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Abstract— The increasing need for high-performance 

dependable systems with and the ongoing strong cost pressure 

leads to the adoption of commercial off-the-shelf devices, even for 

safety critical applications. Ad hoc techniques must be studied and 

implemented to develop robust systems and to validate the design 

against all safety requirements. Nonetheless, white-box fault 

injection relies on the deep knowledge of the system hardware 

architecture and it is seldom available to the designer. 

Furthermore it would require enormous simulation time to be 

carried out. This work presents an enhanced architecture for fast 

fault injection to be used for design-time coverage evaluation and 

runtime testing. A test case will be presented on Xilinx Zynq 

system on programmable chip, suitable for design-time diagnostic 

coverage evaluation and online testing for safety-critical systems 

resorting to the proposed fault injection methodology. 

Keywords— dependability; fault injection; safety; testing; 

FPGA; diagnosis; functional safety; system-on-programmable-chip. 

I. INTRODUCTION  

Moore’s law [1] has served as goal and motivation for 
consumer electronics manufacturers in the last decades. The 
results in terms of processing power increase in the consumer 
electronics devices have been mainly achieved due to cost 
reduction and technology shrinking. However, reducing 
physical geometries mainly affects the electronic devices’ 
dependability, making them more sensitive to soft-errors [2]  
like Single Event Transient (SET) of Single Event Upset (SEU) 
[3] and hard (permanent) faults, e.g. due to aging effects like 
electromigration [4].  

Accordingly, safety critical systems often rely on the 
adoption of old technology nodes, even if they introduce longer 
design time w.r.t. consumer electronics. In fact, functional safety 
requirements, due to international directives like IEC61508 [5], 
are increasingly pushing industry in developing innovative 
methodologies to design high-dependable systems with the 
required diagnostic coverage.  

More recently, commercial off-the-shelf (COTS) devices 
adoption began to be considered for safety-related systems. 
Real-time requirements, the need for the implementation of 
computationally hungry algorithms and lower design costs are 
pushing industries in this direction. These design choices have a 

significant impact on the dependability capabilities and 
diagnostic coverage measurements. Safety-related system 
designers will mainly adopt COTS devices as black-box 
modules, facing the problem of testing, diagnosing and coverage 
evaluation from a different perspective w.r.t. the provider one.  

Former approaches for dependability evaluation were 
usually based on fault injection campaigns [6]. Fault injection is 
commonly intended as a dependability validation and evaluation 
technique for fault tolerant systems. It consists of several 
operations to be performed at design time to assess the design 
fault tolerance. Such fault injection campaigns can be either 
performed in hardware (e.g., modifying the value of input pins 
[7-8] or heavy ion beam radiation [9]), in software (e.g., 
modification of memory data [10-11]), simulated (e.g., 
simulating the RTL description and altering signal values [12]) 
or emulated (e.g., relying on FPGA prototypes [13-15]). 
Usually, the FARM model [16] is indeed used to characterize 
the fault injection input and output domains, in which a set of 
Faults and Activations in corresponds to a set of Readouts and a 
set of derived Measures.  

Fault injection can further be used for design-time validation 
and diagnostic coverage evaluation to enhance testing 
capabilities. Safety related systems adopt various dependability 
enhancement techniques, like error correction code (ECC), to 
reach the needed safety integrity level (SIL). Moreover, such 
modules should be tested online periodically to monitor their 
effectiveness. Online error injection can provide a solution to 
deal with such testing needs.  

This paper presents an enhanced architecture able to provide 
fast fault injection capabilities for safety critical embedded 
systems. The overall idea investigated here is to inject transient 
faults into the memory (e.g., the executable code or the data 
area) of an application by means of an external hardware 
manipulator, to allow almost concurrent fault insertion and 
program execution. Such architecture could be used to fast 
perform fault injection campaigns, like flipping all bits in the 
instruction and data memory to analyze their effects and severity 
on a processing system. Furthermore, the presented architecture 
can be exploited to facilitate online ECC engine testing by 
allowing runtime memory error injection. Two possible cases of 



study will be presented resorting to their implementation on a 
Xilinx Zynq [17] device. 

The paper is organized as follows: Section II gives an 
overview on fault injection, listing and comparing the different 
approaches. Section III will present the proposed fast fault 
injection architecture, which implementation details and 
possible case of study will be highlighted in Section IV. Section 
V will present the experimental setup and the achieved results, 
while Section VI will draw the conclusions.  

II. FAULT INJECTION BACKGROUND 

The emergence of high dependable electronic systems for 
safety critical applications has led to the need for fast, reliable 
and affordable methodologies to assess their actual reliability. 
Fault injection campaigns are usually used in this framework to 
have precise diagnostic coverage data. Nonetheless, during the 
design process, usually several trials and errors are made to 
reach the final solution. Thus, in the time-to-market driven era, 
fault injection has to be speeded up according to develop 
products with minimum time-to-market. More recently, the 
increasing need for high diagnostic coverage in safety critical 
systems, fault and error injection has been used to increase test 
effectiveness. In fact, error injection at runtime can be exploited 
to either increase test coverage and/or decrease testing time (e.g., 
allowing easy and fast ECC module testing).   

Fault injection techniques can be classified according to 
several objectives [18][19]. Hereinafter, the possible techniques 
will be tailored to the target fault injected module 
(microprocessor-based designs are considered), depending 
whether the RTL description is available (i.e., white-box) or not 
(i.e., black-box). For both cases, some possible approaches will 
be presented highlighting their pros and cons. It should be 
noticed that black-box approaches can be used in the white-box 
case (availability of RTL description) as well. 

A. White-box approaches   

Whenever the designer has the complete view of the internal 
module, several approaches can be selected to perform fault 
injection. Depending on the requirements and needs, the user 
can adopt: 

a) Simulation-based fault injection: it is performed by 

simulating the design injecting faults by altering the internal 

signals. It features very high design coverage evaluation, thanks 

to the high accessability and controllability, but it requires very 

high simulation time. The lower the simulated level (e.g., gate 

or RTL) the higher is the accuracy, thanks to the fine-grained 

fault injection, and the simulation execution time.  

b) Emulation-based fault injection: it is performed by 

emulating the design on a configurable platform, usually 

FPGA, injecting faults on the FPGA-implemented design. The 

actual fault injection can be either performed: (i) by 

reconfiguring the device with a fault-injected configuration file 

or (ii) by instrumenting the design adding extra logic that 

manages the fault injection directly on hardware. The former 

approach experiences high time overhead, since total or partial 

reconfigurations are required for each injected fault, the latter 

suffers the need of ad-hoc hardware module to be designed and 

implemented, modifying the original design, and area 

overhead.  

B. Black-box approaches 

In order to perform fault injection on black-box hardware 
modules, special practices have been designed to overcome the 
restricted accessibility without incurring in high accuracy lost. 
These approaches can be usually applied in COTS as well, since 
they do not rely on the availability of internal access or view.  

a) Simulation-based fault injection: it is performed by 

simulating the system, relying on its behavioural model (if 

available). [20] presents fault injection results achieved relying 

on QEMU models. They feature lower execution time w.r.t. 

white-box simulation-based approaches, since the model used 

is at a higher level of abstraction, but they loose in terms of 

accuracy. This kind of approach can be useful to identify error 

propagation in the system but it does not give any detailed 

information on the diagnostic coverage. 

b) Software-implemented fault injection: it consists of 

injecting faults by software manipulations, that can address 

both data and instructions to be executed on the target device 

[21]. The presence of faults in the hardware is reproduced at 

software level,. Faults can be injected either at compile time or 

at runtime. These kind of techniques can perform at-speed, 

guaranteeing fast process at different levels in the software 

stack (from drivers up to operative systems) but they feature 

limited accessiblity, since faults can be injected on the software 

addressable part, only. 

c) Hardware-implemented fault injection: it is the more 

intrusive techniques since it is carried out on the final hardware 

design. Such a hardware injection can be performed resorting 

to two different main approaches: (i) perturbing the 

environment parameter, using heavy ion beam radiations or by 

placing the device in an electromagnatic field (also referred as 

injection without contact); (ii) accessing the input pins of the 

device, modifying the value of signals, exploiting debug 

infrastructures like scan chains or by mean of active probes 

(also referred as injection with contact). The former approach 

feature at-speed performances, at the cost of lower 

observability. In fact, it is not known if and where the fault has 

been injected, but it relies on probabilistic evaluation. The latter 

approach efficiency is contingent with the level of accessibility. 

As an example, if the debug scan chain is exploited, the longer 

is the chain the higher is the accessiblity, since more parts of 

the system can be excited, but requiring more time to be 

scanned.  

This work proposes a methodology that overcomes 
limitations of previous approaches by combining the benefits of 
both software and hardware implemented fault injection, 
assuming a black-box approach.  

The goal is to provide a methodology to inject faults in the 
system by manipulating the instructions to be executed by the 
system-on-chip and check its behaviour depending on the 
injected fault, thus providing design time fault severity analysis. 

 The same approach can be used to dynamically inject faults, 
at runtime, enhancing memory accessibility for testing purposes. 



The next section will analyze the overall idea of the proposed 
methodology to fasten the fault injection process, highlighting 
the main pros and cons about its effective implementation. 

III. FAST FAULT INJECTION ARCHITECTURE 

Fault injection is commonly performed offline, at design 
time and often is part of a campaign, in which a set of faults are 
injected subsequently. As shown in Fig. 1, three main phases can 
be identified, and should be repeated for each injected fault.  

1. Fault Injection: the actual fault is injected in the 
device, resorting to the chosen fault injection 
methodology; 

2. Execution: the program or the simulation is 
executed on the injected platform; 

3. Results collection: the results of the execution on 
the injected platform are gathered and collected, for 
following analyses. 

Either online or offline, the collected results are then 
compared with the golden data to provide the diagnostic 
coverage analysis. This kind of modular approach allows the 
designer to easily automate the fault injection campaign, for 
example resorting to scripting, but incurs in high execution time 
due to the pipelined execution. The main idea, as shown in Fig.2, 
is to parallelize the tasks execution in order to decrease the 
overall execution time.  

In fact, fault injection tasks can be performed during the 
execution.  Thanks to this, the overall fault injection campaign 
time will decrease, especially considering the big number of 
faults being injected. Nonetheless, depending on the adopted 
fault injection methodology, such a parallel execution can be 
either impossible or its adoption results in poor gain.  

Let us consider hardware implemented fault injection using 
on-chip debug (OCD) infrastructures [8][22][23]: in this case, in 
order to inject faults, the system must move to debug mode to 
inject the fault in the memory element, and then switch again in 
normal mode to execute the program. Check-pointing [24] is a 
common practice in this field to improve timing performances.  

The execution is carried out until a checkpoint, the system 
state is stored and the fault injected. In this case, the next 
injection will not require the execution from the beginning. 

The fast fault injection implementation is instead 
straightforward for simulation-based approaches, by using 
force/release approach in HDL simulation [25]. Thanks to this 
feature available in modern HDL simulators, the simulation is 
speed up and faults are inserted concurrently to the program 
execution. Nonetheless, the achieved performances are far from 
being comparable to hardware-implementations. 

Another case of online fault injection is the instrumentation-
based emulation fault injection. The instrumentation is often 
based on multiplexing the original signal with a wired 
connection to logic 0 or logic 1 [26], to inject stuck-at faults, or 
xor-ing registers content by mean of external signal in order to 
emulate soft errors [27]. Clearly, by acting on the signals with 
the proper timing, the fault can be injected during the execution 
quite easily. 

The implementation of the here proposed fast fault injection 
architecture is based on the chance of modifying the instruction 
and data memories of the processor by means of a hardware 
implemented fault injector, external to the processing system.  

The injection process is performed by the hardware module 
accessing the memory during the execution phase, and 
modifying it at runtime and writing back the faulty word before 
it is accessed by the processing unit. Some synchronization is 
required between the processor and the injector to avoid 
concurrent accesses to the same memory locations. This 
prevents uncertainty in what word (i.e., the injected or the fault-
free one) is actually accessed by the processing platform and 
executed.  

The module can be implemented either to manage fault 
injection campaigns, allowing the fault injection in the whole 
memory space subsequently, or to flip specific memory location 
by setting its configuration registers.  In fact, the presented fault 
injector, thanks to its small footprint and area occupation, can be 
further exploited. In fact, by virtue of its flexible and 
configurable architecture, it can be used to inject errors in the 
memory at runtime as well (see Fig. 3). 
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The memory location to be flipped can be chosen by setting 
the fault injector configuration registers (e.g., address and bit 
position). Designers can select registers values, and decide when 
to inject the fault in the chosen location. This on-the-fly fault 
injection increases the system controllability, allowing the 
injection to be performed in the field, possibly shorten online 
and out-of-traffic testing time.   

   In the next section two different cases of study will be 
presented, adopting the fast fault injection methodology in 
different scenarios. Both are based on their implementation on 
the Xilinx Zynq [17], allowing both design-time fault injection 
(i.e., managing the whole campaign) or online error injection for 
testing purposes. A comparative study will be presented in order 
to show when the designer should opt for the first or the second 
solution, depending on the specific requirements.  

IV. CASES OF STUDY 

Systems on Programmable Chip (SoPC) are platforms 
combining the high-efficiency of ASIC-implemented 
processors, in terms of power and performances, with the 
intrinsic flexibility of programmable logic, usually SRAM-
based Field Programmable Gate Array (FPGA), in a single die 
[28-30].  

The idea of exploiting SoPC features to fasten fault injection 
is not new. Several works have been presented, mainly based on 
connecting on-chip debugging to the programmable logic to 
speed up the fault injection [22][31][32]. Even if they provide 
good observability, the time required to scan the whole registers 
chain is relatively high, thus incurring in latencies due to 
intrinsic JTAG nature. Conversely, the cases of study presented 
here exploit standard connections among the main modules 
composing SoPC, to provide high speed and configurable fault 
injection capabilities. 

The target system is intended to be composed of:  

 Processing System: the processing part of the 
SoPC, embedding CPU (in modern SoPCs, usually 
ARM-based), caches and some peripherals; 

 Programmable Logic: is the configurable part of 
the system, usually SRAM-based FPGA, in which 
we implement the hardware fault injector; 

 Memory: the locations storing data and 
instructions. They can reside either in an external 
memory (e.g., DDR), inside the device (e.g., on-
chip memory) or in the programmable logic (e.g., 
Block RAMs) 

The two presented scenarios will resort to different memory 
subsystems. In the former one, external DDR stores program and 
data. The latter one uses RAM blocks available in the 
programmable logic. 

For the sake of brevity, both scenarios will be presented 
based on their implementation on Xilinx Zynq platform, only, 
but the same concepts can be easily adapted for other SoPC 
platforms.  

A. Scenario 1 – External DDR 

The program under execution is stored in an external DDR 
memory and directly accessed by the processing system through 
the memory interfaces block, embedding the DDR controller 
(see Fig. 4), directly connected to the physical memory. 

The fault injector module is implemented in the 
programmable logic. It addresses the memory location to be read 
and modified through the AXI ACP (Accelerator Coherency 
Port) slave, in order to avoid incoherency between caches and 
central memory and incurring in unpredictable executions. In 
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case caches are disabled (for timing predictability reasons) AXI 
HP (High Performances) can be used instead. 

Furthermore, the AXI4-Lite bus connection can be used to 
address the configuration registers of the fault injector module, 
providing some synchronization between fault injector and 
processing system. These registers are needed especially to 
provide online fault injection capabilities, since they allow the 
user to inject faults in different locations at different time. This 
is commonly used in out-of-traffic testing in order to achieve 
higher diagnostic coverage. The synchronization signals (e.g., 
Start, Done) are needed to trigger the injection process and to 
notify its proper execution to the processing system. 

B. Scenario 2 – Internal BRAM 

The program under execution is stored in Block RAMs 
(BRAM in Fig. 5) in the programmable logic, accessed through 
the AXI bus (programmable logic to memory interconnect). The 
BRAM is implemented in the programmable logic as a dual port 
RAM [33]. Thanks to this intrinsic dual port nature, it allows 
access to both processing system and fault injector without 
requiring access sharing or multiplexing.  

The fault injector module is hardware-implemented in the 
programmable logic. It is connected to the BRAM second access 
port, while the first port is accessed by the Processing system 
through the Programmable Logic to Memory Interconnect 
module. This module allows high performances communication 
between programmable logic and processing systems, 
exploiting AXI HP ports. 

As in Scenario 1, the fault injector module is connected via 
AXI Lite bus to the processing system to both exchange 
synchronization signals and configurations. 

C. Scenarios Comparison  

The two presented scenarios differ mainly on the memory 
architecture, while they share the same overall fault injector 
module. In both cases the programmable logic hosts the fault 
injector module, connected through AXI4 Lite to the processing 
system. In scenario 1, AXI ACP (or AXI HP with cache 
disabled) slave is used to communicate with the external DDR 
memory, since it is not possible to directly address DDR from 
the programmable logic. Conversely, scenario 2 uses the 
programmable logic to memory interconnect module to deal 
with the communication between BRAMs and Processing 
System.  

In terms of timing performances, DDR memory is faster than 
BRAMs, especially when accessed in burst mode by the 
Processing System. Furthermore, external DDR memory can be 
as big as needed, so there are almost no limitations on the code 
dimension. On the contrary, there are strong limitations on the 
BRAMs, since those are quite limited resources in the 
programmable logic, depending on the Zynq device, for a 
maximum of 3,020 kB.  

The main advantage of BRAMs adoption is their dual port 
nature. This feature allows a very fast and easy way to access 
the memory content and to modify it, without incurring in 
latencies due to bus accesses and connections. Thanks to this, 
the scenario adopting BRAMs as main memory fits perfectly 
with the concept of fast fault injection presented in Section III. 

When the system is being reset and the program execution starts, 
in parallel the fault injector can read, modify and write back the 
injected word in the memory by addressing the port of the 
BRAM in WRITE_FIRST mode.  

Differently, DDR memory accesses (injection process and 
program execution) should be performed in separated time slots, 
requiring further synchronization between the Processing 
System and the fault injector, thus slowing down the whole fault 
injection process. This is due to the intrinsic single-port nature 
of the DDR memory, that can be accessed by both systems 
relying on the same interface (i.e., hardwired in the Processing 
System), only. Furthermore, the fault injector implemented on 
the programmable logic can access the DDR controller as a slave 
on the ACP bus, thus influencing the cache that will be flushed 
and updated (so losing the performances gain due to caching).  

According to the specific features of both the scenarios, it 
should be noticed that scenario 2 should be preferred whenever 
the memory space provided by BRAMs is enough, since the 
fault injection process is faster and easier, since low sync is 
required. This is true either in case of online fault injection and 
design-time, allowing fast fault injection. Whenever the required 
space for instructions and data does not fit with BRAMs, 
external DDR memory provides the required capability. The 
fault injection process is slower, due to the required execution 
stall to read, modify and write back the injected fault. 
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V. EXPERIMENTAL RESULTS 

The experiments were conducted on a Zedboard (Zynq 
Evaluation and Development board) [34], with a Zynq 
XCZ7020-1CLG484C SoPC, including two Micron DDR3 128 
Mb x 16 memory components, with a 32-bit interface, for a total 
of 512 MB, working at 533 MHz, without ECC support. The 
number of available Block-RAMs in the device is 140, for a total 
of 560 kB. BRAMs can be configured with parity or ECC 
hamming codes. The design process has been made using 
Vivado Design Suite 2013.4 [35]. During these experiments, 
both instruction and data caches of the processing system were 
disabled, in order to increase the predictability of the execution. 
In this case, in scenario 1, either AXI HP or AXI ACP can be 
used to connect the fault injector to the DDR controller, since 
cache coherency (e.g., achieved by adopting AXI ACP) is not 
needed.  

The fault injector module has been hardware implemented in 
the programmable logic as an IP core connected via AXI-4 Lite. 
Three separate parameters must be provided to the IP, by acting 
on its configuration registers: base_address from which starts 
the injection, word_number in which inject faults sequentially, 
starting_bit identifying which bit should be flipped and 
ending_bit identifying the last bit to be flipped.  

The FSM shown in Fig. 6 list the operations performed by 
the injector module. It basically consists of two nested loops 
scanning the addresses in which inject the faults, and the bit in 
each word. A temporary register is used to store the value read 
from the memory, in order to avoid reading the same value when 
the fault is injected in different bits of the same word. 

When the module is used for single online fault injection, 
setting starting_bit=ending_bit and word_number=1, the 
module will flip a single bit at the desired address 
(base_address). The fault injector hardware module, 
implemented in the Zynq programmable logic, works up to a 
maximum frequency of 167 MHz and requires 268 slices, taking 

into account the implementation of the FSM, the configuration 
registers and the AXI4 Lite bus connection. 

Scenario 1 has been implemented using AXI HP port. The 
whole injection process of a single 32 bit word accessed from 
the DDR, manipulated and written back took in average 463 ns, 
and requires the stall of the program execution during that 
period. Since the execution is interrupted, the possible DDR 
burst accesses are stopped as well, incurring in further timing 
penalty. In the worst case, the timing penalty will be of 206 ns.  

Scenario 2 has been implemented (as shown in Fig.7) 
resorting to a direct connection among BRAMs (blk_mem_gen 
in Fig.7) and fault injector. BRAM addresses are non-cached as 
DDR in scenario 1. The whole injection process in this case 
requires 87 ns in average (working at 150 MHz both BRAMs 
and fault injector) and does not require any stop in the execution. 

Previous approaches relied on the adoption of host platforms 
to setup the fault injection, by modifying the software image on 
the host platform before downloading for execution. In this case, 
for every injected fault, the modified source code should be 

Fig. 7. Fault Injector IP integration in Vivado for scenario 2 

Fig. 6.  FSM of the fault injector module 



downloaded to the platform before launching the execution. In 
the Zedboard, this programming process requires the 
information download through the JTAG chain. For a simple 
bare-metal hello world application [36], it requires 1.2 s. For 
more complex applications, the time required to download the 
code increases proportionally with the dimension. Clearly, both 
scenarios 1 and 2 outperform of several orders of magnitude 
previous approaches.  

Special case has been considered when BRAMs embeds 
ECC engine, with single error correction and double error 
detection. The single error correction and double error detection 
events are notified by mean of two signals (SBITERR and 
DBITERR in Fig. 8).  

Furthermore, in this special case, BRAMs can be equipped 
with single and double error injection signals (INJECTSBITERR 
and INJECTDBITERR), providing the chance of online testing 
ECC engine. Thus, the fault injector module can be further 
simplified, allowing the access from the Processing system, 
requiring 127 slices, only.  

VI. CONCLUSIONS 

This work presented a methodology for design time and 
online fast fault injection, suitable for safety critical SoPC. Two 
different case of study have been presented, highlighting pros 
and cons of their adoption, as well as some implementations 
details. Future work will investigate further methodology for 
fast online error injection on the real hardware to enhance the 
accessibility for testing in safety critical applications. 
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