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Electricity distribution system operators (DSOs) are expected to invest heavily in system innovation in
the form of smart grids (SG) in order to help achieve energy policy goals. In this context, regulatory
reforms to spur DSOs investments are considered a policy priority. Based on a review of the European
regulatory status and using a dataset of 459 innovative SG projects, this study focuses on market and
regulatory factors and performs a series of statistical tests to investigate how the different factor levels

affecting SG investments in Europe. The results show that (1) lower market concentration in the elec-
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tricity distribution sector (2) the use of incentive-based regulatory schemes; and (3) the adoption of

151 innovation-stimulus mechanisms are key enablers of SG investments.
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1. Introduction

Today's electric power industry faces challenges as large as any
in its history in the form of climate change and the depletion of
energy sources. In response, the European Union (EU) has estab-
lished three key energy policy objectives related to the competi-
tiveness, sustainability, and security of supply, which are
underpinned by long-term energy targets. These targets include an
increase of energy efficiency by at least 27% compared with the
business-as-usual scenario, an increase of renewable energy supply
by at least 27% of total demand, and a reduction in greenhouse gas
emissions of 40% compared to 1990 levels.

The ambitious energy targets trigger new investment needs and

* Corresponding author. European Commission, Joint Research Centre (JRC),
Institute for Energy and Transport, Via Fermi 2749, 21027 Ispra, Italy
E-mail address: alexis.meletiou@jrc.ec.europa.eu (A. Meletiou).

http://dx.doi.org/10.1016/j.jup.2016.03.003

call for new ways to plan, construct, and operate network in-
frastructures. Europe's electricity networks that have served well
the needs of consumers for many decades will need to be
expanded, upgraded, and modernized. At the transmission level,
the expected increase in the penetration of variable renewable
energy sources (RES) creates substantial needs for new cross-
border transmission capacities (European Commission (EC), 2010;
ENTSO-E, 2014; EC JRC, 2015). At the distribution level, several
new challenges such as the rapid integration of distributed energy
resources (DER) and the growing electrification of mobility will
need to be met by a more intelligent and communicative electricity
network, the so-called smart grid (SG).

Smart grids (SG) requires a fundamental transformation of the
electricity industry's operating model in order to enable a more
efficient allocation of energy resources (to meet energy demand)
while ensuring the active participation of consumers (and “pro-
sumers”) in energy markets. However, such a transition away from
the current centralised, top-down model will require considerable
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investment. Indeed, the International Energy Agency (IEA) is
expecting electricity network investments in the range of €600
billion for Europe between 2014 and 2035 (IEA, 2014). The bulk of
the forecast investment (=80%) will be allocated to the develop-
ment of the distribution network. Europe's industry association for
electricity estimates a similar scale of investment over a shorter
time period, forecasting a requirement of €600 billion by 2020,
two thirds of which will be for distribution grids (Eurelectric,
2013). The magnitude of the expected investments arguably
highlights the prominent position of smarter electricity grids on
the current energy policy agenda.

SG investments are associated with the replacement or
upgrading of physical infrastructure (e.g. new sensors, controllers),
the integration of ICT infrastructure (e.g. software technologies,
communication protocols) in the distribution system, and the
implementation of innovative projects (Fox-Penner, 2010; Marques
et al., 2014). The innovation path can be pursued through pilot'
projects that advance our knowledge of the real-time operation
of the grid. SG pilot projects may require significant upfront costs
but have the potential to deliver important benefits for the project
partners. Pilot initiatives can be beneficial in many ways; allowing
the evaluation of innovative technologies in a real environment
(e.g., viability and interoperability) and potential behaviour pat-
terns of consumers as well as the broad range of diverse energy
players' interactions. Over the last decade, 459 European SG pilot
projects have been implemented, representing an investment of
€3.15 billion (EC JRC, 2014), with the investment effort expected to
intensify over the coming years.

European distribution system operators (DSOs) will have an
important role to play, as they are the ones expected to carry the
main investment burden. Since DSOs are regulated entities that
have to cover their costs through regulated revenues only
(Eurelectric, 2014), the unenviable job of balancing the expected
benefits from SG investments with their capital costs will fall to
national regulators (Fox-Penner, 2010). In this respect, regulation
can have an important role in setting up a framework that fosters
investment in SG development (Marques et al., 2014).

While in the last two decades the current regulatory frame-
works for DSOs have largely focused on input-oriented goals, i.e.
spurring productive efficiency, in recent years many regulators
(such as Ofgem in UK; see Ofgem, 2010) are modifying their regu-
latory interventions to become more innovation-friendly, and to
ensure that new forms of investment are reflected in regulated
tariffs (CEDEC, 2014). In a recently published survey, DSO directors
claimed that despite the recognised political will for fostering SG
solutions, most regulatory authorities treat R&D and demonstra-
tion projects as any other cost without providing adequate in-
centives (Eurelectric, 2014). An effective and successful regulatory
scheme should strike a balance among the goals of consumer
affordability, investment incentives, the quality of supply, and the
economic viability of the DSO.

This paper intends to explore the effect of specific market and
regulation factors® on the level of investments in SG pilot> projects
in Europe using an original dataset of 459 SG projects in 30 Euro-
pean countries in the period 2002—2014. Among the variety of
market and regulatory factors, the study is particularly concerned
with the following:

! We distinguish between deployment and pilot projects. Deployment projects
are large scale commercial projects, while pilot projects are R&D or demonstration
projects targeting on innovation.

2 A “factor” is a vector whose elements can take on one of a specific set of values.

3 For the sake of simplicity, we will use the term SG investments referring to this
part of investments that concerns innovative projects.

i. Distribution-sector concentration: reflects the level of mar-

ket concentration in the electric power distribution sector;

ii. Regulatory-mechanisms: reflects the capacity of the regula-
tory scheme to provide incentives to DSOs for increasing cost
efficiency or productivity;

iii. Innovation-stimulus mechanisms: refers to the mechanisms
designed by regulatory authorities to stimulate the imple-
mentation of pilot projects.

For each of them, this study focuses on how the factor levels*
might affect investments in SG pilot projects in Europe. In this
context, the study provides insights on potential regulatory reforms
toward an updated and innovation-friendly framework that will
incentivize SG investments by DSO.

The paper is structured as follows. Section 2 provides a detailed
description of the data-collection process. Section 3 presents the
regulatory factors that will be used for subsequent analysis. Section
4 presents the steps of the analysis and discusses the results. Sec-
tion 5 sets out the conclusions, discusses the limitations of the
analysis, and proposes future work.

2. Data
2.1. Data sources

The study is based on two comprehensive sets of data: a data-
base with 459 SG pilot projects that were started in between 2002
and 2014 and a compiled list of the key features (factors) associated
with the regulation of electricity distribution networks. Both
datasets concern the European territory and in particular 30 Eu-
ropean countries: the 28 European Union member states (EU-28),
Switzerland, and Norway.

The SG pilot projects database is the product of data collection
efforts made by the European Commission's Joint Research Centre
(JRC), which conducted a related survey annually from 2011 to
2014. The use of JRC's database assures the neutrality and reliability
of the data. Additionally the data should be considered homoge-
neous in the sense that all the projects included satisfy certain
criteria: that is, all of the projects are being implemented in Europe,
are at the R&D or demonstration stage of development (pilots), and
concern new technologies® and ICT capabilities aiming to make the
grid smarter. Since there is no globally agreed upon definition of a
smart grid (Clastres, 2011), the study follows the EC JRC (2012)
approach® for compiling the SG project database.

For the mapping of regulatory factors concerning DSOs in
Europe, we gathered information from a broad range of sources,
including institutional and consulting reports as well as academic
research. Initially, we sourced data from two Eurelectric reports
(Eurelectric, 2014, 2013) as well as from a consulting company
(Ernst and Young , 2013). All the collected data were cross-
referenced by analysing the annual reports of European national
energy regulators (NERs) as well as recently published papers (e.g.
Cambini and Rondi, 2010). Where discrepancies were found, we
relied on the data derived from the NERs' reports as our primary
source.

4 The set of values that the elements of a factor can take are called levels (factor
levels).

5 With respect to SG technologies, the database does not include projects con-
cerning smart meter installations. Smart meter is considered a mature technology
in deployment phase and many European countries (e.g. Italy, Sweden) have
already completed roll-out programs.

6 Smart Grids is an upgraded electricity network enabling two-way information
and power exchange between suppliers and consumers, thanks to the pervasive
incorporation of intelligent communication monitoring and management systems.
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Fig. 1. Overall investments, DSO led investments and DSO participation investments in
terms of project number and investment.

2.2. DSO involvement in SG pilot investments

The set-up of the smart electricity system is expected to yield
benefits all along the value chain of electricity sector, from gener-
ation to consumption; however, the bulk of investment will be
required at the distribution level. Undoubtedly, DSOs will bear the
lion's share of the initial investments necessary for commercial
solutions (Eurelectric, 2011). Yet, the pace of DSOs' investments in
SG technologies may be affected by traditional regulatory schemes
that, though providing adequate incentives for enhancing produc-
tive efficiency, may lead to sub-optimal incentives associated with,
for example, low regulated rates of return and no premium for
demand uncertainty.

Despite the purported ineffectiveness of regulatory schemes to
incentivize SG investments, the data seem to confirm the leading
role of DSOs in promoting SG development in Europe. DSOs/utili-
ties” are best represented in the majority of SG pilot projects in
Europe and are at the forefront in terms of investment (EC JRC,
2014). Out of the total number of 459 projects, DSOs are involved
in the 66% of them. In many of these cases (30%), DSOs have the
prominent role of coordinator (lead organization). In terms of
budgets, DSOs participate in 78% (€2.46 billion) of the total in-
vestments while they lead 44% (€1.37 billion) of the total invest-
ment efforts as shown in Fig.1.

Fig. 2 shows the investments in R&D and demonstration pro-
jects by starting year when at least one of the project partners is a
DSO. DSOs are involved in projects with an average budget of €8.6
million. The data show a sufficient level of maturity of SG tech-
nologies since the investments in demonstration projects
outnumber the ones in R&D. Around 76% of the analysed in-
vestments are classified as demonstration projects, whereas the
remainder are R&D projects.

SG projects in Europe have experienced significant growth over
the last decade (2004—2014). Especially between 2008 and 2014,
the number of SG projects increased rapidly with more than 98% of
the collected projects having started during this period of time.
More precisely, the development of the field can be split into two
phases: a first phase (between 2002 and 2007), with a relatively

7 With the term “utility” we refer to these integrated energy companies whose
core business activities combine electricity distribution with supply (retail) and/or
more rarely with small-scale generation. These utilities may be exempted from the
EU unbundling requirement as they serve less than 100.000 customers. This is
typically the case of utilities in Austria, Germany and Nordic countries. For the sake
of simplicity, we henceforth use only the term DSO to describe both energy dis-
tribution firms and integrated, unbundled utilities.
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Fig. 2. The distribution of SG investments by starting year of the project, for the
projects where at least one DSO participates in.

low average annual budget of €33 million and a second phase
(between 2008 and 2014), with an average annual budget equal to
€350 million. This sharp increase in the level of investment may be
due to several factors. Technological maturity or newly introduced
policies may partially explain the investment discrepancy between
the two identified phases. Ginsberg et al. (2010) argue that the
stimulus packages launched by governments after the financial
crisis in 2008 may have significantly affected investment decisions.
At the European level, SG initiatives have received wide support
through different channels of funding over the last years, including
the 7th Framework program, the recovery fund, and the infra-
structure package (EC JRC, 2013; 2014). National funding is also
increasingly supporting SG investments in several European
countries (see e.g. EC JRC, 2014). These various funding initiatives
are targeting pilot projects across different countries and techno-
logical applications.

2.2.1. Handling and normalization of SG investment data

The data confirm the high participation of DSOs in SG projects as
well as their leading role in many of them (Fig. 1). For the purpose of
our analysis, the investment data were refined by excluding the
projects where DSOs do not participate. The deployment of a SG
imposes a change in the electrical architecture and design of the
distribution networks which are operated by the DSOs. Since
regulation directly affects DSO budgets and in turn their ability to
raise capital for the implementation of innovative SG projects, we
examine the correlation between the DSOs' SG investments and the
regulatory factors, restricting our analysis to DSO-participation
projects. Thus, 150 projects, accounting for an overall investment
of around €0.7 billion were excluded. Additionally, 24 projects with
insufficient budget information were not taken into consideration.
After refining the data, we allocated the projects' budgets across the
different countries. When a project had several implementation
sites with participants coming from different European countries,
the budget was allocated evenly (without weighting) among them.

As outlined above, SG investments span a period of thirteen
years (2002—2014). This study uses only the data from a six-year
observation period, from 2008 till 2013. First, as shown in Fig. 2,
the level of investments in between 2002 and 2007 was particu-
larly low, probably due to the uncertainty related to the returns on
such capital expenditures. Second, the investment data for the
period 2002—2007 are considered somewhat unreliability and
there is a high probability that some investments were not listed
prior to the data collection efforts started in 2010 (for the release of
the first EC JRC inventory). Finally, for the period 2002—-2007,
data for the regulatory mechanisms to support SG are not available
in the corresponding literature. With respect to the factor
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Table 1

The normalized SG investments and the three analysed regulatory factors for 30 European countries (EU-28, Norway and Switzerland).

Country Country Investment (€/M€ of Investments Distribution-sector Regulatory- Innovation-stimulus
code GDP) (€/capita) concentration mechanisms mechanisms
Austria AT 193.80 7.03 Low Incentive Adj. Rev.
Belgium BE 228.46 7.77 Low Cost None
Bulgaria BG 56.77 0.30 Medium Incentive None
Switzerland CH 26.19 1.53 Low Cost None
Cyprus cY 55.49 1.27 High Cost None
Czech Republic CZ 219.48 3.31 Medium Hybrid None
Germany DE 109.19 3.54 Low Incentive None
Denmark DK 566.12 24.89 Low Hybrid Adj. Rev.
Estonia EE 64.73 0.80 Medium Hybrid None
Greece EL 76.20 1.49 High Cost None
Spain ES 174.56 4.06 Medium Hybrid None
Finland FI 243.26 8.77 Low Hybrid Adj. Rev.
France FR 191.15 6.18 Medium Incentive None
Croatia HR 42.64 0.45 High Cost None
Hungary HU 82.83 0.83 Medium Incentive None
Ireland IE 88.99 335 High Incentive Adj. Rev.
Italy IT 136.73 3.72 Medium Hybrid Extra WACC
Lithuania LT 84.32 0.85 High Incentive None
Luxembourg LU 68.33 5.47 Medium Incentive None
Latvia LV 26.77 0.27 Medium Hybrid None
Malta MT 42.80 0.70 High Cost None
Netherlands NL 155.37 5.93 Medium Incentive None
Norway NO 47.08 3.27 Low Incentive None
Poland PL 19.21 0.18 Medium Hybrid None
Portugal PT 306.46 5.11 Medium Hybrid Extra WACC
Romania RO 27.55 0.18 Medium Incentive None
Sweden SE 234.89 9.59 Low Incentive None
Slovenia SI 337.71 6.05 High Incentive Adj. Rev.
Slovakia SK 68.75 0.88 Medium Incentive None
United UK 203.18 6.10 Medium Incentive Adj. Rev.
Kingdom

Note: The abbreviation “Adj. Rev.” stands for the term “Adjustment of Revenues”.

“innovation-stimulus mechanisms”, most of the NERs introduced
this type of incentives after 2008.2 In the light of these issues, the
study relies on a six-year observation period, from 2008 till 2013.

As shown in Table 1, the SG investments are not uniformly
distributed across Europe and the great majority of the spending is
in central European countries. Disparities in the distribution of SG
investment may be explained by the socioeconomic inequalities
among countries (e.g. gross domestic product (GDP), population) or
even by inequalities in electricity consumption patterns. In partic-
ular, socioeconomic factors can considerably affect the level of SG
investments, undermining the comparability of data in a notionally
common scale. To overcome this problem, country investment data
were normalized by dividing by the respective GDP and population
data. Both the GDP and the population data were obtained by the
Eurostat's website (Eurostat, 2015). For each individual country, the
two normalisers were calculated as an average of six years values
for the period 2008—2013.° Following the normalization process
the data were converted into ratios; Euro of SG investment per
million Euros of GDP (€/M € of GDP) for the GDP normaliser and
Euro of SG investment per capita (€/capita) for the population
normaliser. For more details about the values prior to and after
normalization, see the table of Appendix I.

3. DSO market conditions and regulatory schemes

This section discusses the grouping of 30 European countries

8 The British energy regulator (OFGEM) and the Danish Energy Regulatory Au-
thority (DERA) were the only ones, among the European NERs, who introduced
such type of innovation incentives before 2008. OFGEM initiated an innovation
incentives in 2004 and DERA in 2008.

9 The average method was used for achieving more accurate results while the
observation period corresponds with the selected SG investments' period.

with respect to the three different regulatory characteristics
introduced above: distribution-sector concentration, regulatory-
mechanisms, and innovation-stimulus mechanisms.

3.1. Distribution-sector concentration

Electricity DSOs manage the power distribution system con-
sisting of cables that deliver electric power from the transmission
level to the end users. Generally, DSOs operate in a specific area of a
country where they act as the monopolistic network operator.
However, over a country many DSOs may operate and some po-
tential degree of competition among them may emerge as long as
the regulators adopt comparative benchmarking to assess their
performance. Focussing on the level of distribution-sector market
concentration is therefore an interesting feature because it pro-
vides suggestions on the potential role of scale or scope economies
in spurring SG investments. Moreover, the criterion of “distribu-
tion-sector market concentration” is an important structural factor
that might indirectly be affected also by regulatory decisions'®. We
consider the following question: “What is the number of distribu-
tion systems or DSOs and their respective shares of the overall

19 NERs cannot intervene in the unbundling processes of utilities neither to inhibit
DSOs from adopting corporate solutions, such as mergers and split-ups. However,
with respect to the unbundling requirement of the Third Energy Package (Directive,
2009/72/EC), European energy regulators are responsible for the monitoring of the
requirement across the board, in order to assess how the rules function in practice
(CEER, 2013). With respect to mergers and split-ups, most of the European NERs
have adopted specific “mergers and acquisitions” policies, dealing with the regu-
latory issues raised by mergers or comparable transactions in the electricity dis-
tribution sectors. For instance, a relevant policy was published by OFGEM in 2002.
Usually NERs provide advice to the national merger authorities on the impact of
mergers in the electricity sector but they do not have formal merger control
powers.
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capacity in the distribution sector of the electricity markets?” To
define the precise criteria for categorization, this study adopts the
approach followed by Eurelectric (2013), which is predominantly
based on a three-firm concentration ratio (CR3), to measure the
total market share of the three largest firms in the industry. Euro-
pean countries' markets can be assigned to three broad categories:
a) high concentration, b) medium concentration, and c¢) low con-
centration (see Table 1).

Countries with one distribution system or DSO serving 99%—
100% of the distributed power are assigned to the “high concen-
tration” group. The group “medium concentration” includes the
countries where one dominant DSO serves about 80% of distributed
power market or the three largest DSOs serve more than 60% of the
market (with several smaller DSOs serving the rest). A typical
example of medium concentrated market is the Italian, where 140
DSOs operate the electricity distribution networks with one DSO
covering 86% of the demand and 49 DSOs having less than one
thousand customers (RSE, 2014). As “low concentration” national
markets, are grouped the ones where the three largest DSOs deliver
about 50% of the distributed power. For example, in Finland, Nor-
way, and Sweden the three biggest companies have a market share
of 41%, 33%, and 51% respectively (NordREG, 2011).

In the majority of European countries, the markets' concentra-
tion ratio is either medium or low. Indicatively, half of the national
markets present in the analysis are categorized as “medium
concentrated”, while eight of them as “low concentrated”. Only in a
few countries (Greece, Slovenia, Ireland, Lithuania, Malta and
Cyprus) do the markets reflect high concentration levels. In Malta
and Cyprus, the DSOs also serve a small number of customers,
typically less than one million.

Due to the transformations of the European electricity markets,
the number of DSOs is continuously changing (Jenkins et al., 2000).
Over the last years, the split-ups and mergers of DSOs is a common
phenomenon in the European countries and two opposing trends
can be observed. The cases of Denmark and Romania are of
particular interest, since their distribution-sector concentration
levels have gone up and down, respectively, the last few years. In
Denmark, due to several mergers, the number of Danish electricity
distribution companies has decreased from 107 in 2006 to 77 in
2011 (Schweinsberg et al, 2011) making the market more
concentrated. The main goal of mergers is the achievement of ef-
ficiency improvements by network utilities (Lopes Ferreira et al.,
2011). On the other hand, in 2001, the Romanian distribution mo-
nopoly (Electrica) was split up into eight geographically-based
distributors with five of them becoming private corporations.

3.2. Regulatory-mechanisms

Different criteria can be used to group European countries ac-
cording to regulatory models. Considering regulatory capacity to
induce cost efficiency or productivity by providing relevant in-
centives to DSOs, this study identifies three broad categories of
models: a) incentive-based models, b) cost-based models, and c)
hybrid models.

3.2.1. Incentive-based models

A loose definition describes an incentive-based regulation
scheme as any model where the regulator delegates certain pricing
decisions to the firm and that the firm can reap profit increases
from cost reduction (Vogelsang, 2002). Price-cap regulation has
typically been regarded as the initial incentive-based regulation
model, since it was introduced in the UK during the privatisation
and liberalization era to motivate cost minimization by regulated
utilities. Under the price-cap framework, a CPI-X mechanism is
applied where revenue needs are adjusted by inflation minus an

annual efficiency factor [X]. Other types of incentive-based regu-
latory models include revenue caps, revenue or profit sharing,
performance measurement (yardstick) regulation, and menus'!
(Joskow, 2008). Usually, in countries where incentive-based regu-
latory schemes are applied, more than one type of model is used.
For instance, the Austrian regulatory system is based on a combi-
nation of revenue caps and two separate benchmarking (yardstick)
techniques (Frontier-Economics, 2012).

Today the majority of European countries use incentive-based
regulatory schemes. Out of the 30 countries represented in our
analysis, half of them use an incentive-based regulatory model.
Norway, a country among the first (along with the UK) to imple-
ment market-oriented reforms in the electricity sector, switched
from rate-of-return (RoR) to incentive-based regulation in 1997.
Today, Norway is applying a form of quality-adjusted revenue-caps.
In the Netherlands, incentive-based regulation has been applied
since the first price control in 2001. By comparison, other countries
(like Spain and Germany) have introduced reforms more recently.
In Germany, BNetzA (the German NER) applied a cost-based regu-
lation from 2001 to 2008, before switching to an incentive-based
scheme in 2009 (Frontier-Economics, 2012). In 2008, Spain estab-
lished a new regulatory framework for electricity DSOs based on
revenue caps and a review period of four years (Schweinsberg et al.,
2011).

3.2.2. Cost-based models

Along the spectrum of regulatory reforms, price-cap regulation
is considered a high-powered incentive scheme, particularly when
compared to cost-based (such as rate-of-return) regulation
whereby prices are kept close to realized costs, thereby ensuring
that the earnings are close to a target level. As pointed out in the
economic literature, cost-based regulation determines an allowed
rate of return on investment for the company, and every price re-
view rates are adjusted so as to ensure the firm to earn the
authorized return (Armstrong and Sappington, 2006). Cost-based
regulation models may provide relatively weak incentives for cost
efficiency, but many costs are not totally uncontrollable. In practice,
countries adopting cost-based models usually apply a cap on
operating expenditures (OPEX). For example, the regulatory model
implemented in Greece includes an OPEX clearance term in the
regulation formula triggered by a 3% difference between actual and
budgeted OPEX (RAE, 2012). Similarly the cost-based regulatory
schemes of Belgium, Switzerland, Cyprus, and Malta include anal-
ogous restrictions.

3.2.3. Hybrid models

In between the cost-based and incentive-based models are
different combinations of the two types of regulation, or so-called
hybrid models (Blank and Mayo, 2009). In practice, many hybrid
models follow a cost-based approach for the treatment of capital
expenses (CAPEX) and an incentive-based approach for the treat-
ment of OPEX.

One often sited example is the Finish model where the regula-
tory authority, EMA, applies an ex-ante RoR regulation with in-
centives properties. A benchmarking analysis for determining the
reasonable level of operating expenditures (the efficiency target) is
combined with a general efficiency requirement (2.06%) targeted to
the operational cost (Tahvanainen et al., 2012). More precisely, the
general efficiency target of 2.06% applies to total expenditures
(TOTEX), defined as the sum of OPEX and the estimated cost of

' Menus or options allow the regulated utility a choice among different incentive
regulation plans. This choice usually consists of combination between price caps
and profit sharing (Vogelsang, 2002).
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customer outages (Eurelectric, 2014).

Another example is the Italian regulatory model. AEEG, the
Italian NER, has prompted DSOs and transmission system operators
(TSOs) to trim down OPEX costs by a factor (X) year-on-year, while
the invested capital is remunerated at a rate that is fixed for four-
year periods (Cambini and Rondi, 2010; Crispim et al., 2014).
Since 1999, Portugal has adopted price-cap regulation, applying
efficiency measures on the total cost of the DSOs. In the allowed
returns, CAPEX is fully considered and only the OPEX figure is
affected by the efficiency measures (ERSE, 2011). In Denmark, DERA
determines the maximum return on grid assets allowed for each
individual DSO annually and incorporates that return on the
existing revenue cap mechanism (CEER-DERA, 2014).

In Estonia, a combination of both RoR and incentive-based
regulatory regimes is used (ERRA, 2009). In the case of operating
and maintenance costs, the regulatory formula provides for a CPI-X
allowance, with the X factor set at 1.5% (Moody's, 2013). New in-
vestments, as agreed at the regulatory reviews, are fully reflected in
the company's regulatory asset base (Moody's, 2013).

3.3. Innovation-stimulus mechanisms

Over the last years, NERs have developed dedicated incentive-
mechanisms in an effort to stimulate innovation within the distri-
bution system. Often targeted at SG technologies or at commercial
arrangements, these mechanisms are designed to support innova-
tion initiatives that DSOs are unlikely to undertake in the absence of
incentives.

With respect to the innovation incentives provided by NERs, the
study identifies two broad categories of regulatory frameworks.
The first category includes frameworks with particular incentive
mechanisms for innovative initiatives and the second includes
frameworks where innovation-related investments are treated like
other costs. So far, within the first category, the two variants of
incentive mechanisms that have been developed to support the
pilot investments are: (1) the provision of higher rates of return
(i.e., adding an extra or bonus component to the regulatory
weighted average cost of capital or WACC), and (2) the adjustment
of revenues (i.e., providing an extra allowance or specific rewards
due to performance targets). However, as can be seen from Table 1,
in most European countries R&D and demonstration expenses are
treated like any other cost; i.e. there is no specific compensation for
the risks involved in testing new technologies and processes
(Eurelectric, 2014).

At the moment, two countries apply an extra WACC mechanism.
In Portugal, the regulator allows the DSO a 1.5% premium return on
“smart” investments if the project is expected to provide for an
overall efficiency gain, with OPEX savings over time compensating
for the initial additional CAPEX (Crispim et al., 2014). The premium
of 1.5% was estimated in order to improve efficiency in the alloca-
tion of resources while avoiding distributional distortion (Marques
et al., 2014). Similarly, in Italy, AEEG introduced a competition-
based procedure providing specific incentives for innovative
demonstration projects related to the active distribution network.
To generate interest by DSOs, these pilot programs allowed for a 2%
premium over the cost of capital for a limited time period of 12
years (Crispim et al., 2014).

On the other hand, in several countries, NERs adjust revenues by
providing an extra allowance. Being among the first NERs that have
introduced specialised incentive mechanisms, the Danish regulator
applies a public service obligation-financed mechanism (ForskEL).
The ForskEL mechanism is dedicated to support R&D and demon-
stration of environmental friendly technologies and provides
annual funding of DKK 130 million (Energinet.dk, 2015).

Probably the most well-known example comes from the UK

where, in December 2009, OFGEM announced a funding mecha-
nism (Low Carbon Network Funds-LCNF) of £500 million over the
period 2010 to 2015 to support competitive tenders for “large-scale
trials of advanced technology including smart grids”, as part of
DPCRS5, and only applicable to electricity distribution companies
(Crispim et al., 2014). In 2015, with the introduction of RIIO-ED1,
the LCNF was replaced by a new funding scheme, called Network
Innovation Competition (NIC). NIC intends to provide incentives to
DSOs for the implementation of SG solutions.

In Ireland, in 2011, the Commission for Energy Regulation (CER)
introduced an extra-allowance mechanism for incentivizing DSO to
carry out research and development and sustainability activities.
The total amount of the projected fund equals €18.2 million and
will allow DSOs to explore technological advances in areas such as
smart grids, generation integration, and adaptation of new network
devices to support the integration of renewable generation into the
network and improve the reliability of service (CER, 2010).

In Slovenia, the NER allows additional cost for SG projects
(including pilots) to be included in allowed revenues in the
2012—2014 regulation period (Eurelectric, 2014). In particular,
DSOs receive a one-time payment of 2% of the value of the realized
SG investments (in addition to regular income from grid regula-
tion), in the year in which the asset is put into service (Agencija za
energijo, 2016; Eurelectric, 2014).

In Finland, DSOs can cover some of their investment costs
through the innovation incentive system. As part of the innovation
incentive system, the EMV can approve R&D related expenditures
up to a maximum of 0.5% of a DSO's annual turnover (NordREG,
2011).

In Austria, the regulatory system provides incentives for cost
reductions as companies must follow a regulatory efficient path
(CEER, 2014). Additionally, E-Control (the Austrian NER) applies an
incentive factor to stimulate investments in innovation. The in-
vestment factor constitutes a cost-based element in the incentive-
based regulatory system (Frontier-Economics, 2012).

Both of these variations in innovation-stimulus mechanisms
typically encompass a tendering procedure. As has already been
discussed above, tendering is a common approach followed by
NERs in the UK, Italy, and Denmark. Incentive-mechanisms provide
tendering funds for which DSOs can compete with innovative in-
vestment models. The qualified tenders are allowed an increased
remuneration for certain innovative investments compared to their
conventional investment counterparts.

In Norway and France, the NERs have recently adopted incentive
mechanisms for investments in innovation. Since 2013, the Nor-
wegian NER has been providing extra income of up to 0.3% (book
value * 1.01) on some innovative projects (Eurelectric, 2014). In
France, a new instrument that includes a dedicated amount for
R&D and pilots was issued at the end of 2013 (Eurelectric, 2014). If
the DSO spends less than the projected allowance, the remaining
amount is returned to the customers benefit, while if the company
overspends is at its own risk. Due to the fact that these de-
velopments are quite recent, thus having minor effect on the in-
vestments for the observation period 2008—2013, the Norwegian
and French regulatory frameworks were not considered as of
providing specialized innovation incentives for the purpose of our
analysis.

4. Analysis

For the three regulatory factors previously described, individual
statistical hypothesis tests were carried out in order to discover the
correlation between the dependent variable, namely the level of SG
investments in the European countries, and each of the regulatory
factors. The individual regulatory factors were used as categorical
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Table 2

The descriptive statistics: mean, standard deviation, maximum/minimum values (Max/Min) for the country-groups for each regulatory factor considered in the analysis.

Descriptive statistics

Factor Groups €/Capita €/M<€ of GDP
Mean (X) Standard deviation Max/Min n.obs. Mean (X) Standard deviation Max/Min n. obs.
Distribution-sector concentration High 2.02 2.0 6.0/045 7 103.9 104.7 337.7/19.2 7
Medium 2.89 24 6.2/0.18 15 120.2 85.8 308.5/19.2 15
Low 8.30 0.6 249/153 8 206.0 168.8 566.2/26.2 8
Regulatory-mechanisms Incentive-based 3.97 2.9 9.6/0.18 15 129.8 86.5 337.7/275 15
Hybrid 5.68 7.7 249/0.18 9 195.5 170.8 566.1/19.2 9
Cost-based 2.20 2.7 7.8/0.45 6 78.6 75.0 227.9/262 6
Innovation-stimulus mechanisms No Incentive 2.67 2.75 9.6/0.18 22 95.5 70.9 234.9/19.2 22
Extra WACC/Adj. Rev. 8.13 6.99 249/335 8 259.6 148.7 566.1/87.8 8

Note: The abbreviation “n. obs.” stands for the term “number of observations”.

variables to form different groups of observations from the sample
population. Then, differences in means among the groups were
studied.

The analysis was performed according to three discrete steps.
First, the observations (SG investments per country) were sorted
into relevant groups for each regulatory factor. For each group and
each factor respectively, basic descriptive statistics (means and
standard deviations) were calculated to provide both quantitative
and visual information. Second, the data were assessed in terms of
satisfying certain assumptions and these results were used to
formulate our hypotheses. Statistical testing requires the assess-
ment of three basic assumptions about the statistical population:
(1) the normality of the distributions, (2) the independence of the
observations, and (3) the homogeneity of variances (homoscedas-
ticity). In the third and final step, the statistical hypotheses were
tested according to a selected level of significance.

4.1. Descriptive statistics

At its core, this study is concerned with three distinct yet alike
sets of analyses, one for each regulatory factor discussed in Section
3. For each analysis, the individual thirty observations of the
dependent variable (SG investments per country) are classified into
different groups (levels). The observations were grouped into three
groups for the factors “distribution-sector concentration” and
“regulatory-mechanism” and in two groups for the factor “inno-
vation-stimulus mechanisms”. For the factor “distribution-sector
concentration” the formed groups contain 7, 15, and 8 observations
while for the factor “regulatory-mechanism” the formed groups
contain 6, 9, and 15 observations. For “innovation-stimulus mech-
anisms” the groups contain 8 and 22 observations. Table 2 sum-
marizes the group-formation results along the basic descriptive
statistics. In Section 4.3 we compare the values from the different
groups. The analysis is further extended to our main variables of
interest, i.e. investment per capita and investment per million euros
of GDP.

4.2. Statistical hypothesis tests' assumptions

4.2.1. The assumption of normality

Assessing the assumption of normality is of paramount impor-
tance for deciding the use of a parametric or non-parametric sta-
tistical test. Parametric statistical analysis assumes a certain
distribution of the data, namely the “normal” one, which in case of
violation may lead to invalid and unreliable interpretation and
inference (Razali and Wah, 2011). On the contrary, non-parametric
statistics are distribution-free methods and therefore do not rely on
the estimation of population parameters (StatSoft, 2015).

To check for the normality of the distribution, we used the
Shapiro—Wilk test (S—W test) against the alternative of
Kolmogorov-Smirnov test.!”> S—W test is considered the most
powerful normality test available (Razali and Wah, 2011) as it de-
tects small departures from normality. Being aware of the limited
applicability of S—W test for small-size samples (low number of
observations), the test was mainly applied to the samples with
more than 8 observations. Appendix Il provides the results ob-
tained by the S—W test.

In the cases where S—W test failed to detect normality,”> we
performed additional tests (i.e. outlier tests) and/or used graphical
methods'* to understand the reasons for deviation from normality.
Appendix III displays one of these graphical methods, the box—plot
graphs. We observed that there are two main reasons of non-
normality: (1) the presence of outliers in the sample (e.g. in-
vestments (€/M € of GDP) in Belgium in the group “cost-based
regulation models”) and (2) the sensitivity of the observations to
the normalization factors (i.e. populations that were normally
distributed when normalized with GDP and non-normally
distributed when normalized with population).

Overall, the results of normality tests and the graphical methods
used, provided limited evidence in support of the assumption of
normality, thus creating high uncertainty regarding the choice of
the appropriate hypothesis test. Due to the lack of confidence
regarding the existence of normality, it was decided to carry out
two different analyses, one with a parametric Student's T-test and a
second one with a non-parametric U-test.

4.2.2. Independent observations

All the samples utilized in the analysis satisfy the assumption of
independence, since none of the observations in one group is in any
way related to the observations in the other groups (Coladarci et al.,
2014). Undoubtedly, the investments in country i cannot overlap
(be common) with the investments in country u, thus a portion of
investment y; of country i cannot be present in more than one
group in any of the regulatory factors analysis. With respect to the
multinational projects, whenever their budget is split between
different countries, we consider the investment decisions in one
country independent of the investment decisions in another
country. Hence the participation of countries in common projects

12 Kolmogorov—Smirnov has poor power to detect non-normality and as
D’Agostino and Stephens (1986) suggest the test is nowadays of historical interest
only.

13 Either because of the small size samples (n. obs.<8) or because of other
reasons.

14 The graphical methods include box plots, quantile—quantile plots (Q—Q plots)
and histograms.
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do not follow a certain pattern.

4.2.3. Homogeneity of variances

To check for heteroscedasticity among the samples, we chose to
apply Levene's test, against the alternative of Bartlett's test. Lev-
ene's test is widely considered powerful and robust, and is less
sensitive to departures from normality as compared to the Bartlett's
test. The literature suggests its use when the underlying data are
not normally distributed and the variances are in fact equal, as may
be the case in the current analysis.

The second Table of the Appendix II reports the results of Lev-
ene's tests for all of our study samples. With one exception, Lev-
ene's test verified homoscedasticity in the samples (p>5%). In
particular, the only reported inequality of variances concerned the
“innovation-stimulus mechanisms” analysis (the case of GDP
normalization), where p-values were equal to 4%. In this case,
where heteroscedasticity was detected, we apply an adaptation of
the Student's T-test, namely Welch's T-test, which is more reliable
when two samples have unequal variances and/or unequal sample
sizes.

4.3. Statistical hypothesis testing

In order to perform statistical testing of our hypotheses and
check for differences in means among the country groups in term
of investments, both parametric and non-parametric statistical
methods were used. As illustrated in section 4.2.1, the samples do
not provide enough evidence of distribution. For this reason, two
different tests were employed: a Student's T-test (or independent
T-test) was used whenever normality was found and a Man-
n—Witney's U-test was used whenever normality was violated
(non—normality). Finally, in the case of normality, a Welch's T-test
was used whenever an inequality of variances was detected.

For all statistical analyses, where a comparison between the
means of two distinct populations was performed, a one-tailed test
with two hypotheses was considered:

—Hp: uq — 4y =0&uq = uy (null hypothesis)

—Hi: uq — pp >0spy >u, (alternative hypothesis)

Under the null hypothesis, the mean values reflecting SG in-
vestments for the groups of countries are not affected by the
divergence of values of the regulatory factor, thus u; equals uy. This
study considers a level of statistical significance equal to 0.10
(o = 10%) for all tests carried out. This implies that a p-value greater
than 0.10 is statistically insignificant and a p-value of less than 0.01
is highly statistically significant. As a general rule, the smaller the p-
value, the stronger is the evidence against the null hypothesis.

4.3.1. Results for “distribution-sector concentration”

Table 3a presents the mean values for SG investments based on
the independent variable representing distribution-sector con-
centration. The groups are denoted by H for high concentration, M
for medium concentration, and L for low concentration and their
respective sample means are denoted by Xy, Xu, and X;. On
average, SG investment is greater in countries with low concen-
tration than in countries with medium and high for both cases of
normalization. Furthermore, SG investment is less in high con-
centration countries overall.

To assess the strength of the evidence, a p-value was calculated
to assess whether the sample results were likely to have occurred.
Indeed, with regard to per-capita normalization of investments,
both the T and U tests' p-values provided strong evidence for
rejecting the null hypothesis concerning the equality of average

investments. Thus, it can be inferred that countries with low
concentrated markets invest more than the ones with medium and
high concentrated markets, as the p-values are generally low and
equal to 0% and 1%.

Comparing the investments in medium and high concentration
markets, the p-values for both T and U tests are relatively high and
equal to 21% and 40%, implying that the two values are not statis-
tically different. The overall results indicate that low distribution-
sector concentration, where many DSOs satisfy the total demand
for distribution of electricity, is statistically and positively corre-
lated to the level of investments.

However, when investments were normalized with the GDP, the
p-values for both tests provided weak evidence for rejecting the
null hypothesis for most of the comparisons. Comparing mean
values for the low and medium concentration groups, the T and U
tests provide p-values equal to 6% and 9% respectively. Similarly, in
the comparison of low and high concentration groups, the p-values
are equal to 10%, providing some relatively weak evidence to reject
the alternative hypothesis.

The overall results suggest a positive correlation between low
concentrated markets and the level of SG investments. Several
reasons may explain this result. Lopes Ferreira et al. (2011) have
shown that the less concentrated markets have a higher deploy-
ment of distributed generation (DG). Arguably, the increased
penetration of DG makes more urgent the need for “smartening”
the network, thus inducing higher investments. Another explana-
tion may be the relatively “small” size of DSOs in these counties. For
instance, Ruester et al. (2014) argue that “small” DSOs can jointly
invest in ICT or electric vehicles (EV) infrastructure, exploiting
synergies and reducing each DSO's contribution to the cost of
setting up such new and costly infrastructure. A good example is
the “RegModHarz” project in Germany, where seven individual
DSOs are collaborating to develop tools, infrastructures, and stra-
tegies to supply the Harz region with electricity generation coming
solely from renewable sources.

4.3.2. Results for “regulatory-mechanisms”

Table 3b presents the mean values for SG investments based on
the independent variable representing regulatory-mechanism. The
groups are denoted by C for cost-based model, H for hybrid model,
and I for incentive-based and their respective sample means are
denoted by X, Xy and X;. On average, SG investment is greater in
countries applying hybrid models than in countries applying cost-
based or incentive-based models.

For both cases of normalisation and for the majority of mean
comparisons, the T and U tests' p-values are high enough and far
greater than the standard 10% level of significance. Nevertheless,
there are two exceptions when the investments are normalised
with the GDP factor. The first concerns the mean comparison be-
tween I and C groups, where the p-value is equal to 4% in the U-test
(in the T test the results is close to significant value too, with a p-
value = 11%). This result suggests that incentive-based regulation
may promote SG investments more effectively than cost-based
regulation, supporting Marques et al. (2014)'s argument in that
cost-based regulatory frameworks may not spur investments in
technologies such as SG. Conversely, incentive regulation that al-
lows investors to keep part of the gains realized from cost re-
ductions may prove more effective in prompting SG investments
(Marques et al., 2014). In the second case, we find weak evidence
that countries with hybrid models motivate investments more than
countries with cost-based schemes, as the p-value equals 7%.
Marques et al. (2014) provide a conceivable explanation in that the
more SG decrease costs, the more incentive regulation is effective
on promoting “smart” technologies and the less cost-based regu-
lation is effective.
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Table 3a
Average investment in Smart Grids by distribution-sector concentration.
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Distribution-sector concentration

High (H) Medium (M) Low (L) P-value T-test P-value U-test
Xy ny Xm nc X, nc ML VS fm MM VS iy ML VS pH B VS fim UM VS py KL VS fH
€/Capita 2.02 7 2.89 15 8.30 8 b - ** e - e
€/M€ of GDP 103.9 7 120.2 15 206.0 8 * - * * - *
Note: “p < 0.1, ""p < 0.05, ™"p < 0.01.
Table 3b
Average investment in Smart Grids by regulatory-mechanism.
Regulatory-mechanisms
Cost (C) Hybrid (H) Incentive (I) P-value T-test P-value U-test
Xc ' Xy Ny X n KH VS fic KH VS W VS pic IH VS fic KH VS [y M1 VS fe
€/Capita 2.20 6 5.68 9 3.97 15 - - - - - -
€/M€ of GDP 78.6 6 195.5 9 129.8 15 * - - * - *
Note: "p < 0.1, “p < 0.05, “"p < 0.01, p = 11%.
Table 3c
Average investment in Smart Grids by innovation-stimulus mechanism.
Innovation-stimulus mechanism
Yes (Y) No (N) P-value T-test P-value U-test
Xy ny XN ny Ry VS fiN My VS N
€/Capita 8.13 8 2.67 22 e o
€/M € of GDP 259.6 8 95.5 22 o o
Note: "p < 0.1, "p < 0.05, ""p < 0.01.

In general, the lack of statistical significance in the majority of
comparisons, as shown in Table 3b, may indicate the relatively low
importance of regulatory incentives for cost efficiency in the deci-
sion to undertake substantial investments in SG. Indeed, other
features of the regulatory models, such as the WACC, may be more
important than cost-efficiency incentives considered here in terms
of, affecting SG investments.

4.3.3. Results for “innovation-stimulus mechanisms”

Table 3c presents the mean values for SG investments based on
the independent variable representing innovation-stimulus in-
centives. The groups are denoted by Y for countries where in-
centives are provided (in terms of both extra WACC and revenue
adjustments) and N for the group of countries with no specialized
innovation incentives. The groups' respective sample means are
denoted by Xy and Xy. On average, we find more SG investment in
countries where an incentive mechanism is applied than in coun-
tries where there are no specialized incentives for innovation
investment.

For both cases of normalisation, the p-values are relatively low
(less than 1%). Thus the findings provide strong evidence against
rejecting the null hypothesis. As expected, the level of SG in-
vestments is greater when specialized incentives are provided to
DSOs for the implementation of innovative projects. Both the mean
differences and the low p-values suggest the use of incentive
mechanisms by NERs to trigger the SG investments.

Still, a further examination should be performed for under-
standing the effect of an extra WACC versus the effect of an adjusted
revenue mechanism on the level of SG investments. Due to the fact
that only two countries apply the extra WAAC incentive mecha-
nism, the current study does not include such an analysis. This
type of analysis could reveal interesting results since the two

mechanisms vary to a significant degree and are applied under
different market conditions. In situations with large number of
DSOs and a tradition of competitive markets, as in the UK, in-
centives are allocated on the basis of tendering procedures that
allow DSOs to compete for resources on the implementation of
innovative investment projects. In smaller markets with a domi-
nant DSO, as in Portugal, the regulator's role is necessarily more
direct in terms of negotiating incentives and monitoring outcomes
(Crispim et al., 2014).

5. Conclusions

This paper reports our analysis of the interplay between key
market and regulatory factors and SG investments in Europe. After
reviewing the European regulatory status for SG developments, we
analyse the effect of three discrete market and regulatory factors on
the level of SG Investment. The transformation towards a smarter
electricity system will require substantial investments, especially
for the implementation of SG pilot projects. Significant investment
needs suggest consideration of regulatory reforms to stimulate
innovation. In this context, our study provides evidence of which
market and regulatory factors appear to be effective in terms of
enhancing incentives for SG deployment.

First, less concentrated distribution markets are expected to
effectively induce investment-incentives for the implementation of
SG pilot projects. Our results show that in countries where the
market concentration ratio is low the DSOs invest much more on
average than in countries where the ratio is high: the investment in
SG averaged €206 per million Euros of GDP in the former countries
as compared to €104 per million Euros of GDP in the latter. Pro-
spective regulatory reforms may introduce horizontal unbundling
processes in the countries where high concentrated markets still
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exist. However this type of reform may be subject to strong op-
positions by DSOs or other energy stakeholders, especially in cases
where historic, geographic, socio-political, and economic condi-
tions favour concentrated markets. Second, the analysis provides
evidence that regulatory schemes could sustain more incentive-
based outputs. As highlighted in the analysis, incentive-based
regulation may spur the SG innovation and corresponding invest-
ment. Indeed, under incentive-based regulation, investments
averaged €130 per million Euros of GDP as compared to €78.6 per
million Euros of GDP in countries with cost-based regulation.
Similarly, a hybrid model could also be effective in providing
investment-incentives for SG, but apparently not as powerful as an
incentive-based scheme. Third, the analysis shows that the adop-
tion of innovation-stimulus mechanisms by regulation (such as the
adoption of an extra WACC or adjusted revenues) is rather suc-
cessful in promoting SG investments. Indeed, investments averaged
€260 per million Euros of GDP where NERs have adopted specific
incentives as compared to €95.5 per million Euros of GDP where
incentives have not been implemented. As expected, the intro-
duction of incentive mechanisms stimulates DSO engagement in
innovative SG projects and thus, increases the corresponding in-
vestments. Regulatory reforms should consider the integration of
innovation-stimulus incentives.

The analysis performed is subject to certain limitations. First, the
current analysis is based on the current status of market and reg-
ulatory factors and SG investments across European countries, and
thus can be considered valid for a short-term horizon. Second, the
test results pointed out the sensitivity of the analysis to the factors
employed for the normalization of SG investments. Future work
could also incorporate normalizing factors for technical concerns,
such as installed power capacity (TW), electricity consumption
(TWh), and the length of the electricity grid (km). Second, a longer
time series of data would allow for more sophisticated empirical

analysis. Third, due to the lack of accurate data about the precise
contribution of DSOs to the budget of SG projects, we use the
overall budget of SG project at the country level. Further research
could use the DSOs' contribution to SG projects as the dependent
variable. Fourth, the study does not take into account issues of
complementarity and substitution between distribution and
transmission networks, as well as polar viewpoints about future
investment in these sectors. One view is that SG capabilities will
negate the need for new transmission lines. Another is that Europe
will need a vastly expanded transmission grid to enable large-scale
RES integration, improve energy security, and allow pan-European
energy trading in wholesale markets. Finally, our analysis is
confined to Europe but could be extended worldwide to consider
the experiences of more countries as they adopt regulatory reforms
related to SG innovation and investment.
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Appendix I. Normalized data

Country Country Average population (M years Average GDP (M€ years  Actual investment (M€ years Normalized investment Normalized investment
code 2008—2013) 2008—2013) 2008—2013) (€/capita) (€/M€ of GDP)
Austria AT 8.37 303,468 58.81 7.03 193.80
Belgium BE 10.92 372,307 85.06 7.77 228.46
Bulgaria BG 7.40 38,562 2.19 0.30 56.77
Switzerland CH 7.82 456,694 11.96 1.53 26.19
Cyprus cY 0.83 18,879 1.05 1.27 55.49
Czech cz 10.46 157,917 34.66 331 219.48
Republic
Germany  DE 81.44 2,641,563 288.44 3.54 109.19
Denmark DK 5.54 243,770 138.00 24.89 566.12
Estonia EE 133 16,356 1.06 0.80 64.73
Greece EL 11.14 215,022 16.39 1.49 76.20
Spain ES 46.43 1,075,940 187.81 4.06 174.56
Finland FI 5.36 193,416 47.05 8.77 243.26
France FR 62.91 2,032,896 388.59 6.18 191.15
Croatia HR 4.29 45,071 1.92 045 42.64
Hungary HU 9.99 99,654 8.25 0.83 82.83
Ireland IE 4.55 173,084 15.40 3.35 88.99
Italy IT 59.21 1,612,622 220.50 3.72 136.73
Lithuania LT 3.09 31,192 2.63 0.85 84.32
Luxembourg LU 0.51 40,750 2.78 5.47 68.33
Latvia LV 2.10 21,152 0.57 0.27 26.77
Malta MT 0.41 6761 0.29 0.70 42.80
Netherlands NL 16.61 635,230 98.70 5.93 155.37
Norway NO 4.89 344,469 16.22 3.27 47.08
Poland PL 38.08 366,247 7.03 0.18 19.21
Portugal PT 10.55 174,702 53.54 5.11 306.46
Romania RO 20.28 133,491 3.68 0.18 27.55
Sweden SE 9.37 382,617 89.87 9.59 234.89
Slovenia SI 2.04 36,559 12.35 6.05 337.71
Slovakia SK 5.39 68,770 4.73 0.88 68.75
United UK 62.76 1,885,004 383.00 6.10 203.18

Kingdom
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Appendix II. Shapiro—Wilk and Levene's tests results

Factor Distribution-sector concentration Regulatory-mechanisms Innovation-stimulus mechanism
Groups High Medium Low Incentive-based Hybrid Cost-based No Incentives Specialized Incentives
€/Capita 0.03 0.01 0.01 0.15 0.00 0.00 0.00 0.00
€/Mof GDP 0.00 0.16 0.10 0.07 0.21 0.00 0.00 0.35
Regulatory factor €/Capita €/M € of GDP o
Means Medians Trimmed Means Medians Trimmed
Distribution-sector concentration 10% 12% 10% 43% 39% 43% 5%
Regulatory-mechanisms 14% 35% 14% 12% 17% 12% 5%
Innovation-stimulus mechanisms 9% 33% 9% 4% 9% 4% 5%
Appendix IIIl. Box-plots
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