometrical
modification is, in the first instance, to avoid the presence of
flat parallel metallic surfaces as they permit regular resonant
modes to establish as, for instance, those associated with the
multiple reflections between two facing flat parallel surfaces.
The presence of defocusing parts on walls also guarantees
chaotic motion of the rays in the geometrical limit, therefore
making such chambers chaotic [1], [2].



Metallic hemispheres of radius 0.4 m have been fixed on
the reverberation chamber walls; as their flat surfaces are
in contact with the cavity walls, the electrical continuity is
ensured between the cavity and the hemispheres. For the first
measurements, three hemispheres were placed on three adja-
cent walls. This first configuration is presented in Fig. 1 (left).
It corresponds to the configuration which was also already
investigated in [4] from the point of view of the statistics
of the field. As the surface covered by those hemispheres is
limited in regard to the surfaces of the metallic walls, three
other hemispheres have been added in the second measurement
setup presented in Fig. 1 (right), in order to reduce the amount
of flat parallel surfaces.

III. MEASUREMENT RESULTS

The scattering parameters between two antennas have been
measured through a vector analyzer, (i) between 390 MHz and
410 MHz for the first configuration with three hemispheres,
and (ii) between 220 MHz and 270 MHz for both configura-
tions, i.e. below the announced LUF of the bare unmodified
reverberation chamber. In the first case (i), 90 positions of the
stirrer spaced by 1 degree were used, while 360 positions of
the stirrer with an angular step of 1degree were used in the
case (ii).

A. Measurement post-processing

Two different post-processing methods have been applied
to the four measured S-parameters, namely the Vector Fitting
Algorithm [6] and the harmonic inversion method [7]. The
first method consists of a rational approximation of these
parameters in the frequency domain, the poles being common
to the four S-parameters. The second one is very similar, the
major difference lying in its application in the time domain.
Both resonance extraction methods rely on a decomposition
of the frequency S-parameters as a sum of Lorentzians. The
imaginary parts of the poles of the decomposition correspond
to the cavity resonant frequencies; the complex poles are given
by

pn = fn

(
− 1

2Qn
+ i

)
= −Γn

2
+ ifn (1)

with fn the nth resonant frequency, and Qn and Γn its related
quality factor and resonance width. For all S-parameters we
investigated for the present work, the criteria used to validate
the extracted values of the poles were: (i) not to be isolated
in the parametric view shown in Fig. 3 as a function of the
stirrer angle, (ii) to have a residue larger than the noise-level of
the measurement. Then, it appeared that, among the values of
widths thus generated, the largest values were generally poorly
sampled above 1 MHz. Indeed, this is due to the fact that some
exceptionally large widths are associated to resonances which
are not sensitive to mode stirring for some positions. Their
fraction never surpasses 2% of the sample and should probably
become less and less probable for much larger samples. This
will be investigated in a forthcoming study where motion of
the hemispheres and of the antennas will be performed.
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Fig. 2. Top: Transmission coefficient |S12| (solid line) in the cavity with
three hemispheres between 220 and 270 MHz at one stirrer position. Dashed
and dotted lines correspond to the reconstruction using the poles obtained by
Vector Fitting Algorithm and Harmonic Inversion, respectively. Bottom: Ex-
tracted resonance frequencies and widths using both post-processing methods
(crosses for Vector Fitting Algorithm and circles for Harmonic Inversion).

In Fig. 2, we present the modulus of transmission amplitude
|S12| (upper part) and the extracted poles obtained using
both approaches are shown (lower part) to be equivalent as
demonstrated by the reconstruction of |S12| (dashed and dotted
curves).

In the frequency range [220 MHz, 270 MHz], the number of
extracted resonance frequencies with their related resonance
widths is about 19000 for both cavities when considering the
360 stirrer positions. These numbers are in agreement with the
average number of resonances predicted by Weyl’s formula



Fig. 3. Top: Variation of the extracted resonance frequencies over the 220-
270 MHz frequency band for all the stirrer positions in the cavity with
six hemispheres. Bottom: The resonance widths as a function of the stirrer
position for 4 resonances. The colored lines refer to the four modes highlighted
in the top (using the same color code).

that is in this frequency range equal to 53 (see also Fig. 3).

In the frequency range [390 MHz, 410 MHz], around 6300
resonance frequencies and their widths were extracted for
the 90 positions of the rotating stirrer. According to Weyl’s
formula, the average number of modes in this frequency range
is of 70 for the cavity with 3 hemispheres.

The distribution of the spacings between adjacent fre-
quencies has been examined in [3] where we showed that
the followed law is an indicator of the chaotic behavior of
the cavity. The real part of the poles gives the resonance
width, which will be the parameter of interest in this paper.
The approximate rational expansion also provides information
about other parameters characterizing the cavity behavior such
as the weight associated to each resonance. Their study could
be of great interest but is out the scope of this paper.

Thus, using the above mentioned methods, the resonant
frequencies and the related resonance widths have been ex-
tracted on the two measured frequency bands for each stirrer
position. For both frequency bands and both configurations, all
frequency widths have been extracted and their distributions
are presented in the following.

B. Distribution of the resonance widths

It has been demonstrated [5], [8] that for a chaotic system
in the weak coupling regime, for weak or moderate modal
overlap, the distribution of the resonance widths follows a χ2

law with M degrees of freedom, with M calculated as:

M = 2
Γ̄2

var(Γn)
(2)

with Γn the resonance width, the bar denoting the mean and
var(.) the variance of the resonance widths. This result relies
on a random matrix approach where M stands for the number
of effective open channels, accounting for all possible loss
mechanisms in the cavity. In this approach, the width Γn

corresponds to a sum of squares of independent identically
distributed Gaussian random variables.

The importance of the system losses is also evaluated
through the modal overlap d defined as the ratio of the mean
width Γ̄ over the mean spacing between adjacent resonance
frequencies.

It is important to note that the number M of open channels
and the modal overlap d are essential parameters for open
chaotic systems [5], [8]. Indeed, the coupling strength κ of the
lossy channels (all assumed to be equivalent) can be expressed
in terms of these parameters by:

κ =
πd

2M
(3)

Thus, the weak coupling condition (κ� 1) may be valid even
for a moderate modal overlap if the number of open channels
is large enough.

C. Measurement results below the LUF

In the frequency range [220 MHz, 270 MHz], measurements
were performed with cavities loaded by three then six hemi-
spheres.

The complex poles of the four measured S-parameters are
determined for each stirrer position. It is to be noticed that
the residues associated to the rational functions of the S-
parameters expansions are also determined, so that the S-
parameters expansion can be compared to the measured pa-
rameters for verification purpose. As an example, Fig. 2 (top)
shows the amplitude of the measured transmission coefficient
of the cavity with three hemispheres at the initial position of
the mode stirrer, and compares it with the expansions obtained
using both post-processing methods. A very good agreement
between the three curves is observed.

Fig. 2 (bottom) shows the extracted poles, i.e. eigenfrequen-
cies and widths, for the same configuration. It confirms the
agreement between both post-processing methods.

Thus, resonance frequencies and related resonance widths
are extracted for each stirrer position. Fig. 3 (top) shows
the variation over the stirrer position of all the extracted
resonance frequencies in the [220 MHz, 270 MHz] in the case
of the cavity with six hemispheres, whereas Fig. 3 (bottom)
shows the variation of the resonance widths related to the
four resonance frequencies between 242 MHz and 247 MHz,
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Fig. 4. Probability density function of the normalized resonance widths with
three metallic hemispheres in the frequency range [220 MHz, 270 MHz] (blue
circles). Law of Eq. 5 with M = 8 (blue curve).

which are highlighted by colors. The distribution of all these
extracted widths will be examined in the following.

For the three hemispheres case, the mean resonance width
is 0.34 MHz and the mean quality factor corresponds to 960.
By excluding 2% of the widths, corresponding to the largest
ones, we obtain a number of degrees of freedom M = 8 from
Eq. 2. With a mean modal overlap d = 0.40, Eq. 3 leads to
the coupling strength κ = 0.08 corresponding to reasonably
weak coupling.

Before being compared with the expected analytical law, the
resonance widths are normalized according to:

γ =
Γ

Γ̄
(4)

According to RMT, this normalized resonance width follows
the following distribution:

P (x) =
1

Γ(a)ba
xa−1e−x/b (5)

with a = b−1 = M/2.
The probability density function of the normalized res-

onance widths is plotted in Fig. 4 along with the related
theoretical law with M = 8 degrees of freedom. As can be
seen, we find an overall agreement but still with non negligible
deviations near the maximum.

Therefore, we performed measurements in the same fre-
quency range in the cavity with six hemispheres. The extrac-
tion of the resonance properties leads to a mean resonance
width of 0.40 MHz and a mean quality factor of 790. This
decrease of the quality factor is due to the increase of the
hemisphere surface and the low quality of their metallization.

With a degree of freedom M = 12, and a mean modal
overlap d = 0.44, one obtains a coupling strength κ = 0.06.
The probability density function of the normalized resonance
widths is plotted in Fig. 5 along with the related χ2 law.
As one can see, the additional three hemispheres made the
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Fig. 5. Probability density function of the normalized resonance widths with
six metallic hemispheres in the frequency range [220 MHz, 270 MHz] (blue
circles). Law of Eq. 5 with M = 12 (blue curve).

correspondance between the experiments and the theory much
better. This is due to the fact that non-chaotic components
are better discarded in the low frequency regime. The better
agreement is coherent with our previous studies showing a
better chaoticity of the cavity with six hemispheres compared
to the one with three hemispheres when considering the spatial
field amplitude distribution [9].

D. Measurement results above the LUF

In the frequency range [390 MHz, 410 MHz], a sample of
about 6300 widths was used, yielding a mean width of 0.29
MHz, corresponding to mean quality factor around 1500.

The probability density function of the normalized reso-
nance widths is plotted in Fig. 6 along with the related χ2

law with M = 20 degrees of freedom, as deduced from
Eq. 2. A good agreement is observed, which indicates that
this frequency range corresponds to a weak coupling regime
(κ ≈ 0.07) in spite of a moderate mean modal overlap
d = 0.89 [4]. Here again, our results are coherent with our
previous findings. The deviations seen in Fig. 4 have vanished
due to the stronger modal overlap.

IV. CHARACTERIZATION OF THE ELECTRIC FIELD
DISTRIBUTION IN A CHAOTIC CAVITY

It has been shown [5] that in a chaotic cavity the normalized
amplitude of the field Cartesian components defined in Eq. 6
presents the probability distribution of Eq. 7, with ρ the phase
rigidity related to the system losses and defined in Eq. 8.

Ea =
|Ea|√
〈|Ea|2〉

(6)

P (Ea, ρ) =
2Ea√

1− |ρ|2
exp

[
− 2Ea√

1− |ρ|2

]
I0

[
|ρ|E2a

1− |ρ|2

]
(7)
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Fig. 6. Probability density function of the normalized resonance widths with
three metallic hemispheres in the frequency range [390 MHz, 410 MHz] (blue
circles). Law of Eq. 5 with M = 20 (blue curve).

ρ =

∫
V
~E · ~Ed~r∫

V
|| ~E||2d~r

(8)

Once its number of effective open channels M and their
coupling strength κ are known, the statistical behavior of any
chaotic cavity can be simulated through RMT simulations
taking the losses into account. In particular, we showed that
the distribution of the phase rigidity only depends on the mean
modal overlap d as long as this parameter remains weak or
moderate [5].

Thus, in the weak coupling and weak modal overlap limit,
the distribution of the field Cartesian components of a chaotic
cavity is known once its number of effective open channels
along with the modal overlap have been determined. As these
two parameters can be obtained through measurements at one
single antenna location as opposed to classical measurements
of field distribution, this approach is of great interest to reduce
measurement time and human handling.

V. CONCLUSION

We have here pursued the investigation of statistical features
of the resonance spectra of chaotic reverberation chambers.
Like the distribution of spacings, the distribution of resonance
widths can alternatively be used to characterize the degree of
chaoticity of the cavity, relying on a model of open chaotic
cavities based on the Random Matrix Theory. This model
depends on two parameters, namely the modal overlap and
an effective number of coupling channels, which account for
dissipation in the cavity.The prediction for the distribution of
widths corresponds to an analytical law if the coupling strength
of the channels is weak.

We have experimentally studied different configurations of
chaotic reverberation chambers for different frequency ranges
(close to or above the LUF) and by comparing the thus
obtained width distributions with the theoretical distribution,

we could extract the modal overlap and the number of open
channels, which completely characterize the universal statisti-
cal behavior of the response of a chaotic reverberation chamber
[5]. Results were given here in the case of two different chaotic
reverberation chambers and in two frequency bands, one below
the expected LUF and the other one above it. This kind of
characterization could be used to evaluate the LUF of a chaotic
chamber since it allows to avoid a long measurement process
that requires field measurements over a stirrer rotation at eight
locations of the working volume.
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