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Abstract 
Complexity pursuit (CP) has recently been proposed as an elegant and simple 
solution to blindly (i.e. without measuring the inputs) separate the modal contributions 
in the vibration responses of a structure. This potentially finds considerable interest in 
operational modal analysis and related applications. This paper analyses the 
theoretical ins and outs of the method. It also revises its physical interpretation in the 
modal analysis context. CP is found to separate components which are the least 
dispersive (i.e. invariant under linear filtering), a property that well characterizes the 
modal responses of lightly damped systems. However, it is also found to suffer from 
the same limitations as other blind source separation methods used in the state-of-
the-art, namely the difficulty to separate strongly coupled modes and to identify 
complex mode shapes. Finally a generalization of CP is proposed which intends to 
widen its applicability. Interestingly, the generalized CP happens to include the well-
known SOBI algorithm as a particular case.      
 
Keywords: operational modal analysis, blind source separation, system 
identification, complexity pursuit, SOBI algorithm. 
 
 
List of acronyms 
AMUSE Algorithm for multiple unknown signals extraction (algorithm) 
BSS Blind source separation 
CP Complexity Pursuit (algorithm) 
DOF Degrees of freedom 
GCP Generalized Complexity Pursuit (algorithm) 
OMA Operational modal analysis 
SOBI Second order blind identification (algorithm) 



 
1. Introduction 
Complexity Pursuit (CP), a new blind source separation (BSS) technique, was 
recently introduced in Refs. [1][2][3]		 and demonstrated to decompose the vibration 
responses of a structure into individual modal contributions. Such a technique is of 
particular interest within the context of operational modal analysis (OMA) due to its 
ability to blindly (i.e. without measuring the inputs) decouple a multiple-degree-of-
freedom system into a set of single-degree-of-freedom components, as demonstrated 
in precursory works [5][6][7][8][10][11][12][13] and in later developments [14]. In 
particular, it can greatly simplify the subsequent identification task required for 
extracting the modal information from the system responses: the global modal 
parameters (natural frequencies and damping ratios) can easily be identified by using 
single-degree-of-freedom methods and the mode shape estimated from the inverse 
of the separation matrix.  The BSS technique of Ref. [1] is an adaptation of the 
complexity pursuit (CP) principle initially formulated in [4] in a statistical learning 
context (note that Ref. [15] independently formulated a BSS method based on a 
similar idea). Basically, it consists in finding a modal filter intended to extracting an 
individual modal contribution by minimizing the energy ratio between two filtered 
versions of the output signals. Namely, using the notations of [1], let the 1n×  column 
vector 
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denotes the observed vibration responses of a structure at time t  produced by a 
mixture of modal coordinates ( )iq t  weighted by mode shapes iφ , 1,...,i n=  (columns 

of the n n×  modal matrix Φ ). The objective is to find a modal filter iw  (a 1 n×  raw 
vector) such that 
 
 ( ) ( )i iy t t=w x  (2) 
 
returns an estimate of ( )iq t  up to a scaling factor, from which global modal 
parameters can be subsequently recovered, on the one hand. One the other hand, 
the inverse of matrix W  made of the rows iw , 1,...,i n=  is an estimate of the modal 
matrix Φ  that contains information on the mode shapes. The principle of CP is to 
estimate iw  such as to minimize the ratio  
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where  stands for the time average operator and superscript 𝑘 = 1,2 symbolically 
represents two different filtered versions of the same signals. In its original 

formulation, (1) ( )tx  (resp. (2) ( )tx ) is the residual between the actual signals ( ) tx and 
a long-term predictor (1) ( )tx  (resp. short –term predictor (2) ( )tx ) 
 

  (4) 
 
References [1][2][3] used 1 900000

1 2λ −=   and 2 0.5λ =  by default. 
 
As stated in Ref. [1], the rationale beyond criterion (3) is to seek a separation vector 

iw  that yields the “least complexity and thus approaches the (simplest) source signal, 
where the complexity is robustly measured by temporal predictability”. Using the 
authors’ words, CP is “computational efficient, user-friendly, and automatic, requiring 
little expertise interactions for implementations”. Indeed, the minimization of criterion 
(3) with respect to iw  simply amounts to computing the generalized eigenvectors of 

the cross-correlation matrices (1) (1)( ) ( )Tt tx x  and (2) (2)( ) ( )Tt tx x  (see section 3.1). 

 
A first objective of this paper is to provide the theoretical foundation and physical 
interpretation of the CP that are lacking in Ref. [1]. In view of its potential importance 
to OMA, it is imperative to establish at the onset whether it is capable of separating 
modal contributions in the general scenario and, if not, to delineate its limits. In 
particular, the question arises as whether it can resolve highly coupled modes (e.g. 
closely spaced frequencies and/or strongly damped modes) and complex mode 
shapes, two configurations which are still challenging to cutting-edge BSS techniques 
[14]. Second, it is also compulsory to compare its performance against SOBI [17], a 
state-of-the-art BSS technique used in OMA which has been standing as a point of 
reference since a few years [7][8][10][14]. 
 
A second objective of the paper is to propose a generalization of CP that is shown to 
apply more widely and provides perspective for the proposal of new BSS algorithms. 
 
The main results of this paper are summarized hereafter: 



1) The solutions of CP, as formulated by Eqs. (2)-(4), are pure sines. Strictly 
speaking, this generally precludes the exact recovery of vibration modes as soon 
as damping is present in the system.  

2) However, very good separation of lightly damped modes is to be expected 
provided the built-in filters of CP are smooth enough to be considered as 
approximately constant across the mode bandwidths. 

3) The original formulation of CP in terms of short and long-term predictors (Eqs. (4)) 
can be generalized to the consideration of any type of filters, provided they are 
smooth enough in the sense of point (2). This makes obsolete the interpretation of 
CP as seeking for the least complex components that are “maximally predictable”. 

4) The physical interpretation of the CP is to seek vibration components that remain 
invariant under arbitrary (linear) filtering. In terms of waveforms, these are 
components which are as least dispersive as possible, that is nearly invariant 
under linear filtering. Non-dispersion is an intrinsic property of pure sines, yet it 
can be approached remarkably well by lightly damped modes whose modal 
coordinates resemble slowly modulated sinusoids. Least complexity in CP is 
therefore to be measured by “dispersion” rather than by “predictability”.   

5) CP is generally unable to recover complex mode shapes (e.g. in the case of non-
proportional damping) since the generalized eigenvectors of square real 
symmetric matrices (1) (1)( ) ( )Tt tx x  and (2) (2)( ) ( )Tt tx x  are real-valued, unless 

specific pre-processing is used as suggested in Ref. [10]. 
6) CP presents a strong analogy with AMUSE, the two time-lag version of SOBI [18]. 

Some particular choices of the built-in filters can make it identical to AMUSE. 
7) Simulations show that CP is not superior to SOBI in the general case and that it 

suffers from the same difficulty to separate strongly coupled modes and complex 
mode shapes. 

8) A generalization of the original CP algorithm is proposed that involves an arbitrary 
number of filters. This involves an approximate joint diagonalization of a set of 
cross-correlation matrices which is likely to improve the performance of the plain-
vanilla CP method. The generalization includes SOBI as a particular case. 

9) Several sets of filters are tested on simulated and real data in order to 
demonstrate how to optimize the separation of vibration components. One 
advantage of the generalized CP is to provide a versatile algorithm that is intended 
to shortcut this step.  

 
The proofs of these results are given in the rest of the paper. Section 2 first 
establishes the optimality condition under which criterion (3) is minimized. Next, 
section 3 investigates the behavior of the criterion when trying to separate modes of 
a dissipative (i.e. non-zero damping) system and discusses the design of optimal 
filters. Section 4 then introduces the generalized version of CP. Finally, section 5 
provides some comparisons of CP, its generalized version, and SOBI by means of 



numerical experiments, section 6 experimentally addresses the optimization of filters, 
and section 7 demonstrates the applicability of the generalized algorithm on real 
data. 
 
 
2. Optimality condition 
The very first matter to investigate is which type of signals is a solution of the 
minimum of criterion (3). In order to do so, let us use Parseval’s identity in Eq. (3),  
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where ( ) ( ) ( ) ( )k

i k iY H Yω ω ω= , 1,2k =  stands for the Fourier transform of ( ) ( )k
iy t  and 

( )kH ω  for the transfer function that relates the filtered signal ( ) ( )k
iy t  to its original 

version ( )iy t . For instance, according to Eq. (4), ( ) ( 1) / (1 )j j
k k kH e eω ωω λ λ− −= − − , 

2 1j = − . Following the principles of variational calculus, let us assume that ( )iY ω  is 

close to its optimal solution ( )o
iY ω , that is ( ) ( ) ( )o

i i iY Y Yω ω δ ω= +  where ( )iYδ ω  
stands for a small perturbation. Thus 
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where symbol *  denotes the conjugate operator, constants U and V  where defined 
in Eq. (5), and higher-order terms in ( )iYδ ω  have been neglected (see proof in 

Appendix A). The optimality condition requires that 0iδρ =  whatever the perturbation 

( )iYδ ω , which implies that the actual solution ( )o
iY ω  must verify the equation 

 
 ( )* 2 2

1 2( ) | ( ) | | ( ) | 0o
iY V H U Hω ω ω− = . (7) 

 
Ignoring the trivial solution ( ) 0o

iY ω = , one must have 2 2
2 1| ( ) | | ( ) |U H V Hω ω= . But this 

cannot hold identically, for all frequencies, otherwise ratio iρ  would be invariant 

whatever the value of ( )o
iY ω . Thus, the only putative solution is in the form 

( ) ( )o
i p p

p
Y Aω δ ω ω= −∑  where { }pω  is a finite set of fixed frequencies. After insertion 

into Eq. (7), this implies 
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At the same time such a solution yields  
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Upon identification of Eqs. (8) and (9), one must have  
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which cannot be satisfied in general for arbitrary transfer functions (e.g. arbitrary 
values of 1λ  and 2λ  in Eq. (4)) unless all pA ’s are nil but one. Therefore the pure sine 

( ) ( )o
i o oY Aω δ ω ω= −  (with arbitrary amplitude oA  and frequency oω ) is the minimizer of  

the CP criterion, a result which is consistent with other BSS criteria recently proposed 
in the field of modal analysis [19]. 
 
It is emphasized that this result has been established without any statistical 
assumption on the modal contributions. In particular, they have not been assumed 
independent as is the current practice in BSS. Indeed, there is no physical reason 
why independence should hold in modal analysis in general [14], the reason why it is 
not taken as a premise in this work. 
 
Another remarkable implication of the optimality condition (7) is that it applies 
independently of a particular form of the transfer functions, 1( )H ω  and 2 ( )H ω , as 
long as they are not identical. Indeed, the conclusion that a pure sine is the only 
solution to the CP principle has been arrived at without using the structure given in 
Eq. (4). Alternatively, assuming such a structure would have not changed the 
conclusion. This makes obsolete the interpretation of CP as seeking for least 
complex components that are maximally predictable, as given in Refs. [1]-[4]. Rather, 
complexity should be measured by the propensity of a component to be dispersive. 
This also paves the way to the design of more efficient BSS algorithms based on 
different and optimized filters (see section 4). 
 
 



3. Identifiability of damped modes 
The optimality condition found in the previous section states that if a sinusoid is 
present in a set of vibration responses, then it will be extracted by CP. Obviously, 
such a situation is quite unrealistic in OMA where the generation of pure sines would 
require the system to be perfectly conservative (i.e. without damping). It is therefore 
compulsory to investigate the capability of CP to (approximately) separate damped 
modes in a real-world scenario.  
    
 
3.1. Inherent working assumptions of CP  
The results of this subsection are established under the assumption of a steady state 
and stationary regime (they equally hold for transient responses1). Without loss of 
generality, let us express the modal contributions of a dissipative structure as slowly 
modulated sinusoids. Thus, the overall vibration responses read 
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where ( )iA t  and ( )i tφ  are slow amplitude and phase modulation functions, 
respectively. The next step is to filter these responses through transfer functions 
( )kH ω , 1,2k = . Provided that ( )kH ω  is smooth enough so that it can be assumed 

nearly constant across the spectrum of ( )iA t  and ( )i tφ , then 
 
 ( ) ( ) | ( ) | cos( ( ) ( )),       1,2k i i k i i i k i

i
t A t H t t H kω ω φ ω≈ + +∠ =∑x φ   (12) 

 
holds to a very good approximation, where ( )k iH ω∠  denotes the phase of the transfer 

function such that ( )| | expk k kH H j H= ∠ . The last step is to compute the cross-

correlation matrices of the filtered signals, ( ) ( )Tk kt tx x , 1,2k = , as required in the CP 

criterion (3). This involves cross-correlations 
 
 ( ) ( )cos( ( ) ( ))cos( ( ) ( ))i j i i k i j j k jA t A t t t H t t Hω φ ω ω φ ω+ +∠ + +∠   (13) 

 
which are nearly zero provided that the distance between resonance frequencies iω  

and jω  is greater than the spectral bandwidth of ( )iA t  and ( )i tφ . Therefore, the cross-
correlation matrix reads  
																																																													
1	The	proofs	are	essentially	the	same	after	redefining	all	time	averages	by	finite-length	summations.		



 
 ( ) ( )( ) ( )k k T T

kt t ≈x x ΦD Φ   (14) 

 
with Φ  the modal matrix given in Eq. (1) and kD  a diagonal matrix whose i-th element 
is returned by 
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2 | ( ) |k i k iii A H ω≈D   (15) 
 
with 2 2| ( ) |i iA A t= .  Finally, the CP criterion reads  
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T T
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ρ =
wΦDΦ w
wΦD Φ w

, (16) 

 
which is recognized as a Raleigh quotient, the minimum of which is returned by the 
smallest eigenvalue in the generalized eigenvalue decomposition 

1 2
T T T T

i i iρ=ΦDΦ w ΦD Φ w  [16]. Repeating the procedure for all components 1,...,i n=  
(the first component achieves the smallest minimum, the second one the next 
minimum and so on...), one obtains the matrix of generalized eigenvectors, 

1[ ,..., ]T T T
n=W w w  which, as well-known, makes 1

T TWΦDΦ W  diagonal and 

2
T T =WΦD Φ W I  , the identity matrix (note in passing that these steps provide a more 

efficient algorithm to find the separation matrix of CP than the gradient ascent 
method initially proposed in Ref. [4]). Since 1D  and 2D  were found diagonal, this 
necessarily implies that  
 

 , (17) 
 
where ( )Diag id  stands for the diagonal matrix with i-th element id . According to 
Eqs. (2) and (11), the separating matrix given by Eq. (17) correctly returns an 
estimate  
 

  (18) 
 



of the i-th modal coordinate up to an unknown scaling factor and up to the effect of 
additive noise. In passing, the inverse matrix 1−W  also returns an (unscaled) 
estimate of the modal matrix Φ . 
 
So far, it seems reassuring that damped modes can indeed be separated by CP to a 
certain degree of approximation, even though they are not pure sines. The three 
assumptions which made this approximation valid are resumed hereafter: 
1) The effect of additive measurement noise can be neglected at the resonance 

frequencies (an assumption that is common to most BSS methods) 
2) The frequency gains used in CP should be smooth enough to be nearly constant 

across the mode bandwidth 𝐵 (e.g. as defined by the half-power width). In other 
words, the effective impulse response length Hτ  of the filters should be much 
shorter than the relaxation time 1/𝐵 of the system:  
 

 1 ≫ 𝜏*𝐵. (19) 
 

3) At the same time, the spectral separation Δ𝜔 of adjacent modes should be large 
enough so that they can be assumed nearly uncoupled, which may be safely 
stated as having the modal overlap factor 𝜇(𝜔) smaller than one: 
 

 1 > 𝜇 𝜔 = 1
23

. (20) 
 
Under these assumptions, damped modes will actually mimic the behavior of the 
ideal pure sines that are minimizers of the CP criterion – see Fig.  1. Any departure to 
conditions (19) and (20) will jeopardize the separation capability of CP. Alternatively, 
the degree to which conditions (19) and (20) are satisfied directly reflects the 
approximation error made in using CP when trying to separate damped modes. 
 
Finally, a last necessary condition relates to the ability of CP to separate all damped 
modes active in a system. It requires that matrices 1

TΦDΦ  and 2
TΦD Φ  have 

distinct generalized eigenvalues 
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Figure 1: Definition of the spectral separation ωΔ  and mode bandwidth B  used in 
conditions (19) and (20). 

 
 
3.2. Revising the interpretation of CP 
The above results now make it clear that CP tries to separate components that are 
least invariant under arbitrary but smooth linear filters. Strictly speaking, pure sines 
are the only waveforms which are exactly non-dispersive under linear filtering. 
However, the property has been shown to hold approximately for damped modes 
provided dissipation is light enough in the sense of condition (19). In other words, the 
least complex components extracted by CP are the least dispersive possible. This 
suggests that the concept on “complexity” in CP should rather be measured by the 
propensity to dispersion rather than by predictability as originally formulated in Ref. 
[4].  
 
3.3. Connection with AMUSE 
When generalized to an arbitrary pair of linear filters, it appears the CP includes 
AMUSE [18]	as a particular case, an algorithm which bears some historical reputation 
in BSS [9]. The connection is all the more important as it also suggests a link with 
SOBI [17] – to be revealed in section 4 -- the evolution of AMUSE which currently 
stands as a point of reference in BSS.   
 
Briefly stated, the principle of AMUSE is to seek that separation matrix W  which 
jointly diagonalizes a set of cross-correlation matrices  ( ) ( )Tit t τ−x x , 1,2i = ,  at 

two time-lags 1τ  and 2τ . Specifically, it returns the rows iw  1,...,i n=  of matrix W  that 
minimize 
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The resemblance with the CP criterion (5) is striking, where 1cos( )ωτ  plays the role of 

the frequency gain 2| ( ) |kH ω , 1,2k = . Indeed, strict equality holds if one designs filters 

( )kH ω ’s such that their squared magnitudes equal cos( )kωτ , which requires the use 

of fractional time-lags | | 1 2τ ≤  such that cos( ) 0kωτ ≥  in the frequency band [ ]0,π . 

Another possibility is to set 2 0τ =  in Eq. (22) and then to note that the maximization of 
AMUSE
iρ  is equivalent to that of AMUSE 1iρ + . Thus, 
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which is identical to CP with 1( ) 1 cos( )H ω ωτ= +  and 2 ( ) 1H ω =  for any time-lag τ . 
 
The above observations unveil an intimate relationship between AMUSE and CP. At 
the same time, it makes it clear that CP will suffer from all the same limitations as 
AMUSE when used in OMA, in particular the difficulty to identify complex mode 
shapes and to separate strongly coupled modes [10]. 
 
3.4. Optimal pair of filters 
The previous discussions raise the question as whether there exists an optimal pair 
of filters to use in CP that maximizes the separation between modes.  
 
A sensible objective is to maximize the contrast between eigenvalues iρ , 1,...,i n= . 
According to perturbation theory [16], this will strengthen the stability of the algorithm 
in the presence of estimation errors due to finite-sample size of the measurements 
and additive noise. Based on the results of subsection 3.1, a relevant measure of 
contrast between two adjacent modes  1,2i =   is returned by the ratio of eigenvalues  

1ρ  and 2ρ , which should be as large as possible. From Eq. (21), one finds 
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The ratio is maximized by choosing transfer functions, 1( )H ω  and 2 ( )H ω , whose 

magnitudes are as different as possible at the resonance frequencies 1ω   and 2ω . 
This proves that the somewhat arbitrary filter weights initially suggested in Refs. 
[1][2][4] are by no means optimal for all purposes (nor are bandpass filters designed 



around the resonance frequencies of the structural modes as one could possibly 
think in a first place). Apart from maximizing the contrast between modes, the filters 
are so far not constrained to any specific shape (e.g. high-pass, band-pass, etc.), 
which leaves quite a flexibility in the method. Section 6 will further investigate this 
issue from an experimental point of view.  
 
Noteworthy also is the antagonism between requests of having a strong contrast 
between filter gains at the resonance frequencies and the smoothness constraint 
imposed by condition (19), especially in the presence of closely spaced modes. 
 
 
4. A generalization of CP 
The interpretation of CP as in terms of invariance with respect to linear filters 
suggests immediate generalizations. A first one is to jointly diagonalize the cross-
correlation matrices of several filtered versions of the signals instead of only two. This 
may be advantageous to prevent situations where some predefined filters 1( )H ω  and 

2 ( )H ω  would be poorly adapted to separate a specific mixture of components (see 
section 3.4). By multiplying the number of candidate filters an increased versatility of 
the algorithm is therefore expected as well as better numerical stability and 
robustness against estimation noise. A second generalization is to allow any type of 
filters with possibly complex coefficients, which will include SOBI as a particular case. 
This leads to a general algorithm which is formulated hereafter in the frequency 
domain.  
 
Specifically, let us introduce a set of smooth complex frequency gains { } 0

( ) Kk kG ω
=

, 
2K ≥ . The objective is to find that separation matrix W  which jointly diagonalizes the 

set of cross-correlation matrices  ( ) ( )( ) ( )k k Tt tx x  for all 1,...,k K=  wherein ( ) ( )k tx  

stands for the system response filtered with transfer function ( ) ( )k kH Gω ω= . Using 
Parseval’s identity, the cross-correlation matrices may be expressed as

( ) ( ) ( )( ) ( ) 1

0
( ) ( ) Hk k T

kt t G d
π

π ω ω ω ω−= ∫x x x x , where vector ( )ωx  contains the Fourier 

transforms of the elements of vector ( )tx  and symbol H stands for the conjugate 
transpose operator.  Hence the following optimization problem  
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where Off  stands for the operator which zeroes the diagonal elements of a matrix 
and 2  for the Frobenius norm of that matrix. A pseudo code to solve Eq. (25) is 
given in Appendix B. 
 
Criterion (25) has several advantages.  

• First it allows the inclusion of several different filters (not only two) with a 
greater chance that some of them will be optimally adapted to separating an 
unknown mixture of modes as explained in subsection 3.4.  

• Second, the frequency domain formulation offers easy and flexible design of 
the filters as well as a superior control on the frequency bands of interest. 
Noteworthy is the fact that it applies equally well to stationary and transient 
responses, or mixtures of both.  

• Third, the proposed generalization accepts several other BSS algorithms as 
particular cases. The connection with AMUSE has already been established in 
subsection 3.3. The connection with SOBI -- which is an extension of AMUSE 
seeking the diagonalization of cross-correlation matrices ( ) ( )Tit t τ−x x  for 

several (more than two) time lags iτ  -- is now immediate with ( ) cos( )k iG ω ωτ=  

(see Eq. (22)) where negative values of ( )kG ω  (and therefore complex values 

of ( )kH ω ) are allowed. 
 
The fact the generalized CP includes other BSS algorithms as particular cases is 
theoretically interesting in an effort towards unification (see Tab. 1). It also 
necessarily places generalized CP at the same performance level of the BSS 
algorithms it embraces, in particular SOBI which, as mentioned in the introduction, 
probably stands as the one of the most famous algorithms used in OMA 
[7][8][10][14].   
 

 
 

Table 1: Generalized CP and its particular cases 
 

 
 
5. Numerical experiments 

Generalized CP

Original	CP CP	with other
pairs	of	filters

SOBI



The aim of this section is to compare the behavior of the original CP algorithm, as 
introduced in Refs. [1][2][3][4], with some of its generalizations addressed in the 
present paper as well as with the popular SOBI algorithm (a comprehensive analysis 
of SOBI in the field of modal analysis is given in Ref. [14], for instance). 
 
The objective here is not to so much identify the best algorithm (multiple criteria 
would have to be defined for this purpose and tested on a much wider database), but 
rather to prove that all BSS algorithms falling in the generalization exposed in the 
present paper have more or less a similar behavior.   
 
The numerical examples detailed in Ref. [10] are reproduced here in an effort to 
comply with reproducible research. In all experiments, three different versions of CP 
were implemented with constant parameters. The first one – hereafter denoted as 
CP1 -- follows the original derivation introduced in Refs. [1][4] and resumed by Eqs. 
(2) to (4). Values of 1λ  and 2λ  were set to 1/9000002−  and 0.5, respectively, as 

advocated in Ref. [4]. This returned two transfer functions, 1( )H ω  and 2 ( )H ω , whose 
squared magnitudes are displayed in Fig.  2(a). The second CP algorithm – hereafter 
denoted as CP2 -- was implemented by imposing the arbitrary transfer functions 
 

 1 2 1
2

1( ) 1   and   ( )
1 jH H

e ωω ω
−

= =
−

 

 
displayed in Fig.  2(b), in order to demonstrate that the CP principle goes beyond the 
idea of predictability. The generalized CP algorithm – hereafter denoted as GCP – 
was designed according to the formulation of section 4 with a set of 10 smooth FIR 
filters which are as different as possible, as shown in Fig.  2(c), in a hope to gain 
increased performance. The coefficients of the FIR filters are listed in Table 2. The 
three CP algorithms were systematically compared with SOBI set with 10 times-lags 
{ }0,...,9τ = .  
  

Table 2: coefficients of FIR filters used in GCP 



H1 H2 H3 H4 H5 H6 H7 H8 H9 H10
-0,00270176 0,00074839 0,00793082 -0,00806997 -0,00059523 0,00060147 0,00797567 -0,00796622 -0,00063695 0,00053202
-0,13447107 0,16656143 -0,02631705 -0,02635368 -0,02692993 0,02682634 -4,3467E-05 -0,00011371 -0,01751098 0,01753765
-0,00270004 0,0007479 0,17802799 -0,17811503 0,02569651 0,02689128 -0,02628817 -0,02628395 -0,00063534 0,00053071
0,76262007 0,56666309 0,65950143 0,65964058 -0,0927434 0,09263995 -4,3408E-05 -0,00011355 -0,00076176 0,05332482
-0,00270004 0,0007479 0,17802799 -0,17811503 -0,0005937 0,00059992 0,17797072 -0,17796129 -0,00063414 0,00052973
-0,13447107 0,16656143 -0,02631705 -0,02635368 0,14946082 -0,1495642 -4,3379E-05 -0,00011347 -0,09831987 0,09837106
-0,00270176 0,00074839 0,00793082 -0,00806997 0,65900912 0,66020236 0,65960524 0,65960945 -0,00063335 0,00052908

0 0 0 0 0,14946082 -0,1495642 -4,3379E-05 -0,00011347 0,13490052 -0,13494101
0 0 0 0 -0,0005937 0,00059992 0,17797072 -0,17796129 -0,00063295 0,00052875
0 0 0 0 -0,0927434 0,09263995 -4,3408E-05 -0,00011355 0,7342199 0,5848987
0 0 0 0 0,02569651 0,02689128 -0,02628817 -0,02628395 -0,00063295 0,00052875
0 0 0 0 -0,02692993 0,02682634 -4,3467E-05 -0,00011371 0,13490052 -0,13494101
0 0 0 0 -0,00059523 0,00060147 0,00797567 -0,00796622 -0,00063335 0,00052908
0 0 0 0 0 0 0 0 -0,09831987 0,09837106
0 0 0 0 0 0 0 0 -0,00063414 0,00052973
0 0 0 0 0 0 0 0 -0,00076176 0,05332482
0 0 0 0 0 0 0 0 -0,00063534 0,00053071
0 0 0 0 0 0 0 0 -0,01751098 0,01753765  

 
 
 

 
 

Figure 2: Squared magnitudes of transfer functions 1( )H ω  and 2 ( )H ω  used in a) 
CP1, b) CP2, and c) GCP (frequency axis normalized by the sampling frequency). 

 
 
5.1. First experiment 
The first example is a 3 degree-of-freedom systems with mass, stiffness, and 
damping matrices given by  
 

 1 1
21 120

5 1 0 0.0893 -0.0083 0

1 4 3 -0.0084 0.1286 -0.0250

0 3 3.5 0 -0.0250 0.0768

1 0 0

0 2 0

0 0 1

,    ,    
−

− −

−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = + =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

M K C M K . 

 
The system has closely spaced modes with natural frequencies at 0.104Hz, 0.342Hz, 
and 0.371Hz. The corresponding damping ratios are 4.0%, 2.0%, and 2.0%. The 
damping matrix was slightly modified as compared to Ref. [1] to make it exactly 
proportional in order to force real modes. Although the system has closely spaced 
modes, one can check that condition (20) is verified. The 3 degrees of freedom of the 



system were next driven with mutually uncorrelated white Gaussian noises in 
bandwidth [0;1Hz] and the responses computed with numerical integration with 
sampling frequency 4Hz for a total number of 142  samples per channel.    
 
The experiment was repeated with increasing values of additive white Gaussian 
noise with noise-to-signal ratios (NSR) of -30, -20, -10 and 0 dB. In each case, 1000 
runs (i.e. independent realizations of the random excitation) were performed and the 
results averaged together.  
 
Figure 3 displays the power spectra of the separated modal contributions (averaged 
over 100 runs) for the three CP and SOBI algorithms in the noise-free case. Note that 
separated modes (identified by different colors) are returned in arbitrary order, as is 
always the case in BSS. Excellent separation is observed for all candidates, although 
very small cross-talks are noticeable in some of the separated spectra.  
 

 
 

Figure 3: Column (a): power spectra of the vibration responses. Columns (b) to (e):  
power spectra of the separated modal contributions with CP1, CP2, GCP, and SOBI, 
respectively. Light proportional damping. Red circles spot small residual cross-talks 

in the separated spectra. 
 
 
 

 
5.2. Second experiment 



The same experiment was repeated after multiplying the damping matrix by a factor 
10. This produced strong damping ratios of 19.8%, 19.5%, and 3.9%. As a 
consequence, condition (20) was slightly violated by about a factor 3. However, all 
algorithms could still achieve a reasonable and comparable separation, at least 
qualitatively as seen in Fig. 4. Overall, this demonstrates a certain robustness of CP 
to operate outside its theoretical range of applicability, when trying to separate 
heavily damped modes, just as it has been recognized for SOBI [14].      
 

 
 

Figure 4: Column (a): power spectra of the vibration responses. Columns (b) to (e):  
power spectra of the separated modal contributions with CP1, CP2, GCP, and SOBI, 

respectively. Strong proportional damping. 
 
 
 
5.3. Third experiment 
The third experiment has structural properties given as follows:  
 

 
3 0 0 4 2 0

0 2 0 2 4 2

0 0 1 0 2 10

0.1856 -0.2290 0.9702

-0.2290 0.0308 -0.0297
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−
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M K C , 

 
which involves a non-proportional damping matrix not diagonalized by the normal 
modes. Thus, the difficulty will be to deal with complex mode shapes, a situation 
where the “plain-vanilla” version of SOBI has been shown to fall short [10]. The 



system has natural frequencies at 0.136Hz, 0.247Hz, and 0.500Hz and 
corresponding damping ratios of 3.0%, 1.4%, and 1.7%.  
 
The separated components are displayed in Fig. 5. In agreement with the results of 
Ref. [10], SOBI is unable to separate the highest mode, yet the same phenomenon is 
observed for all three CP algorithms.  
 

 
 

Figure 5: Column (a): power spectra of the vibration responses. Columns (b) to (e):  
power spectra of the separated modal contributions with CP1, CP2, GCP, and SOBI, 

respectively. Non-proportional damping with complex mode shapes. 
 

 
5.4. Analysis of results 
In order to obtain a quantitative means of comparison of the separation results, the 
following figure of merit is proposed,  
 

 𝑒 = 567 8(3)9 567 8(3) 9 567 8(3)9 567 8(3)
567 8(3)9 567 8(3)

, (26) 

 
which measures the relative logarithmic error between the actual spectra 𝑆(𝜔) and 

the separated ones, 𝑆(𝜔), wherein ( )
0

d
π

ω= ∫   denotes frequency averaging 

(note that the subtraction of the logarithm average is to correct for the unknown scale 
of the separated modal contributions). The relative error e  is averaged over 1000 
independent runs. This figure of merit should reflect very well the capacity of correctly 



identifying the natural frequencies and damping ratios of the structural modes in a 
subsequent step following BSS. It is displayed in Fig. 6 for the three experiments 
reported in the previous subsections.  
 
The first experiment with light proportional damping clearly returnes very good 
separation results for all NSR’s less or equal to -10dB and this independently of the 
BSS algorithm (Fig. 6(a)). The CP1 and the CP2 curves are superimposed and show 
a relative error slightly superior to SOBI and GCP -- also superimposed – for NSR ≤ -
10dB. Relative errors for NSR = 0dB are quite high and therefore comparisons of 
performance are difficult in this range. 
 
In the second experiment with strong proportional damping, GCP has the smallest 
relative error for NSR ≤ -10dB and CP1 and CP2 (again superimposed) have the 
highest (Fig. 6(b)). Although separation was still successful (see Fig. 4), the price to 
pay is a notable reduction in the figure of merits. Again the high values of the relative 
errors for NSR = 0dB are not amenable to meaningful comparisons. 
 
The figures of merits of non-proportional damping with complex mode shapes are 
displayed in Fig 6(c), where it is seen that all algorithms fail equally in this difficult 
situation. This illustrates an important limit of the approach. This result seems in 
disagreement with a conclusion of Ref. [1] where CP was claimed to be able to 
separate complex modes. It is believed that Ref. [1] applied CP on the analytical 
signal and that the capability of separating complex modes then came from this pre-
processing (as demonstrated in Ref. [10]) rather than from the method itself. 
 
In conclusion of this section, it is observed that: 

• CP1 and CP2 (with the specific choice of filters given in this section) perform 
identically, thus demonstrating that the CP principle applies with any smooth 
filter. 

• CP1 and CP2 both evidence poorer performance than SOBI in these 
examples. 

• GCP is able to steer the performance of CP to the level of SOBI and even 
higher, thus demonstrating the advantage of using more than 2 filters. 
 

 



 
 

Figure 6: Figures of merit as a function of noise-to-signal-ratio: a) light proportional 
damping (first experiment), b) strong proportional damping (second experiment), c) 

non-proportional damping with complex mode shapes (third experiment). 
 

 
 

6. Experimental investigation of the optimality filters 
Another experimental issue to investigate is the choice of the “best” set of filters for 
the application of CP in its generalized versions. Previous tests were conducted by 
using arbitrary FIR filters, yet as shown in section 3.4 the method can surely be 
optimized by designing filters that are more adapted to the modal characteristics of a 
system. The corresponding frequency gains should be reasonably smooth, nearly 
constant across the mode bandwidth, and at the same time as contrasted as possible 
(see section 3). 
 
This is first illustrated for the separation of two modes by means of two filters (method 
CP2). As discussed in subsection 3.4, for an optimal separation the two filters should 
return frequency gains as different as possible, each one highlighting a particular 
mode of the system. This is illustrated in Figs. 7 and 8 where a pair of high-pass 
filters has been used to test the spectral separation of adjacent modes. In order to 
get an efficient separation, not only do the filters have to cut off the modes, but they 
should also magnify them in a different manner. As seen in Fig.  9, the best results 
are obtained when the slope of the high-pass filters crosses a mode. On the contrary, 
Figs 7 and 8 illustrates two situations where the pair of filters locally put the same 
relative weights on the two modes (i.e. the ratio 1 2ρ ρ  in Eq. (24) is equal to its 
minimal value of one), which is clearly prone to failure. 
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Figure 7: Application of CP by employing a pair of identical filters 
 

 
 

Figure 8: Application of CP by employing a filter outside the frequency band of 
interest 
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Figure 9: Application of CP by employing a “good” pair of filters 
 
 

Next the same experiment is repeated by using the generalized formulation of CP 
and spanning the frequency band of interest with a bank of 8 high-pass filters (see 
Fig.  10). By construction, there is a better chance that some of the filters in the set 
will be close to optimal. The good performance of the separation can be clearly seen 
in Fig.  10, together with a comparison with same-order SOBI which fails in the 
identification of the two closely spaced modes. 
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Figure 10: Generalized CP with a set of high-pass filters and comparison with SOBI 
 
Other interesting sets of filters which have been tested are octave bands and 
fractional octave bands. The rational beyond this approach is that each filter will 
enhance a specific (narrow) band of frequencies and therefore magnify a prominent 
mode present in that band (if any) while partially attenuating the “out-of-band” modes. 
The approach is illustrated in Fig.  11 where separation is achieved correctly with 
GCP with 8 filters and not with the same-order SOBI. 
 

 
 

 Figure 11: Generalized CP with a set of third-octave band filters and comparison 
with SOBI 

 
7. Application to experimental data 
The methodology is finally validated by analysis of experimental data. These come 
from a scale 5-story building located in the Department of Mechanical and Aerospace 
Engineering at Politecnico di Torino. The investigated structure, whose scheme is 
shown in Fig.  12, is composed of five aluminum decks linked by thin steel beams; it 
might be reasonably considered as a 5-DOF system as the plate stiffness is much 
higher than the flexural stiffness of the vertical beams. Its transient response is 
measured and analyzed with the generalized version of CP by using sets of 
sinusoidal (GCP-S), octave-band (GCP-O) and high-pass (GCP-H) filters in 
comparison to SOBI. Sampling frequency is normalized at 1 Hz and modes have 
been searched in the normalized frequency interval [0 0.3] Hz. The same order 
(number of filters for GCP and number of time lags for SOBI) is used for all 
techniques and it is set to 10. 
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Figure 12: Scheme of the structure used in the experiment  
 
 

The modes separated by GCP using the different sets of filters and by SOBI are 
compared in Fig.  13. The four algorithms were able to separate the modes of the 
structure, in particular the two pairs of adjacent modes at 0.022 Hz – 0.024 Hz and 
0.077 Hz – 0.080 Hz. SOBI proved slightly inferior in the identification of the mode at 
0.101 Hz (some small cross-talks are noticeable on the fourth separated spectrum). 
 
 



 
 

Figure 13: Comparison of different (but same-order) versions of GCP applied on 
experimental data: sinusoidal filters (GCP-S), octave-band filters (GCP-O) high-pass 

filters (GCP-H) and SOBI 
 
Conclusion 
This aim of this paper was to provide a theoretical analysis of the CP technique 
recently introduced in Refs. [1][2][3] within the context of operational modal analysis. 
Since CP is claimed to blindly separate the individual modal contributions of a system 
from its vibration responses only, its potential interest to practical applications is not 
to be underestimated. The main result of the paper is that CP, in its original version, 
is not as versatile as it first appeared. It has been proved that the only modal 
contributions that it can separate exactly (without resorting to the assumption of 
statistical independence) are made of pure sines: these are the responses of purely 
conservative systems. The good news, however, is that CP is quite robust against 
this condition and that it works remarkably well in separating damped modes, as long 
as the corresponding modal coordinates are slowly modulated sinusoids. This is 
actually reminiscent to other BSS algorithms when applied to modal analysis. 
Another result of the paper proves that CP can be generalized to the use of any 
smooth filters and not just those initially designed in Ref. [4]. This conveys the 
technique a more general interpretation than it was initially given in terms of temporal 
predictability; namely, CP tries to separate components which are as least dispersive 
(i.e. invariant under linear filtering) as possible. This indicates that “complexity” is 
actually to be measured by a propensity of dispersion rather than by predictability. 
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The same result also suggests a generalization of CP which, in a similar spirit to 
SOBI, jointly diagonalizes the cross-correlation matrices of an arbitrary number of 
filtered versions of the signals. Numerical simulations have shown that generalized 
CP is likely to improve the performances of the plain-vanilla CP, similarly to SOBI 
which actually happens to be a particular case of the proposed generalization. Other 
improvements are likely to result from the findings of this paper. One perspective is to 
use the first separation returned by a general purpose family of filters and then iterate 
to design filters better optimized to the identified modes. 
 
 
Acknowledgments 
This work was performed within the framework of the LabExCeLyA (”Centre Lyonnais 
d’Acoustique”, ANR-10-LABX-60). 
 
 
Appendix A:  proof of Eq. (6) 
Since ( )iY ω  is complex valued, the perturbation is sought by keeping *( )iY ω   
constant. Therefore, 
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Keeping only the first-order terms in the Taylor expansion, 
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Equation (6) immediately follows after subtracting ( )0( )i iY U Vρ ω = . 

 
 
Appendix B: pseudo code to solve Eq. (25) 
 
Step 1: Compute the set of matrices ( ) ( )

0k xx kG d
π

ω ω ω= ∫S S , 0,...,k K=   

Step 2: Compute the eigenvalue decomposition 0
H=S UΛU of matrix 0S , where Λ  

and U  are diagonal and unitary matrices, respectively. 



Step 3: Compute the matrices  
	

1 1
2 2 ,    1,...,H

k k k K− −= =S U Λ S Λ U 		 (29)	

Step 4: Find W  which jointly diagonalizes the set of matrices { }kS , 1,...,k K= . 

 
Any joint approximate diagonalization solver2 can be used in step 4 [20]; solvers 
dedicated to positive definite matrices [21] will require ( ) 0kG ω ≥  in Eq. (25). 
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