
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

On Enhancing Fault Injection's Capabilities and Performances for Safety Critical Systems / DI CARLO, Stefano;
Gambardella, G.; Prinetto, Paolo Ernesto; Reichenbach, F.; Lokstad, T.; Rafiq, G.. - STAMPA. - (2014), pp. 583-590.
(Intervento presentato al convegno 17th Euromicro Conference on Digital System Design (DSD) tenutosi a Verona, IT
nel 27-29 Aug. 2014) [10.1109/DSD.2014.12].

Original

On Enhancing Fault Injection's Capabilities and Performances for Safety Critical Systems

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/DSD.2014.12

Terms of use:

Publisher copyright

©2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2571944 since: 2016-10-07T16:39:02Z

IEEE

On enhancing fault injection’s capabilities and

performances for safety critical systems

Stefano Di Carlo, Giulio Gambardella, Paolo

Prinetto

Politecnico di Torino

Dipartimento di Automatica e Informatica

Corso Duca degli Abruzzi 24, I-10129, Torino, Italy

Email: {name.familyname}@polito.it

Frank Reichenbach, Trond Løkstad, Gulzaib Rafiq

ABB Corporate Research, Norway

Wireless and Embedded Systems group

Bergerveien 12, 1396, Billingstad, Norway

Email: {name.familyname}@no.abb.com

Abstract— The increasing need for high-performance

dependable systems with and the ongoing strong cost pressure

leads to the adoption of commercial off-the-shelf devices, even for

safety critical applications. Ad hoc techniques must be studied and

implemented to develop robust systems and to validate the design

against all safety requirements. Nonetheless, white-box fault

injection relies on the deep knowledge of the system hardware

architecture and it is seldom available to the designer.

Furthermore it would require enormous simulation time to be

carried out. This work presents an enhanced architecture for fast

fault injection to be used for design-time coverage evaluation and

runtime testing. A test case will be presented on Xilinx Zynq

system on programmable chip, suitable for design-time diagnostic

coverage evaluation and online testing for safety-critical systems

resorting to the proposed fault injection methodology.

Keywords— dependability; fault injection; safety; testing;

FPGA; diagnosis; functional safety; system-on-programmable-chip.

I. INTRODUCTION

Moore’s law [1] has served as goal and motivation for
consumer electronics manufacturers in the last decades. The
results in terms of processing power increase in the consumer
electronics devices have been mainly achieved due to cost
reduction and technology shrinking. However, reducing
physical geometries mainly affects the electronic devices’
dependability, making them more sensitive to soft-errors [2]
like Single Event Transient (SET) of Single Event Upset (SEU)
[3] and hard (permanent) faults, e.g. due to aging effects like
electromigration [4].

Accordingly, safety critical systems often rely on the
adoption of old technology nodes, even if they introduce longer
design time w.r.t. consumer electronics. In fact, functional safety
requirements, due to international directives like IEC61508 [5],
are increasingly pushing industry in developing innovative
methodologies to design high-dependable systems with the
required diagnostic coverage.

More recently, commercial off-the-shelf (COTS) devices
adoption began to be considered for safety-related systems.
Real-time requirements, the need for the implementation of
computationally hungry algorithms and lower design costs are
pushing industries in this direction. These design choices have a

significant impact on the dependability capabilities and
diagnostic coverage measurements. Safety-related system
designers will mainly adopt COTS devices as black-box
modules, facing the problem of testing, diagnosing and coverage
evaluation from a different perspective w.r.t. the provider one.

Former approaches for dependability evaluation were
usually based on fault injection campaigns [6]. Fault injection is
commonly intended as a dependability validation and evaluation
technique for fault tolerant systems. It consists of several
operations to be performed at design time to assess the design
fault tolerance. Such fault injection campaigns can be either
performed in hardware (e.g., modifying the value of input pins
[7-8] or heavy ion beam radiation [9]), in software (e.g.,
modification of memory data [10-11]), simulated (e.g.,
simulating the RTL description and altering signal values [12])
or emulated (e.g., relying on FPGA prototypes [13-15]).
Usually, the FARM model [16] is indeed used to characterize
the fault injection input and output domains, in which a set of
Faults and Activations in corresponds to a set of Readouts and a
set of derived Measures.

Fault injection can further be used for design-time validation
and diagnostic coverage evaluation to enhance testing
capabilities. Safety related systems adopt various dependability
enhancement techniques, like error correction code (ECC), to
reach the needed safety integrity level (SIL). Moreover, such
modules should be tested online periodically to monitor their
effectiveness. Online error injection can provide a solution to
deal with such testing needs.

This paper presents an enhanced architecture able to provide
fast fault injection capabilities for safety critical embedded
systems. The overall idea investigated here is to inject transient
faults into the memory (e.g., the executable code or the data
area) of an application by means of an external hardware
manipulator, to allow almost concurrent fault insertion and
program execution. Such architecture could be used to fast
perform fault injection campaigns, like flipping all bits in the
instruction and data memory to analyze their effects and severity
on a processing system. Furthermore, the presented architecture
can be exploited to facilitate online ECC engine testing by
allowing runtime memory error injection. Two possible cases of

study will be presented resorting to their implementation on a
Xilinx Zynq [17] device.

The paper is organized as follows: Section II gives an
overview on fault injection, listing and comparing the different
approaches. Section III will present the proposed fast fault
injection architecture, which implementation details and
possible case of study will be highlighted in Section IV. Section
V will present the experimental setup and the achieved results,
while Section VI will draw the conclusions.

II. FAULT INJECTION BACKGROUND

The emergence of high dependable electronic systems for
safety critical applications has led to the need for fast, reliable
and affordable methodologies to assess their actual reliability.
Fault injection campaigns are usually used in this framework to
have precise diagnostic coverage data. Nonetheless, during the
design process, usually several trials and errors are made to
reach the final solution. Thus, in the time-to-market driven era,
fault injection has to be speeded up according to develop
products with minimum time-to-market. More recently, the
increasing need for high diagnostic coverage in safety critical
systems, fault and error injection has been used to increase test
effectiveness. In fact, error injection at runtime can be exploited
to either increase test coverage and/or decrease testing time (e.g.,
allowing easy and fast ECC module testing).

Fault injection techniques can be classified according to
several objectives [18][19]. Hereinafter, the possible techniques
will be tailored to the target fault injected module
(microprocessor-based designs are considered), depending
whether the RTL description is available (i.e., white-box) or not
(i.e., black-box). For both cases, some possible approaches will
be presented highlighting their pros and cons. It should be
noticed that black-box approaches can be used in the white-box
case (availability of RTL description) as well.

A. White-box approaches

Whenever the designer has the complete view of the internal
module, several approaches can be selected to perform fault
injection. Depending on the requirements and needs, the user
can adopt:

a) Simulation-based fault injection: it is performed by

simulating the design injecting faults by altering the internal

signals. It features very high design coverage evaluation, thanks

to the high accessability and controllability, but it requires very

high simulation time. The lower the simulated level (e.g., gate

or RTL) the higher is the accuracy, thanks to the fine-grained

fault injection, and the simulation execution time.

b) Emulation-based fault injection: it is performed by

emulating the design on a configurable platform, usually

FPGA, injecting faults on the FPGA-implemented design. The

actual fault injection can be either performed: (i) by

reconfiguring the device with a fault-injected configuration file

or (ii) by instrumenting the design adding extra logic that

manages the fault injection directly on hardware. The former

approach experiences high time overhead, since total or partial

reconfigurations are required for each injected fault, the latter

suffers the need of ad-hoc hardware module to be designed and

implemented, modifying the original design, and area

overhead.

B. Black-box approaches

In order to perform fault injection on black-box hardware
modules, special practices have been designed to overcome the
restricted accessibility without incurring in high accuracy lost.
These approaches can be usually applied in COTS as well, since
they do not rely on the availability of internal access or view.

a) Simulation-based fault injection: it is performed by

simulating the system, relying on its behavioural model (if

available). [20] presents fault injection results achieved relying

on QEMU models. They feature lower execution time w.r.t.

white-box simulation-based approaches, since the model used

is at a higher level of abstraction, but they loose in terms of

accuracy. This kind of approach can be useful to identify error

propagation in the system but it does not give any detailed

information on the diagnostic coverage.

b) Software-implemented fault injection: it consists of

injecting faults by software manipulations, that can address

both data and instructions to be executed on the target device

[21]. The presence of faults in the hardware is reproduced at

software level,. Faults can be injected either at compile time or

at runtime. These kind of techniques can perform at-speed,

guaranteeing fast process at different levels in the software

stack (from drivers up to operative systems) but they feature

limited accessiblity, since faults can be injected on the software

addressable part, only.

c) Hardware-implemented fault injection: it is the more

intrusive techniques since it is carried out on the final hardware

design. Such a hardware injection can be performed resorting

to two different main approaches: (i) perturbing the

environment parameter, using heavy ion beam radiations or by

placing the device in an electromagnatic field (also referred as

injection without contact); (ii) accessing the input pins of the

device, modifying the value of signals, exploiting debug

infrastructures like scan chains or by mean of active probes

(also referred as injection with contact). The former approach

feature at-speed performances, at the cost of lower

observability. In fact, it is not known if and where the fault has

been injected, but it relies on probabilistic evaluation. The latter

approach efficiency is contingent with the level of accessibility.

As an example, if the debug scan chain is exploited, the longer

is the chain the higher is the accessiblity, since more parts of

the system can be excited, but requiring more time to be

scanned.

This work proposes a methodology that overcomes
limitations of previous approaches by combining the benefits of
both software and hardware implemented fault injection,
assuming a black-box approach.

The goal is to provide a methodology to inject faults in the
system by manipulating the instructions to be executed by the
system-on-chip and check its behaviour depending on the
injected fault, thus providing design time fault severity analysis.

 The same approach can be used to dynamically inject faults,
at runtime, enhancing memory accessibility for testing purposes.

The next section will analyze the overall idea of the proposed
methodology to fasten the fault injection process, highlighting
the main pros and cons about its effective implementation.

III. FAST FAULT INJECTION ARCHITECTURE

Fault injection is commonly performed offline, at design
time and often is part of a campaign, in which a set of faults are
injected subsequently. As shown in Fig. 1, three main phases can
be identified, and should be repeated for each injected fault.

1. Fault Injection: the actual fault is injected in the
device, resorting to the chosen fault injection
methodology;

2. Execution: the program or the simulation is
executed on the injected platform;

3. Results collection: the results of the execution on
the injected platform are gathered and collected, for
following analyses.

Either online or offline, the collected results are then
compared with the golden data to provide the diagnostic
coverage analysis. This kind of modular approach allows the
designer to easily automate the fault injection campaign, for
example resorting to scripting, but incurs in high execution time
due to the pipelined execution. The main idea, as shown in Fig.2,
is to parallelize the tasks execution in order to decrease the
overall execution time.

In fact, fault injection tasks can be performed during the
execution. Thanks to this, the overall fault injection campaign
time will decrease, especially considering the big number of
faults being injected. Nonetheless, depending on the adopted
fault injection methodology, such a parallel execution can be
either impossible or its adoption results in poor gain.

Let us consider hardware implemented fault injection using
on-chip debug (OCD) infrastructures [8][22][23]: in this case, in
order to inject faults, the system must move to debug mode to
inject the fault in the memory element, and then switch again in
normal mode to execute the program. Check-pointing [24] is a
common practice in this field to improve timing performances.

The execution is carried out until a checkpoint, the system
state is stored and the fault injected. In this case, the next
injection will not require the execution from the beginning.

The fast fault injection implementation is instead
straightforward for simulation-based approaches, by using
force/release approach in HDL simulation [25]. Thanks to this
feature available in modern HDL simulators, the simulation is
speed up and faults are inserted concurrently to the program
execution. Nonetheless, the achieved performances are far from
being comparable to hardware-implementations.

Another case of online fault injection is the instrumentation-
based emulation fault injection. The instrumentation is often
based on multiplexing the original signal with a wired
connection to logic 0 or logic 1 [26], to inject stuck-at faults, or
xor-ing registers content by mean of external signal in order to
emulate soft errors [27]. Clearly, by acting on the signals with
the proper timing, the fault can be injected during the execution
quite easily.

The implementation of the here proposed fast fault injection
architecture is based on the chance of modifying the instruction
and data memories of the processor by means of a hardware
implemented fault injector, external to the processing system.

The injection process is performed by the hardware module
accessing the memory during the execution phase, and
modifying it at runtime and writing back the faulty word before
it is accessed by the processing unit. Some synchronization is
required between the processor and the injector to avoid
concurrent accesses to the same memory locations. This
prevents uncertainty in what word (i.e., the injected or the fault-
free one) is actually accessed by the processing platform and
executed.

The module can be implemented either to manage fault
injection campaigns, allowing the fault injection in the whole
memory space subsequently, or to flip specific memory location
by setting its configuration registers. In fact, the presented fault
injector, thanks to its small footprint and area occupation, can be
further exploited. In fact, by virtue of its flexible and
configurable architecture, it can be used to inject errors in the
memory at runtime as well (see Fig. 3).

time

Fault
Injection

Execution

Results
collection

Fig. 1. Standard design-time fault injection process

F
au

lt

In
je

ct
io

n

Execution

Results
collection

Fig. 2. Proposed design-time fast fault injection architecture

time

The memory location to be flipped can be chosen by setting
the fault injector configuration registers (e.g., address and bit
position). Designers can select registers values, and decide when
to inject the fault in the chosen location. This on-the-fly fault
injection increases the system controllability, allowing the
injection to be performed in the field, possibly shorten online
and out-of-traffic testing time.

 In the next section two different cases of study will be
presented, adopting the fast fault injection methodology in
different scenarios. Both are based on their implementation on
the Xilinx Zynq [17], allowing both design-time fault injection
(i.e., managing the whole campaign) or online error injection for
testing purposes. A comparative study will be presented in order
to show when the designer should opt for the first or the second
solution, depending on the specific requirements.

IV. CASES OF STUDY

Systems on Programmable Chip (SoPC) are platforms
combining the high-efficiency of ASIC-implemented
processors, in terms of power and performances, with the
intrinsic flexibility of programmable logic, usually SRAM-
based Field Programmable Gate Array (FPGA), in a single die
[28-30].

The idea of exploiting SoPC features to fasten fault injection
is not new. Several works have been presented, mainly based on
connecting on-chip debugging to the programmable logic to
speed up the fault injection [22][31][32]. Even if they provide
good observability, the time required to scan the whole registers
chain is relatively high, thus incurring in latencies due to
intrinsic JTAG nature. Conversely, the cases of study presented
here exploit standard connections among the main modules
composing SoPC, to provide high speed and configurable fault
injection capabilities.

The target system is intended to be composed of:

 Processing System: the processing part of the
SoPC, embedding CPU (in modern SoPCs, usually
ARM-based), caches and some peripherals;

 Programmable Logic: is the configurable part of
the system, usually SRAM-based FPGA, in which
we implement the hardware fault injector;

 Memory: the locations storing data and
instructions. They can reside either in an external
memory (e.g., DDR), inside the device (e.g., on-
chip memory) or in the programmable logic (e.g.,
Block RAMs)

The two presented scenarios will resort to different memory
subsystems. In the former one, external DDR stores program and
data. The latter one uses RAM blocks available in the
programmable logic.

For the sake of brevity, both scenarios will be presented
based on their implementation on Xilinx Zynq platform, only,
but the same concepts can be easily adapted for other SoPC
platforms.

A. Scenario 1 – External DDR

The program under execution is stored in an external DDR
memory and directly accessed by the processing system through
the memory interfaces block, embedding the DDR controller
(see Fig. 4), directly connected to the physical memory.

The fault injector module is implemented in the
programmable logic. It addresses the memory location to be read
and modified through the AXI ACP (Accelerator Coherency
Port) slave, in order to avoid incoherency between caches and
central memory and incurring in unpredictable executions. In

time

Programmable

Logic

Processing
System

Memory

Interfaces

(DDR2/3

Controller)

 Cortex-A9

MPCore

 Cortex-A9

MPCore

 L1 I/D Cache
(32+32kB)

 L1 I/D Cache
(32+32kB)

 L2 Cache (512 kB)

 On-chip
memory
(256 kB)

Fault

Injector

External DDR Memory

AXI

ACP

Slave

AXI4

Lite

F
au

lt

In
je

ct
io

n

Safety critical
applications

Out-of
traffic test

Fig. 3. Online fault injection for testing

case caches are disabled (for timing predictability reasons) AXI
HP (High Performances) can be used instead.

Furthermore, the AXI4-Lite bus connection can be used to
address the configuration registers of the fault injector module,
providing some synchronization between fault injector and
processing system. These registers are needed especially to
provide online fault injection capabilities, since they allow the
user to inject faults in different locations at different time. This
is commonly used in out-of-traffic testing in order to achieve
higher diagnostic coverage. The synchronization signals (e.g.,
Start, Done) are needed to trigger the injection process and to
notify its proper execution to the processing system.

B. Scenario 2 – Internal BRAM

The program under execution is stored in Block RAMs
(BRAM in Fig. 5) in the programmable logic, accessed through
the AXI bus (programmable logic to memory interconnect). The
BRAM is implemented in the programmable logic as a dual port
RAM [33]. Thanks to this intrinsic dual port nature, it allows
access to both processing system and fault injector without
requiring access sharing or multiplexing.

The fault injector module is hardware-implemented in the
programmable logic. It is connected to the BRAM second access
port, while the first port is accessed by the Processing system
through the Programmable Logic to Memory Interconnect
module. This module allows high performances communication
between programmable logic and processing systems,
exploiting AXI HP ports.

As in Scenario 1, the fault injector module is connected via
AXI Lite bus to the processing system to both exchange
synchronization signals and configurations.

C. Scenarios Comparison

The two presented scenarios differ mainly on the memory
architecture, while they share the same overall fault injector
module. In both cases the programmable logic hosts the fault
injector module, connected through AXI4 Lite to the processing
system. In scenario 1, AXI ACP (or AXI HP with cache
disabled) slave is used to communicate with the external DDR
memory, since it is not possible to directly address DDR from
the programmable logic. Conversely, scenario 2 uses the
programmable logic to memory interconnect module to deal
with the communication between BRAMs and Processing
System.

In terms of timing performances, DDR memory is faster than
BRAMs, especially when accessed in burst mode by the
Processing System. Furthermore, external DDR memory can be
as big as needed, so there are almost no limitations on the code
dimension. On the contrary, there are strong limitations on the
BRAMs, since those are quite limited resources in the
programmable logic, depending on the Zynq device, for a
maximum of 3,020 kB.

The main advantage of BRAMs adoption is their dual port
nature. This feature allows a very fast and easy way to access
the memory content and to modify it, without incurring in
latencies due to bus accesses and connections. Thanks to this,
the scenario adopting BRAMs as main memory fits perfectly
with the concept of fast fault injection presented in Section III.

When the system is being reset and the program execution starts,
in parallel the fault injector can read, modify and write back the
injected word in the memory by addressing the port of the
BRAM in WRITE_FIRST mode.

Differently, DDR memory accesses (injection process and
program execution) should be performed in separated time slots,
requiring further synchronization between the Processing
System and the fault injector, thus slowing down the whole fault
injection process. This is due to the intrinsic single-port nature
of the DDR memory, that can be accessed by both systems
relying on the same interface (i.e., hardwired in the Processing
System), only. Furthermore, the fault injector implemented on
the programmable logic can access the DDR controller as a slave
on the ACP bus, thus influencing the cache that will be flushed
and updated (so losing the performances gain due to caching).

According to the specific features of both the scenarios, it
should be noticed that scenario 2 should be preferred whenever
the memory space provided by BRAMs is enough, since the
fault injection process is faster and easier, since low sync is
required. This is true either in case of online fault injection and
design-time, allowing fast fault injection. Whenever the required
space for instructions and data does not fit with BRAMs,
external DDR memory provides the required capability. The
fault injection process is slower, due to the required execution
stall to read, modify and write back the injected fault.

Programmable

Logic

Processing

System

Memory

Interfaces

(DDR2/3

Controller)

Cortex-A9

MPCore

 Cortex-A9

MPCore

 L1 I/D Cache
(32+32kB)

 L1 I/D Cache
(32+32kB)

 L2 Cache (512 kB)

 On-chip
memory
(256 kB)

Dual

port

BRAM
Fault

Injector

AXI

HP

Programmable

Logic to

Memory

Interconnect

AXI4

Lite

Fig. 5. Scenario 2 – block diagram

V. EXPERIMENTAL RESULTS

The experiments were conducted on a Zedboard (Zynq
Evaluation and Development board) [34], with a Zynq
XCZ7020-1CLG484C SoPC, including two Micron DDR3 128
Mb x 16 memory components, with a 32-bit interface, for a total
of 512 MB, working at 533 MHz, without ECC support. The
number of available Block-RAMs in the device is 140, for a total
of 560 kB. BRAMs can be configured with parity or ECC
hamming codes. The design process has been made using
Vivado Design Suite 2013.4 [35]. During these experiments,
both instruction and data caches of the processing system were
disabled, in order to increase the predictability of the execution.
In this case, in scenario 1, either AXI HP or AXI ACP can be
used to connect the fault injector to the DDR controller, since
cache coherency (e.g., achieved by adopting AXI ACP) is not
needed.

The fault injector module has been hardware implemented in
the programmable logic as an IP core connected via AXI-4 Lite.
Three separate parameters must be provided to the IP, by acting
on its configuration registers: base_address from which starts
the injection, word_number in which inject faults sequentially,
starting_bit identifying which bit should be flipped and
ending_bit identifying the last bit to be flipped.

The FSM shown in Fig. 6 list the operations performed by
the injector module. It basically consists of two nested loops
scanning the addresses in which inject the faults, and the bit in
each word. A temporary register is used to store the value read
from the memory, in order to avoid reading the same value when
the fault is injected in different bits of the same word.

When the module is used for single online fault injection,
setting starting_bit=ending_bit and word_number=1, the
module will flip a single bit at the desired address
(base_address). The fault injector hardware module,
implemented in the Zynq programmable logic, works up to a
maximum frequency of 167 MHz and requires 268 slices, taking

into account the implementation of the FSM, the configuration
registers and the AXI4 Lite bus connection.

Scenario 1 has been implemented using AXI HP port. The
whole injection process of a single 32 bit word accessed from
the DDR, manipulated and written back took in average 463 ns,
and requires the stall of the program execution during that
period. Since the execution is interrupted, the possible DDR
burst accesses are stopped as well, incurring in further timing
penalty. In the worst case, the timing penalty will be of 206 ns.

Scenario 2 has been implemented (as shown in Fig.7)
resorting to a direct connection among BRAMs (blk_mem_gen
in Fig.7) and fault injector. BRAM addresses are non-cached as
DDR in scenario 1. The whole injection process in this case
requires 87 ns in average (working at 150 MHz both BRAMs
and fault injector) and does not require any stop in the execution.

Previous approaches relied on the adoption of host platforms
to setup the fault injection, by modifying the software image on
the host platform before downloading for execution. In this case,
for every injected fault, the modified source code should be

Fig. 7. Fault Injector IP integration in Vivado for scenario 2

Fig. 6. FSM of the fault injector module

downloaded to the platform before launching the execution. In
the Zedboard, this programming process requires the
information download through the JTAG chain. For a simple
bare-metal hello world application [36], it requires 1.2 s. For
more complex applications, the time required to download the
code increases proportionally with the dimension. Clearly, both
scenarios 1 and 2 outperform of several orders of magnitude
previous approaches.

Special case has been considered when BRAMs embeds
ECC engine, with single error correction and double error
detection. The single error correction and double error detection
events are notified by mean of two signals (SBITERR and
DBITERR in Fig. 8).

Furthermore, in this special case, BRAMs can be equipped
with single and double error injection signals (INJECTSBITERR
and INJECTDBITERR), providing the chance of online testing
ECC engine. Thus, the fault injector module can be further
simplified, allowing the access from the Processing system,
requiring 127 slices, only.

VI. CONCLUSIONS

This work presented a methodology for design time and
online fast fault injection, suitable for safety critical SoPC. Two
different case of study have been presented, highlighting pros
and cons of their adoption, as well as some implementations
details. Future work will investigate further methodology for
fast online error injection on the real hardware to enhance the
accessibility for testing in safety critical applications.

REFERENCES

[1] Moore, G.E., "Cramming More Components Onto Integrated Circuits,"
Proceedings of the IEEE , vol.86, no.1, pp.82,85, January 1998

[2] Gadlage, M.J.; Eaton, P.H.; Benedetto, J.M.; Carts, M.; Zhu, V.;
Turflinger, T.L., "Digital Device Error Rate Trends in Advanced CMOS
Technologies," Nuclear Science, IEEE Transactions on , vol.53, no.6,
pp.3466,3471, December 2006

[3] Gaspard, N.J.; Jagannathan, S.; Diggins, Z.J.; King, M.P.; Wen, S.-J.;
Wong, R.; Loveless, T.D.; Lilja, K.; Bounasser, M.; Reece, T.; Witulski,

A.F.; Holman, W.T.; Bhuva, B.L.; Massengill, L.W., "Technology
Scaling Comparison of Flip-Flop Heavy-Ion Single-Event Upset Cross
Sections," Nuclear Science, IEEE Transactions on , vol.60, no.6,
pp.4368,4373, December 2013

[4] Oates, A.S.; Lin, M. H., "The scaling of electromigration lifetimes,"
Reliability Physics Symposium (IRPS), 2012 IEEE International , vol.,
no., pp.6B.2.1,6B.2.7, 15-19 April 2012

[5] International Electrotechnical Commission, "IEC 61508 Second Edition:
Functional Safety of Electrical/Electronic/Programmable Electronic
Systems", 2010.

[6] Mei-Chen Hsueh; Tsai, T.K.; Iyer, R.K., "Fault injection techniques and
tools," Computer , vol.30, no.4, pp.75,82, Apr 1997

[7] Chakraborty, T.J.; Chen-Huan Chiang, "A novel fault injection method
for system verification based on FPGA boundary scan architecture," Test
Conference, 2002. Proceedings. International , vol., no., pp.923,929, 2002

[8] Portela-García, M.; López-Ongil, C.; Valderas, M.G.; Entrena, L., "Fault
Injection in Modern Microprocessors Using On-Chip Debugging
Infrastructures," Dependable and Secure Computing, IEEE Transactions
on , vol.8, no.2, pp.308,314, March-April 2011

[9] Nazar, G.L.; Rech, P.; Frost, C.; Carro, L., "Radiation and Fault Injection
Testing of a Fine-Grained Error Detection Technique for FPGAs,"
Nuclear Science, IEEE Transactions on , vol.60, no.4, pp.2742,2749,
August 2013

[10] Tröger, P.; Salfner, Felix; Tschirpke, S., "Software-Implemented Fault
Injection at Firmware Level," Dependability (DEPEND), 2010 Third
International Conference on , vol., no., pp.13,16, 18-25 July 2010

[11] Benso, A.; Di Carlo, S.; Di Natale, G.; Prinetto, P.; Solcia, I.; Tagliaferri,
L., "FAUST: fault-injection script-based tool," On-Line Testing
Symposium, 2003. IOLTS 2003. 9th IEEE , vol., no., pp.160,, 7-9 July
2003

[12] D Gil, J Gracia, J.C Baraza, P.J Gil, Study, comparison and application of
different VHDL-based fault injection techniques for the experimental
validation of a fault-tolerant system, Microelectronics Journal, Volume
34, Issue 1, 1 January 2003

[13] Shirazi, M.S.; Morris, B.; Selvaraj, H., "Fast FPGA-based fault injection
tool for embedded processors," Quality Electronic Design (ISQED), 2013
14th International Symposium on , vol., no., pp.476,480, 4-6 March 2013

[14] Grinschgl, Johannes; Krieg, Armin; Steger, C.; Weiss, R.; Bock, Holger;
Haid, Josef, "Automatic saboteur placement for emulation-based multi-
bit fault injection," Reconfigurable Communication-centric Systems-on-
Chip (ReCoSoC), 2011 6th International Workshop on , vol., no., pp.1,8,
20-22 June 2011

[15] Azkarate-askasua, M.; Martinez, I.; Iturbe, X.; Obermaisser, R.,
"Dependability assessment of the time-triggered SoC prototype using
FPGA fault injection," IECON 2011 - 37th Annual Conference on IEEE
Industrial Electronics Society , vol., no., pp.2802,2807, 7-10 November
2011

[16] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie, E.
Martins, D. Powell, "Fault Injection for Dependability Validation: A
Methodology and Some Applications," IEEE Transactions on Software
Engineering, vol. 16, no. 2, pp. 166-182, February, 1990

[17] Xilinx, "Zynq-7000 AP SoC Technical Reference Manual", UG585
(v1.7) February 11, 2014

[18] Ziade, Haissam, Rafic A. Ayoubi, and Raoul Velazco. "A survey on fault
injection techniques." International Arab Journal Information Technology
1.2 (2004): 171-186.

[19] Benso, A. and Prinetto, P., "Fault Injection Techniques and Tools for
Embedded Systems Reliability Evaluation" (1st ed.). Springer Publishing
Company, Incorporated. 2010.

[20] Jun Xu; Ping Xu, "The Research of Memory Fault Simulation and Fault
Injection Method for BIT Software Test," Instrumentation, Measurement,
Computer, Communication and Control (IMCCC), 2012 Second
International Conference on , vol., no., pp.718,722, 8-10 Dec. 2012

[21] Benso, A.; Prinetto, P.; Rebaudengo, M.; Reorda, M.S., "A fault injection
environment for microprocessor-based boards," Test Conference, 1998.
Proceedings., International , vol., no., pp.768,773, 18-23 Oct 1998

[22] Sonza Reorda, M.; Sterpone, L.; Violante, M.; Portela-Garcia, M.; Lopez-
Ongil, C.; Entrena, L., "Fault Injection-based Reliability Evaluation of

Fig. 8. Xilinx Block-RAM with ECC and error injection [33]

SoPCs," Test Symposium, 2006. ETS '06. Eleventh IEEE European , vol.,
no., pp.75,82, 21-24 May 2006

[23] Bernardi, P.; Sterpone, L.; Violante, M.; Portela-Garcia, M., "Hybrid
Fault Detection Technique: A Case Study on Virtex-II Pro's PowerPC
405," Nuclear Science, IEEE Transactions on , vol.53, no.6,
pp.3550,3557, December 2006

[24] Ruano, O.; Maestro, J.A.; Reviriego, P., "Performance analysis and
improvements for a simulation-based fault injection platform," Industrial
Electronics, 2008. ISIE 2008. IEEE International Symposium on , vol.,
no., pp.2299,2304, June 30 2008-July 2 2008

[25] Pournaghdali, F.; Rajabzadeh, A.; Ahmadi, M., "VHDLSFI: A
simulation-based multi-bit fault injection for dependability analysis,"
Computer and Knowledge Engineering (ICCKE), 2013 3th International
eConference on , vol., no., pp.354,360, October 31 2013-November 1
2013

[26] Kwang-Ting Cheng; Shi-Yu Huang; Wei-Jin Dai, "Fault emulation: A
new methodology for fault grading," Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on , vol.18, no.10,
pp.1487,1495, October 1999

[27] P. Civera, L. Macchiarulo, M. Rebaudengo, M. Sonza Reorda, and M.
Violante. 2002. An FPGA-Based Approach for Speeding-Up Fault
Injection Campaigns on Safety-Critical Circuits. J. Electron. Test. 18, 3
(June 2002), 261-271

[28] Altera, "User-Customizable ARM-Based SoCs for Next-Generation
Embedded Systems", WP-01167-1.1, June 2013

[29] Xilinx, "Zynq-7000 All Programmable SoC Overview", DS190 (v1.6),
December 2013

[30] Microsemi Corp, "SmartFusion2 System-on-Chip FPGAs Product Brief",
Rev.14, December 2013

[31] Vanhauwaert, P.; Leveugle, R.; Roche, P., "A Flexible SoPC-based Fault
Injection Environment," Design and Diagnostics of Electronic Circuits
and systems, 2006 IEEE , vol., no., pp.190,195, 18-21 April 2006

[32] Miklo, M.; Elks, C.R.; Williams, R.D., "Design of a high performance
FPGA based fault injector for real-time safety-critical systems,"
Application-Specific Systems, Architectures and Processors (ASAP),
2011 IEEE International Conference on , vol., no., pp.243,246, 11-14
Sept. 2011

[33] Xilinx, "7 Series FPGAs Memory Resources", UG473 (v1.10) January
30, 2014

[34] Avnet, "ZedBoard (Zynq™ Evaluation and Development) Hardware
User’s Guide", Version 2.2, January 2014

[35] Xilinx, "Vivado Design Suite User Guide", UG973 (v2013.4), January
2014

[36] Zedboard - SDK HelloWorld Example, avilable at
http://zedboard.org/content/zedboard-sdk-helloworld-example

