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ABSTRACT2

In recent years, the application of network analysis to neuroimaging data has provided useful3
insights about the brain’s functional and structural organization in both health and disease. This4
has proven a significant paradigm shift from the study of individual brain regions in isolation.5
Graph-based models of the brain consist of vertices, which represent distinct brain areas,6
and edges which encode the presence (or absence) of a structural or functional relationship7
between each pair of vertices. By definition, any graph metric will be defined upon this dyadic8
representation of the brain activity. It is however unclear to what extent these dyadic relationships9
can capture the brain’s complex functional architecture and the encoding of information in10
distributed networks. Moreover, because network representations of global brain activity are11
derived from measures that have a continuous response (i.e. interregional BOLD signals), it is12
methodologically complex to characterize the architecture of functional networks using traditional13
graph-based approaches. In the present study, we investigate the relationship between standard14
network metrics computed from dyadic interactions in a functional network, and a metric defined15
on the persistence homological scaffold of the network, which is a summary of the persistent16
homology structure of resting-state fMRI data. The persistence homological scaffold is a summary17
network that differs in important ways from the standard network representations of functional18
neuroimaging data: i) it is constructed using the information from all edge weights comprised19
in the original network without applying an ad hoc threshold and ii) as a summary of persistent20
homology, it considers the contributions of simplicial structures to the network organization rather21
than dyadic edge-vertices interactions. We investigated the information domain captured by the22
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persistence homological scaffold by computing the strength of each node in the scaffold and23
comparing it to local graph metrics traditionally employed in neuroimaging studies. We conclude24
that the persistence scaffold enables the identification of network elements that may support the25
functional integration of information across distributed brain networks.26

27

Keywords: functional connectivity, fMRI, persistent homology, homological scaffold, integration & segregation28

1 INTRODUCTION

The application of graph theoretical analysis to neuroimaging data has provided important new insights29
about the functional organization of the human brain in health and disease. Graph measures considering30
the global properties of brain networks have notably helped shape our understanding of the system-wide31
functional architectures which enable the brain to balance the segregation and integration of information32
in macro-scale networks [6, 7]. Complementary to these system-wide characteristics, local graph metrics33
have been used to quantify the relative importance of individual brain areas towards routing information in34
brain networks according to different criteria (section 2.3).35

Whilst standard graph metrics are powerful descriptive means to characterize functional neuroimaging36
data at the whole-brain scale, they also involve significant conceptual and methodological limitations.37
First, these measures are exclusively based on dyadic (i.e. pairwise) interactions between edges and38
vertices. In practice, this means that the basic ”unit” of the graph is an edge connecting a pair of nodes. By39
contrast, it is well established that neural computations performed by distributed ensembles of brain regions40
underlie higher cognitive phenomena and even resting-state dynamics in the human brain. As described41
in detail below, methods from algebraic topogology provide an alternative for encoding such non-dyadic42
relationships. Specifically, the concept of simplicial complexes allows one to describe relations between43
distributed subpopulations of network elements without sacrificing access to many of the fundamental tools44
of network science [19].45

Secondly, the adjacency matrices which form the basis for constructing network representations are46
derived from measures that have a continuous response and are therefore typically weighted, fully connected,47
and signed. That is, the value of the pair-wise measure of association (i.e. bivariate/partial correlation,48
phase synchrony, transfer entropy, mutual information) between the activity signals across brain areas49
is non-zero, varies considerably across region pairs, and may include both positive and negative values.50
Therefore, ad hoc thresholding methods are commonly employed in functional neuroimaging studies to51
selectively prune connections within the graph leading to sparser, binary network representations with52
more naturally interpretable attributes. An exhaustive discussion of the methods used for thresholding53
brain networks is beyond the scope of this study. It should however be noted that a majority of these54
strategies lead to the elimination of weak and/or negative connections within a network. Yet, it has been55
demonstrated that standard graph measures are unstable across the threshold ranges typically employed in56
functional connectivity studies [18] and very few neuroimaging analysis methods actually account for the57
statistical significance of individual connections [24, 23, 30]. Thus, while neglecting weak links enhances58
information clarity, it may well do so at the expense of information completeness. Previous studies have59
indeed shown weak links to significantly contribute to brain functional processes including: resting-state60
networks, disease states, and cognition [36, 2, 11, 35]. Furthermore, synchronous neural oscillations can be61
maintained even with very weak synaptic links [8] and complex systems research has provided considerable62
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evidence for the contributions of weak links to the stability of large networks in a range of social and63
biological systems [20, 12, 29, 28, 27].64

An alternative to traditional network analysis methods is the use of the homological scaffolds of the65
weighted network [31] to summarise information about the persistent homology of the data. Persistent66
homology is a recent technique in computational topology [44, 10, 26] that will be described in detail in67
section 2.2. In summary, homology characterizes a topological space by counting its holes of different68
dimensions (see 2.2.2 for definitions). Persistent homology characterises the importance and stability69
of the holes in the original data through a process called filtration. It is accordingly a specific type of70
mesoscopic organization of the vertices and edges and their respective importance that is considered in the71
persistent homology analysis. This enables one to explore the network’s organization from a non-dyadic72
perspective, consistent with the brain’s large-scale ensemble coding mechanisms. Holes are the mesoscopic73
(anti-)structures remaining in the topological space that are not bounding a higher dimensional simplex.74
The case of 1-dimensional holes, or ”cycles”, to which we restrict ourselves in this study, is intuitive to75
visualise (Fig. 1): a cycle is a closed loop of length greater than three.76

The network organization of the human brain is characterized by a large number of distributed network77
modules which perform segregated local computations [33, 38]. There has recently been much interest78
towards identifying the ”hub” regions which enable global communication across segregated brain modules,79
and the integration of these local computations over space and time [21]. The homological scaffolds80
summarises the role of network edges constituting the cycles during the filtration process; enabling to81
identify edges belonging to multiple cycles and/or highly persistent cycles along the filtration. A hypothesis82
tested in this study is that the edges supporting these mesoscopic network anti-structures will be well83
positioned to bridge together segregated functional brain modules, rather than participate in densely84
connected local networks.85

The present study investigates the relationship between standard network metrics computed from dyadic86
interactions in a functional brain network, and metric computed on the persistence homological scaffold87
of the network. Toward this aim we generate a persistence scaffold from the whole-brain functional88
connectivity data of healthy subjects recorded during resting-state fMRI. We then convert edge-persistence89
scaffold values into a node-level measure termed persistence scaffold strength (PSS) which enables90
comparisons between the persistence scaffold and local graph metrics computed on the original network.91
We introduce this new measure because homological scaffold theory does not yet include node-level metrics92
analogous to the topological centrality measures typically used in the analysis of functional brain networks.93
We find that the unique mathematical attributes of the persistence homological scaffold may render it useful94
for identifying key local nodes supporting the global integration of information processing directly from95
functional neuroimaging data.96

2 MATERIAL & METHODS

2.1 Data97

2.1.1 Study Participants98

Neuroimaging data were collected at CFIN, Aarhus University Hospital, Denmark, from 16 healthy right-99
handed participants (11 men and 5 women, mean age: 24.7±2.5). Participants with a history of psychiatric100
or neurological disorders were excluded from participation in the study. The study was previously approved101
by the Center of Functionally Integrative Neuroscience internal research board. The study was performed102
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in accordance with the Declaration of Helsinki ethical principles for medical research and ethics approval103
was granted by the Research Ethics Committee of the Central Denmark Region (De Videnskabsetiske104
Komiter for Region Midtjylland). Informed consent was obtained from all participants.105

2.1.2 MRI data acquisition106

MRI data were collected in one session on a 3T Siemens Skyra scanner. The parameters for the structural107
MRI T1 scan were as follows: voxel size of 1 mm3; reconstructed matrix size 256x256; echo time (TE) of108
3.8 ms and repetition time (TR) of 2300 ms. The resting-state fMRI data were collected using whole-brain109
echo planar images (EPI) with TR = 3030 ms, TE = 27 ms, flip angle = 90o, reconstructed matrix size =110
96x96, voxel size 2x2 mm with slice thickness of 2.6 mm and a bandwidth of 1795 Hz/Px. Seven minutes111
of resting state fMRI data were acquired for each subject.112

2.1.3 MRI data processing113

We used the automated anatomical labeling (AAL) template [40] to parcellate the entire brain into114
90 cortical and subcortical regions (45 for each hemisphere) which represented the nodes in functional115
connectivity networks. The parcellation was conducted in the EPI native space. Linear registration was116
performed using the FSL toolbox (www.fmrib.ox.ac.uk/fsl, FMRIB, Oxford) [37]. The EPI image was117
co-registered to the T1-weighted structural image, and the T1-weighted image was coregistered to the T1118
template of ICBM152 in MNI space. The resulting transformations were concatenated and inversed and119
further applied to warp the AAL template from MNI space to the EPI native space, where interpolation120
using nearest-neighbor method ensured that the discrete labelling values were preserved. Initial fMRI data121
preprocessing was carried out using FEAT (FMRI Expert Analysis Tool) Version 6.00, part of FSL and122
consisted of: motion correction using MCFLIRT; non-brain tissue removal using BET; spatial smoothing123
using a Gaussian kernel of FWHM 5mm; grand-mean intensity normalisation of the entire 4D dataset by124
a single multiplicative factor; high pass temporal filtering (Gaussian-weighted least-squares straight line125
fitting, with sigma = 50.0s).126

2.1.4 Functional Connectivity Analysis127

We used FSL to extract and average the time courses from all voxels within each AAL cluster. We then128
used Matlab (The MathWorks Inc.) to compute the pairwise Pearson correlation between all 90 regions.129
R-values were transformed to z-values via Fisher transformation, and the resulting z-values composed the130
final 90x90 functional connectivity (FC) matrix. We averaged the FC matrices for all 16 participants to131
obtain a group-averaged 90x90 FC matrix.132

2.2 Persistent homology and scaffolds133

The next two sections will introduce fundamental notions needed to understand persistent homology,134
which is presented in the third section. Homological scaffolds are then defined and a toy example is135
presented in the penultimate section. The last section exposes the open problem and implications of136
the choice of a cycle’s representative in the filtration. The workflow is illustrated in Fig. 2 and can be137
summarised as follows: one starts from the data, that for the sake of generality we will assume to be a fully138
connected, weighted and signed matrix. As the matrix is square and symmetrical, one can interpret it as an139
undirected network adjacency matrix. The persistent homological features of the data are then computed140
and finally summarised in the persistence and frequency scaffolds. These scaffolds can be seen as an edge141
centrality measure, that emphasizes the role of an edge in the persistent homological characterisation of the142
original data but they can also be considered as network in itself and analysed as such, as we define the143
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PSS in section 2.3.3. For a comprehensive introduction to persistent homology, the interested reader is144
invited to consult [44, 10, 26].145

146

2.2.1 Simplices, Simplicial Complex, and Holes147

A simplicial complex can be seen as a generalisation of a graph, where interactions, instead of being148
strictly between nodes, are between objects called simplices that generalise the notion of nodes. In the149
present context, a node is a 0-dimensional simplex, an edge a 1-dimensional simplex, (representing a binary150
interaction) a full triangle is a 2-dimensional simplex (representing ternary interactions), and so on for151
higher dimensions. A simplicial complex is thus a type of topological space that is a collection of simplices152
of any dimension (Fig.1).153

There are many types of simplicial complexes. In this study, we focus on clique complexes, which can154
be constructed from any network. In graph theory, a clique is a subset of vertices of a graph in which155
every pair of vertices is adjacent. Thus a k-clique is a completely connected subgraph Kk ⊂ G, composed156
by k nodes containing all the possible edges among its nodes. When representing a simplicial complex,157
simplices are typically shaded, or filled in to identify them (Fig. 1). Importantly, upon identifying all the158
simplices in a clique complex, structures called holes can remain, and these are the structures of interest159
in this analysis (Fig.1). A hole of dimension k, or k-hole, is a hole bounded by simplices of dimension k.160
In this paper, we focus on holes bounded by 1-dimensional boundaries, also called ”cycles”. In a clique161
complex, a cycle is a minimal closed path of length greater than 3 (Fig. 1). This is due to the fact that each162
clique corresponds to a full simplex so that a triangle is filled in. The set of k-holes defining a space is163
described by the k-th homology group Hk. Each k-hole i is in turn represented by its generator gki ∈ Hk.164
Informally, generators are formed of elements of Hk that identify and can be used to construct the hole.165

166

Key concepts: A clique complex is constructed from a network by identifying k cliques to k − 1167
dimensional simplices. A clique complex can be described by its holes. A cycle is a hole of dimension 1168
(Fig. 1).169

2.2.2 Homology170

One of the most studied problems in mathematics is that of defining a notion of similarity between171
spaces. Intuitively, two spaces can be thought to be similar if we can transform one into the other via a172
well-behaved transformation. In particular, if there exists a continuous bijective map, a homeomorphism,173
that transforms one space into the other, then the two spaces are said to be homeomorphic. Such spaces are,174
informally, topologically the same, and any of their properties that are conserved by homeomorphism are175
are thus called topological invariants.176

177

The homology group, or simply homology, is a property of a space which is based on the counting of178
holes and their associated dimensions. As an analogy to homology, the reader can think of The Hound of179
the Baskervilles by Sir Arthur Conan Doyle [17], where the non-manifestation of the hound one night was180
as informative to Sherlock Holmes as its presence. Homology is a topological invariant which, as explained181
above, means that it is a property of a space that is preserved by homeomorphisms and keeps the same182
value whatever the representation of the system (i.e. the bijective map used to look at it). Thus, if two183
spaces have the same homology, then they are topologically equivalent.184

185
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2.2.3 Persistent homology186

The process of adding simplices to form a simplicial complex is called a filtration, and the filtration187
we use in this paper is the weight clique rank filtration [32]. It has been specifically designed to extract188
homological features from fully connected, weighted and signed networks. The filtration starts with a set189
of disconnected nodes. Then all the edges from the original network are sorted in descending order of190
magnitude and added one by one as 1-simplices to the complex. After each addition, the clique complex is191
constructed and its persistent homology computed. When a new cycle appears, it is tagged with a ”birth192
time”, βi and when it disappears, it is tagged with a ”death time”, δi. The difference between the two time193
points defines its persistence πi. It is important to note that when the starting network is fully connected, all194
the cycles eventually die along the filtration. While it is true that the order in which edges are introduced195
can depend on very small differences in the weights, the same small differences would alter the persistence196
or appearance of generators by a similarly small value hence ultimately producing small variations in the197
scaffold. This is a consequence of the robustness theorems for persistent homology, where one substitutes198
the usual metric with an extended semi-metric[3, 9, 10].199

200

Key concept: The persistence of each cycle is measured using weight rank filtration.201

2.2.4 Homological scaffolds202

The homological scaffolds are secondary networks and were introduced in [31] as a mean to summarise203
part of the persistent homology of cycles information for the edges. As they localise the cycles on specific204
edges of the network, they can naturally be seen as edge centrality measures that characterise the importance205
of links in the original network through the filtration process, where the weights on the edges represent206
their centrality.207

208

Two scaffolds are introduced to highlight different aspects of the importance of an edge in the network:209
the number of cycles an edge belongs to and the total persistence of the cycles it belongs to. The weights of210
the edges are defined as:211

ωf
e =

∑
gj

1e∈gj (1)

for the frequency scaffold Hf
G, and212

ωp
e =

∑
gj |e∈gj

πgj , (2)

for the persistence scaffold Hp
G.213

214
The information given by the scaffolds has to be interpreted with care, see section 2.2.6 below215
for a full description of the limitations. The python library we developed for persistent homology216
analysis, that includes the weight rank clique filtration and the scaffolds generation is available at:217
https://github.com/lordgrilo/Holes.218

219
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Key concept: The homological scaffold measures the importance of edges relative to the number of cycles220
they belong to and the persistence of these cycles. The present study focuses exclusively on the persistence221
scaffold.222

2.2.5 Example223

Persistent homology and the computation of the scaffolds can be illustrated by a simple toy example,224
which is described in the following lines and shown graphically in Fig. 3. For simplicity, some of the225
edges have a weight of zero and are thus not represented. The first step is the filtration: edges are added226
in decreasing order of magnitude. In the example, edges have five different weights. Accordingly, five227
filtration steps are needed, and five associated clique complexes are formed. There are two cycles: one born228
at step 2) and one born at step 3). By contrast, the edge added at step 4) does not define a new cycle. The229
aforementioned cycles are both killed by the addition of the two edges at step 5). Their persistences are230
summarized in the barcode below the filtration. The resulting scaffolds are on the right of the barcode: the231
persistence scaffold (green) and frequency scaffold (blue). Inspecting the weights of both scaffolds, we232
conclude that edge 〈fc〉 is the most important to support the homological structure of the network.233

2.2.6 On the effect of the cycle representative234

As illustrated by the present paper and [31], homological scaffolds can be quite informative, however235
there is a caveat one has to be aware of when interpreting the results: the choice of a cycle’s representative.236
Persistent homology probes a dataset for its homological features that are persistent – more specifically237
in the case treated in this paper, cycles. Cycles are topological objects and thus their ”sizes” are not238
uniquely defined, because the homology generators are defined as an equivalence class. Indeed, each cycle239
corresponding to a certain homology generator can be stretched and deformed, while still remaining a valid240
representative cycle. In practice, however, to identify homological properties of a topological space, one241
has to recourse to a representation of the components of the simplices that bound it. In this setting, a hole242
will be uniquely identified by the edges (or higher-dimensional simplices) forming its smallest boundary243
at the time of its birth. During the filtration process, a cycle will potentially shrink due to the addition of244
an edge. Although the shrinking has no topological meaning for the hole itself as it remains the same, its245
representation changes, i.e. the specific edges forming its boundary change. The question ”what is the best246
representative of a cycle” is an open problem and the definition of best strongly depends on the problem at247
hand.248

249

In practice, however, this will have an impact. We used the software package javaplex [39] in our pipeline250
for the implementation of persistent homology. It chooses a representative for a cycle and identifies it with251
the entire lifetime of the cycle. This means that a unique set of edges will represent a cycle, regardless of252
its possible contraction. This has a direct implication on the scaffolds, and means they are not well-defined.253
This does not mean they are not informative, but rather that care has to be taken when interpreting the254
meaning of the particular edges weight forming the scaffolds. The evolution of any cycle representative is a255
combination of two possible situations:256

1. A cycle shrinks by triadic closure,257

2. a cycle is split into 2 smaller cycles.258

These two possibilities are illustrated in Fig. 4, case i) on the top and case ii) on the bottom. Therefore,259
one can monitor the original cycles’ subgraphs evolutions as edges are added during the filtration to verify260
how the cycles die and correctly interpret the homological scaffolds.261
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Practically, this means exploring the statistics of the holes and verify how they close. It is also important262
to note that the aforementioned phenomena are more likely to occur in cycles that are long lived.263

2.3 Graph Theoretical Analysis264

By construction, the graphs that we have considered for the standard graph analysis are unweighted,265
undirected, and do not contain self-loops. Their adjacency matrixA is therefore symmetric, and its elements266
are equal to 1 if nodes i and j are connected and zero otherwise.267

2.3.1 Standard Graph Metrics in Binarized Graphs268

We now briefly introduce the standard local centrality measures that were applied to the networks: degree269
centrality (DC), betweenness-centrality (BC), local efficiency (Eff ) and participation coefficient (PC).270
Standard graph measures were calculated using the Brain Connectivity Toolbox in Matlab [34]. These271
metrics each capture different aspects of the contributions of a node to the network organization. To272
facilitate the interpretation of standard graph metrics, functional connectivity matrices were binarized at273
eleven statistical thresholds that give a network link density (D) in the range [0.10, 0.60] in increments of274
0.05, eliminating the weakest links in the network. This thresholding approach was performed using the275
threshold proportional function of the Brain Connectivity Toolbox.276

277

The degree centrality is a measure of the total number of connections that a node has. It therefore depends278
on the direct neighborhood of the node. For a node j within a binarized network comprising N nodes,279
degree centrality is defined as:280

DC(j) =
N∑
i=1

Ai,j (3)

The betweenness-centrality of a node measures how many of the shortest paths between all other node281
pairs pass through it and is a measure of its importance when routing information in the network. By282
contrast to the degree, BC is dependent of the overall topology of the rest of the network beyond the direct283
neighborhood of a node. For a node k it is defined as:284

BC(k) =
N∑

i6=j 6=k,i,j=1

σ̂i,j(k)

σ̂i,j
(4)

where σ̂i,j(k) is the number of shortest paths going from node i to node j through node k, and σ̂i,j is the285
total number of shortest paths going from node i to node j.286

The local efficiency of a node k computes how well the neighbors of a node are connected together. That287
is, the inverse of the average shortest path length connecting the neighbors of that vertex:288

Eff(k) =
2

Nn(n− 1)

n∑
i∈G

n∑
i<j∈G

1

di,j
(5)

where n is the number of neighbors of a node k.289
290

In addition, a community detection algorithm based on modularity (Louvain method with finetuning[4])291
was applied to the adjacency matrix with D = 0.40, and identified six communities for the partition292
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optimising the modularity function. The participation coefficient was then calculated for each node in293
this network. The participation coefficient compares the degree of a given node to nodes in all other294
communities with the number of links it has within its own cluster. Nodes with a high participation295
coefficient are therefore expected to play an important role in binding different communities together and296
hence contribute to global integration. This measure therefore provides additional information about a297
node’s role in the network topology which cannot be inferred from measures of topological centrality alone.298
It is defined as:299

PCi = 1−
NC∑
c=1

(
kCi

ki

)2

, (6)

where ki is the degree of node i and kCi
its degree limited to cluster C.300

2.3.2 Weighted Network Analysis301

As a follow-up analysis, we explored the relationship between the PSS and the weighted counterparts302
of the same three graph metrics employed in the original graph analysis described in section 2.3.1: the303
nodal strength (weighted counterpart of degree), the weighted betweenness centrality (wt − BC) and304
the weighted local efficiency (wt − Eff ). By definition, the computation of these measures on a fully305
connected weighted graph does not rely on the ad hoc thresholding of the FC matrix. The mathematical306
formulation of the weighted version of the metrics are the same as in the unweighted case. For the nodal307
strength, one sums up the weights of the links connected to a node:308

SC(j) =
N∑
i=1

Wi,j . (7)

For the weighted versions of betweenness centrality and efficiency, the difference resides in the definition309
of the shortest path. In the BCT implementation, the shortest path is computed via a breadth-first search310
algorithm that follows the links with the smallest weight [5].311

2.3.3 Definition of PSS312

Lastly, we define a new centrality measure for the homological scaffolds, the nodal persistence scaffold313
strength (PSS). It is essentially the strength of a node, i.e. the sum of the weights of its links, in the314
persistence scaffold Hp

G. We gave it a different name to clearly differentiate its meaning as a measure315
obtained from the persistent homology procedure instead of pairwise interactions between edges and316
vertices. It is defined as:317

PSS(j) =
N∑
i=1

Hp
G i,j (8)

The PSS thus compresses into a scalar information about the persistence of cycles passing through a given318
node. The PSS may thereby effectively capture the combination of a nodes central position in the network319
and the relative lack of connectivity amongst its local neighbourhood. Moreover, as outlined above, the320
PSS does not rely on ad hoc thresholding of the functional connectivity matrix and therefore includes321
information from all the edges in the network. This is an important distinction between the PSS and the322
topological centrality metrics traditionally measures applied to functional neuroimaging data.323
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2.3.4 Definition of Functional Hubs324

Node-level values were calculated for the PSS measure as well as standard graph centrality measures.325
As indicated above, the PSS does not require a priori thresholding of the functional connectivity matrix.326
However, for the computation of local graph measures (DC, Eff and BC), we calculated the node-level327
metric values at each of eleven different thresholds over the D = [0.10, 0.60] range. This curve was then328
integrated to yield a single nodal metric value that is independent of the threshold. The highest-ranking329
nodes (termed ”hubs” for concision) were then identified for each of measure under study. They were330
defined as those nodes with a metric value larger than 1 standard deviation from the mean of their respective331
distribution.332

333

3 RESULTS

3.1 Relationship between nodal PSS and standard graph metrics334

3.1.1 Topological centrality in binary networks335

The main objective of this analysis was to examine the relationship between standard topological centrality336
measures described above; DC, BC, Eff and the nodal PSS. This was done by computing bivariate337
correlations between the standard graph metric values and nodal PSS across the threshold range applied to338
the functional connectivity matrix. The R-values and p-values for each analysis are listed in supplementary339
figures S1a and S1b. It is important to note that while different FC network thresholds were used for340
the standard graph analysis, the input FC matrix for the persistent homology analysis did not require a341
priori thresholding, which is a potential strength of this methodology. In order to verify that the reported342
associations between nodal PSS and standard metric values at a given threshold were not simply driven by343
the direct connectivity of network nodes, we also examined the correlations DC vs BC, DC vs Eff and344
BC vs Eff as control conditions (Fig. 5).345

PSS vs DC: The positive correlation between PSS and DC was significant at all thresholds under346
study, although it was consistently weaker than the correlation of PSS vs BC.347

PSS vs BC: The PSS showed strong and also statistically significant positive correlations with the BC348
metric at all thresholds under study. This indicates that PSS is associated with a node’s tendency to be349
part of shortest paths between node pairs in the network.350

PSS vs Eff : Conversely, a strong and significant negative correlation was observed between the PSS351
and Eff metrics at all but one threshold, showing that high PSS nodes generally avoid densely connected352
neighborhood clusters. These results are illustrated in the top panel of Figure 5.353

DC vs BC: By contrast to PSS vs BC, the DC vs BC correlation failed to reach statistical significance354
at 5 of the 11 thresholds under study. When the relationship did reach statistical significance at some of the355
higher network densities, the DC vs BC correlations remained on average weaker than PSS vs BC over356
the same threshold range.357

DC vs Eff : The DC vs Eff correlation also showed a threshold-dependent profile. Significant positive358
correlations were observed at some of the lower densities in the D = [0.1, 0.2] range which contrasted with359
the negative correlations between PSS vs Eff observed at these same thresholds. DC vs Eff did not360
reach statistical significance at any of the thresholds exceeding D > 0.35.361
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BC vs Eff : Finally, the negative correlation between the BC and Eff metrics was qualitatively similar362
to the BC vs PSS correlation over the threshold range. However, BC vs Eff did not reach statistical363
significance at the lowest network density of D = 0.1 and the negative correlation strengths at higher364
densities were overall stronger (and less stable) for BC vs Eff than PSS vs BC. These results are365
graphically represented in the bottom panel of Figure 5.366

3.1.2 Topological centrality in weighted networks367

As a follow-up analysis, the relationships between the PSS and the weighted counterparts of the368
metrics used in the original analysis were also studied. These included the nodal strength, weighted369
betweenness-centrality (wt−BC) and weighted efficiency (wt− Eff ).370

strength vs PSS: There was a borderline significant positive correlation between the nodal strength in371
the weighted network and the PSS: R = 0.21, n = 90, p = 0.046.372

wt − BC vs PSS: The positive correlation between wt − BC vs PSS was stronger than strength vs373
PSS and highly significant: R = 0.39, n = 90, p < 0.01; consistent with the results of the binary graph374
analysis.375

wt− Eff vs PSS: There was a significant positive correlation between PSS vs wt− Eff : R = 0.23,376
n = 90, p = 0.03. This relationship was opposite to that observed in the binary network analysis where377
PSS vs Eff instead showed a strong negative association at all thresholds under study.378

3.1.3 Participation Coefficient379

For the network with an intermediate density of D = 0.40, a community detection algorithm was applied380
to the data and the participation coefficient (PC) was computed for each node in the network. A significant381
positive correlation was revealed between PC and PSS, R = 0.32, n = 90, p < 0.01. This indicated that382
the PSS measure also reflects the tendency of a node to act as a bridge across communities in distributed383
brain networks.384

3.2 Identification of functional hubs using the PSS and standard graph measures385

We now explain the results shown in Fig. 6 and Fig. 7. Functional hubs were identified on each of the386
PSS, DC, Eff and BC measures using the procedure outlined in section 2.3.4. Fourteen AAL regions387
(out of 90) were identified as hubs on the PSS measure. The most important overlap was observed between388
the PSS-hubs and the DC-hubs (5/14) and the second-most important overlap was between the PSS-hubs389
and BC-hubs (4/14). We note that this was the case despite the presence of a stronger positive correlation390
between PSS vs BC than PSS vs DC at all the thresholds under consideration. As expected, Eff -hubs391
showed the least amount of overlap with the PSS-hubs, consistent with the strong negative correlation392
between these two measures.393

4 DISCUSSION

Persistent homology provides a window into the global organization of the edges’ weights fabric of a394
graph. The present results indicate that persistence homological scaffolds may be useful objects to consider395
in functional neuroimaging research. The persistence scaffold notably circumvents the need for ad hoc396
thresholding of the functional connectivity matrix and is constructed using the data of all the edges present397
in the original network. Moreover, the concept of simplicial complexes upon which the persistence scaffold398
is built allows one to describe relations between distributed sub-populations of network elements consistent399
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with the brain’s encoding of information in distributed networks, and is not restricted to dyadic associations400
between region pairs.401

402

In order to study the relationship between standard network metrics and on the persistence homological403
scaffold, we calculated the strength of each node in the persistence scaffold and termed this novel measure404
the persistence scaffold strength (PSS). The PSS measure hence differs in important ways from the405
standard graph metrics used in neuroimaging studies as it includes information from seemingly unimportant406
edges with weak weights in the network, and considers the contributions of mesoscopic structures (”cycles”)407
to the network organization, rather than edge-vertex interactions. We then examined how PSS relates to408
some of the local binarized and weighted graph theoretical metrics typically employed in neuroimaging409
studies.410

411

Of the binary graph metrics under study, PSS showed the strongest positive correlation with the412
betweenness-centrality metric (BC) across the entire threshold range. Even when controlling for the node413
degree by means of a partial correlation analysis, the positive association between PSS and BC remained414
highly significant. This suggested that high PSS nodes are likely to contribute to the binding of information415
across different sources in the brain by creating shortest paths between node pairs. Conversely, a strong416
negative correlation was observed between PSS and local efficiency (Eff ), and indicates that nodes417
with a high PSS are unlikely to participate in strongly integrated local networks. To further explore the418
association between the PSS measure and functional integration, we conducted a modularity analysis and419
computed the participation coefficient (PC) of network nodes. A strong positive correlation between PC420
and PSS was found in the network under study. Nodes with a high participation coefficient preferentially421
make connections to network communities other than their own, consistent with network roles in global422
integration.423

Taken together, these observations lead to an understanding of the meaning of this new centrality measure424
and on the interpretation of persistent homological scaffold. The tendency of high PSS nodes to bind425
topologically remote modules in the brain whilst simultaneously avoiding clustered neighbourhood reflects426
the significance of persistent homology in resting-state fMRI data. PSS therefore captures different aspects427
of global network organisation in a natural index that does not rely on any weighted average of classic428
graph metrics, and that extracts this information directly from the data. We also note that although for429
interpretational purposes we limited ourselves to the study of the first homology group, the persistence430
scaffold strength can easily be generalised to higher dimensions, where it would capture aspects of the431
network organisation that are not reflected at all by traditional network metrics.432

When bypassing the thresholding step and instead comparing the PSS to the weighted counterparts433
of the standard graph measures computed on the fully connected network, the results for strength and434
wt−BC were broadly consistent with those of the binarized networks. As in the binary network analysis,435
the strength vs PSS correlation was positive and significant, but weaker than the wt − BC vs PSS436
correlation. However a significant positive correlation was observed for the PSS vs wt− Eff correlation437
in the weighted network, which was inconsistent with the results of the thresholded network analysis where438
the binarized version of the two metrics were actually negatively correlated at every threshold under study.439
This exemplifies that the generalisation of a binary graph metric to a fully connected weighted network440
does not imply its specialization.441
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Finally, we note that the nodal PSS does not merely recapitulate the betweenness-centrality metric.442
Although the correlation between PSS and BC measures was significant at all thresholds under study in443
the binary networks analyses, only 4 of the 14 highest ranking PSS nodes overlap with the hubs identified444
on the BC metric (Fig. 6). This may be explained by the fact that some nodes ranking highly on the445
betweenness-centrality metric concurrently participate in strongly connected neighborhood clusters; their446
respective edges would thus form clique complexes at an early stage in the filtration, leading to low PSS447
value. Moreover, the value of the correlation between PSS and BC was around R = 0.4 in both the448
binarized and weighted network analyses, which further suggests that the PSS and BC do not reflect449
identical network attributes.450

The highest-ranking regions on the PSS measure (Figs 6-7) were distributed across the brain, consistent451
with potential roles in the global integration of local networks. There was nevertheless a tendency for the452
PSS hubs to belong to frontal cortical areas (middle & superior frontal gyri, precentral gyrus, rolandic453
operculum, cingulate), and subcortical structures (amygdala, globus pallidum, caudate nucleus). In the454
posterior brain, PSS-hubs within the parietal lobe included the inferior and superior divisions of the455
parietal gyrus but did not include midline parietal structures. In the occipital lobe, a visual association area456
located in the superior occipital cortex ranked highly as a PSS hub, as did the calcarine fissure which457
includes part of the primary visual cortex (V1). We note that V1, which also ranked highly on the DC458
metric in this study, has previously been shown to engage in distributed networks thought to support mental459
imagery during the resting-state [43]. Interestingly, no subdivision of the temporal cortices were included460
amongst PSS-hubs, despite several of these regions ranking highly on the DC measure.461

462

We also paid attention to the special case of high-ranking PSS nodes which did not qualify as ”hubs”463
on any of the three standard topological centrality measures (DC, Eff , BC). This subset of nodes was464
anatomically restricted to the lateral frontal and parietal cortices. They included the middle and superior465
frontal gyri, as well as inferior and superior sections of parietal gyri. These findings would suggest that,466
relative to standard topological centrality metrics, the PSS may be particularly sensitive to the network467
activity of frontal and parietal association areas located on the lateral surface of the brain. This would be468
consistent with the established role of these regions towards supporting high-level cognitive and behavioral469
functions requiring the large-scale coordination of network elements. The relative importance of PSS-hubs470
towards the information processing capacities of the brain should notably be assessed in future studies by471
means of virtual lesions in whole-brain computational models [13, 14, 42].472

473

It has now become well recognized that the brain performs local computations in segregated modules474
that become seamlessly integrated over space and time to support high-level functions necessary for475
survival. Some brain regions are likely to play a more critical role than others towards enabling the global476
integration of information. The exact identities of these regions and the optimal experimental approaches477
for identifying them remain unclear. However recent evidence would suggest that integrative nodes, such478
as those potentially identified via the persistence homological scaffold, require metastability for maximal479
exploration of the full dynamic repertoire of the brain [22]. Previous research has employed diffusion tensor480
imaging (DTI) and graph theoretical analysis to identify a subset of hubs which forms a central core or481
”rich-club” that has been suggested to be important for global brain integration by linking together spatially482
remote network communities [41]. Yet, the mapping of a structural network architecture that can plausibly483
support segregation and integration does not describe the causal mechanisms and/or activity dynamics that484
actually underlie functional segregation and integration of information [14]. The identification of integrator485
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hubs directly from functional neuroimaging data using the homologogical scaffold may be particularly486
valuable in this regard.487

488

The application of computational topology analysis to functional neuroimaging data is a novel avenue of489
research, and the physiological significance of homological scaffolds and related measures remains unclear.490
Given that high PSS nodes participate in a large proportion of cycles along the filtration, such nodes491
may be well positioned to contribute to a specific type of integration where, for example, a given neural492
pathway diverges than re-converges. Examples of such pathways include the dorsal/ventral visual streams493
and the well-defined cortico-basal loops between the basal ganglia and motor cortex. Further studies will494
be needed to test these hypotheses with specificity, but we nevertheless point out that the identification of495
both visual areas as well as basal ganglia and cortical motor areas amongst the PSS-hubs in the present496
analysis supports this idea.497

498

Whilst the present results suggest that high-ranking PSS nodes could be well positioned to support the499
integration of information across segregated brain modules, further studies will be needed to confirm this500
observation. One potential approach would be to apply recently developed measures of perturbational501
integration and segregation in a whole-brain computational model. Previous work has shown that, by502
perturbing in silico neural dynamics by a random set of Gaussian inputs, one can estimate and the amount503
of integration in the system calculated after each perturbation. In this context, perturbational integration504
is defined by considering the length of the largest connected component of the functional network as an505
estimate of the amount of integration in the system after each perturbation, as described in detail in [14].506
One would therefore expect virtual lesions to high-PSS nodes to have a particularly profound impact on the507
system’s integration capabilities, relative to randomly selected network nodes. Another possibility would508
be to investigate changes in PSS hubs assignment and distributions in clinical syndromes characterized by509
disordered functional integration at the whole-brain scale, such as schizophrenia[25, 1]. Both approaches510
could help determine to what extent PSS-hubs support the integration of network elements, and potentially511
provide useful insights into the neurobiological attributes of topologically central brain regions in the512
homological scaffold.513

514

Another limitation of this study, as mentioned in section 2.2.6, is the choice of the representative cycles515
for homology classes, which could result in selecting edges that do not belong to the shortest cycle around516
a certain hole. A possible way around this limitation would be to perform an a posteriori analysis of517
the cycles, in which one controls for the evolution of the subgraph’s transitivity (as done in [31]). One518
could also consider employing computationally cumbersome techniques to track the shortest path across519
the filtration and then update the scaffold accordingly [16, 15].Further work is needed to establish which520
protocol would be most suited to the specfic case of fMRI networks. Our results on network communities521
nevertheless suggest that the cycle choice issues might not be so critical in our study and potentially lead to522
a stronger PSS interpretation. Indeed network communities, being densely connected internally and strong523
information integrators, likely constitute the network regions where connected triangle components reside524
and thus the regions where different representative cycle choices are possible. Moreover, scaffold hubs525
already tend to have large participation coefficients suggesting that they behave as information brokers526
between these communities and are therefore, although imperfectly, capturing the large-scale homological527
structure.528
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In summary, the present study has explored the relationship between standard network metrics in529
functional brain network and the persistence homological scaffold derived from the same fMRI dataset.530
The computation of a local graph measure on the persistence homological scaffolds (PSS) differs from531
standard applications of graph theory to functional neuroimaging data as the scaffolds are not derived532
from typical dyadic interactions between network elements, and consider information from all edges in533
the network. The results suggest that topologically central nodes in the persistence scaffold may play534
important roles towards supporting the functional integration of information across brain modules. Future535
work should investigate the sensitivity of the homological scaffolds and derived measures to disease-related536
changes in brain function as well as the specific type of integration performed by the strongest edges and537
nodes in the scaffolds.538
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[8] Buzsáki, G. and Draguhn, A. (2004). Neuronal oscillations in cortical networks. science 304,571
1926–1929572

[9] Chazal, F., de Silva, V., Glisse, M., and Oudot, S. (2012). The structure and stability of persistence573
modules. ArXiv e-prints574

[10] Cohen-Steiner, D., Edelsbrunner, H., and Harer, J. (2007). Stability of persistence diagrams. Discrete575
& Computational Geometry 37, 103–120576
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FIGURES

Figure 1. Illustrations of cliques, simplices, holes and clique complex. The simplices are shaded for
identification. a) 3 and 4-cliques, which are associated to 2 and 3-dimensional simplices. b) a 1-dimensional
hole, or cycle, is a closed path of edges of length greater than 3. c) Combining the elements of a) and b)
following the rules in 2.2.1, one can produce a clique complex with one 1-dimensional hole. All simplices
in this figure are shaded as is customary.
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Figure 2. Description of the four stages of the persistent homology and homological scaffolds analysis
workflow. The data consist of a fully connected weighted network. The filtration is produced using
the weight clique rank filtration. The persistent homology of the filtration is computed, and each cycle
(or ’hole’) is endowed with a birth and death time. The homological scaffolds are generated using the
information from persistent homology
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Figure 3. Toy example illustrating the generation of the homological scaffolds. On top The filtration:
edges are added in decreasing order of weight (thickness and colour represent the weights) to arrive at the
original network at step 5). Bottom middle The barcode encoding the persistence of the two cycles 〈abcf〉
and 〈cdef〉. Bottom right The persistence (green) and frequency (blue) scaffolds, summarising the role of
the edges in the cycles present during the filtration.
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Figure 4. Illustration of the two possible routes a cycles can close. Top route: The cycles closes with the
addition of triangles. The cycles representative will be the original cycles 〈abcdef〉, irrespectively of the
life time of the sub cycles that are partially closed. Bottom route: The original cycle is split into smaller
cycles that are eventually closed by the mechanism illustrated in the top route. The two cycles that will be
represented in the original cycle 〈abcdef〉 and the subcycle 〈abcd〉, as the cycle 〈adef〉 can be obtained as
a linear combination of the first two
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Figure 5. Top: Relationship between nodal persistence scaffold strength (PSS) and standard topological
centrality measures. At each threshold under study, the value of the bivariate correlation coefficient (R)
between PSS and each of: degree-centrality (DC), betweenness-centrality (BC) and local efficiency
(Eff ) is plotted. Bottom. Relationship between standard topological measures. The same procedure as
above is repeated for correlations between: DC vsBC, DC vsEff , andBC vsEff as control conditions.
Filled shapes indicate the presence of a statistically significant correlation between the two variables
(p < 0.05).
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Figure 6. Normalized Metric Values. The normalized nodal values are displayed for each graph measure
under study. The values for PSS, BC, DC and Eff are respectively depicted from left to right. While
computation of the PSS does not require ad hoc thresholding, the BC, DC and Eff metrics are
threshold-dependent and nodal metric values have thus been integrated over the threshold range under
study to generate a single value for each node. The analysis used is described in detail section 3.2
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PSSPSS BC DCDC EFF

Figure 7. Graphical Display of the Highest-Ranking Nodes. Functional hubs identified on the PSS
measure and three standard topological centrality metrics (BC, DC, Eff ). Hubs on each measure are
defined as having a value >1 S.D. of the mean of their respective distribution. Nodes overlapping with the
PSS hubs are shown in brown. The corresponding AAL labels for each numerical index are included in
supplementary figure S2.
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