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Abstract

Turbulence is a condition that can occur in a broad range of fluids, which may
belong to very different physical environments, each with their own unique
characteristics. Mathematical and analytical studies are generally limited by
the high degree of complexity of the system, therefore, numerical/laboratory
experiments and in-situ measurements play a fundamental role in the study of
these phenomena.

An analysis on two different anisotropic fluctuating fluid fields has been
performed: both flows, while belonging to different physical contexts, are char-
acterized by the presence of multiscale inhomogeneous fluctuations, to which
is associated a strong anisotropy, and by the presence of effects related to
stratification / mixing.

The first is one of the most simple anisotropic turbulent flow, namely the
shearless turbulent mixing, and it has been studied by means of direct numer-
ical simulation of Navier-Stokes equations, with the aim of characterize the
passive scalar transport and the effects related to the presence of a thermal
stratification. The second is a more complex fluid field, that is the solar wind,
which belong to magnetohydrodynamic flows; the analysis on solar wind have
been performed taking advantage of in-situ measurement of the Voyager 2
spacecraft, trying to provide a statistical and spectral characterization despite
the presence of gaps in the recorded time-series.
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Chapter 1

Introduction

The context of turbulent, inhomogeneous flows cover a broad range of fields,
also in everyday life – let’s think, for instance, to the wake of a ship, the
wind blowing, a fast flowing river, etc. Nevertheless, turbulence is one of the
greatest unsolved mystery of modern physics – although it is not so famous
outside the scientific community. In fact, a model that fully describe turbulence
does not exist: the equation are strongly non-linear, strictly related to the
initial conditions, and predict the evolution of the flow is very difficult. Also
Kolmogorov postulated, where it says that the dissipation scale are locally
isotropic, it’s not true: both inertial and dissipative scales are anisotropic,
reflecting the large-scale structure (Frisch, 1995; Warhaft, 2000). As evidence
of the difficulties in obtaining an universal solution, there is a quote attributed
to Heisenberg (Gleick, 1987) that reads: "There is a story about Heisenberg
on his deathbed, declaring that he will have two questions for God: Why
relativity? and Why turbulence? Heisenberg says, – I really think He may have
an answer only to the first question.". Nowadays there are many theoretical
studies to simple flows , first of all the homogeneous isotropic turbulence.

In this thesis two different kind of turbulent, inhomogeneous flows are stud-
ied. Both flows, while belonging to different physical contexts, are character-
ized by the presence of multiscale inhomogeneous fluctuations, to which is
associated a strong anisotropy (particularly in large scales, but not only), and
by the presence of effects related to stratification / mixing. In the first part
we deeply examine the phenomenology of one of most simpler inhomogeneous
flows, that is a shear-less turbulent mixing, focusing in particular on the trans-
port of passive scalars, and on the effects of temperature stratification, taking
advantage of direct numerical simulations. Instead, in the second part, we
analyze a real, more complex flow, that is the solar wind, trying to identify
(and, if present, characterize) the turbulent behavior in the outer heliosphere
– starting from few astronomical units (around 5 AU), with the objective of
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1 – Introduction

expanding the study to the edge of the heliosphere (distance of the order of
100 AU).

For what concern our first study, it is important to observe that the trans-
port of passive scalars (that can be temperature, concentration of a pollutant,
fluorescence or another quantity which is transported by the flow, without af-
fecting the flow field itself) is not as simple as it may seem at first sight. Even
if the transport equation for the scalar field is linear, the scalar transport is
not a simply footnote of the turbulence, as many experiment performed in past
years have shown: a peculiar aspect is that intermittency in the scalar fluctu-
ations is observed even in presence of a Gaussian velocity field, and the small
scales show an anysotropic behavior even for large Reynolds number. Both
these apparently distinctly effects – local anisotropy at the small scales, and
the internal intermittency – are not provided by the Kolmogorov-Obuchov-
Corrsin (KOC) phenomenology (Sreenivasan, 1996). Many semi-empirical law
have been expressed, but none can explain well the turbulence phenomenology.
This is why in-situ measurement and laboratory/computational experiments
are still important to analyze turbulence.

The reason that prompts to explain (and to predict) how a scalar is trans-
ported is that it is a phenomenon very present in real disciplines, for exam-
ple meteorology, combustion engineering, biology, experimental aerodynamics,
cosmology. Of course phenomenon to be studied may involve the presence of
other effects (as buoyancy for atmospheric phenomena) that may adds non-
linearities to the problem. In such case there is a feedback of the scalar concen-
tration on the flow field and, therefore, there is a two-way coupling between the
scalar and momentum equation, with relevant effects on the time evolution of
the system (Davies Wykes & Dalziel, 2014). Mixing across stratified interfaces
is a frequent phenomenon in geophysical and engineering flows. Some common
geophysical examples are the deepening of the upper-ocean mixed layer into
the stably stratified pycnocline owing to turbulence induced by surface wind or
cooling, the thickening of the sediment-suspension layer in the oceanic benthic
boundary layer, and the growth of the planetary boundary layer (Fernando,
1991).

The solar wind fills the heliosphere, from the Sun to the termination shock
with a supersonic flow of magnetized plasma. This flow is time dependent
on all scales and expands with distance. The solar wind is characterized by a
broad range of phenomena, in particular sharp changes in the flow and extreme
conditions can often be met due to the crossing of the heliospheric current
sheet, the presence of shocks and interaction regions between slow and fast
wind streams and zones of strong density variations. Flow fluctuations are not
just convected outward but show active energy cascades among the different

2



1 – Introduction

scales. The solar wind turbulence phenomenology has been comprehensively
reviewed by Tu & Marsch (1995) and Bruno & Carbone (2013). Most studies
of solar wind turbulence use data from near-Earth, measured by spacecraft
in the ecliptic near 1 AU (Tu & Marsch, 1995). In order to understand the
evolution of the solar wind and its properties, it is necessary to analyze data
at large radial distances. However, data gaps in the measured time series
typically increase with the distance from the sun and make the spectral analysis
challenging: at 5 AU 27 % of the data are missing, while in the heliosheath
almost 97 % of the high resolution data are absent (70 % considering hourly
averaged data).

This thesis is divided into two main sections. In the first part we will
consider a shear-less turbulent mixing obtained coupling two homogeneous
turbulence, focusing on the passive scalar transport and on the effects related
to the presence of buoyancy forces – stratified flows. In particular, we introduce
the passive scalar problem in chapter 2 and the stratified turbulence in chapter
3. An overview on equation used and our Navier-Stokes numerical code is given
in chapter 4.

The second part of this thesis concern the solar wind study performed
using the Voyager spacecraft data, and on the problem related to the analysis
process due to the presence of gaps in the dataset. Chapter 5 focus on the
characterization of the flow at 5 AU, methods to perform spectral analysis
on gapped dataset, andresults for low gapped data (at distance of the around
5 AU from the sun); some preliminary results on heliosheath data analysis
(at distance of the order of 100 AU) are presented in section 5.5. General
conclusion are reported in chapter 6.

3
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Shearless Turbulent Mixing



Chapter 2

Passive Scalar Transport

As defined in the introduction, a passive scalar is a quantity transported by a
fluid flow, without having any influence on its motion. As said, the transport
of a passive substance within a turbulent field is an important process in many
natural and engineering contexts (i.e. chemical mixing, combustion, and pol-
lutant dispersal in oceanography and atmospheric science). As a consequence,
it is important to understand and predict the mixing and dispersion rates of
passive scalars in order to evaluate, for example, the efficiency of mixing and
combustion, or environmental pollution. To understand the high number of
involved phenomena, it can be observed that also the propagation of light
and radio waves in the atmosphere is influenced by the distribution of small
scale temperature gradients and water vapour concentration, which, in a first
simplification, almost behave like passively advected substances.

The concentration of a passive substance exhibits a complex behavior,
showing some phenomenological parallels with the advecting turbulent ve-
locity field, but the statistical properties of passive scalar concentration are
only partly influenced by the Kolmogorov cascade phenomenology. In part,
in fact, these properties are decoupled from those of the underlying velocity
field. The phenomenological picture of scalar transport is thus undergoing a
reinterpretation in last years as empirical evidence shows that local isotropy,
both at the inertial and dissipation scales, is violated, see the recent reviews by
Sreenivasan & Antonia (1997), Shraiman & Siggia (2000) and Warhaft (2000).

The classical view due to Taylor-Kolmogorov of small-scale velocity and
scalar fields in fully developed homogeneous turbulence is based on the idea
that small scales are not directly influenced by large-scale and therefore must
be locally isotropic. This view does not always agree with measurements of
higher moments in turbulent flows, in particular in presence of anisotropic or
intermittent large-scale motions or anisotropic forcing, as described by Frisch
(1995), Hunt et al. (1988), and Shraiman & Siggia (2000). In the case of an
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2 – Passive Scalar Transport

imposed mean scalar gradient, experimental measurements and numerical sim-
ulations show that scalar gradients aligned with the imposed mean gradient
are on average larger than those perpendicular to the mean gradient (Pumir,
1994; Mydlarski & Warhaft, 1998; Warhaft, 2000). Measurements do not in-
dicate that the small scales tend to become isotropic as the Reynolds number
increases. Furthermore, some of the anomalous statistical behavior of passive
scalar turbulence, such as scaling properties and appearence of coherent struc-
ture, occur even for a scalar transported by a simple random Gaussian velocity
field (Kraichnan, 1974, 1994; Holzer & Siggia, 1994).

Moreover, dispersion usually occurs in time dependent inhomogeneous flows,
which are hard to describe with analytical models or, in many cases, even with
numerical simulations. A simple inhomogeneous time dependent situation that
can be numerically analysed is a shear-free mixing layer. The mixing, for this
case, is an important test field for the non-trivial statistical aspects of the
scalar fluctuations which studies (Shraiman & Siggia, 2000; Donzis & Yeung,
2010; Danaila et al., 2012) show to originate in the mixing process itself, rather
than being inherited from the complexity of the turbulent velocity field. In
connection with that, in this chapter we describe the study we have carried
out on the turbulent transport of a passive scalar across an interface, which is
represented by a thin layer with a large mean scalar gradient, which separates
two regions with uniform concentration, observing the evolution of an initial
value problem system, obtained by the imposition of the initial condition. The
interface matches two homogeneous isotropic turbulent fields (HIT) with dif-
ferent levels of kinetic energy: the global velocity field is then composed by
an high kinetic energy HIT which can convectively diffuse into a lower energy
one, producing a shear-less mixing in the interacting region. This mixing re-
gion is characterized by an highly intermittent thin layer - where the energy
flux is maximum - that propagates into the low energy region, see Tordella
& Iovieno (2006); Tordella et al. (2008); Tordella & Iovieno (2011, 2012). It
should be noticed that this field features a compression of the fluid filaments
normal to the interface, that is signature of the small scale anisotropy Tordella
& Iovieno (2011). This local compression is also a feature associated with the
ramp and cliff structure of the scalar field observed in the case of an imposed
mean scalar gradient in anisotropic turbulent like flow field (Holzer & Siggia,
1994; Warhaft, 2000; Gotoh et al., 2011). The study is carried out by means
of the direct numerical simulation of the Navier-Sokes and advective-diffusive
equations. The presence of the interaction zone offers the way to carry out
numerical measurements of the long-term temporal turbulent diffusivity in an
inhomogeneous context.
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2 – Passive Scalar Transport

The results shown in this chapter have been presented in the IX EFM Con-
ference (Iovieno et al., 2012, Rome) and XXI AIMETA Conference (Di Savino
et al., 2013, Turin) and published on the Journal of Turbulence (Iovieno et al.,
2014).

The initial condition construction and computational method are described
in section 2.1. In section 2.2, we document the passive scalar turbulent trans-
port in two and three dimensions by means of one-point Eulerian statistics,
which describe the first four centered moments of the passive scalar concen-
tration In three dimension, the highest Taylor microscale Reynolds number is
250. For what concern two dimensional flow, the equivalent Reλ is also equal
to 250. In section 2.3 we show that the doubled intermittency layer can be
generated by simple transverse wave perturbations of the initial interface sep-
arating the velocity and passive scalar fields. Conclusion remarks about this
chapter are in section 4.

2.1 Method
The Navier-Stokes equations for an incompressible fluid have been solved in
a parallelepiped domain together with the advection-diffusion equation for a
passive scalar,

∂θ

∂t
+ uj

∂θ

∂xj

= κ∇2θ (2.1)

where θ is the passive scalar concentration, uj is the velocity field and κ is the
diffusivity of the passive scalar. Figure 2.1 shows a schematic diagram of the
flow configuration and the coordinate system used. For the initial condition,
two isotropic fields are separated by a thin layer which is as thick as the
correlation length ℓ. From a numerical point of view, the flow is assumed
to be contained in a parallelepiped (or a rectangle in two dimensions) and
periodic boundary conditions are applied to all the spatial directions. The
coordinate system is chosen with the x axis along the direction of the kinetic
energy gradient, axis y1 and y2 along the homogeneous directions. The initial
condition is obtained by matching two homogeneous and isotropic fields with
the same integral scale but each with different turbulent kinetic energy as in
Tordella & Iovieno (2006); Tordella et al. (2008); Iovieno et al. (2014); Gallana
et al. (2014a). In practice, the initial condition is generated as

ui = u
(1)
i p(x) 1

2 + u
(2)
i (1 − p(x)) 1

2 ,

where u
(1)
i and u

(2)
i are two homogeneous and isotropic velocity fields with

turbulent kinetic energies equal to E1 and E2, respectively. The weighting
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Energy flow

scalar
interface

x
y1
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mixing layer

L/2

high energy
turbulence

low energy
turbulenceθ=0

θ=1

intermittent
scalar fluctuations

intermittent
scalar fluctuations

intermittent
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Figure 2.1. System configuration with coordinate system. Since the bound-
ary conditions are periodic periodic, the computational domain includes two
mixing layers along the x direction, which is the direction where the in-
homogeneity takes places. The dashed lines indicate the central part of the
domain where results are presented. The other two directions (in this chapter
y1 and y2) are homogeneous. L is the domain size in x direction. As a refer-
ence dimensional field, we considered the following set of data: domain size
L = 4,1 m, kinematic viscosity 1.5 × 10−5 m2/s, integral scale ℓ = 1.0 × 10−1

m and turbulent kinetic energy E1 = 5.0 × 10−4 J/kg (Reλ = 45), integral
scale ℓ = 1.18 × 10−1 m and turbulent kinetic energy E1 = 4.8 × 10−2 J/kg
(Reλ = 150),integral scale ℓ = 1.34 × 10−1 m and turbulent kinetic energy
E1 = 1.3 × 10−1 J/kg (Reλ = 250); energy ratio E1/E2 = 6.7 for all Renolds
numbers. The initial conditions for the velocity are generated by a linear
matching of two homogeneous and isotropic fields over a thickness δ, see
equation (2.2), while the initial mean scalar distribution is a discontinuity
smoothed enough to avoid the Gibbs phenomenon, as in equation (2.3).

function p(x), defined as

p(x) = 1
2


1 + tanh ax

L
tanh ax− L/2

L
tanh ax− L

L


, (2.2)

has been chosen to allow a smooth transition between the two regions (in
equation 2.2 L is the domain size in the x direction and a is a constant, which
is chosen in order to have an initial transition layer that is no larger than the
integral scale, a = 55). The resulting field is then made divergence-free by

8



2 – Passive Scalar Transport

a standard projection onto a solenoidal space. These operations ensure the
continuity of the flow across the whole domain.

In this study, we consider the interaction of two flows with the same integral
scale and different turbulent kinetic energy, so we choose u

(2)
i = u

(1)
i /E1/2,

where E = E1/E2 is the imposed initial kinetic energy ratio.
A description of how the presence of different integral scales can influence

the turbulent kinetic energy diffusion can be found in Tordella & Iovieno (2006,
2012).

In order to analyse the diffusion of the passive scalar interface across the
turbulent kinetic energy gradient, the passive scalar is introduced into the low
kinetic energy region of the flow at t = 0. To avoid the Gibbs phenomenon,
the discontinuity is replaced by a sufficiently smooth transition. The initial
condition for the passive scalar θ is thus defined via the same matching function
as

θ(x, yi) = 1
2


1 − tanh 2ax

L
tanh 2ax− L/2

L
tanh 2ax− L

L


, (2.3)

By choosing a = 55 in equation (2.3), the passive scalar interface is smoothed
on a length which is about half the initial integral scale. No passive scalar
fluctuation is introduced: the passive scalar concentration is initially uniform
in the two isotropic regions, θ = 0 in the high energy region and θ = 1 in the
low energy region. Passive scalar variance will be generated by the underlying
turbulent flow, see figure 2.2.

The mass, momentum and and the passive scalar transport equation are
solved by using a dealiased pseudospectral Fourier-Galerkin spatial discretiza-
tion coupled with a fourth order Runge-Kutta explicit time integration, as
described in chapter 4. The size of the dimensionless computational domain
is 4π × (2π)2 in the three-dimensional simulations. The domain used in the
two-dimensional simulation has the same aspect ratio: it is 4π × 2π. For fur-
ther details on the numerical technique and the initial conditions generation,
see Iovieno et al. (2001); Tordella & Iovieno (2006); Tordella et al. (2012).

We have carried out a numerical experiments with an imposed initial tur-
bulent kinetic energy ratio of 6.7 in both two and three dimensions. In the
three-dimensional simulations, we have performed two experiments in which
the higher energy turbulent field u(1)

i has an initial Taylor microscale Reynolds
number equal to 45, 150 and 250.

The domain is discretized with 256 × 1282 grid points in the simulation
at Reλ = 45, with 1200 × 6002 grid points in the simulation at Reλ = 150
and with 2048 × 10242 in the simulation at Reλ = 250. The two dimensional
simulations use a 4096×2048 grid for an initial integral scale Reynolds number
equal to about 3000.

9



2 – Passive Scalar Transport

In this forst numerical investigation of the passive scalar transport in a
shearless energy mixing, the Schmidt number Sc = κ/ν is set equal to one
in all the simulations. Schmidt numbers of order one are typical of many
transport phenomena in air, from small temperature fluctuations to water
vapour transport, Yeung et al. (2004).

About 20 initial eddy turnover times have been simulated in two dimen-
sions and ten initial eddy turnover times in three dimensions. We have esti-
mated that, due to the mixing layer growth, the two separate homogeneous
and isotropic regions will be destroyed by their interaction after about 30-35
initial eddy turnover times. Directions y1 and y2 in this flow configuration
remain statistically homogeneous during the decay, so that all the statistics
can be computed as plane averages in these directions. Moreover, in two di-
mensions we have enlarge our statistical sample by ensemble averaging also
on fifty repetitions of the simulation with different but statistically equivalent
initial conditions.

10
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Figure 2.2. Visualization of the scalar field in a plane within the central
part of the computational domain. The high turbulent energy velocity field
is on the left of each image. The three different instants correspond, from left
to right, to t/τ = 1,5,10, respectively. τ is the initial eddy turnover time of
the high energy region. The three-dimensional simulation has an initial Rλ

equal to 150 and 250 in the high energy isotropic region and 60, 100 in the
low energy region. The initial value of the energy ratio of the two interacting
isotropic turbulences is 6.7. The insets show the concentration along few lines
in the direction parallel to the mean gradient at t/τ = 1.
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(a) Jayesh & Warhaft laboratory ex-
periment

(b) Present numerical experiment

Figure 2.3. Comparison between a laboratory visualization by Jayesh
& Warhaft (from Jayesh & Warhaft (1994), figure 8(a)) and present sim-
ulation: (a) Smoke-wire (streaklines) visualization of the shearless mixing
layer without thermal stratification, wind tunnel experiment, side view at
a distance from the grid equivalent to our time evolution at t/τ ≈ 9. The
flow is from top to bottom and Reλ = 130 Jayesh & Warhaft (1994). The
energy ratio can be estimated as of order 102 because the turbulence level in
the part of the flow out of the grid (on the right in this picture) has a ratio
velocity rms/mean velocity less than 0.25%. It should be noted that this
visualization is not exactly the equivalent of the one in panel (b). In fact,
the equivalent view would have been a tunnel cross section at a constant x.
(b) Pseudocolor of the passive scalar concentration along the mixing layer
in a central portion of the domain at t/τ = 10, initial Reλ = 150, the initial
energy ratio is equal to 6.7.
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2 – Passive Scalar Transport

3D Mixing 2D Mixing
Reλ = 45 Reλ = 150 Reλ = 250 Reλ ≈ 250

Grid 1282 × 256 6002 × 1200 10242 × 2048 2048 × 4096
t/τ Reλ ∇θ [m−1] Reλ ∇θ [m−1] Reλ ∇θ [m−1] Reℓ ∇θ [m−1]
0 45 7.51 150 7.65 250 8.49 3076 13.50
1 40 3.11 136 3.12 231 2.85 4762 4.44
5 34 1.20 120 1.32 199 1.25 10200 1.21
10 32 0.80 110 0.92 185 0.89 16297 0.71

Table 2.1. Passive scalar gradient and instantaneous Reynolds number
for all the simulations: Reλ = u′λ/ν, Reℓ = u′ℓ/ν, where λ is the Taylor
microscale and ℓ the integral scale.

2.2 Passive scalar transport across the inter-
face

The initial conditions for the velocity field produce a kinetic energy gradient
in the direction of inhomogeneity (x) as already shown in many experiments
(e.g. Veeravalli & Warhaft (1989); Tordella & Iovieno (2006, 2011)). Outside
this inhomogeneous region, the kinetic energy shows a power law decay, with
exponents approximately equal to -1.2, for both Reλ = 150 and Reλ = 250 in
three dimensions, while no significant energy decay is observed in two dimen-
sions due to the inverse cascade. In both cases, the initially imposed energy
ratio between the two homogeneous regions is almost preserved during the
time evolution of the flow.

In all flow configurations, the velocity mixing layer was observed to be
highly intermittent and the velocity fluctuations in the x direction have large
skewness and kurtosis, see Veeravalli & Warhaft (1989); Tordella & Iovieno
(2006); Tordella et al. (2008). Across the mixing layer the second, third and
fourth velocity moments collapse using a single lengthscale; the mixing width
δE, conventionally defined as the distance between the points with normalized
energy (E(x, t) −E2(t))/(E1(t) −E2(t)) equal to 0.75 and 0.25. In this paper,
we focus on the passive scalar dispersion through the shearless mixing layer.
For the velocity statistics refer to Veeravalli & Warhaft (1989); Tordella &
Iovieno (2006); Tordella et al. (2008).

As it has been already observed, one-point statistics of the velocity fluc-
tuations along the inhomogeneous direction indicate the presence of a highly
intermittent layer which is shifted with respect to the centre of the mixing
region toward the lower energy flow Veeravalli & Warhaft (1989); Tordella &
Iovieno (2006); Tordella et al. (2008). This is marked by a single large peak
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x

y1

y2

0.01

0.04

0.02

0
-3 -2 -1 0 1 2 3

u
'µ

'
µ

0

0.2

0.4

0.6

0.8

1

-3 -2 -1 0 1 2 3

0.03

x c)/¢µ(x

Figure 2.4. Visualization of the isosurfaces θ = 0.1 and θ = 0.5 of
the scalar field at t/τ = 4, where τ is the initial eddy turnover time of
the high energy turbulence) in a portion of the domain – one quarter of
each dimension is shown – in the three dimensional mixing at Reλ = 250.
The low energy turbulence is on the left of each image, the grey plane in
the background is the initial position of the interface.[External MEDIA: file
isosurface_passiveScalar.mp4 shows the temporal evolution of a scalar
concentration isosurface at θ = 0.75.]

of both the skewness and the kurtosis. The intensity of the intermittency and
the penetration of this layer are controlled by the kinetic energy gradient and,
when present, by the integral scale gradient. The Reynolds number has a mi-
nor effect on the large-scale velocity intermittency but has a major impact on
the level of small scale intermittency Tordella & Iovieno (2011).

The main results of this work is that, in contrast with the velocity transport
case, the scalar field is characterized by the presence of the two intermittent
fronts which are located at the sides of the interaction region between the
two isotropic fields. These fronts can be identified by the peaks of the spa-
tial distributions of the higher order moments of both the scalar field and its
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derivatives. These two layers delimit a high scalar variance region which is
generated by the the temporal smoothing of the initial steep scalar gradient,
which we identify as our initial thin interface.

Mean scalar diffusion and mixing growth
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Figure 2.5. Mean scalar profiles inside the mixing layer: (a) two dimensional
flow, (b) three dimensional flow. The initial energy ratio E1/E2 is equal to
6.7 in both cases. L is the domain size in the x direction and xc the centre of
the mixing layer. The dashed horizontal lines indicates θ = 0.25 and θ = 0.75.

A visualization of the time evolution of the passive scalar concentration
at three different instants is shown in figure 2.2. The passive scalar interface,
which initially separates the low energy region with passive scalar concentra-
tion θ = 1 (on the right of the figures) from the high energy region with passive
scalar concentration θ = 0, is spread by turbulent eddies and a passive scalar
mixing region with high variance is generated. Scalar concentration isosur-
faces are highly corrugated by the advecting velocity eddies as can be seen
in figure 2.4, which shows the two surfaces where the passive scalar concen-
tration is half of the maximum value (blue surface) and where the scalar is
quite absent and its concentration is only 10% of the maximum value (yellow
surface). These two surfaces are very similar, no difference in the corrugation
structures is visually evident. From the inspection of the visualization images
in figure 2.2, it should be noted that one cannot deduce the direction in which
the scalar is diffusion and mixing.This highlights a symmetry of the system
that is associated to the fact that by overturning the initial condition for the
scalar field, the concentration field becomes equal to the complement to 1 of
the field before the exchange. From these considerations, it can be noted that
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Figure 2.6. Interaction layer thickness, normalized with the initial integral
scale ℓ. The scalar layer thickness δθ is defined as the distance between
the points where θ is equal to 0.25 and 0.75. The energy layer thickness is
defined as the distance between the points where the normalized turbulent
kinetic energy (E − E2)/(E1 − E2) is equal to 0.25 and 0.75 as in Tordella
et al. (2008). The exponents of the power law fitting of the scalar thickness
growth are indicated. The accuracy of the exponents is about 10%. The
same mixing length growth can be observed in the absence of the kinetic
energy gradient (E1/E2 = 1). Experimental data are from the wind tunnel
experiments by Veeravalli & Warhaft (1989) and Veeravalli & Warhaft (1990)
with E1/E2 = 7. It should be noted that in this last work the authors propose
an exponent of 0.34 for the final stage of the scalar dispersion.

an inference about possible symmetric arrangements of statistical quantities
can be drawn.

In figure 2.2, the insets shows the concentration distribution along a direc-
tion normal to the interface (but aligned with the mean scalar gradient). In
the central part of the distributions, some resemblance can be seen with the
features called ramp-and-cliff, first noticed in the 1970’s by Gibson, Antonia,
Sreenivasan and others (see Warhaft (2000) for details). These features are
considered due to the presence of large scale straining motions with the di-
rection of compression approximatively aligned with the mean scalar gradient.
This situation is also met in the present shearless mixing.

The width of the mixing region can be measured by considering the mean
passive scalar distributions (figure 2.5). The passive scalar mixing layer thick-
ness δθ is defined, in analogy with the energy layer thickness δE, as the distance
between the points with means passive scalar θ equal to 0.75 and 0.25.

After an initial transient of about one eddy-turnover time, the time evolu-
tion of these interaction widths follow a trend similar to those observed for the
self-diffusion of the velocity field with the same dimensionality, and a stage of
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Figure 2.7. (a,c) Scalar variance in the simulations in two and three dimen-
sions. (b,d) Scalar flux u′θ′ in the simulations in two and three dimensions.
The arrows indicate the scalar and energy flow directions. The initial en-
ergy ratio is E1/E2 = 6.7 in all simulations; δθ is the passive scalar mixing
thickness which increases in time as shown in figure 2.6. According to our
estimate, for the three-dimensional, δθ ∼ t0.5 at Reλ = 250

evolution with a power law scaling of the scalar mixing thickness is reached
in both two and three dimensions. However, the time scaling of the growth of
the interaction width is superdiffusive in two dimensions (δθ ∼ t0.7), while it
is very slightly subdiffusive in three dimensions (δθ ∼ t0.46 at Reλ = 150 and
δθ ∼ t0.5 at Reλ = 250), see figure 2.6. Superdiffusive dispersion seems to be
characteristic of two dimensional flows as observed in Hansen et al. (1998). As
opposed to three-dimensional turbulence, in two dimensions vortices tend to
live much longer than their turnover time thus enhancing the transport.
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Figure 2.8. (a) Scalar flux and (b) third order mixed moment: com-
parison between the present simulation with an initial Reynolds number
Reλ = 150 and laboratory data by Jayesh & Warhaft (1994) at Reλ = 130
obtained in a shearless mixing in presence of a mild stable temperature
stratification (the direction of the gravitational acceleration is indicated
by the arrow). In the considered measurement stations x/M = 32 and the
Richardson number is equal to 0.77.

The same mixing growth can be observed in the absence of the kinetic
energy gradient (that is, E1/E2 = 1) and thus the mixing width does not seem
to be influenced by the presence of the energy gradient.

The three dimensional simulations show a fair agreement with the wind
tunnel experiments on the scalar diffusion from a line source in a shearless
mixing Veeravalli & Warhaft (1990), in particular considering the evolution,
after an initial transient, of the scalar and kinetic energy interaction layers
thickness normalized with the integral scale ℓ, see figure 2.6. The agreement
is better for higher Reλ values. An other similarity can be found in the asym-
metry of the flux, that decays rapidly in the low energy region as in Jayesh &
Warhaft (1994); Veeravalli & Warhaft (1990), see figure 2.7 (d - f)

2.2.1 Statistics

A mixed region with high passive scalar variance is immediately generated in
the centre of the interaction layer. In the three-dimensional flow, the passive
scalar variance reaches its maximum after less than one eddy turnover time
and, after that, it slowly decreases. In the following 10 eddy turnover times,
about 20% of the variance present at t/τ = 1 is lost. In two dimensions,
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Figure 2.9. (a,c) Passive scalar skewness distribution and (b,d) passive
scalar kurtosis distributions. All the simulations have an initial energy ratio
E1/E2 = 6.7. The vertical dashed lines indicate the position of the maximum
of intermittence at the end of the simulation. The arrows indicate the pas-
sive scalar and energy flow directions which are opposite in this simulations.
Leaving aside the sign, the distributions remain unchanged when the pas-
sive scalar mean gradient is concurrent with the energy gradient. Symbols in
parts (c) and (d) are from the thermal mixing in grid experiments by Ma &
Warhaft (1986) at Reλ = 32.7: ■ mandoline heater, x/M = 62.4, □ toaster
heater, x/M = 62.4, • toaster heater, x/M = 82.4.

the passive scalar flow is almost twice as large and the initial variance gen-
eration last longer: the maximum is attained later and is about 50% higher.
Notwithstanding the presence of the energy gradient, the mean passive scalar
and passive scalar variance profiles are almost symmetric, see figures 2.5 and
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Figure 2.10. (a,b) Skewness and (c,d) kurtosis distributions of the derivative
of the passive scalar fluctuation in the inhomogeneous direction x. All the
simulations have an initial energy ratio E1/E2 = 6.7. The vertical dashed
lines indicate the position of the maximum of intermittence at the end of the
simulation. The arrows indicate the passive scalar and energy flow directions
which are opposite in this simulations. Leaving aside the sign, the distribu-
tions remain unchanged when the passive scalar mean gradient is concurrent
with the energy gradient. The Taylor microscale of the homogeneous flow
comparison data in parts (c,d) is equal to 140 and 240 in the data by Donzis
& Yeung (2010) and to 46 in the data by Brethouwer et al. (2003).

2.7.
The presence of the turbulent energy gradient is instead felt on the distri-

bution of higher order moments as the passive scalar skewness and kurtosis
shown in figures 2.9 and in the scalar flux shown in figure 2.7.
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In the central region the values of S and K tend to the ones of a gaussian
distribution (S = 0, K = 3), while on the mixing edges they present two peaks.
This means that, in contrast with the velocity field in which there is only one
intermittent layer Tordella & Iovieno (2006); Tordella et al. (2008), the third
and fourth order moments show the presence of two intermittent fronts at
the border of the mixing region, see figure 2.9 and 2.10. It’s interisting to
observe that, through the normalization of the x coordinate with the mixing
layer thickness δθ, for different time and also for different Reλ such peaks
collapse in the same position (empirical indication of self-similarity). In fact,
this behavior can be observed also with very different Reλ. Data from Ma and
Warhaft Ma & Warhaft (1986) with low Reλ (≈ 30), without kinetic energy
gradient show the presence of those two intermittent front in the same position
of the normalized coordinate, see figure 2.9, panels (c - d).

Intermittent fronts (highly non-gaussian regions, with large values of S
and K) are associated to the presence of inhomogeneity in the scalar field, in
particular where the scalar gradient quickly changes and assumes high values.
This is related to the formation of an interface with crests and troughs shown
in both in figure 2, and in following figure 10, where the formation of this kind
of interface will be discussed in an extremely simplified case, see section 3.3
for details. The existence of a kinetic energy gradient is instead responsible of
the asymmetries in the distributions of S and K.

In the firsts eddy turnover times the intermittency at the edges of the
mixing layer is very intense, and then decreases as the system decays, with
the dissipation of kinetic energy and the thicketing of the mixing layer: the
inomogeneity intensity decrease, as the same occurs at the field that transports
the scalar. As a conseguenge not only the intermittency levels decrease, but
also the scalar flow tends to disapear, see figure 2.7 panels (b - d). In three
dimensions, because of the faster energy decay, the intermittency reduction
is evident, above all when the Reλ = 150. In this case, the peaks in the
distributions of skewness and kurtosis present the same levels in two and three
dimensions after about one eddy turnover time but, after ten eddy turnover
times, in two dimensions the peaks of skewness and kurtosis are twice as high.

In Ma & Warhaft (1986) asymmetries of S and K is due to the formation
of scalar fluctuations in the high concetration region that arise during the ex-
perimental formation of the scalar discontinuity. In present study the observed
asymmetries, that can be observed in the firsts eddy turnover times, is instead
correlated with the presence of a kinetic energy gradient. In fact, considering
the crests and troughs interface, the asymmetries are formed due to the differ-
ent mixing intensity in the edges of the layer: next to the crests (high energy)
the greater velocity fluctuations concur to enhance the scalar mixing, and the
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concentration is more homogeneous, viceversa next to the troughs (low energy
region) this process is slower, and intermittency survives longer. A second ef-
fect present in two dimension is the different depth of penetration: after about
5 initial eddy turnover times the depth of penetration is about 2δθ in the high
energy region and about δθ in the low energy region.
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Figure 2.11. Kurtosis of the scalar derivative as a function of Reλ. The blue
symbolds represent the maximum of the kurtosis in the intermittent fronts at
t/τ = 1, 5 and 10; the black symbols are data for homogeneous flows by Tong
& Warhaft (1994), Mydlarski & Warhaft (1998), Brethouwer et al. (2003),
Donzis & Yeung (2010) and Antonia et al. (1986).

Intermittency is not limited to large scale passive scalar fluctuations, but is
quickly spread to small scale fluctuations, as can be inferred from the skewness
and kurtosis of the passive scalar derivative in the inhomogeneous direction
x, which are shown in figure 2.10(a-b). Two peaks of large intermittency
can be seen in correspondence of the two intermittent fronts since t/τ = 1.
However, their time evolution is different from the one seen for large scale
passive scalar fluctuations: the peaks always decay in time, but now small scale
intermittency lasts longer in the three dimensional case. Because the inverse
cascade dramatically removes energy from the small scales, in two dimensions
the peak of the derivative skewness in the front facing the high energy region
has almost vanished after ten eddy turnover times while in the front facing the
low energy side it is about half the one present in three dimensions.

The transient scalar derivative moments levels obtained in the two fronts
are much higher than the ones observed in isotropic turbulence with a uniform
mean scalar gradient at similar Reynolds numbers. For example, Donzis and
Yeung Donzis & Yeung (2010) in their numerical simulations obtained a scalar
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Figure 2.12. Comparison between the skewness and kurtosis of the passive
scalar derivatives ∂θ/∂x and ∂θ/∂y1 in the directions parallel and normal to
the energy gradient in the three dimensional mixing at Reλ = 250. All present
simulations have an initial energy ratio E1/E2 = 6.7. The homogeneous flow
data by Donzis & Yeung (2010) have a Taylor microscale Reynolds number
equal to 240, the data by Brethouwer et al. (2003) have a Taylor microscale
Reynolds number equal to 46.

skewness equal to 1.39 at Reλ = 140 and 1.34 at Reλ = 240 with a normalized
mean scalar gradient equal to 1. In our experiment, where also the initial
mean scalar gradient across the interface was set equal to 1, between t = 1τ
and t = 5τ , we observe a skewness which is in the range 4 - 5.5 at Reλ = 250
and between 3 - 5.7 at Reλ = 150. An even greater departure can be observed
in the derivative kurtosis, whose extreme values can be twice the values in
homogeneous turbulence as shown in figure 2.11, where our data are compared
with the set of data with derivative parallel to the mean gradient which are
included in figure 3 of the review by Warhaft Warhaft (2000),as well as in
Brethouwer et al. (2003); Antonia et al. (1986); Donzis & Yeung (2010), see
also table 2.1.

In a laboratory experiment of a decaying grid turbulence with a uniform
scalar gradient at Reλ = 580, Warhaft Warhaft (2000) and Mydlarski and
Warhaft Mydlarski & Warhaft (1998) found a passive scalar derivative kurtosis
close to 20 in the presence of a mean passive scalar gradient equal to about
3.6 K/m (temperature field) after about one eddy turn over time.

The difference becomes more marked as the Reynolds number increases.
The intermittency of the two fronts is enhanced by a Reynolds number in-
crement in a way similar to the linear dependence of the intermittency of
temperature fluctuations as a function of the Reynolds number oberved in a
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Rayleigh-Bernard convection Emran & Schumacher (2008). This could be a
general property of scalar transport. Schumacher observed that the probability
density function of the magnitude of the passive scalar gradient increases with
the Reynolds number in numerical simulations at moderate Reynolds number
Schumacher & Sreenivasan (2005). A higher Reynolds number enables the
passive scalar to be more efficiently stirred on all scales leading to an increase
of scalar fluctuations and derivative moments.

Simulations in absence of a turbulent energy gradient (i.e., E1/E2 = 1),
not shown in the figures, do not show the asymmetry in the position of the
scalar intermittent fronts even if the thickness of the mixing layer follows the
same temporal growth.

The passive scalar derivative in the directions normal to the kinetic energy
and passive scalar gradients (directions parallel to the mixing) shows a slightly
reduced level of intermittency in the two fronts but a much reduced asymmetry
in its probability density function as its skewness is lower as shown in 2.12.
That is, the passive scalar derivative in the homogeneous direction normal
to the mixing process is much less affected by the energy and passive scalar
gradients. The Reynolds number and the energy gradient both influence the
passive scalar intermittency at small scales Warhaft (2000).
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Figure 2.13. Scalar advection by a wave perturbation: (a) initial scalar
concentration, (b) scalar concentration obtained at t/τ = 1 with the flow
field given by equation (2.4), (c) scalar concentration at t/τ = 1 with
u = u0 sin (ky − ωt) and v = u0 sin (kx− ωt) (k = 8, u0 = 1) k = 2,
Re = u0(2π/k)/ν = 1420, (d) one-dimensional sections showing the con-
centration cliffs, (e-f) skewness obtained from the simple wave model: (e)
time evolution for a shear wave with wavenumber k = 2 (Re = 5654), (f)
data at t/τ = 0.5 for different wavenumbers.
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2.3 Intermittency generated by linear wave per-
turbations of the interface

Is the generation of a double intermittency layer specific to a turbulent velocity
transport? To answer this question we have considered a simple two-dimesional
situation where the deformation of the interface, represented by the heaviside
function, is due by a single wave with given wave number and frequency. In
so doing, the effects of multiple interacting scales on the scalar transport and
interface modification will be disregarded. We considered simple velocity waves

ui = u0 sin(kxj − ωt). (2.4)
and verified that only velocity normal to the interface and oscillating in space
along a direction parallel to the interface produced an undulating interface.

With reference to the system configuration in figure 2.13, the perturbation
effective in undulating the initially planar scalar interface is u = u0 sin(ky−ωt).

At the beginning of the process, we assume that the molecular diffusion
is negligible in the direction parallel to the interface, that is ∂2ϑ/∂y2 can be
neglected with respect to ∂2ϑ/∂x2. It can then be shown that equation (2.1)
has the analytical solution

ϑ(x, y, t) = 1
2


1 + erf


x−

 t
0 u(y, t′)dt′√

2κt


(2.5)

where κ = Sc ν is the scalar diffusivity. In fig. 2.13, two visualizations of
the scalar concentration field from an initially flat interface can be seen. The
scalar fields are obtained from two numerical simulation, a first one (panel b)
where the velocity field is just u = u0 sin(ky − ωt) and a second one (panel c)
where a second wave v = v0 sin(kx− ωt) is added. This second wave becomes
effective in modifying the interface since the instant where the projection of
the interface profile along the x direction is no more negligible.

In absense of diffusion, the advection of an interface by a wave like the
one represented in fig. 2.13 panel (b) leads to the black/white configuration
where, at any given distance x from the initial position of the interface, the
fraction of space where ϑ = 1 (flow from right) is p(x) and the fraction of
space where ϑ = 0 (flow from left) is 1 − p(x). In this situation the mean
scalar concentration is ϑ = p and the scalar moments can be easily computed
as ϑ′n = p(1−p)[(1−p)n−1 − (−p)n−1]. The scalar variance is maximum in the
centre and the modulus of all normalized moments increases with the distance
from the centre. In presence of diffusion, the situation is as depicted in figure
2.13 for the simple shear wave represented in panel (b). Diffusion smooths out
the interface discontinuity and reduces large deviations from the mean value,
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thus limiting the maximum skewness and kurtosis. This effects is much more
visible at higher wavenumbers which have a lower effective Reynolds number.

One could expect that the cumulative effect of many basic eddy patterns
with different scales (wavenumbers) could lead to a fractal corrugation of the
surface with higher intermittency. As shown in Vucelja et al. (2012) for two-
dimensional turbulence, the distribution of the isoscalar contours length has
been found to be fractal at scales larger than the pumping but soon become
smooth at smaller scale. We think that even such a simple linear model may
provide a generic kinematic picture of the scalar interface and of the formation
of a double layer where high moments of the scalar oscillation peak. Holzer &
Siggia Holzer & Siggia (1994) simulated the mixing of a scalar with an imposed
mean gradient in an isotropic turbulent-like flow field and observed that the
scalar field has a ramp-cliff structure, i.e. regions of well-mixed fluid with a
nearly constant scalar concentration bounded by steep cliffs. The ramp-cliff
structures are positioned approximately perpendicular to the mean gradient
and the visualizations suggest that the cliffs are generated by large-scale strain-
ing motions with the direction of compression approximately aligned with the
mean scalar gradient. In panel (d) of figure 2.13, one can see that even in this
extremely simplified situation a shadow of ramp-cliff behaviour appears.

2.4 Passive scalar spectra across the mixing
layer

In this last section, we describe briefly the spectral behaviour of the two and
three-dimensional passive scalar trasient transport across the interface bewteen
the two isotropic turbulent fields. This is in comparison with the velocity field.
In three dimensiosn the velocity field undergoes an intense energy cascade.
However, in this study we consider turbulence mixings in temporal decay.
This circumstance is complex because the forward cascade in temporal decay
is concomitant with the small scale disappearance due to dissipation. In the
ten time scales we observe in this set of simulations, the turbulent energy
decays more than the 90% (dE/dt ∼ t−1.2 Burattini et al. (2006). The inertial
range is reduced in width, see fig. 2.14. In two dimension, the dynamics is
more complex as the inverse energy cascade is accompanied by the forward
enstrophy cascade. In 10 time scales, the total energy decay is still mild: 14%
for a global Reynolds number of about 3000 (2048 × 4096 resolution). We are
thus observing the early part of the transient decay.

The situation is the following: after a few eddy turnover times, in the cen-
tral part of the mixing layer, between the two intermittent fronts, the passive
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Figure 2.14. Compensated passive scalar one-dimensional spectra in the cen-
tre of the mixing layer in two (part a) and three dimensions (part c). The
black dashed lines reproduce, at one instant, the compensated one-dimen-
sional velocity spectrum in the same position. All spectra have been com-
puted by integrating over the homogeneous directions yi. All the simulations
have an initial energy ratio E1/E2 = 6.7

scalar fluctuations tend to a slow varying state. As shown in figure 2.7(a,c),
the variance in the centre of the mixing region decays very slowly even in the
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Figure 2.15. Compensated passive scalar one-dimensional spectra at a fixed
position (x − xc)/ℓ(0) = 1.5 (x = xc + 1.5ℓ(0)). During the transient, the
mixing reaches this position, so that the normalized positions (x − xc)/δθ

is about 1.5, 1.25, 0.5 and 0.25 for t/τ equal to 0,1,5,10 respectively in the
three dimensional mixing at Reλ = 250. ℓ(0) is the initial integral scale. All
simulations have an initial energy ratio E1/E2 = 6.7

three-dimensional flow, which has a fast kinetic energy decay of the underlying
flow (see Tordella et al. (2008)). In figure 2.14, compensated one-dimensional
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passive scalar spectra in the centre of the mixing layer are shown. They show
a full range of scales just after one eddy turnover time. The spectra in figure
2.14 have been compensated by their inertial range exponents. In the three
dimensions, the inertial range scaling k−5/3 has been used, Watanabe & Gotoh
(2007). The inertial range seems to be wider for the passive scalar fluctua-
tions than for the velocity fluctuations, a feature already observed Mydlarski
& Warhaft (1998); Lee et al. (2012). In two dimensions, the passive scalar ex-
ponent in the inertial range at the end of the transient is about −1.7, which is
roughly one half of the −3 exponent of the velocity field and is far from the k−1

inertial range scaling of homogeneous and statistically stationary flows (see,
e.g., Bos et al. (2009); Gotoh et al. (2000, 2011)). In three dimensions, the
difference between passive scalar and velocity exponents is very mild and both
tend to approach the homogeneous turbulence scaling. However, the passive
scalar spectrum seems to show a wider inertial range region, a feature which
has been observed also in homogeneous flows at moderate Reynolds numbers,
see Mydlarski & Warhaft (1998); Danaila & Antonia (2009).

We observe, that for the present three dimensional fields the inertial range
scaling exponent for the velocity field is lower than the one of the passive
scalar field as previously noted by Warhaft (2000); Danaila & Antonia (2009);
Zhou et al. (2002). In particular, in homogeneous isotropic turbulence at
Reλ = 250, Danaila & Antonia (2009) found inertial range exponents equal
to 1.58 and 1.62 for velocity and passive scalar fields, respectively. In the
present three dimensional numerical experiment, the centre of the mixing layer
is characterized by the emerging of an inertial range where the exponents can
be estimated as 1.5 (for the velocity field) and 1.62 (for the passive scalar field)
at Reλ = 250. Following Danaila & Antonia Danaila & Antonia (2009) and
Lee et al. Lee et al. (2012), we have tried to obtain a relation between the
spectral exponent of the scalar and velocity fields. With comparison with the
estimations by these authors, mθ = 5/6+mu/2, where m is the modulus of the
spectral exponents, we found out mθ = 0.57 + 0.67mu. The constant accuracy
is 0.57 ± 0.11 and 0.67 ± 0.07.

For three-dimensional flows we found good consistence in the Obukhov-
Corrsin constant Cθ Sreenivasan (1996), finding values around the expected
0.4, especially in the Reλ = 250 case in the center of the mixing layer, where
the scalar fluctuations are well developed. At the boundary of mixing re-
gion, the costant value is higher, about 0.5, due to the higher inhomogeneity
both in scalar than in kinetic energy fields. For the two-dimensional case we
found that the relative Obukhov-Corrsin normalization Bos et al. (2009); Go-
toh et al. (2000) is less suitable to compute Cθ: the exponent we found is
−1.8 ± 0.2, different from what expected (−1 for inertial-convective range,
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−1.66 for convective-diffusive range). This is due again from the inhomogene-
ity of the flow, that is more influential than the three-dimensional case.

As general observation, we may say that the spectra of the passive scalar
fluctuations seems to be have an asymptotic behaviour in the mixing region.
As the front move towards to the homogeneous regions, the passive scalar
spectra increases and its exponent tends to −5/3 (see figure 2.15). This -5/3
regime is anyway in basic agreement with studies on passive scalar transport in
homogeneous flows. For example, it has been found that such regime appears
even in homogeneous shear flows for wavenumbers higher than the crossover
shear wavenumber Celani et al. (2005).

The situation is different for the two dimensional field, because in this case
the spectral exponent inside the transient mixing changes little, mu = −3±0.2.
Reynolds effects here are not visible. For the scalar field, instead, the situation
is opposite, the exponent variation is large, from mθ = −2.7 at t/τ = 0.5 to
mθ = −1.7 at t/τ = 10. Once again, the passive scalar field differs substantially
from the transport carrier. We have here a situation partly similar to what
observed by Bos et al. (2009), see fig.4 therein. In that paper, where HIT
forced at small wavenumbers is considered (forward enstrophy cascade), the
scalar spectrum shows to be substantially smaller than the velocity one (-1
against -3). On this respect, we should point out that the inhomogeneity
and anisotropy effects may limit the decrease of scalar spectral exponent with
respect to the velocity exponent. Furthermore, a priori we do not know the
length of the transient. It is possible that we are still inside the early part
of the transient where the forward cascade has not had time to settle on the
asymptotic state. This aspect needs to be considered more in depth with
further dedicated experiments.

2.5 Conclusion remarks
In this chapter we have analyzed a set of numerical experiments on the trans-
port of a passive scalar through the interfacial layer separating two decaying
isotropic turbulent flows with different levels of kinetic energy, both for 2D and
3D turbulence. The evolution of the passive scalar field has been analyzed by
means of one-point statistics and spectra computations.

It has been shown that the diffusion length of the scalar, δθ, follows closely
the temporal evolution of the self-diffusion of the velocity field, δE. In two
dimensions the growth of the thickness is faster: δE ∼ δθ ∼ t0.68±0.05, while
in three dimensions δE ∼ δθ ∼ t0.48±0.05. At equal times in the transient,
the scalar flow can be about twice as large in two dimensions than in three
dimensions. Also the scalar variance in the center of the mixed layer is 50%
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higher in two dimensions.
A first relevant result obtained concerns the presence of two intermittent

fronts in the scalar field, which are located at the edges of the mixing region.
Such sublayers have initially very high level of intermittency, which gradually
decays in time. In all the considered cases, the fronts move away from the
initial position of the interface: the front on the high energy side of the mixing
penetrates deeper into it. This asymmetry is milder in the three-dimensional
case.

The intermittency is not limited to the large scales, but involves also the
small scale. In particular, in three dimension the decay of small scales intermit-
tency is slow, and the derivative kurtosis reach values sensibly higher respect
to the two-dimensional case. The large scale intermittency is less affected by
dimensionality issues, though the kurtosis is higher in three-dimensions.

To better understand the formation and the evolution of such double inter-
mittent layer, we analyzed the effects on the scalar field generates by a simple
wavy perturbations of the interface. The formation of the double layer is once
again observed and is promoted by undulations which are normal to the in-
terface and propagate along it. Since in this case the flow field is linear and
may contain only one spatial and one temporal scale, we may infer that this
behavior is a general dynamic characteristic of the chosen scalar field initial
condition, and it is not specific to the turbulent transport.

In the center of the shear-less mixing layer, in three dimensions, the passive
scalar and velocity spectra both show an inertial range with an exponent close
to −5/3. The passive scalar exponent is found to be always a bit larger then
the energy exponent, in agreement to previus laboratory experiments in grid
turbulence.

In two dimensions, the inertial range energy scaling is close to k−3, while
the passive scalar tends to k−1.7. At the end of the transient evolution in both
cases we observed (10 time scales), we found an exponent value which is closer
to the three dimensional k−5/3 forward cascade than to the two dimensional
k−1 Batchelor’s scaling In this regard, in our early/midterm transients, we
see two possible sceneries: the forward enstrophy cascade is still far from the
temporal asymptote, or the presence of inhomogeneity and anisotropy effects
can anyway limit the decrease of the passive scalar spectral exponent with
respect to the one of the energy.
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Chapter 3

Effects of Stable/Unstable
Stratification in a Shearless
Turbulent Mixing

In nature, the behavior of a fluid system is generally much more complex
than the incompressible Navier Stokes equations describe. A wide number of
phenomena may occur, some of them due to the turbulent field, some of them
altering the flow evolution. In a general case, this two thing are coupled: the
flow acts on the external phenomenon (i.e. varying concentrations, deforming
surfaces, etc.), and the external phenomenon has a force feedback on the flow
field.

This is what happens in stratified flows: in that case the external phe-
nomenon is represented by the density of fluid particles, which tends to a
certain equilibrium condition. Contrary to what one might imagine, the equi-
librium condition is not lighter fluid particle above / heavier particle fluid
below, but is to have constant density at every altitude, i.e. the system tends
to organize themselves into layers (strata) of constant density. The vertical
variation of the density determines is instead related to the stability condi-
tions: in particular, the stable condition states that the lighter particles have
to stand above (ans so density has to decrease with altitude).

The presence of a turbulent fluid motion might changes locally the density,
altering this equilibrium: as response, buoyancy forces rise, acting on the flow
in order to reach again the equilibrium.

These turbulent flows exist also in the simplest of everyday life: from the
simple case of water vapor which is generated by boiling water, to more com-
plex phenomena (the knowledge of which is important to the human life) such
as the dispersion of hot exhaust gas of an engine, or the weather. Gener-
ally speaking, stratified turbulence is one of the characteristic properties of
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atmospheric flows: the majority of processes in the atmosphere and in the
oceans/sees, such as transfer of water vapour and atmospheric dust, heat ex-
change, and the formation of clouds and precipitation, are closely tied to the
turbulent nature of motion in the atmosphere. Atmospheric turbulence ren-
ders an essential influence on the propagation of sound, light, and radio waves.
Finally, atmospheric turbulence influences flight conditions for aircraft. As
a consequence the knowledge of its characteristics is of great significance for
many practical purposes.

Geophysical fluid dynamics has recently become an important branch of
fluid dynamics due to increasing interest in the environment. The importance
of the study of atmospheric dynamics can hardly be overemphasized. We live
within the atmosphere and are almost helplessly affected by the weather and its
rather chaotic behavior. The motion of the atmosphere is intimately connected
with that of the ocean, with which it exchanges fluxes of momentum, heat and
moisture, and this makes the dynamics of the ocean as important as that of
the atmosphere. The study of ocean currents is also important in its own right
because of its relevance to navigation, fisheries, and pollution disposal.

Stratification in the atmosphere is usually stable above the boundary layer,
i.e. a fluid particle which is displaced in the vertical direction tends to return
to its initial position. In the local atmosphere dynamics the terrestrial rota-
tion becomes of secondary importance, and the stratification effects dominate
(Vallis, 2006; Gill, 1982). In the last decade there has been important advances
in understanding of turbulence in the presence of strong stratification. In the
context of homogeneous stratified turbulence, it is known (Lin & Pao, 1979;
Kimura & Herring, 1996) that initially isotropic turbulence in a stratified fluid
rapidly becomes anisotropic, with the formation of pancake-like structures in
its interior.

In a typical context, the layer is generated by a lighter flow placed above
an heavier one, as the one represented in figure 3.1, where it is shown a vi-
sualization of the results of a DNS simulations performed by Chung & Math-
eou (2012) in a HIT field. In that figure the density is represented trough
a color-plot (lighter colors correspond to denser fluid): in the top panel the
stratification is almost absent, and density behaves like a passive substance
exhibiting ramp-and-cliff structures. On contrary, the bottom panel shows
the behavior when the stratification effects are strong: the vertical motions
are progressively inhibited and eventually turbulence collapses, forming thin
layers ans generating the strata-structure.

As pointed out by Malinowski et al. (2013), data from most field cam-
paigns and large-eddy simulations are too poorly resolved to allow to infer the
details of the interfacial layer, even if they indicate that, in order to allow for

34



3 – Effects of Stable/Unstable Stratification

Figure 3.1. Direct numerical simulation of stratified turbulence
in shear mixing. Lighter colors correspond to denser fluid. Results
by Chung & Matheou (2012)

entrainment, a high level of turbulence must be present.
For this reason, in this work we study the local transport through a clear

air/cloud interface through DNS. As our focus is on the dynamics of the small-
est scales of the flow which influence the microphysics of warm clouds, we have
simulated an idealized configuration to understand, under controlled condi-
tions, some of the basic phenomena which occur at the cloud interface over
length scales of the order of few meters. In these conditions, we solve scales
from few meters down to few millimeters, that is, we resolve only the small
scale part of the inertial range and the dissipative range of the power spectrum
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in a small portion (6 m×6 m×12 m) of the atmosphere across simplified moist-
dry air interface. This allows us to investigate the dynamics of entrainment
which occurs in a thin layer at the cloud top, a scale smaller then the scales
explicitly resolved in large-eddy simulations of clouds (Moeng, 2000). We focus
on two basic aspects of an atmospheric mixing layer: the effect of the presence
of a stratification and of a turbulent kinetic energy gradient, without consider
other phenomena such as wind shear, evaporation and condensation processes,
and radiative cooling which are important in conditions of buoyancy reversal
(Mellado, 2010; Mellado et al., 2014). Therefore, our simulations have been
carried out by applying the Boussinesq approximation to the Navier-Stokes
momentum and energy equations together with an advective-diffusive passive
scalar transport equation described in chapter 4.

The results shown in this chapter have been presented in the 32nd UIT Heat
Transfer Conference (Gallana et al., 2014b, Pisa), in the 4th International TMB
Workshop (Gallana et al., 2014c, Trieste), in the 67th Annual Meeting of the
APS-DFD (Tordella et al., 2014, San Francisco), in the 15th ETC Conference
(Gallana et al., 2015b, Delft) and in the 68th Annual Meeting of the APS-
DFD (Gallana et al., 2015a, Boston), and published on the Journal of Physics
(Gallana et al., 2014a) and in submission on the Journal of Fluid Mechanics
(Gallana et al., 2016a).

The work is organized as following: we firstly introduce the Boussinesq
approximation in the Navier-Stokes equations in section 3.1, and we analyze
briefly the new parameters in section 3.2. The details of the physical problem
we have considered and of the governing equations are given in section 3.3,
providing useful information about chosen parameters and initial conditions.
Section 3.4 contains a selection of our main results about intermittency, energy
redistribution, transports, and entrainment. Conclusion remarks are in section
3.5.

3.1 The Boussinesq approximation
In order to compute the effect of a fluid stratification we can consider the
general Navier-Stokes equations with Archimede’s force,



∂ρ

∂t
+ ∇ · (ρu) = 0 continuity(3.1)

ρ
Du
Dt

= −∇p+ µ∇2u − ρg +

λ− 2

3µ


∇ (∇ · u) momentum(3.2)

ρ
dE

dt
= ∇ · (k∇θ) − p∇ · u + 1

2µ∥S∥2 +

λ− 2

3µ


∇ · u energy (3.3)
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where θ is the temperature, E the internal energy per unit mass, µ is the
dynamic viscosity coefficient, λ the bulk viscosity coefficient, and k the thermal
conductivity coefficient. The fluid is assumed as calorically perfect, so the
internal energy can be expressed in terms of temperature:

E = cvθ

where cv is the constant volume specific heat. In Boussinesq approximation we
consider that where the temperature varies, so do the density. In particular, the
density can assumed to be constant everywhere, except where it is multiplied
by the gravity acceleration g – so in the buoyancy term. For small variation
of temperature (≈ 10 K), temperature and density are linearly dependent:

ρ

ρ0
= 1 − α (θ − θ0) , (3.4)

where α ≈ 1/θ0 is the constant cubical expansion coefficient. Moreover, µ, k,
and cv can be considered as constants in most of the real fluids.

Under these condition, the continuity equation becomes the same as in
canonical incompressible flows:

∇ · u = 0.

In that way also the bulk terms can be neglected. Replacing the density with
the temperature, the momentum equation becomes

Du
Dt

= −∇

p

ρ0
+ gx3


+ ν∇2u − αg (θ0 − θ) .

The energy equation can be simplified with a dimensional analysis (Drazin
& Reid, 1981). We can estimate the order of magnitude of the rate of viscous
dissipation and the temperature total derivative considering L as the length
scale, V the velocity scale, and ∆θ the temperature scale. We have:

Q = 1
2µ


∂ui

∂xj

+ ∂uj

∂xi


≈ µV 2L−2

ρ
dcvθ

dt
≈ ρ0cv

Q

ρdcvθ
dt

≈ (ν/cv) · V/L∆θ.

For a typical gas, ν/cv ≊ 10−8, os the viscous dissipation rate can be ne-
glected except for very large values of V/L∆θ. The heating due to compression
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can be rewritten considering the continuity equation 3.1, replacing the density
with the temperature, and considering that for a perfect gas p = (cp − cv)ρθ :

−p∇ · u = αp
dθ

dt
= (cp − cv)ρdθ

dt
.

With these assumption, the energy equation becomes
dθ

dt
= k∇2θ

where κ = k/ρ0cp is the thermal diffusivity. The temperature can be decom-
posed into three different contribution:

θ = θ0 + θ̃ (x3) + θ′ (x, t) (3.5)

where

θ0 reference temperature
θ̃ = Gx3 background linear gradient
θ′ perturbation

We can substituting the temperature with this definition, and taking the linear
variation inside the pressure gradient term; therefore the momentum equation
becomes:

Du
Dt

= −∇p̃+ ν∇2u + αGx3g + αθ′g

where the hydrostatic pressure p̃ is defined as

p̃ = p

ρ0
+ gx3 + 1

2αgx3

while the energy equation

Dθ′

Dt
+ u3G = κ∇2θ′

We can now introduce the Brunt - Väisälä frequency for the mean gradient:

N 2 = −g

ρ

∂ρ

∂x3
= αg

dθ̃

dx3
= αgG. (3.6)

The final dimensional system is:

∇ · u = 0 (3.7)
Du
Dt

= −∇p̃+ ν∇2u + N 2

G
θ′ (3.8)

Dθ′

Dt
= κ∇2θ′ −Gu3 (3.9)
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For the adimensionalization, we can consider the following dimensionless
variable:

û = u/Uref velocity
x̂i = xi/Lref lenght
θ̂ = θ′/LrefG temperature
t̂ = t · Lref/Uref time

The dimensionless system is (we drop the hat for convenience):

∇ · u = 0 (3.10)
Du
Dt

= −∇p̃+ 1
Re∇2u + 1

Fr2 θ
′ (3.11)

Dθ′

Dt
= 1

RePr∇2θ′ − u3 (3.12)

where we have introduced the dimensionless parameter:

• Reynolds number Re= UrefLref
ν

• Froude number Fr= Uref
LrefN

• Prandtl number Pr= κ
ν

It is interesting to observe how the energy equation becomes formally equal to
the passive scalar advection/diffusion transport shown in the previous chapter.
The real difference in the Boussinesq equation is the presence of the buoyancy
term as external force inside the momentum equation, and the temperature θ
can be interpreted as an active scalar.

3.2 Brunt-Väisälä frequency and Froude num-
ber

We want now to understand the physical meaning of the Brunt-Väisälä fre-
quency and the Froude number.

The Brunt-Väisälä, introduced in the previous section, is defined, in terms
of density, as

N =

−
g

ρ0

dρ

dx3
(3.13)

where x3 represent the direction on which the buoyancy force acts – so the
vertical direction. The Brunt-Väisälä is a real positive number if the density
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decreases upward and an imaginary otherwise. For a basic stability study, we
can consider the effect of a little (positive or negative) vertical displacement
h of a fluid particle in a stationary flow, where the density varies only in the
vertical direction. As a consequence, the fluid particle has a density related to
its initial position ρ1 = ρ(x3), and it is moved to an altitude where the density
is ρ2 = ρ(x3 + h).

It is intuitive to deduce the effects of stratification on that fluid particle.
For instance, we consider an upward shift. If the density decrease upward, the
fluid particle will be heavier respect to the surrounding environment (i.e. ρ1 >
ρ2). The buoyancy forces push the particle downwards, through its original
position. When this altitude is reached, there are no more forces, but the
particle as still a downwards velocity, so the displacement becomes negative:
a buoyancy force reappears, this time pushing the particle upward. The result
is an harmonic motion around the original position. Instead, considering an
increase of density upwards, after the first displacement the particle is pushed
away respect to its stable position.

To formalize these consideration, we can consider that, in absence of mo-
tion, the momentum equation 3.8 can be simplified to an hydrostatic relation:

∂p

∂z
= −ρg

and the Lagrangian equation for the displaced fluid particle becomes

dw

dt
= d2h

dt2
= q

ρ0
(ρ2 − ρ1)

where w is the velocity of the fluid particle. As the displacement is small,
the density can varies linearly in the vertical direction, and so we can finally
obtain the equation for the particle motion

d2h

dt2
+ N 2h

The solution of these equation depends on the sign of N 2. In particular we
can have:

• A statistically stable fluid, N2 > 0: the density decrease and the tem-
perature increase with the altitude. The solution of the fluid particle
motion is given by h(t) = a · cos(N t) + b · sin(N t): a fluid particle oscil-
lates around its equilibrium position if it is vertically displaced, with a
frequency equal to N .
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• A statistically unstable fluid, N2 < 0, the density increase and the tem-
perature decrease with the altitude. The solution of the fluid particle
motion is given by h(t) ≊ a · expiN t: a fluid particle moves away indefi-
nitely from its initial position as soon as any perturbation deviate from
it, with a growth factor of iN .

In the complete system equations, the Froude number correlates the impor-
tance of the buoyancy terms with the kinetic forces. In particular, we consider
the square Froude number which appears in the dimensionless momentum
equation:

Fr2 = U

LN
.

The buoyancy forces becomes more and more important as |Fr2| → 0. The
importance of the buoyancy term depends on the temperature/density gradient
(high values implies high N ), but also in case of low kinetic energy respect to
the system dimension (low values of the ratio U/L).

Summing up, the more the Froude number tends to zero, the more the
stratification effects take importance: in particular, we can distinguish the
following case:

• |Fr2| ≫ 1 non stratified flow: buoyancy forces are negligible respect to
the other terms, and temperature behaves as a passive scalar, without
feedback on the velocity field

• Fr = O(1), stable stratified flow: buoyancy forces acts stabilizing the
motion, suppressing the velocity fluctuations which tend to move the
fluid particles from their equilibrium positions.

• Fr = O(1), unstable stratified flow: buoyancy forces acts enhancing the
velocity fluctuations which tend to move the fluid particles from their
equilibrium positions.

• Fr → 0±, purely stratified flow: the kinematic forces are negligible re-
spect to the buoyancy force, which drive the motion.

3.3 The stratified shearless mixing
Similarly to what done in the previous chapter, we consider the interface be-
tween two HIT (Homogeneous Isotropic Turbulence) in a 6 m × 6 m × 12 m
parallelepipedic domain, with different levels of kinetic energy and passive
scalar. We choose that kind of domain in order to simulate the lowest part of
the inertial range and the dissipative one, as shown in figure 3.2 in comparison
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energy spectra. Con-
textualization of present
study (black spectra,
small inertial and dissi-
pative range) respect to
spectra from in-situ at-
mospheric measurements
Biona et al. (2001); Katul
et al. (1998); Lothon
et al. (2009); Radkevich
et al. (2008) (colored
spectra, energy injection
and low wave-number
inertial scales).

with in situ measurement of the atmospheric energy spectra. As shown in
figure 3.3, the two HIT regions, which compose the system, interact through
a mixing layer, whose initial thickness has been set of the same order of the
integral scale of the turbulence background ℓ, here assumed equal to 3 · 10−2

m.
The kinetic energy of the two isotropic regions (external from the mixing)

have a different kinetic energy. The lower and more energetic region (that is
the reference region) has a kinetic energy equal to E1 = 0.06 m2/s2; the root
mean square of the velocity in this region is urms = 0.2m/s with an initial
Taylor microscale Reynolds number number equal to Relambda ≈ 250 (λ is
the Taylor scale). The kinetic energy ratio between the two region is equal to
6.7. This energy ratio is comparable to the ones measured in warm clouds (see,
e.g., Malinowski et al. (2013)) and, furthermore, it allows us to compare our
results (shown in previous chapter and (Tordella & Iovieno, 2011)) and with
experiments on shearless mixing (see Veeravalli & Warhaft (1989); Jayesh &
Warhaft (1994)) in absence of any stratification.

As previously shown, buoyancy is taken into account through a local per-
turbation θ′ in the profile of temperature distribution θ inside the troposphere.
The Prandtl number considered is Pr= 0.74 (standard atmosphere, altitude
of 1000 m s.l.). The initial conditions for the temperature perturbation is de-
scribed in figure 3.3 and in table 3.1. The ratio between inertial and buoyancy
forces is expressed by the Froude number Fr, which with these quantities can
be written as

Fr = urms

ℓN
N =


αθ0

dθ
dx3

(3.14)
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3 – Effects of Stable/Unstable Stratification

In order to characterize each simulation we consider the initial square of the
Froude number Fr2 based on the maximum gradient within the initial interface.
For stable cases, the initial Fr2 ranges from 1038.5 (negligible stratification) to
0.4 (strong stable stratification). For unstable cases (where the initial temper-
ature perturbation gradient is negative) we consider two cases with Fr2=-20.8
(mild unstable stratification) and -4.2 (strong unstable stratification). It is
important to observe that the physical value of the Froude number changes
as the system evolves: the turbulence naturally decays in time, and the tem-
perature gradient tends to decrease as the mixing interface thickens. The first
effect is dominant, as so Fr magnitude decrease in time, as shown in figure 3.4.

The water vapor is consider to be a passive scalar, neglecting effects related
to condensation/evaporation, inertial particle motion, and dropplet formation
– so the maximum concentration of the water vapour is much lower respect to
its saturation point. We take into account it through its concentration χ, which
is equal to 1 (maximum concentration) in the lower region, and to 0 in the
upper region (no vapour present). Water vapour transport is modeled using
an advective/diffusive equation, with a Schmidt number Sc=0.61 (standard
atmosphere, altitude of 1000 m s.l.).

∇zTic [Km−1] ∆T [K] Nic [s−1] Fr Fr2 Reb

1.3·10−2 4.0·10−3 2.13·10−2 45.57 1038.5 0.7
2.0·10−1 6.0·10−2 5.24·10−2 8.32 69.2 10.9
6.7·10−1 2.0·10−1 1.50·10−1 4.56 20.8 36.3
3.3 1.0 3.35·10−1 2.04 4.2 181.7
3.3·101 1.0·101 1.06 0.64 0.4 1817.2

-6.7·10−1 -2.0·10−1 / / -20.8 -36.3
-3.3 -1.0 / / -4.2 -181.7

Table 3.1. Initial stratification level parameters. Nci =

αg ∂θ

∂x3
is the char-

acteristic Brunt-Väisälä frequency of initial condition. The Froude number
Fr= u′

rms
Nicℓ and the Reynolds Buoyancy number Reb = εN 2

ν give a measure
of the order of magnitude of the buoyancy forces compared with the inertial
terms (ε is the initial energy dissipation rate, ν the kinematic viscosity).

The motion is driven by the continuity 3.7, momentum 3.8 and energy
balance equations 3.9 within the Boussinesq approximation, which holds for
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HIT
High energy

Stable

Unstable

HIT
Low energy

µ
x1x2

x3

x3

±

x3

Computational domain: 10242   2048 
Physical reference dimension: 6 m    6 m   12 m

Initial mixing layer thickness: 0.3 m

Figure 3.3. Scheme of the initial conditions. E1 is the mean initial turbulent
kinetic energy of the below the mixing (high energy region), E2 of the above
the mixing (low energy region). For the top cloud mixing here presented we
consider E1/E2 = 6.7. The stratification is represented, inside the mixing, as
a local temperature perturbation respect to the neutral profile; the pertur-
bation can be both stable or unstable. The passive scalar is initially present
only in the high energy region.

small temperature variations Drazin & Reid (1981)

∇ · u′ = 0 (3.15a)
∂u′

∂t
+ (u′ · ∇) u′ = −∇ p̃

ρ
+ ν∇2u′ + αgθ′ (3.15b)

∂θ′

∂t
+ u′ · ∇θ′ + u3G = κ∇2θ′ (3.15c)

∂χ

∂t
+ u′ · ∇χ = dχ∇2χ, (3.15d)

where, according to the definition in section 3.1, θ = θ0 + θ̃(x3) + θ′(x, t) is
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3 – Effects of Stable/Unstable Stratification

the temperature, composed by the reference constant temperature θ0, the static
component θ̃(x3) = Gx3, and the fluctuation θ′(x, t); p̃ = p+αgx3 (θ0 +Gx3/2)
is the total hydrodynamic pressure(p is the fluid-dynamic pressure, α the ther-
mal expansion coefficient, g the gravity acceleration); u′ is the velocity fluctu-
ation; and χ is the vapor concentration of the air - water vapor mixture. The
constant κ and dχ are respectively the thermal and water vapor diffusivity.

Similarly to the shearless mixing presented in chapter 2, the initial condi-
tions for the velocity field are obtained by a linear matching of two different
HIT fields u1 and u2, that are randomly generated, respecting physical condi-
tions imposing spectra, solenoidality, integral scale and mean kinetic energy),
see Tordella & Iovieno (2006). The initial energy profile along direction x3 is
obtained coupling the fields u1 and u2 by using equation (3.16a). For what
concenrns the scalars, the initial condition (constant along direction x1 and
x2) is given by equations 3.16b for temperature and 3.16c for water vapor con-
centration, in analogy with previous work (see Tordella et al. (2008); Iovieno
et al. (2014)). The equation for the initial conditions are:

u′(x, t = 0) = u1(x)p1(x3) − u2(x)(1 − p1(x3)) (3.16a)
θ(x, t = 0) = ∆θp2(x3) (3.16b)
χ(x, t = 0) = p1(x3), (3.16c)

where u1 and u2 are the two external HIT, ∆θ is the initial temperature step,
and the weight functions p1(x3) and p2(x3) are defined as:

p1(x) = 1
2


1 + tanh


a
x3

L3


+ tanh


a
x3 − L3/2

L3


+ tanh


a
x3 − L3

L3


(3.17a)

p2(x) = x3

L3
− 1

2


1 + tanh


a
x3 − L3/2

L3


. (3.17b)

The simulations were performed using our home produced computational
code that implements a pseudo-spectral Fourier-Galerkin spatial discretiza-
tion and an explicit low storage fourth order Runge-Kutta time integration
scheme. Evaluation of non-linear (advective) terms is performed through the
3/2 de-aliased method Iovieno et al. (2001). The grid has N ×N ×N3 points,
with N = 210 and N3 = 2N), for a total of 231 grid-points. Such grid al-
lows to capture all the turbulent scales from the greatest (integral scale ℓ) to
the smaller (Kolmogorov scale η). In order to make the simulations feasible
(breaking down limitations due to computation time and memory required),
the computational code uses a stencil parallelization to split the computational
grid among an huge amount of processors (according to the distributed mem-
ory paradigm), and communication are performed through the MPI libraries.
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The simulation were performed at the TGCC Curie supercomputer within the
PRACE project n◦ RA07732011 for a total of 3 million cpu-hours.

3.4 Results

 0.01

 0.1

 1

 10

 100

 0  2  4  6  8  10

t/τ

Fr
2

Fr2 = 69.2
Fr2 = 20.8
Fr2 = 4.2
Fr2 = 0.4

Figure 3.4. Time evolution of the instantaneous Froude number Fr2(t) for
the stably stratified simulations (the evolution for unstable cases is very closed
to this, except for the sign). The horizontal dotted line, Fr2=1, indicates
when the buoyancy forces becomes of the same order of the kinematic forces.
Relevant effect have been founded when Fr2(t) ≈ 2 ÷ 3. [External MEDIA:
file 2DVideo_stratificatoFr4.mp4 shows the btime evolution of scalar,
vertical velocity, and dissipationin a slice of the domain for the case Fr2=4.2.]

In this section we focus on the analysis of the simulated fields, comparing
the results in different case of both stable and unstable stratification: first (...)
we analyze the statistical behavior of velocity and scalar fields. The formation
of kinetic energy sublayers inside the mixing region is discussed (...), as well as
its effects on the transport/entrainment process (...). We finally analyze flow
structure, anisotropy and small-scale dynamics (...).

A qualitative representation of the fields are reported in figure 3.5, which
shows 3-dimensional visualization snapshots after 2, 4, and 6 initial eddies
turnover time for three different cases – neutral stratification (Fr2=69.2), sta-
ble stratification (Fr2=4.2) and unstable stratification (Fr2=-4.2). In the fig-
ure, the color is related to the passive scalar concentration, white where it is
maximum (χ = 1) and blue where it is absent (χ = 0). The isosurfaces repre-
sent the vortices inside th flow, which are identified using the Q-criterion: it
consider the local balance between shear strain rate and vorticity magnitude,
defining vortices as areas where the vorticity magnitude is greater than the
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(a) Fr2=4.2, t/τ = 2

(d) Fr2=69.2, t/τ = 2

(g) Fr2=-4.2, t/τ = 2

(b) Fr2=4.2, t/τ = 4

(e) Fr2=69.2, t/τ = 4

(h) Fr2=-4.2, t/τ = 4

(c) Fr2=4.2, t/τ = 6

(f ) Fr2=69.2, t/τ = 6

(i) Fr2=-4.2, t/τ = 6

Figure 3.5. Isosurfaces of the vortices edges computed using the Q-
criterion (see equation 3.18)for different stratification levels after 2, 4,
and 6 time-scales. Strong stable on top panels(Fr2=4.2, panels a–c),
mild stable in center panels (Fr2=69.2, panels d–f ), and strong unstable
on bottom panels(Fr2=-4.2, panels g–i). Isosurfaces are colored using
the passive scalar concentration, ranging from white (maximum scalar
concentration) to blue (no scalar).
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magnitude of rate-of-strain. [ S. Kida, H. Miura, 1998 Identification and Anal-
ysis of Vortical Structures Eur. J. Mech. B/Fluids, 471-488]. Such condition
is achieved where Q ≥ 0, with Q defined as

Q =

∥Ω∥2 − ∥S∥2


/

∥Ω∥2 + ∥S∥2


(3.18)

where, Ω = 0.5 (∂ui/∂xj − ∂uj/∂xi) and S = 0.5 (∂ui/∂xj + ∂uj/∂xi) are the
vorticity and strain tensors respectively.

3.4.1 Spatial statistical properties
The statistics are computed by averaging the variables in the planes (x1, x2)
normal to the mixing direction (with a sample of 210×210 data-points), focusing
on the variation along the vertical (non-homogeneous) direction x3: for that
reason, we define the avarage operator ⟨•⟩(x3) as the mean inside a plane
(x1, x2) at a certain value of x3:

⟨•⟩(x3) = 1
220

210
i=1

210
j=1

•(x1,i, x2,i, x3).

In particular, the second order moment is represented by the variance for
the scalar fields θ and χ, and by the turbulent kinetic energy for the veloc-
ity field, defined as E = 1

2 (⟨u2
1⟩ + ⟨u2

2⟩ + ⟨u2
3⟩) and the high-order moments

are represented by skewness and kurtosis (respectively third and fourth order
moments normalized with the variance), defined as S(•) = ⟨•3⟩/⟨•2⟩1.5 and
K(•) = ⟨•4⟩/⟨•2⟩2. Note that the definition of skewness and kurtosis for the
passive scalar field χ sligthly differs from the one of previous equation, due
to the proximity of the external regions where the variance ⟨χ2⟩ vanishes: to
prevent numerical problems, the actual definition of skewness and kurtosis are:
S(χ) = ⟨χ3⟩/(⟨χ2⟩ + 0.005⟨χ2⟩max)1.5 and K(χ) = ⟨χ4⟩/(⟨χ2⟩ + 0.01⟨χ2⟩max)2,
where ⟨χ2⟩max indicates the maximum of the variance along the direction x3.

Looking at the statistical behavior of the turbulent kinetic energy in figure
3.6, the evolution of the system can be split in two main stages, according to
the evolution of the ratio between buoyancy force and kinematic forces (which
are advection and diffusion). As long as the ratio remains small, there are no
significant differences with respect to a non-stratified case. On the contrary,
as the stratification perturbation level become higher, buoyancy effects are no
more negligible: differences are present from both a quantitative and qualita-
tive point of view. The effects of different stratification levels are clearly visible
on the turbulent kinetic energy shown in figure 3.6 for two different instants,
in particular t/τ = 4 in 3.6(a) and t/τ = 7 in 3.6(b), where τ is the initial
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eddy turnover time. The time required to have the buoyancy terms compa-
rable with other forces depends directly on the stratification intensity. When
this condition is reached, initially there is a slight downward displacement of
the energy gradient location, as can be observed for Fr2=4.2 at t/τ = 4 and
for Fr2=20.8 at t/τ = 7. Subsequently, it can be observed the formation, in
correspondence of the local temperature perturbation, of a layer with a pit of
kinetic energy that grows in time (see also section 3.4.2). The presence of such
sublayer deeply changes the physics of the system, because in this situation
two interfaces are produced. The first interface, (which is present also in the
absence of stratification), now separates the high turbulent energy region from
the pit, while the second one (not present without stratification) separates the
low turbulent energy region from the center of the mixing layer. Therefore,
a strong stable stratification induces a physical separation between the two
external regions, greatly decreasing the interaction between them. On con-
trary, in unstable case it can be observed an increment of the kinetic energy
inside the mixing region (peak sublayer). Also in this case we can observed
the formation of a secondary gradient of energy, but the position are reversed
respect to the stable cases, and the secondary gradient separates the peak from
the high energy region. In fact, in these cases the peak tends to be shifted
toward the high energy region (while the pit was near the low energy one), and
the primary gradient this time is pushed upwards (positive x3), separating the
peak from the low energy region.

Both the primary interface and (when present) the secondary one presents
an intermittent behavior: figure 3.7 shows a comparison of the distribution
of skewness and kurtosis after 6 time scales (respectively panels a and c),
and the time evolution of the maximum and minimum values (panels b and
d). In the stably stratified cases it can be observed an initial reduction of
maximum values, which decay much faster respect to a non stratified case. As
consequence, such fast decay leads to have low intermittency during the pit
formation, with values as low as the one observed outside the mixing region (the
"normal" range is represented by a gray band in panels b and d in figure 3.7).
Afterwards the pit onset, each one of the two gradient of energy characterized
by intermittency, and S and K quickly grow in time reaching higher values
respect to the unstratified case. On contrary, in case of unstable stratification
the decay of intermittency is immediately damped, and for case Fr2=-4.2 a
growth of S and K is observed after only 3 time scales. In both stable and
unstable cases, the final configuration seems to be more intermittent, with
values that can become even 100% greater respect to the ones in unstratified
case.
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(a) Kinetic energy, t/τ = 3
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(b) Kinetic energy, t/τ = 6

Figure 3.6. Turbulent kinetic energy along the vertical direction x3, com-
puted through the velocity variance in the horizontal planes x1 − x2. In the
panel (a) data are taken after 4 initial eddies turnover time τ , in the panel
b after 7 τ . Data are taken from simulations with different level of stable
stratification represented by the reference square Froude number Fr2. [Exter-
nal MEDIA: file isosurfaceVertVel_stratifFr4.mp4 shows the behavior of
vertical velocity isosurfaces for the case Fr2=4.2 after 6 time scales.]

The statistical properties of the temperature θ and the passive scalar con-
centration χ, in are analogous: in fact the energy equation 3.15c that gov-
erns the transport of temperature is comparable with the advective-diffusive
equation 3.15d of the passive scalar (with the Schmidt number instead of the
Prandtl number). Effects on scalar fields are lower respect on the one observed
in the velocity, and great variations can be observed only for very strong strat-
ification, with Fr2=0.4.In particular, the scalars fluctuations are damped in
stable cases, and slightly enhanced in presence of unstable stratification, as
can be observed in figures 3.8(a). Also The region with non-zero variance de-
pends on the stratification level, and becomes thiner for stable cases - which
indicates a smaller mixing region. It can be also observed that the shape of
the mean variance along x3 is clearly non-symmetrical respect to the center of
the mixing region. These reduction become relevant after the onset of the pit
of energy and are linked with the reduction of entrainment, see figure 3.8(b)
for the evolution of scalar variance peak value.

For the high-order moments, scalars fields initially follow the velocity be-
havior, with a reduction of S and K when the stratification is stable, and a
growth in unstable cases, see figures 3.8(c-e). A big difference can be observed
after few time scales for stable stratification: the pit onset blocks the mixing,
and the values of the high-order statistics tents to remain constant, as shown
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(c) Vertical velocity kurtosis ,
t/τ = 6

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 0  1  2  3  4  5  6  7  8  9  10

t/τ

K
(u

3)
m

in
K

(u
3)

m
ax

Fr2 = 1038.5
Fr2 = 69.2
Fr2 = 20.8
Fr2 = 4.2
Fr2 = 0.4

Fr2 = −20.8
Fr2 = −4.2

(d) Peaks values of vertical
velocity kurtosis over time

Figure 3.7. Vertical velocity skewness (panels a-b) and kurtosis (panels c-d)
along the vertical direction x3, computed through vertical velocity central
moments in the horizontal planes (x1 −x2) at two different instant. Data are
taken after 3 initial eddies turnover time τ (panels a-c) and after 6 τ (panels
b-d). The various lines come from simulations with different level of stable
stratification represented by the reference square Froude number Fr2.

in figures 3.8(d-f ). As for the scalar variance, also for S and K big differences
are visible only for Fr2=0.4, while other cases shows only minor changes in the
behavior.
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Figure 3.8. Vapour statistics along the vertical direction x3, computed
through the central moments in the horizontal planes x1 − x2. Left pan-
els refer to data taken after 3 initial eddies turnover time τ , while the right
ones after 6 τ . Data are taken from different simulation represented by the
initial square Froude number Fr2. Panels a and b shown the vapour variance
normalized with the initial vapour step, panels c and d the vapour skewness
and panels e and f the kurtosis.
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3.4.2 Mixing layer and energy pit/peak sublayer
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Figure 3.9. Normalized kinetic energy distribution at different time in-
stants in the case Fr2=4.2 (panel a) and Fr2=-4.2 (panel b). (a) – Initially
all the top region (rigth part of the plot) has a value around 0, which
means that there isn’t a region with lower energy levels. The pit onset
starts around t/tau = 2, and it is clearly visible at t/τ = 4, when the re-
gion with values next to 0 are only in the center of the mixing layer. (b) –
In this case the low energy region has always a value around 0, so there is
not a region with lower energy levels. On contrary, a reduction in the high
energy region is observed, which means that tially all the top region (rigth
part of the plot) has a value around next to 0, which means that there isn’t
a region with lower energy levels. The pit onset starts around t/τ = 2, and
it is clearly visible at t/τ = 4, when the region with values next to 0 are
only in the center of the mixing layer.

As seen in section 3.4.1, when the buoyancy term becomes not negligible,
it can be observe the onset of a sublayer in the center of the domain – where
the initial temperature gradient is placed. In such sublayer the kinetic energy
decrease faster in stable cases, and slower in the unstable ones. The formation
and time evolution of such sublayers are shown in figure 3.9, where the kinetic
energy is represented in the form Enorm = (⟨E⟩ − Emin) / (Emax − Emin) where
Emax Emin are respectively the maximum and the minimum of the mean kinetic
energy. In unstratified condition, the normalized energy is near 0 in the low
energy region, and near 1 in the high energy region.

In stable cases, the presence of the pit of energy changes the location of
Emin, which now is placed inside the pit, while Emax is always represented
by the high energy region. As a consequence, after the pit onset, Enorm is
approximately equal to 1 in high-energy region, 0 inside the pit and > 0 in
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Figure 3.10. Time efolution of the energy variation E , which is defined as
the relative energy differece inside the mixing layer respect to the neutral case
Fr2=69.2 (see equation 3.19). Differences tend to follow algebraic trends: in
stable cases there is a "loss" of energy inside the mixing, with an exponent
is lower than 1 after an initial transition; in unstable cases the exponents is
higher than 1, and the initial transition is quite absent.

the low energy region, as it can be observed in panel a of figure 3.9 for the
case Fr2=4.2. An opposite behavior can be observed in unstable cases after
the peak onset: Enorm is 0 in the low energy region, 1 inside the peak sublayer,
and < 1 in the high energy region.

Those different energy distribution can be viewed as kinetic energy varia-
tion inside the mixing layer of the stable/unstable stratified cases respect to
the neutral case Fr2=69.2. These "loss" or "gain" of energy can be estimated
considering the relative kinetic energy variation respect to the neutral case,
defined as:

E =
Emix − Emix,Fr2=69.2

Emix + Emix,Fr2=69.2
, (3.19)
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Figure 3.11. Panel (a) Mixing layer thickness evolution in time both for
stable (solid lines) and unstable (dashed lines) interfaces. Definition of δE

can be found in equation 3.20. Panel (b) Time evolution of the width of
the kinetic energy pit. Such width is defined as region where the the kinetic
energy is lower of the 80% respect to the mean value is the low energy region.

where Emix and Emix,Fr2=69.2 are the total energy inside the mixing layer of the
considered case end the neutral one respectively (see further for the mixing
layer thickness δ definition). The time evolution of E is shown in figure 3.10.
It can be seen that in presence of unstable stratification, the relative energy
variation increase in time with an algebraic trend; the exponents increase with
the increase of the stratification – 1.84 for Fr2=-20.8, 2.24 for Fr2=-4.2. In
stable cases the situation is more complex: there is an initial transition phase,
in which E decrease with exponent analogous to the one observed for unstable
cases. After the initial transition, the is a damping of the grow (in module) rate
of E , which follow a different algebraic trend, with exponents lower than 1. This
damping is not observed in unstable cases for the time-scale observed. Note
that in case of very strong stable stratification (Fr2=0.4) the initial transition
is not present.

We define the pit sublayer as the region where the kinetic energy (averaged
in x1−x2 planes) is lower than the 80% of the mean energy inside the low energy
region Em. The width of the pit sublayer δp is then defined as the distance
between the edges of the region identified in this way. and is represented in
figure 3.11(a).

Looking at those plot,we can see that the pit of energy appears immediately
in the strongest stratified case (in fact Fr2=0.4 is already lower than 1 in initial
conditions) and it continue growing in time. After the initial transition, the pit
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size grows nearly linearly in time, inversely proportional to the square Froude
number. This is in good agreement with the hull length growth found in a
stratified Rayleigh-Taylor instability simulation by Biferale et al. (2011) and
Mellado et al. (2009).

A consequence given by the presence of the pit can be seen in the thickness
of the mixing layer δ = δχ. We estimate the thickness of the mixing layer by
using the passive scalar distribution, since the complex behavior of the energy
field makes it difficult to provide an unambiguous definition for a thickness of
the kinetic energy mixing layer δE. However, in past work (see Iovieno et al.,
2014) it has been shown how δχ and δE are related. The mixing thickness time
evolution is represented in figure 3.11 (a), and defined by

δχ(t) = xtop(t) − xbot(t) (3.20)

where xtop and xbot they are such that, considering ∆E(t) the mean difference
of kinetic energy between the two external regions,

⟨χ⟩(xtop, t) = 0.75 ⟨χ⟩(xbot, t) = 0.25.

It can be seen that the thickness of the mixing layer is still growing during
the pit formation. Only after a couple of time scales from the pit onset, the
growing stops, with little oscillations around an asymptotic value. A different
behavior is observed for unstable stratifications: in these cases the generation
of the peak of energy enhance the mixing, providing a faster thickening of the
layer, with greater exponents – 0.63 for Fr2=-4.2, 0.58 for Fr2=-20.8 – respect
to the neutral case for which the exponent is 0.49.

Transport & Entrainment

The entrainment of clear air inside the cloud is an important aspect of the top
cloud interface as it concurs in the evaporation/condensation of droplets inside
a cloud, see Wood (2012). In any plane parallel to the interface, in absence of
a mean velocity, only downward velocity fluctuations can transport clear air
into the cloud. Their presence can represented by a marker function ψ that is
equal to 1 where u3 is negative, and 0 otherwise. Outside the mixing region, its
mean value is approximately constant and equal to 0.5 ± 0.01, which would be
observed in an homogeneous and isotropic flow. On contrary, inside the mixing
layer the deviation is greater (up to ∼ ±0.05), with a spatial distribution and
a temporal evolution which follow somehow the ones observed in the third
order moment of the velocity, see figure 3.7. Figure 3.12 (a) shows the vertical
derivative of the downward flux of clear air when Fr = 1.8 The downward
flux reduces as the flow evolves and its derivative, which represents the net
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Figure 3.12. Panel (a): vertical variation of the mean flux of clear air into the
cloud; ψ take into account only the regions were the velocity is downward.
Panel (b): time evolution of entrainment velocity we normalized with the
high kinetic energy E1 root mean square. we represent the velocity of the
horizontal plane where χ = 0.25. Both stable interfaces (solid lines) and
unstable interface (dotted lines) are here represented.

variation of 1 − χ at a given instant, rapidly tends to zero inside the cloud;
this implies that the entrainment of clear air is confined to a thin interfacial
layer.

Since the entrainment of clear air is responsible of the growth of the cloud,
it can be quantified considering the velocity with which the cloud expands.
In fact, the entrainment velocity we = d⟨x3,i⟩/dt of the cloud top interface
(where ⟨x3,i⟩ is the mean vertical position of the cloud top,obtained as the
position where the mean vapor concentration is 25%) has often been used as
a parameter to measure the entrainment rate, see for instance Mellado (2010);
Moeng (2000).

In figure 3.12 (b), the time evolution of we for different levels of stratifica-
tion perturbation is represented. In presence of quasi-neutral stratification, its
value gradually decreases with an algebraic trend, related to the natural decay
of the turbulent kinetic energy; on the contrary, when the a stable, strong
stratification is present, the damping of we occurs much faster, and the en-
trainment vanishes after few times scale: note that the entrainment velocity
is related to the mixing thickness (see figure 3.11): the presence of the pit of
kinetic energy reduces the mixing and transport efficiency. Instead, in case of
unstable stratification, the presence of the peak of kinetic energy enhance the
mixing, and the entrainment velocity decays slower. As said, a different en-
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Figure 3.13. Panels (a–c): kinetic energy fluxes along the vertical direc-
tion x3, computed through averages in the horizontal planes x1 − x2, after
4,6, and 8 time scales respectively. Data are taken from different simulation
represented by the initial square Froude number Fr2and normalized with the
mean kinetic energy of the external high energy region. Panels d shows the
trend of normalized kinetic energy flux maximum over time.

trainment determine different mixing efficiency for all the physical quantities,
deeply affecting kinetic energy flux, shown in figure 3.13, and passive scalar
flux, shown in figure 3.14.

Compared to neutral case, the presence stable or unstable stratification
produce an initial reduction/increase of the energy flux respectively, with a
maximum flux alway positioned around x3/δ = 1, see 3.13. In case of stable
stratification, the flux decrease until it reaches values around zero; it can be
then observed the formation of two fluxes, according to the experimental results
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Figure 3.14. Passive scalar flux along the vertical direction x3, computed
through averages in the horizontal planes x1 − x2. Panels (a–c) refer to data
taken after 4, 6, and 8 initial eddies turnover time τ . Panel (d) shows the
derivative along the vertical direction of the scalar flux at t/τ = 8, highliting
the presence of two separate regions with negative derivative.

of Jayesh & Warhaft (1994). The first one, located below the pit at x3/δ =
−1, is positive (upward flux), and the second one, located above the pit at
x3/δ = 1, is negative (downward flow) – see figure 3.13c and time evolution
in figure 3.13d. The ratio between the two flux is around 0.25 for Fr2=4.2. In
between these two, no mean flux is present: this mean that the energy tends to
accumulate at the pit edge without being able to pass across it, bounding the
mixing thickness to a fixed dimension. In case of unstable stratification, while
the flux located at x3/δ = 1 keeps growing, it can be observed the formation
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of a secondary negative flux located at x3/δ = −1. In that case the energy is
spread from the peak sublayer to the external region, promoting the mixing
layer thickening.

A coherent behavior affects the passive scalar flux, shown in figure 3.14.
The unstable stratification exalts the flux, which becomes increasingly impor-
tant compared to the scalar variance, but without suffering any change in the
spatial behavior, except for the magnitude: the flux is always directed towards
the upper region. Instead, important differences can be found in case of stable
stratification: after an initial damping, the flux become zero or even negative in
the center of the mixing layer (see Fr2=0.4 in figure 3.14(a, and see Fr2=0.4 in
figure 3.14(c), according to experimental results by Jayesh & Warhaft (1994).
In particular, it can be observed the flux derivative along the vertical direction,
shown in figure 3.14(d). A positive derivative can be interpreted as entrain-
ment of clear air (passive scalar moves away), while a negative, see derivative
implies a detrainment of clear air (passive scalar moves into) Ma & Warhaft
(1986). In case of neutral (and unstable) stratification, the mixing acts moving
the scalar upwards, where initially is not present. Under a stable stratification,
there are two sub-layer with positive derivative which surround a sublayer with
negative derivative: the scalar is retained within the mixing layer.

The reduction of communication between the two external region can be
also observed looking at the streamline, represented in figure 3.15 for three case:
neutral Fr2=69.2, stable Fr2=4.2, and unstable Fr2=-4.2. All the streamlines
are computed at a distance of 2δ0 above (red) and below (blue) the mixing
layer, after 6 initial eddy turnover time. It is possible to observe that in
neutral case,where the buoyancy forces are negligible respect to the kinetic
ones, streamlines from the upper side can cross the interface to reach the lower
region, and viceversa. In presence of stable stratification this is no longer true:
in this case the crossing of the interface becomes increasingly rare, and what
is located on one side of the interface, tend to stay there. On contrary, in
presence of unstable stratification, the mixture is enhanced, which means that
the streamlines cross the interface more frequently.
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(a) Fr2=4.2 (b) Fr2=-69.2

(c) Fr2=4.2

Figure 3.15. Streamlines after 6 time scales for different stratification level –
(a) Fr2=4.2 strong stable, (b) Fr2=69.2 neglicible stratification, (c) Fr2=-4.2
strong unstable. The starting position of each streamline is placed at a fixed
distance from above (yellow/red tubes) and below (cyan/blue tubes) the cen-
ter of the interface. In panel (b), where the buoyancy forces are neglicible
respect to the kinetic ones, streamlines from the upper side can cross the in-
terface to reach the lower region, and viceversa. On the contrary in panel (a),
where stable stratification effects are relevant, the crossing of the interface
becomes increasingly rare: what is located on one side of the interface, tend
to stay there, and the mixing process is damped. Finally, in case of unstable
stratification, shown in panel (c), the mixture of red and blue line is enhanced,
which means that the streamlines cross the interface more frequently.
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3.4.3 Flow structure: effects on anisotropy, dissipation
and spectra evolution

Anisotropy
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Figure 3.16. Skewness of the longitudinal derivatives. (a) Spatial distri-
bution of the skeness of longitudinal derivatives normal to the mixing sur-
face (solid lines) and parallel to the mixing interface (dashed line) and (b)
Evolution of the mean peak value of normal derivative around x3/δ ≈ 1.

Since buoyancy forces acts directly only on the vertical component of the
velocity field, an anisotropic behavior is expected in the large scale range.
To evaluate the large scale anisotropy, we consider the relative weight of the
energy associated to the vertical velocity respect to the other components
(Pope, 2000), using the ratio

B3 = u2
3

u2
1 + u2

2 + u2
3

− 1
3 .

Figure 3.16 shows the behavior of B3 along the vertical direction (panel a),
and the time evolution of the peak value in time. Under neutral stratification
condition, the anisotropy in large-scale is present, but limited, with maximum
deviation of the order of 5%. In presence of a stratified layer, the anisotropy
becomes very strong: in particular it is possible to observe how the verti-
cal velocity is more affected by the stratification effects respect to the other
two components, in particular with a greater dumping in stable stratification
(⟨u2

3⟩ < ⟨u1,22⟩) and higher energy in unstable stratification (⟨u2
3⟩ > ⟨u1,22⟩).

Those difference are responsible of the different behavior in transport and
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fluxes observed in previous section. In figure 3.16a it is also possible to ob-
serve that the variation concern all the mixing layer (and not only the previous
defined pit/peak of kinetic energy). In fact, together with the formation of
such sublayer, it was observed a displacement of the main energy gradient,
depending on whether the stratification is stable or unstable.

The small scale anisotropy of the flow can be represented by the higher
moments of the first order, longitudinal derivative of the velocity compo-
nents (Sreenivasan & Antonia, 1997). It is well known that HIT departs from
gaussianity at small scale, and in particular the longitudinal derivative skew-
ness S(∂ui/∂xi) = −0.5 ± 0.1, with small dependency on Reynolds number
(see Sreenivasan & Antonia, 1997). In previous work [Tordella et al. (2008);
Tordella & Iovieno (2011)] it has been found that in presence of a mixing layer
due to a mean kinetic energy gradient, S(∂ui/∂xi) becomes no longer isotropic,
showing even greater magnitude in the mixing direction (S(∂u3/∂x3)), and
slightly lower values (in magnitude) in the parallel directions (S(∂u1,2/∂x1,2)).
The level of anisotropy depends, in addition to the Reynolds number, also from
the energy gradient, see Tordella & Iovieno (2011).

The presence of buoyancy forces does not influence directly the tilting/stretching
of the vortex filament: considering the vorticity equation, obtained as the curl
of equation 3.15b)

∂ω

∂t
+ (u · ∇) ω = (ω · ∇) u + (u · ∇) + ν∇ × ∇2u + α∇ × (gθ) (3.21)

where the compressibility stretching and the baroclinic term have been ne-
glected according to incompressibility and Boussinesq approximation. Con-
sidering that the buoyancy forces term is a vector which has only the third
component different from 0, its curl have only the first two component, which
depends on the derivative along direction parallel to the mixing:

α∇ × (gθ) = α∇ ×

 0
0
gθ

 = αg

 ∂θ/∂x2
∂θ/∂x1

0

 . (3.22)

Since a mean variation of θ occurs only along direction 3, there is no mean
contribution of buoyancy to the vorticity equation and in HIT stratification
does not influence the small-scale anisotropy.

This is no longer true for a mixing: in particular, it has been found that
a shear-less mixing present anisotropy at small-scales, with S(∂u3/∂x3) <
S(∂u1,2/∂x1,2) inside the mixing region, with peaks toward the lower energy
region (at (x3 − xc)/δ ≈ 1). Figure 3.17 and 3.18 shows how the presence
of stratification modifies the behavior of the longitudinal derivatives skewness
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and kurtosis. Mild stratification does not affect the small-scale anisotropy: the
skewness of ∂u3/∂x3 tends to an asymptotic value of −0.63±0.02, as expected
for Reλ ≈ 200 ÷ 250 (Tordella & Iovieno, 2011; Shen & Warhaft, 2000). In
case of stable stratification, all the longitudinal derivatives skewness tend to
the isotropic value of 0.52, while in case of unstable stratification S(∂u3/∂x3)
tends to diverge, reaching values as low as -0.75, with an overgrowth of the
order of 30%.

Those variations are related to the influence on mixing intensity due to the
stratification. In case of stable stratification, the mixing initially is present,
although it is slightly dumped respect to the neutral case: this leads to a slower
formation of the anisotropic sublayer in the very initial time-scales, as can be
seen in figure 3.17(b) . Afterwards, as soon as the pit appears, the mixing
intensity decrease, and the small-scale anisotropy sublayer tends to disappear,
behaving as if the energy gradient is not present – pointing out the idea that
the exchange of information between the two outer regions becomes blocked.
On contrary, in case of unstable stratification the mixing is enhanced, and the
mixing layer becomes even more anisotropic at small scales, acting as if the
energy gradient be greater.

Derivatives along homogeneous direction does not show peaks in the center
of the mixing layer, according to the results from Tordella & Iovieno (2011),
considering that the Reλ is 250 in the present cases.

The statistical behavior of the derivative normal to the mixing layer, i.e.
∂u3/∂x3, shows the presence of a peak inside the mixing layer, as shown in
figure 3.18.
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Figure 3.17. Skewness of the longitudinal derivatives. (a) Spatial distri-
bution of the skeness of longitudinal derivatives normal to the mixing sur-
face (solid lines) and parallel to the mixing interface (dashed line) and (b)
Evolution of the mean peak value of normal derivative around x3/δ ≈ 1.
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Figure 3.18. Kurtosis of the longitudinal derivatives. (a) Spatial distri-
bution of the kurtosis of longitudinal derivatives normal to the mixing sur-
face (solid lines) and parallel to the mixing interface (dashed line), and (b)
evolution of the peak value of normal derivative around x3/δ ≈ 1.

Dissipation

The dissipation rate is computed in the whole domain by using the general
definition (see Tennekes & Lumley, 1972, p.64)

ε = 1
2ν

∂ui

∂xj

+ ∂uj

∂xi

2

. (3.23)
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In figure 3.19 the plot of the normalized turbulent dissipation rate Cε, defined
as

Cε(x3) = ⟨ε⟩⟨ℓ⟩
⟨E⟩3/2

and considering plain-averages in direction x1, x2.
It can be observed that the normalized dissipation rate initially has a con-

stant value in the whole domain, equal to 0.55 ± 0.05. This means that there
are not relevant differences respect to the unstratified case, actually there are
not difference also in comparison with an homogeneous isotropic turbulence,
as in that case Cε tents to 0.5 for sufficiently high values of Reλ (see Burat-
tini et al., 2005). As the buoyancy term becomes relevant, the formation of
a "peak" of dissipation can be observed downstream of the mixing interface,
inside the pit of kinetic energy, where Cε reaches values as high as 0.9. In
this region, the kinetic energy is damped by the stratification effects; also the
dissipation is affected by the buoyancy, but to a lesser extent: as result, the
dissipation becomes relatively larger in such sub layer. This can be explained
considering that the stratification affects directly only the energy of the vor-
tices, and not the spatial geometry, which is only indirectly influenced. This
assumption is in agreement with the probability density function reported in
figure 3.19(b), which shows how in different regions of the system the statisti-
cal behavior of the dissipative rate remains always similar inside and outside
the mixing sublayers.
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Figure 3.19. (a,c) Normalized plane-averaged dissipation
Cε = {ϵ}ℓ/{E}3/2 for the case with Fr2=4.2 and Fr2=-4.2 respec-
tively. Dissipation values outside the mixing layer are near to 0.5, like
for isotropic homogeneous turbulence (see Burattini et al., 2005). For
stable case, the normalized dissipation has a maximum in correspondence
of the kinetic energy pit; for unstable case the dissipation has a minimum
in correspondance of the peak of energy. (b-d) Normalized log-normal
probability density function of dissipation rate in several x1 − x2 planes for
case Fr2=4.2 and Fr2=-4.2 at t/τ = 6.
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Figure 3.20. Panels (a–b)Kinetic energy spectra at different instant for the
case with Fr2=4.2. Spectra are compensateded according to the Obukov–
Corrsin normalization, in which E(κ) = 0.4ϵ−2/3κ−5/3. Panel (a) shows
the spectra in the high energy region, while panel (b) in the centre of the
mixing layer. Panel (c) Evaluation of the spectra exponent in the iner-
tial range at different position of the vertical direction x3. Three differ-
ent stratification are represented: unstratified case (Fr2=69.2, black), stably
stratified (Fr2=4.2, green, shifted downwards by 0.3) and unstably strati-
fied (Fr2=-4.2, red, shifted upwards by 0.3). The dotted lines represents the
standard -5/3 Kolmogorov slope. Errorbars represent the uncertainity of the
linear regression which estimate the exponent in a log-log plane.
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Figure 3.21. Comparison of 1-dimensional velocity spectra along the
homogeneous directions. Panels (a–b) shows the effects on vertical velocity
in presence of stable (a, Fr2=4.2) and unstable (b, Fr2=-4.2) stratification,
in comparison with the neutral case Fr2=69.2. Panels (c–d) shows the
effects on the other two velocity components. Spectra are computed inside
the mixing layer, at x3/δ ≈ 0.8

Defining Ẽ(κ) as Kolmogorov normalized normalized spectra for turbulent
velocity: E(κ) = 2.5E(κ)ε−2/3κ5/3 (3.24)

The Kolmogorov -5/3 scaling is respected in the whole domain: the inertial
range is very small, and its extent becomes lower than una decades for t/τ > 6.
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Figure 3.22. Passive scalar power spectra inside the mixing layer at different
position along the vertical direction x3, computed through averages in the
horizontal planes x1 − x2. Data taken for the case with Fr2=1.8.
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Figure 3.23. Comparison of 1-dimensional passive scalar spectra along
the homogeneous directions in case of stable (panel a, Fr2=4.2) and un-
stable (panel b, Fr2=-4.2) stratification, in comparison with the neutral
case Fr2=69.2. Spectra are computed in the center of the mixing layer,
at x3/δ ≈ 0.0

The normalized kinetic energy spectra are almost similar along the vertical
direction, with little deviations due to the different Reynolds number.

They are also quasi-selfsimilar in time, with the main difference represented
by a reduction of the inertial range extension due to the increase of the Kol-
mogorov scale - and so the dissipative range.
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We synthesize the exponent evaluation in figure 3.20c, where exponent of
the inertial range are reported in function of time time for three different strat-
ification level (stable, unstable and neutral); the values in case of stable and
unstable stratification are displaced by ±0.3 to obtain a better representation.
Exponent are estimated taking advantage of the linear regression method,
applied to the spectra in a log-log space. The inertial ranges are chosen min-
imizing the regression error, under the condition to have at least half decade
in each inertial range. The error-bars in figure 3.20c represent the residual.

It is possible to observe that velocity spectra always tend to the Kolmogorov
−5/3 slope, independently from position inside the mixing layer and from the
stratification effects. The decrease of α for the stably stratified case at t/τ > 8
is given by the absence of a well determined logarithmic scaling, since the
inertial range vanishes because of the increase of the dissipative range, as
previously shown in figure 3.20 (a).

The major influence of the presence of a stratified layer occurs outside at
the edges of the inertial range. This influence can be evaluated comparing
with the neutral case the 1-dimensional spectra of each velocity component
inside the mixing region. To achieve this, we compute spectra ûi(k, x3) as the
average of the transform along each of the two homogeneous direction, that is

ûi(k, x3) = 0.5⟨ûi(k1, x2, x3)⟩ + 0.5⟨ûi(x1, k2, x3)⟩ k = k1 = k2 (3.25)

where the average operator ⟨•⟩ acts along the homogneous direction on which
it has not been carried out the transform. The obtained spectra are then
compared to the neutral case Fr2=69.2 considering the relative variation

ûFr2=...
i − ûFr2=69.2

i

ûFr2=...
i + ûFr2=69.2

i

.

Results of such comparison are shown in figure 3.21 for the stable case Fr2=4.2
(panels a,c) and the unstable case Fr2=-4.2 (panels b,d). The fist relevant ob-
servation which can be done is the different behavior of the vertical velocity
respect to the other two components: in particular, the behavior is the follow-
ing.

The stratification directly acts only on larger scale of the vertical motion,
generating a relative deviation from the neutral case. Such variation is negative
(less energy in vertical motion) in presence of stable stratification, and positive
(more energy) for unstable stratification, in agreement with what observed for
large scales anisotropy. While the mixing evolves, these effects are transmitted
to smaller scales through the inertial cascade, reaching the dissipative range,
with the consequent effect of enhancing/dampening the dissipation rate for
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3 – Effects of Stable/Unstable Stratification

stable/unstable stratification respectively. In this scale range, the stratifica-
tion effects are widespread to all the velocity components: as a consequence,
absolute small-scale differences (and so small scale anisotropy) are dumped in
presence of stable stratification, and enhanced in unstable cases, as pointed
out in section 3.4.3.

Considering the scalar fields, the dimensionless spectra are defined by

χ2(κ) = 2.5χ2(κ)ε1/3ϵ−1
χ κ5/3 (3.26)

where εχ is the pseudo-dissipation of the temperature field. Looking at the
spectra in presence of a strong stratification, shown in figure 3.22, it can be
observed that the behavior is very similar to the one in absence of buoyancy
effect (see section 2.4 in the previous chapter), and the spectral exponent tends
to value around -1.66 after an initial transient. Differences among different
stratification levels can be found in the dissipative range, in a way similar to
that observed for the velocity components parallel to the mixing interface, as
reported in figure ??. Large scales and inertial range are almost unaffected
by the buoyancy, while dissipative range comes to undergo an high influence,
comparable to the one observed for the homogeneous velocity.

3.5 Conclusion remarks
The evolution of a shearless turbulent mixing layer obtained coupling two
homogeneous isotropic turbulent field with different kinetic energy has been
studied, evaluating the effects of the presence of a temperature stratification
inside the mixing layer, both under stable and unstable stratification condition.
It has been observed that the presence of a sufficiently intense stratification
(so with a Froude square number of the order of 1) deeply changes the mixing
dynamics.

First of all, it has been observed the formation of a sub-layer inside the
mixing region: such sub-layer onset and evolution is strictly related to the
stratification intensity and stability. In particular, under stable condition of
stratification the sub-layer behaves as a pit of kinetic energy: it is characterized
by lower level of energy respect to the external regions. On contrary, under
unstable conditions of stratification the energy becomes higher than in the
external regions with the formation of a peak of kinetic energy. The time
evolution of the energy variation inside the mixing region has been quantified:
it has been found that it follows and algebraic laws, with exponent which
depends on the stratification intensity.

In particular, a stable stratification tends to suppress vertical motion, since
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fluctuations within it are inhibited by the buoyancy forces. In fact, in this con-
dition there is a strong large-scale deviation from isotropy, with vertical compo-
nent of velocity which differs from the other two: as stated, stable stratification
suppress vertical motion, and the energy associated to vertical fluctuations be-
comes smaller compared to the other components. On contrary, in unstable
conditions vertical fluctuations becomes greater respect to the other two.

As a consequence, in presence of a stable stratification follows a general
damping of the mixing and its relative effects, i.e. intermittency energy/scalar
transports, entrainment/detrainment, and small scale anisotropy. By contrast,
unstable stratification enhance the mixing process. In particular the entrain-
ment, which assumes an high importance in atmospheric phenomena, tends to
vanish very quickly when the Froude square number becomes lower than 1 – in
absence of stratification, the entrainment disappears following an inertial law,
due to the natural decay of the turbulent energy.

For what concern the small-scale anisotropy, it has been found that the
presence of an unstable stratification increases the differences in the statistical
behavior among the longitudinal velocity derivatives. As a consequence, the
compression of the fluid filaments normal to the interface is greater, due to the
increased mixing intensity. In stable cases, since the mixing tends to vanish,
so does the small-scale anisotropy.

Finally, it has been observed how the stratification, which acts directly on
large scales of vertical direction, also influences the dissipative range of all the
velocity components and scalar field, with only small effects on the inertial
range, without changing the spectral indices.
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Chapter 4

Numerical method

Numerical simulations have been performed considering the incompressible
Navier-Stokes equation in its dimensionless form

∇ · u = 0 (4.1)
∂u
∂t + (u · ∇) u = −∇p+ 1

Re
∇2u + f (4.2)

∂θ

∂t + u∇θ = 1
Sc Re

∇θ. (4.3)

where f is the sum of external forces (such as buoyancy force).
The continuity equation is used in order to explicitly compute the pressure

field. In particular, applying the divergence operator on the momentum equa-
tion, and considering that time and spatial derivative can be exchanged, we
have:

− ∂

∂t
∇ · u + ∇ ·

 1
Re∇2u − (u · ∇) u + f


= ∇2p.

The time-dependent term drops because of the divergence of velocity field is
zero, as in equation (4.1). Reordering the remaining terms, we obtain the
Poisson equation for the pressure:

∇2p = ∇ · A′(u) (4.4)

where A′(u) is a non-linear operator composed by the sum of convection, dif-
fusion and external terms. Equation (4.4) can be used to evaluate the pressure
in terms of velocity (and external forces), leaving as unknown the velocity field
(and eventually scalar quantities).

The mathematical structure of the problem leads naturally to the adoption
of a spectral discretization, and in particular to a Fourier-Galerkin method
(Iovieno et al., 2001). The spectral method is the most accurate method since
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using it to compute an infinitely smooth solution the numerical error decays
exponentially rather than algebraically as the resolution is increased (Jameson
et al., 1981).

Acting on a discrete field, since the computation grid is equispaced, di-
rection x1, x2 and x3 will have respectively N , N and N3 points. In spectral
(Fourier) space each point will contain the value referring to the triple of wave-
numbers (k1, k2, k3) where

−N/2 ≤ kj < N/2 ∀j

.
The expansion of the variables in a Fourier-Galerkin series can be written

as wave-numbers:

y(x, t) = 1
2π

N3−1
j3=0

N−1
j1,j2=0

ŷk(t) exp (ik · x) (4.5)

and the discretized system is given by
∂ûi

∂t
= −kikl

k2


−Re−1k2ûj − ikj uluj + fi


− ikj uiuj −Re−1k2ûi + fi (4.6)

∂θ̂i

∂t
= −ikj

ujθi − Sc−1Re−1k2θ̂i. (4.7)

where exponential parts have been simplified, the pressure rewritten in terms
of velocity, and the summation operators omitted (each equation in fact a
subsystem for the N2 ×N3 weight function). The time integration is achieved
by means of low-storage Runge-Kutta 4 order scheme, designed by Jameson
et al. (1981) found in (Canuto et al., 1988, p. 287).

The aliasing problem

Aliasing problems occurs performing the multiplications required to comput-
ing the convective terms. To show how aliasing affect the products, let’s con-
sider two variables and their relationship with the physical values and the
transformed one that is (for a simple demonstration, we take into account uni-
dimensional data, those considerations are extendible in a three-dimensional
data field) :

Uj =
N/2−1

ku=−N/2
ûku exp(ikuxj) (4.8)

Vj =
N/2−1

kv=−N/2
v̂kv exp(ikvxj) (4.9)
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Figure 4.1. Inverse transform procedure with 16 process. The field in
wave-number space (top left) is transformed into physical space (bottom
right). During the process the domain is expanded by introducing dealiasing
region (cyan), and transposition occurs in order to perform FFTs (see axis).

Wj =
N/2−1

kw=−N/2
ŵkw exp(ikwxj). (4.10)

If we want to compute the product Wj = Uj · Vj, we have:

Wj =
N/2−1

ku=−N/2
ûku exp(ikuxj) ·

N/2−1
kv=−N/2

v̂kv exp(ikvxj) (4.11)

that can be simplified joining the sum operators, and using the exponential
properties

Wj =
N/2−1

ku=−N/2

N/2−1
kv=−N/2

ûku · v̂kv exp[i(ku + kv)xj) (4.12)

Comparing this last equation with the (4.10), and we get that transform ŵkw

is equal to the sum of the terms ûku · v̂kv for which ku + kv = kw (of course
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with kw in correct range):

ŵkw =


ku+kv=kw

ûku · v̂kv |kw| ≲ N/2 (4.13)

Computing product in this way is not convenient, it is better compute the
product in the physical space and then go back to the Fourier space(Orszag &
Gottlieb, 1980). Acting like that, we can consider the anti-transformed of Wj

Ŵkw = 1
N

j=0
N−1

Wj exp(ikwxj) (4.14)

Making some substitution, we get

Ŵkw =


ku+kv=kw

ûku v̂kv +


ku+kv=kw±N

ûku v̂kv

Ŵkw = ŵkw +


ku+kv=kw±N

ûku v̂kv (4.15)

where the second term is so called aliasing error.
A way to eliminate aliasing, is the aliasing removal by padding (or 3/2

rule) (Canuto et al., 1988, 84). The key of this de-aliasing technique is the use
of discrete transforms ũ with M rather than N points. Transform values are
essentially the same

ũk =

ûk |k| ≲ N/2
0 otherwise (4.16)

We get that the transformed product is

W̃kw =


ku+kv=kw

ûku v̂kv +


ku+kv=kw±M

ûku v̂kv . (4.17)

Since we are interested in values for |ku + kv| ≲ N/2, we have to guarantee
that the second term will be always equal to zero for that wave-numbers. That
can be done by choosing M large enough: the worst case condition(Canuto
et al., 1988) is when both ku and kv are equal to −N/2, so we have that

−N

2 − N

2 ≤ N

2 − 1 −M

and we get that
M ≥ 3N

2 − 1. (4.18)
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Figure 4.2. Left: walltime for a single RK4 cycle in a cubic domain with
M = 2048. Walltime= t · n, where t is the real time needed, and n is the
number of process. Right: Speed-up of the code. Speed-Up= nR

tR
t where tR

and nR are reference quantities (in this case nR = 64).

Implementation and parallelization

The code is based on the TurIsMi v1.4 of the Philofluid group (www.polito.it/philofluid),
released under the terms of the GNU General Public License. The new version
has been implemented using Fortran 2008 standard: new features allows to de-
sign the code slightly object-oriented, increasing readability and efficiency on
shared routines. Direct/inverse FFTs (Fast Fourier Transforms) are evaluated
using the FFTW (Fast Fourier Transforms of the West) open-source libraries
(which support the shared memory paradigm).

Parallelization is performed with an hybrid shared/distributed memory
paradigm. In particular, we use a stencil parallelization (parallelization of
two directions) in order to distribute the computational domain between a
chosen number of process (up to N2/2 – theoretical value). Distribution is
performed using MPI 3.0 standard, which allows the usage of modern MPI
libraries (such as OpenMPI and MPICH2).

In order to perform FFTs along a certain direction, a process needs to
know the values associated to all the wave-numbers in such direction. For that
purpose, matrix transpositions are mandatory in order to swap the distributed
direction. During the inverse transform/transposition process (schematically
represented in figure 4.1), the domain is "expanded" through the inclusion of
the zero-padded antialiasing region (and viceversa is "contracted" during direct
transforms). The usage of expanded domain only in physical space drammat-
ically reduce the number of transform needed. We consider for simplicity a
cubic domain, with N3 in wavenumber space, and M3 = 27/8N3 points in
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physical space. Without the expansion/contraction process, the number of
single FFTs required to perform a global transform is equal to 3M2 = 27

4 N
2.

Without the expansion/contraction process, the number of single FFTs re-
quired to perform a global transform is equal to N2 + NM + M2 = 27

4 N
2,

thereby saving 30% of computational time.
MPI 3.0 standard allows to implement global communication subroutine

for direct/inverse domain transposition, and also for input/output routines.
Global communication better exploit the potential of modern machines. In
the rest of computational code. shared part of the parallelization is managed
through OpenMP.

With the optimization process, the new version of the code (as shown in
figure 4.2) is about 5 time faster, with a near-linear speed-up, allowing us to
fully exploit the potential of the massively parallelized supercomputers.
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Chapter 5

Solar wind analysis from
Voyager probes data. Data
reconstruction tecniques and
application at 5 AU.

The heliosphere is characterized by the presence of a multi-scale, anisotropic
fluctuations of plasma velocity and magnetic field. These fluctuations are
turbulent, in the sense that they are disordered and span a broad range of
scales in both space and time. The main responsible source of fluctuation
is the Solar Wind which breezed all the solar system, interacting with the
interstellar medium in the heliosheeth. The study of solar wind turbulence is
motivated by a number of factors all keys to the understanding of the Solar
Wind origin and thermodynamics.

A need that we must learn to meet to explore and surf the space is the re-
construction and interpretation of fluctuating signals coming from spacecrafts
which for a number of different reasons are usually non regularly acquired
on Earth or on other communicating spacecrafts (National Research Coun-
cil, Decadal Strategy for Solar and Space Physics, 2013). The solar wind is
characterized by a broad range of phenomena, in particular sharp changes in
the flow and extreme conditions can often be met due to the crossing of the
heliospheric current sheet, the presence of shocks and interaction regions be-
tween slow and fast wind streams and zones of strong density variations. Flow
fluctuations are not just convected outward but show active energy cascades
among the different scales. The solar wind turbulence phenomenology has
been comprehensively reviewed by Tu & Marsch (1995) and Bruno & Carbone
(2013).
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Most studies of solar wind turbulence use data from near-Earth, with space-
crafts in the ecliptic near 1 AU (Tu & Marsch, 1995, see). Recent studies of
the solar wind near 1 AU have found that fluctuations in the magnetic field
can be fitted by power laws with an exponent of -5/3, while those of velocity
often show an exponent of -3/2 (Podesta et al., 2007). The Ulysses spacecraft
provided the first observations of turbulence near the solar polar regions (see
Horbury & Tsurutani, 2001); hourly-average Ulysses data show that the ve-
locity power law exponent evolves toward -5/3 with increasing distance from
the Sun, and that spectra at 1 AU are far from the asymptotic state (Roberts,
2010). In order to understand the evolution of the solar wind and its proper-
ties, it is necessary to analyze data at larger radial distances. Nowadays, only
few spacecraft has reach the outer heliosphere, which are the probes Pioneer
10, Pioneer 11, Voyager 1 and Voyager 2. Pioneer mission ended before reach-
ing the heliosheath (the craft no longer send data to earth), and Voyager 1 can
provide only magnetic field data (due to an issue of the plasma-experiment).
Voyager 2 can provide both plasma and magnetic field data of the heliosheath.

However, a major problem in the analysis of that data is related the pres-
ence of gaps inside the measured time-series, which typically increase with the
distance and make any analysis challenging.

In this chapter the focus is on the on turbulence fluctuations in the solar
wind plasma and magnetic field near the ecliptic plane, in particular in the
outer solar system at about 5 astronomical units (AU) from the sun using
Voyager 2 (V2) plasma and magnetic field data, and in the heliosheath, showing
a preliminary spectral analysis in that region. V2 was launched in August 23,
1977 and reached a distance of 5 AU in the first half of 1979 (just before the
Jupiter fly-by, V2 closest approach to Jupiter was on July 9). We use data
from January 1 to June 29, 1979, day-of-year (DOY) 1 − 180. That year V2
sampled plasma data with a resolution of 12 seconds. After that, telemetry
constraints decreased data sampling first to every 96 seconds, and now every
192 seconds. An overview of the mission is reported in figure 5.1. The Voyager
plasma experiment observes plasma currents in the energy/charge range 10 −
5950 eV/q using four modulated-grid Faraday cup detectors (Bridge et al.,
1977). The observed currents are fit to convected isotropic proton Maxwellian
distributions to derive the parameters (velocity, density, and temperature) used
in this work. Magnetic field and plasma data are from the COHO web site
(http://omniweb.gsfc.nasa.gov/coho/).

In 1979 data gaps are due mainly to tracking gaps; some smaller gaps
are due to interference from other instruments. As a consequence, datasets
from Voyager 2 are lacunous and irregularly distributed. In order to perform
spectral analysis, methods for signal reconstruction of missing data should be
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Figure 5.1. Voyager mission timeline, with indication of the path and main
events that have occurred to date. Source: NASA Jet Propulsion Laboratory
- Californian Institude of Technology.

implemented.
The results shown in this chapter have been presented in the 4th Inter-

national TMB Workshop (Gallana et al., 2014c, Trieste), in the 67th Annual
Meeting of the APS-DFD (Tordella et al., 2014, San Francisco), in the 15th
ETC Conference (Gallana et al., 2015b, Delft), in the Vortical Structures and
Turbulence Conference (Fraternale et al., 2015b, Rome), in the 14th Annual
Internartional Astrophysics Conference (Fraternale et al., 2015a, Tampa Bay),
in the 68th Annual Meeting of the APS-DFD (Gallana et al., 2015a, Boston),
and in the AGU Fall Meeting (Richardson et al., 2015, San Francisco), and pub-
lished on the European Journal of Mechanics B/Fluids (Iovieno et al., 2016),
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Physica Scripta (Fraternale et al., 2016), and on the Journal of Geophisical
Research (Gallana et al., 2016b).

In the following section, we contextualize the physical condition of the
data recorded by V2 in the solar wind, with particular focus on the average
quantities and low order statistics of the solar wind physical variables. We
then introduce five different signal reconstruction methods, which come from
different scientific field, adapted to our aim. these methods have been verified
by means of synthetic turbulent data, and by data coming from other probes
(Ulysses). Those time series are spoiled by introducing the same sequence of
gaps present in the Voyager 2 data. We finally applied the methods on V2
data, showing the plasma and magnetic field spectrum, with a discussion on
the spectral index observed.

Parameter Value
VSW Mean velocity 4.54 · 102 km/s
VA Alfvén velocity 4.94 · 101 km/s
Ev Kinetic energy 1.20 · 103 km2/s2

Em Magnetic energy 1.37 · 103 km2/s2

E Total energy 2.57 · 103 km2/s2

Hc Cross helicity 15.8 km2/s2

LEv
Kinetic correlation length 3.68 · 107 km

LEm
Magnetic correlation length 3.75 · 107 km

λv Kinetic Taylor scale 2.93 · 107 km
λm Magnetic Taylor scale 2.11 · 107 km
ni Numerical density 0.23 cm−3

ET Ions thermal energy 2.29 eV
T Ions temperature 2.70 · 104 K
βp Ions plasma beta 0.22
cs Ions sound speed 1.93 · 101 km/s
fci Ions Larmor frequency 0.02 Hz
fpi Ions plasma frequency 0.10 kHz
f∗ Convective Larmor frequency 0.44 Hz
rci Ions Larmor radius 4.29 · 103 km
ri Ion inertial radius 1.58 · 102 km

Table 5.1. Solar wind global parameters. Reference parameters from
the Voyager 2 recorded data. All the quantities are averages (or integral)
over the whole period of 180 days. VA = B/sqrtµ0mini and βp is the ratio
between thermodynamic and magnetic pressure.
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5.1 1979 DAY 1-180 Voyager 2 data
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Figure 5.2. Voyager 2 1979 data. Plasma velocities (red lines) and magnetic
fields (blue lines) recorded by Voyager 2 in the first 180 days of 1979, CO-
HOWeb repository (http://omniweb.gsfc.nasa.gov/coho/. RTN Heliographic
reference frame is used. The magnetic field is represented using Alfvén units.
In each of the right panels a 4 days period is magnified to show the data gaps.

The dataset consists of vector plasma velocity and magnetic field data
from 01/01/1979 00:00 GMT to 06/29/1979 19:00 GMT, a period of about
180 days, see figure 1 and tables 1-2. In 1979 the plasma speed and direction
were sampled each 96 s, while for magnetic field the resolution of the data we
use is 48 s (the actual sampling frequency is higher than 0.1 Hz).

As regards the magnetic field, the 48-s samples are averages from higher
resolution measurements. The actual sampling time of the LMF Voyager mag-
netometer is 0.06s. From this data, 1.92s, 9.6s and 48s averages had been
computed and published. As regards the plasma quantities (ion velocity, ion
density, ion thermal speed), 96s is the sampling time in the period we consider.
These data can be considered snapshots with a 96s cadence. In detail, the PLS
instrument consists of four Faraday cups. A single measurement comes from
an integration time, for each of the four detectors, which can be varied be-
tween 0.03 and 0.93 s. The time between measurements varies between 12s
and 192s, in 1979 it was 96s. (Behannon et al., 1977; Bridge et al., 1977). It is
well known that the variations in the solar wind speed reduce going outward
from the Sun as fast and slow parcels push against one another. Beyond 1
AU these interaction regions form shocks and much of the solar wind at 5 AU
has been shocked at least once. There is a lot of features in these time series
besides turbulence (fast wind, slow wind, ejecta, shocks, sector reversals, the
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Figure 5.3. Probability density functions of the plasma velocity and mag-
netic field fluctuations. (a-c-b) Normalized probability density function of
the plasma velocity(a) and magnetic field (b) components in the radial (red),
tangential (green) and normal (blue) direction, and of their module (c), nor-
malized as in equation 5.1. (d) Normalized probability density function of
the angle ψ between the radial direction and the local velocity (red line) and
magnetic (blue line) fields. The magnetic field is generally tilted 85 to 105
degrees with respect to the the radial direction.

heliospheric current sheet and its structures, etc.) and some of these features
contribute Fourier power at all frequencies to the power spectral density.

A plot of the data is shown in figure 5.2, where the fluctuations of the com-
ponents of plasma velocity and magnetic field in Alfvén units are represented
using the RTN Heliographic reference system. The RTN system is centered
at the spacecraft, the R (radial) axis is directed radially away from the Sun
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through the spacecraft. The T (tangential) axis is parallel to the solar equa-
torial plane and is positive in the direction of planetary rotation around the
Sun. The N (normal) axis completes the right handed set. The right panels of
the figure magnifies 4 days of data to show the typical data gap distribution.

µ σ2 Sk Ku
vR 454 1893 0.43 3.41
vT 3.21 252.9 -0.99 7.35
vN 0.51 250.3 -0.36 5.80
BR -0.04 0.173 0.53 6.71
BT 0.06 0.85 -0.72 10.2
BN 0.10 0.34 -0.24 7.65
|δv|2 3.00 10.47 2.40 10.27
|δB|2 2.48 17.41 3.17 14.90

Table 5.2. Intermittency and anisotropy for the solar wind. Mean values and
first three moments for the velocity and magnetic fields flucutation compo-
nents and their modules; µ is the mean value, σ2 the variance, Sk the skewness
and Ku the kurtosis. Velocity are measured in km/s and the magnetic field
in nT . The modules of the fluctuations are normalized on the variance, see
equation 5.1, in order to be able to compare them with a chi-square distribu-
tion (standard 3-component chi-square distribution has mean 3, variance 6,
skewness 1.63 and kurtosis 7).

The anisotropy of the fields can be determined by looking at the single
components probability density functions (PDFs) in figure 5.3, panels (a-c).
Particularly important are the differences of the radial components compared
to the tangential and normal ones: a quantification of the anisotropy can
be appreciated by comparing the skewness values in table 5.2. The presence
of intermittency in the velocity and magnetic fields can be also observed by
looking at the PDFs of the modules of the normalized vector fields, shown in
figure 5.3 (d). The normalized vector fields are given by

|δx|2 =
3
i

(xi − µi)2

σ2
i

(5.1)

where µi is the mean value and σ2
i the variance of the i-th component of the

vector field x. The same plot shows a three-component chi-square distribution
as a reference. Intermittency occurs over a broad range of scales and seems
to be slightly higher in the magnetic field data which has larger skewness and
kurtosis (see table 5.2).

In order to analyze anisotropic effects from a spectral point of view, it is
important to identify the wave-numbers parallel to the magnetic field k∥ and
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normal to it k⊥, as suggested first by Montgomery et al. (1987). We consider
the angle ψ between the local vector field and the radial direction, defined as

ψv = cos−1


|vr|
|v|


ψm = cos−1


|Br|
|B|


. (5.2)

The PDFs of these angles are represented in panel (a) of figure 5.3: while
the average plasma velocity is oriented along the radial direction (the mean
angle is 0.04 ± 0.03 radiant), moving away from the sun, the magnetic field is
characterized by angles close to π/2 which make it perpendicular to the radial
direction as expected for a Parker spiral.

5.2 Spectral analysis of lacunous data: meth-
ods and validation with synthetic turbu-
lence data

The data from the Voyagers suffer from increasing sparsity as the probes move
outward in the solar system. There are many causes of data sparsity, noise
and artificial unsteadiness in the signals, the most important of which are:

• tracking gaps due to the V2 location and due to limited deep space
network availability

• interference from other instruments

• possible errors in the measurement chain (from the Faraday cups up to
the data acquisition system and the signal shipping to Earth)

• the temporal sequence of the propulsion pulses (nuclear propulsion) used
to control the Voyager trajectory and thrusters pulses on the spacecraft

In the period considered, the the nominal resolution of the dataset used
δts was 96 s and 48 s for plasma and magnetic field data, respectively. For
the Voyager magnetometer experiment, the 48 s data comes from averages
of higher resolution data (1.92 s and 9.6 s – for a review about the Voyager
MAG experiment, see Behannon et al. (1977)). The longest continuous (i.e. no
missing data, δt = δts) data subset is ≈ 19.5 hrs. The distribution of the time
interval between two consecutive available data points δt is shown in figure
5.4.

In this section we show the analysis procedure followed to perform a reliable
spectral analysis and to quantify the uncertainty of the results obtained. Two
sequences of synthetic turbulence (named Synt1 and Synt2 ) have been gener-
ated from imposed three-dimensional power spectrum and random phases:
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Figure 5.4. Distribution of the time interval between consecutive V2 data
points (period 1979, DOY 1-180). nt is the number of data points spaced
by a time interval δt, and it is traced as a function of the interval length
δt . (a) Plasma data (i.e. velocity, density, and thermal speed data).
The sampling frequency is δtsV = 96 s, so this value is the most frequent
among the data. (b) Magnetic field data. The data resolution here is
δtsB = 48 s. Note that in both cases many time intervals δt = δts + j · δts,
with j = 1,2, ..., characterize the data. Note also that δt = δts + j · δts
represents a gap of (j − 1) missing data.

• Synt 1 : contains an energy injection range and an inertial range →
E3D(n/n0) = (n/n0)β

1+(n/n0)α+β

• Synt 2 : contains an energy injection range, an inertial range and a dis-
sipative range → E3D(n/n0) = (n/n0)β

1+(n/n0)α+β


1 − exp(n−ntot

γ
+ ϵ)


where β = 2, α = 5/3, n0 = 11, γ = 104, ϵ = 10−1: the energy injection range
follows a power law with exponent in the interval 2, the spectral maximum
is placed at a frequency corresponding to one solar day, the inertial range
extends over three and a half decades and has a power decay equal to 5 = 3,
and the dissipative range is placed around 5 ·103 Hz and has a maximum decay
of -3. These sequences have been made sparse by giving them the same gap
distribution as the 1979 Voyager 2 data. The true spectra of synt 1 and 2. The
true spectra of these dataset are shown in figure 5.5, where the results from the
techniques used are shown (spectral indices are always computed from a linear
regression in the log-log space, using all the points of the smoothed spectra
within the indicated frequency range.

We have considered five methods of spectral reconstruction. These methods
come from multi-disciplinary areas, spanning from astrophysics (maximum
likelihood), to classical numerical analysis, to telecommunication engineering
and image processing (compressed sensing)
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Figure 5.5. Validation on synthetic data and Ulysses measurement. ( a,
b) Spectra by direct FFT, with Hann windowing, on linearly interpola1ted
subsets. Segments are selected so that the maximum gap length filled by the
interpolation is Tg and their length is at least 12 h. Here the error lies be-
tween 0.4% (Tg = 0.5 h) and 2.4% (Tg = 4 h) in the range f ∈ [10−5; 10−3].
( c, d) Spectral computation in the entire period. The discrepancy of the
power law exponent is below 2.5% for the last three methods (CI, RP, CS).
A smoothing is applied by averaging neighboring frequencies to all curves.
The energy is preserved for all spectra, but they have been shifted for clar-
ity. (e, f ) Spectrum of the radial component of magnetic field recorded
by Ulysses in the period 1990, DOY 298 - 1991, DOY 45. The black lines
represents the spectrum from Ulysses data. The different spectral recov-
ery methods have been tested after having projected on the Ulysses data
the same gap distribution of Voyager 2 data in 1979. Panel (f ) shows the
compensated spectrum.
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Average spectra of windowed, linearly interpolated short data sub-
sets

This first method is limited to short intervals and, therefore, does not allow a
spectral reconstruction over many decades. Data are reconstructed on short
subsets, taking as parameter the maximum gap allowed inside the subsets Tg.
In this methodology we perform a linear interpolation to evaluate the missing
data. The result is the average on the spectra computed on those interpolated
subset. A windowing technique (Hann window) is necessary to eliminate noise
effect (≈ 1/f) due to segmentation. To preserve the total energy a factor of
2.66 is applied to the squared Fourier coefficients. The low-pass behavior of
the interpolator results in a steepening of the spectrum, especially in the high
frequency range, and becomes much more evident as Tg increases. For Synt1,
the relative error on the spectral index α lies between 1.9% (Tg = 0.5 hrs) and
5.4% (Tg = 4 hrs) in the range f ∈ [10−5,10−3] Hz, while in the last frequency
decade it increases up to 8% for Tg = 0.5 hrs. For Synt2, the discrepancy lies
between 0.4% (Tg = 0.5 hrs) and 2.4% (Tg = 4 hrs) in the range f ∈ [10−5,10−3]
Hz. Notice, that a similar teatment was used by Bellamy et al. (2005) where
the focus was on large ensemble of "short" spectra from observation periods of
about 13 h with maximum missings of 10%.

Blackman-Tukey method

The second method we implement is the Blackman & Tukey (1958) method
(BT, in the following), since it has been widely used in solar-wind analysis, see
e.g. the works by Matthaeus & Goldstein (1982); Leamon et al. (1998); Smith
et al. (2006a,b); Joyce et al. (2010); Borovsky & Denton (2010); Joyce et al.
(2012). This method is based on the fact that the autocorrelation function and
the power spectral density (PSD) are Fourier transform pairs. The strength
of this procedure is that it overcomes, in principle, the problem of nonuniform
time distribution. Indeed, the two-point correlation function is obtained by
direct application of its definition:

CX
ij = ⟨Xi(t)Xj(t+ τ)⟩ → CX

ij = 1
N − r

N−r
n=1

Xi(n)Xj(n+ r) (5.3)

where indexes i and j represents the components of the vector X and τ = r∆t
in the discrete case. In the general case, on the data X a linear prewhitening
is applied before evaluating the spectra:

Xi = X ′
i(t) − k ·X ′

i(t+ ∆t)
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where X′ is the original data, and k is a prewhitening parameter. In the case
of missing data, the unknown values can just be ignored, and they don’t con-
tribute to the sum (5.3). The BT method evaluates the two-point correlation
in this way:

CX
ij (r) = 1

N(r)

N(r)
n=1

Xi(n)Xj(n+ r)p(n, r) with r = 1, ...N/2 (5.4)

N(r) =
N

n=1
p(n, r) (5.5)

p(n, r) =
1 if (n) and (n+ r) exist

0 if (n) or (n+ r) does not exist
(5.6)

Afterwards, the PSD is then computed by means of a FFT after an (optional)
tapered cosine window. Finally, if the prewhitening has been applied, the
spectra need a postdarkening process, multiplying the computed PSD with a
transfer function:

Y (f) = Y ′(f) · [1 + f 2 − 2kcos(ω∆t)]

Spectra computed in this way are shown in figure 5.5(c,d) , orange curves. For
the gap amount and distribution of the data we consider, BT does not lead
to an accurate spectral estimation. The reason for this resides in the slow
convergence of the correlation function, that is highly affected by the sparsity
of data when it is computed using (5.4). The correlations result oscillates, with
the same periodicity as the counter N(r). The resulting spectra show - for the
high data sparsity here considered - non-physical peaks and biased values of the
spectral decay slope, see the orange curves in figure 5.5. For synt1, the error in
the slope is 15.4% for f ∈ [10−5, 5 ·10−4] Hz, and 38% for f ∈ [5 ·10−4, 5 ·10−3]
Hz. For synt2, which has a steeper spectrum in this last frequency range, the
error goes up to 72%. We conclude therefore that the basic BT method is not
suitable for solar-wind data with > 25% missings (at least if the number of
points is about 105). It should be noted that in all the works cited above, the
BT method is shown to work greatly for contiguous datasets or for datasets
with at most 10% gaps. Typically, the prewhitening/postdarkening operation
is associated to BT, in order to prevent spectral leakage due, e.g., to local
trends (see Rosenblatt (1965); Keisler & Rhyne (1976)).

Correlation on linearly interpolated data

The third method we test is still based on the two-point correlation function.
In this case correlations are computed on linearly interpolated data in the
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entire 180 days period. For gap distribution of V2 data, we see that the
linear interpolation improves the convergence of the correlation function. The
resulting power spectra are the pink curves in figure 5.5 (c, d). The linear
interpolator has a low-pass effect, leading to a leakage of energy from the
higher to the lower frequencies of the spectrum, but in this case this effect is
very limited. This is also confirmed by the application of a prewhitening filter,
which has no sensible effect on the result. The error in the spectral indices is
below 3% for any frequency range.

Maximum likelihood reconstruction

The fourth procedure is a maximum likelihood data recovery method. This
reconstruction is non-deterministic, but it is constrained by the true data where
these are available. A complete description of the technique is given by Rybicki
& Press (1992) and an application can be found in Press & Rybicki (1992).
The recovery is based on an estimation of the two-point correlation function
and it also allows to account for noise in data. We used the same correlations
computed for the previous method. In this case the size of filled gaps Tg

is a parameter to be chosen, and the goodness of the correlation function
allows us to recover the full sequence. Notice indeed, that the largest gap is
about 45 hrs, while the correlation function is quite accurate even for much
larger time lags, which allows recovery of the 180 days period. Results are
shown in figure 5.5(c,d), green curves. This procedure is computationally
more expensive than the others, but it improves the spectral estimation in the
high frequency range by reducing the low-pass effect of the linear interpolator
of the previous method. Also in this case the discrepancy from the correct
spectral slope is below 3 %.

Compressed-sensing

The last method we show performs a spectral recovery without data inter-
polation, and it is called compressed sensing (CS in the following, Donoho
(2006); Candes et al. (2006a,b)). Results are shown in figure 5.5 (c, d), blue
curves. CS is a recent theory that provides guarantees for the reconstruction
of (exactly or approximately) sparse signals, namely signals with many null (or
approximately null) components, from linear, compressed measurements. In
mathematical terms, CS studies the underdetermined linear system Ay = x,
where A is matrix of size m × n with m < n, and y and x have consistent
dimensions. The available data vector x is then a linear compression of the
unknown y, which is assumed to be sparse. CS theory provides conditions that
make such problems well posed, that is, with a unique solution. In particular,
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much effort has been devoted to study which families of sensing matrices A
guarantee the possibility of recovery. Among these, partial Fourier matrices
(say, discrete Fourier transform matrices with missing rows) have been recently
studied (see, e.g., Rudelson & Vershynin (2006); Duarte & Eldar (2011); Xu
& Xu (2015)), motivated in particular by the applications in medical imaging
problems such as MRI (Lustig et al., 2008). In the mentioned works, theoreti-
cal guarantees on partial Fourier matrices for CS are provided, in terms of the
number of necessary measurements and positioning of the missing rows. In this
work we formulated the problem as a Basis Pursuit and obtained the numerical
solution through the SPGL1 solver for sparse problems (see van den Berg &
Friedlander (2007) for theoretical and practical details). SPGL1 is suitable for
the Fourier framework, as it deals with complex variables. Moreover, it allows
us to cope with data of large dimension, since the sensing matrix A can be
defined as function instead of explicitly storing the whole matrix. The rela-
tive error in the spectral slope for these methods is below 2.5%, in the range
f ∈ [10−6,5 · 10−3] Hz of Synt1, and f ∈ [10−6,10−3] Hz of Synt2.

Genetic Optimization

This optimization works in couple with the previous method, and it is useful to
obtain a mean behavior of a spectral field. It works generating a stochastic set
of model spectra, then an optimization process let this set to converge on the
solution, comparing the datafield associated to the model spectrum with the
original data (Koza, 1992). The comparison is achieved by projecting the gaps
of original data on the computed ones, and then minimizing the discrepancy
between the spectra obtained from these two dataset, through the usage of an
arbitrarily chosen technique among the previous. In particular, we have use
this kind of optimization in couple with the Correlation method on interpolated
data. Even if this technique is pointless for data at 5 AU, when the number of
gaps increase it becomes an excellent tool to have an idea of the mean behavior
of the power spectra.

5.3 Power law spectra at 5 AU.
The spectra obtained for each component of magnetic field and plasma veloc-
ity and for their relevant energy are represented in figure 5.6. All the recovery
methods converge at similar spectral indices and can be considered equiva-
lent. In what follows we have chosen to present here the results given by the
correlation method with linear interpolation.

It should be noted that, by applying the Taylor frozen-flow hypothesis, the
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Figure 5.6. Voyager 2 spectra, 1979, DOY 1–180.(a): Spectra of the ve-
locity plasma components computed by the correlations method with linear
interpolation. (b): Spectrum of the plasma kinetic energy. Three methods
of analysis (compressed sensing, correlation spectrum with linear interpola-
tion and Rubycki & Press maximum likelihood recovery) are compared. (c
- d): Same as (a) and (b) for the magnetic field. The grey bands in panels
(a) and (c) indicate the instrumental uncertainty. The grey curve in panels
(b) and (d) represents the unsmoothed spectrum by means of interpolated
correlations. The spectral exponents are reported in table 5.3.

frequency can be converted to radial wave-numbers: the wavenumber space is
he preferred space where the turbulence cascade among different physical scales
is pictured. Considering an inertial regime, the energy E and the wavenumber
k satisfy the law E(k) ∝ kα. The values of α depend on the way the energy
is transferred among the inertial scales. The turbulent energy transfer rate
is defined (Zhou et al., 2004) as ε = u2

k/τsp, where uk(k) = (kE(k))1/2 is
the velocity associated to a given eddy, τsp(k) = τ 2

nl(k)/τt(k) is the spectral
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f range vR vT vN Ev

10−6 ÷ 4 · 10−4 -2.00 -1.49 -1.48 -1.67
4 · 10−4 ÷ 5 · 10−3 -1.18 -1.26 -1.48 -1.33

f range BR BT BN EB

10−6 ÷ 3 · 10−5 -1.06 -1.46 -0.85 -1.21
3 · 10−5 ÷ 5 · 10−3 -1.56 -1.72 -1.77 -1.72

f range bR bT bN Eb

10−6 ÷ 3 · 10−5 -1.24 -1.49 -1.11 -1.34
3 · 10−5 ÷ 5 · 10−3 -1.48 -1.67 -1.70 -1.65

Table 5.3. Solar Wind spectral exponents from Voyager 2 data at 5 AU. The
maximum error on spectral indexes is about 0.07; b is the magnetic field in
Alfvén units. For the velocity field, exponents in the higher frequency range
are computed neglecting the peak present at f = 2.6 mHz.

transfer time, τnl(k) = (kuk)−1 is the characteristic eddy turnover time, and
τt the time scale of the triple correlation function. Time τt may depend on
any relevant turbulent parameter and the wavenumber k, depending on the
dominant phenomenology.

We consider two classical phenomenological interpretation for plasma physics:

• The strain-dominated MHD turbulence, characterized by the direct in-
teraction among vortices having similar wavenumbers. Adopting the
Kolmogorov’s concept of independence of widely separated wavenum-
bers in the inertial range, the MHD motion is comparable to a classical
hydrodynamics motion in which the energy power law has been deter-
mined by dimensional analysis Kolmogorov (1941); Marsch & Tu (1989).
In this case the time scale of the transfer function is equivalent to the
eddy turnover time, and so the relation between E and k is given by
E(k) ∼ ε2/3k−5/3.

• The sweep-dominated MHD, characterized by the direct interaction of
vortices which can have very different wave-number. In particular, a
big vortex sweeps oppositely the small ones, depending on their polarity.
In that case, correlations decay with an effective lifetime determined by
propagation of structures at the Alfvén time scale, τA(k) = (VAk)−1, see
Iroshnikov (1963) and Kraichnan (1965), which yields the -3/2 slope.

Looking at the power spectra of each component of the velocity field, shown
in panel a of figure 5.6 and resumed in table 5.3, the behavior of the system
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at low frequencies (f < 4 · 10−4) shows that the exponent is steeper for the
radial component rather than the other two. In particular, the spectral index
in the radial direction is αvR

≈ −2.00. At high frequencies, the situation
is reversed and the spectral index of the radial component is αvR

≈ −1.18,
smaller than the other two (αvT

≈ −1.28, αvN
≈ −1.48). Considering the

power spectrum of the kinetic energy, the exponent found is αEk
≈ −1.67 in

the low frequency domain. At high frequencies, the situation is reversed and
the spectral index of the radial component is αvR

≈ −1.18, smaller than the
other two (αvT

≈ −1.28, αvN
≈ −1.48). Considering the power spectrum of

the kinetic energy, the exponent found is αEk
≈ −1.67 in the low frequency

domain. Such a value is consistent with the Kolmogorov hydrodynamic theory
for isotropic turbulence. In the high frequency range, for f ∈ [3 · 10−4,2 · 10−3]
the fit gives the value of αEk

≈ −1.33.
The magnetic field components (fig.7 c) present a very different phenomenol-

ogy with respect to the plasma velocity: for each component the spectra have
higher exponents in the high frequency range (f > 3 · 10−5) and they tend to
become flatter at low frequencies, as shown in figure 5.6 (c-d) and in tables
5.3. Moreover, an anisotropic behavior is also observed both at high and low
frequencies: in particular, the radial component is always lower than the tan-
gential one. The normal component, instead, has a spectral index analogous
to the radial one a low frequencies (for f < 3 · 10−5, considering Alfvén units,
αbR

≈ −1.24 and αbN
≈ −1.11, when αbT

≈ −1.49), while it becomes similar
to the tangential exponent at high frequencies (for f > 3 · 10−5, considering
Alfvén units, αbT

≈ −1.67 and αbN
≈ −1.70, when αbT

≈ −1.48). The spec-
tral exponent for the magnetic energy is αEm ≈ −1.65 at high frequencies, as
predicted by the Kolmogorov law (fig.7 d). At low frequencies the exponents
drop to values around αEm ≈ 1.34.

Spectra trend is visible in figure 5.7, where spectra have been smoothed
using a gaussian kernel smoother, defined as

X(κ) =


κ∗
K(κ, κ∗)X(κ∗)
κ∗
K(κ, κ∗) K(κ, κ∗) = exp


κ− κ∗

2b(κ)


b(κ) ∝ κ (5.7)

where X is the original spectra and X the smoothed one. Note that the peak
in kinetic spectra visible at the frequency f = 2.6 mHz is associated to the
data acquisition frequency – indeed, it is a harmonic of the sampling frequency
fs = 10.4 mHz. It is not an artifact of the signal reconstruction methods, since
such a peak does not show up in the test cases of figure 5.5. Moreover it is
most evident in the tangential and normal velocity components, while it is not
present in the magnetic field.
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Figure 5.7. Plasma velocity and magnetic fields components and module
power spectra. In this plot a variable gaussian smoothing is used, allowing
to qualitatively compare the mean trend of the different components.

Spectra presented here are in good agreement with those found by Matthaeus
& Goldstein (1982) (magnetic spectral index of -1.7 at high frequencies for Voy-
ager 1 data at about 5 AU) and Klein et al. (1992) (magnetic spectral index
of -1.17 at low frequencies and -1.88 at high frequencies for Voyager 1 data at
4 AU), where an analysis for V1 spectra of magnetic modules respectively at
5 and 10 AU can be found for frequencies ranges from 10−7 Hz to 10−4 Hz.

However, caution must be taken before adopting the Kolmogorov interpre-
tation because, especially at large scales, since a given spectral power low can
represent different phenomenology of solar wind, such as fast wind/slow wind
interaction, ejecta, shocks, sector reversals, heliospheric current sheet, etc. In
order to distinguish effects due to the turbulent fluctuations from some of the
other phenomenologies, a method to remove jumps due to shock or harmonic
behavior as been implemented (Burlaga et al., 1989; Roberts & Goldstein,
1987). The condition for which a point is considered a jump point is that:

|⟨X⟩−1h − ⟨X⟩+1h| > H · min(⟨X2⟩−1h, ⟨X2⟩+1h)

where ⟨X⟩(t) and ⟨X2⟩(t) represent the local mean and standard deviation
computed on a 5 hours periods, respectively. The subscripts indicates that
these quantities are evaluated 1 hour before or after the jump point, and H
is a multiplier, for which Roberts & Goldstein (1987) suggest a value of 20
so that jumps cover about the 8% of the data. In the present case we chose
H = 10 in order to reach a jump fraction equal to 7%. The jump points are
then linearly interpolated, obtaining a "jump series". The difference between
the complete data-set and the jump series provides the "fluctuation series".
Results are shown in panel (a) of figure 5.8.
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Figure 5.8. Panel (a) Jump (pink) and fluctuation (blue) series of V2 radial
velocity, as identified by the Roberts & Goldstein criterion. Panel (b) Power
spectra of total radial velocity (green), contribution of fluctuations (blue),
and contribution of jumps (pink).

As shown in panel (b) of figure 5.8, the contribution to the global spectrum
is mainly due to the fluctuations for frequencies greater than 4 ·10−6 Hz (which
corresponds to a period of 3 days, so about 0.75 AU), and it is still present
a subdivision between two different spectral index (around -2 at medium fre-
quencies, and -1.2 at high frequencies – separation frequency is 4 · 10−4 Hz).
For frequencies lower than 4 ·10−6 Hz, the contribution to the global spectrum
is mainly due to discontinuities and other local trends.

5.4 Magnetic and Cross helicities

Since the seminal paper by Moffatt (1969), the concept of helicity has been
used as a tool to describe the structure of a fluid or plasma flow. From a
mathematical point of view, the helicity density associated with two vector
fields X and Y is defined as the scalar product between the two vector, X · Y;
the integral of such quantity in the whole domain gives the total helicity.
Helicity is a pseudoscalar quantity, that is, it changes sign switching from a
right-handed to a left-handed frame of reference.

In plasma physics, magnetic and cross helicity represent important quan-
tities in the analysis, since represent two of the so called “rugged” invariants,
together with the total energy density of the field e = u2+b2, where b = b/(µ0ρ)
is the magnetic field in Alfv’enic units. In a similar way, the kinetic helicity
is a material invariant of the flow in an inviscid (neutral) fluid, which is a
direct consequence of Kelvin’s theorem. Magnetic and cross helicity densities
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are defined, respectively, as
hm = A · B. (5.8)

hc = u · B. (5.9)

where A = ∇ ×B is the potential field.
From a geometric point of view, the cross-helicity gives a measure of the

degree of linkage of the vortex and magnetic flux tubes within the flow. In fact,
considering the simplest archetypical sketch of figure 5.9, where the two fields
are concentrated in two thin untwisted closed tubes which are intertangled,
the helicity is equal to 2nΓ1Γ2, where n is the number of linking or winding of
the two tubes, and Γ1 and Γ2 are the flows across the two tubes. Although, in
general, a generic field cannot be simply decomposed into a finite number of
simple non-overlapping flux tubes, this simple sketch helps to understand the
helicity significance. Therefore, a normalized helicity gives the measure of the
knottedness of the first field tube(s) with the second field tube(s).

n=1 n=3

Figure 5.9. Sketch of a configuration of linked vortex/magnetic tubes with
different number of windings n, that produce a non-zero helicity. Kinetic
helicity: red and blue tubes are vorticity tubes. Magnetic helicity: red and
blue tubes are magnetic tubes. Cross-Helicity: the red tube is a vortex tube
and the blue tube is a magnetic tube (or the opposite).

For what concerns the physical meaning, both quantities Hm and Hc, as
well their densities, are zero in a mirror-symmetric system and non-zero values
can appear only when this symmetry is broken in the flow.Because the value
of these inviscid (ideal flow) invariants cannot be modified by nonlinear terms,
they constrain the overall dynamics and, therefore, their value and spectral
distribution can give valuable information on the dynamics of turbulence in
the solar wind.

The magnetic helicity plays a central role in the dynamo effect, the so-
called α-dynamo. In fact, the presence of a magnetic field without reflectional
symmetry, that is, with a non-zero magnetic helicity, generates fluctuations
of the magnetic field, which, to first order approximation, are proportional
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to the helicity (Moffatt & Tsinober (1992); Moffatt (1978); Yokoi (2013)).
Compared to the magnetic energy, which appears to be transferred to the
small scale fluctuations, magnetic helicity presents an inverse cascade, that is,
it cascades toward the larger scales of the flow (see Alexakis et al. (2007)). As
a consequence, magnetic helicity is depleted much more slowly than energy
in a freely evolving flow, while in a forced flow small-scale helical forcing can
produce large-scale magnetic fields.

The turbulent cross-helicity is directly related to the coupling coefficients
for the mean vorticity in the electromotive force and for the mean magnetic-
field strain in the Reynolds stress tensor Yokoi (2013). This relationship sug-
gests that the cross-helicity is important where inhomogeneities in the flow
and in the magnetic field appear. Since such large-scale structures are ubiq-
uitous in astrophysical phenomena, cross-helicity is expected to play a role
in such flows. In the presence of cross-helicity, the mean vortical structures
contribute to the electromotive force: the generation of magnetic field due to
this effect is called the cross-helicity dynamo (or β-effect). In fact, in presence
of a large scale vortical motion, the turbulent cross-helicity contributes to the
electromotive force aligned with the large-scale vorticity. Provided that the
velocity and magnetic field fluctuations are correlated, a contribution to the
electromotive force parallel (when hc > 0) or antiparallel (when hc < 0) to
the mean vorticity arises Yokoi & Balarac (2011). Moreover, more recently
direct numerical simulations of magnetohydrodynamic turbulence have shown
that, in association with high values of the cross-helicity, a blocking effect on
the spectral transfer of energy is observed and results in energy accumulation
in the system. This is concomitant with an increase of the exponent of the
spectrum with the cross-helicity level. The spectral exponent increases toward
the limiting value of 2 (Mizeva et al., 2009).

The magnetic and cross-helicity spectra have been computed from single
point measurement by the Voyager 2 spacecraft using data interpolation to
reconstruct the missing values shown in section 5.2. While the cross-helicity
can be directly computed from raw data (both plasma velocity and magnetic
field are available), the evaluation of the magnetic helicity is more difficult,
since the potential field A is not directly measured. For that purpose, we
applied the formulae first proposed by Matthaeus et al. (1982); Matthaeus
& Goldstein (1982) to deduce the magnetic helicity and cross-helicity spectra
from the Fourier transforms of the velocity-magnetic field correlations. For the
magnetic helicity of the fluctuations

ĥm(κ) = 2
κ

Im (ST N(κ)) , (5.10)

where ST N is the Fourier transform of the correlation between the tangential

101



5 – Solar wind analysis from Voyager probes data. Data reconstruction tecniques and application at 5 AU.

and normal components of the magnetic field (ST N(κ) = 1
2π


CT N(r)eiκrdr,

with CT N(r) = ⟨b′
T (x)b′

N(x+ r)⟩), while the cross-helicity of the fluctuations
is computed as the Fourier transform of the correlation u′

Rb
′
R + u′

T b
′
T + u′

Nb
′
N

between the velocity and magnetic fields. Only the assumption of homogene-
ity is necessary but no assumption of isotropy is made in obtaining the one-
dimensional energy and helicity spectra.
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Figure 5.10. (Panels a-b) Power spectra of the magnetic helicity density
and of the magnetic energy
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graphic clarity for frequencies above 10−6 Hz, not all the points of the
spectra. (Panels c-d) Normalized magnetic helicity σm = κĥm/Em (c)
and normalized cross-helicity σc = ĥc/E (c). The thick line indicates the
cumulative relative helicity.
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A closer look at the scale dependence of the cross-helicity can be obtained
by looking at its one-dimensional power spectrum. The cross-helicity spectrum
can take both positive and negative values. The sign of the cross-helicity
spectrum often indicates the propagation of Alfvénic waves outwards from
the sun (positive helicity) (Matthaeus et al., 1982; Matthaeus & Goldstein,
1982), as also contemplated by Belcher & Davis (1971), but periods with mixed
helicity sign can appear. In our data, see figure 5.10, there is no preferred sign
in any part of the cross-helicity spectra, whose modulus shows a fair power
law scaling with an exponent equal to -1.59, close to the spectral exponent
of the total energy spectrum, -1.62 during 1979. The number of frequencies
with positive and negative values is comparable at all scales, and they balance:
the integral cross-helicity can be estimated as 15.8 km2/s2, much lower than
the total energy of 2640 km2/s2. The normalized cross-correlation is less than
1% at all frequencies, and therefore the two fluctuating fields are very mildly
correlated.

Similar to the spectrum of the cross-helicity is the spectrum of the magnetic
helicity, which has also a power law range with exponent -2.66, see panels (a)
5.10, shows almost an equipartition positive and negative values throughout
the inertial range of the spectrum. The exponents of the magnetic energy spec-
trum in the same range of frequencies are -1.63 and -1.80, respectively (notice
that in the ordinate the quantity κĥm is represented). This result implies that
the relative magnetic helicity of each scale, given by the ratio κĥm(κ)/Êm(κ),
slowly decreases as κ−0.03 in the observed frequency range. The sign of the nor-
malized magnetic helicity κĥm/Em is positive at largest scales, and tends to
change sign frequently at smaller scales. If we consider all the wave numbers,
this value is relatively small, and equal to 0.135 (mainly due to the very first
point). It is known that magnetic helicity can change sign and have opposite
signs at the largest and smallest scales in magnetohydrodynamic system, an
effect of the inverse cascade and its conservation. As a general comment, the
weak values of the normalized magnetic helicity can be considered a signature
of the negligible injection of helicity in the solar wind at the equatorial plane
because the presence of the inverse cascade of helicity makes the helicity dis-
sipation much lower than the dissipation of energy, thus the magnetic helicity
remain almost constant throughout the system.
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P1 (SH) P2 (UH) P3 (SH) P4 (UH) Total
VSW [km/s] 153.2 159.2 164.0 143.7 152.3
VA [km/s] 65.7 52.3 60.25 58.9 60.2
Ev [km2/s2] 1511.8 1365.4 2210.1 1626.0 1943.8
Em [km2/s2] 2498.7 1527.4 2226.0 1376.4 1894.7
E [km2/s2] 4010.5 2892.8 4436.1 3002.4 3838.5
ni [dm−3] 2.16 1.71 1.17 1.14 1.38
T [K] 15.4·104 16.7·104 9.6·104 5.5·104 9.8·104

βp 2.43 3.59 1.36 0.69 1.48
cs [km/s] 1021.4 1119.2 997.7 803.6 928.5
fci [Hz] 0.0018 0.0014 0.0013 0.0013 0.0014
fpi [Hz] 9.05 8.53 7.08 6.98 7.62
f∗ [Hz] 0.037 0.029 0.041 0.046 0.040
rci [km] 4142 5517 4037 3138 3778
ri [km] 5542 5812 6975 7043 6576

Table 5.4. Reference parameters from the Voyager 2 recorded data.
All the quantities are averages (or integral) over the indicated periods.
Symbols are the same as in table 5.4

5.5 Power spectra law in the heliosheath: pre-
liminary results

V2 has crossed the termination shock entering in the heliosheath in August
2007 (Richardson et al., 2008). In this region, many are the observations not
yet completely understood, as pointed out by Richardson & Decker (2014);
Opher (2015). One of these is the difference in the flux of energetic ions (from
about 40 KeV suprathermal ions to Galactic Cosmic Rays, >1 GeV) and elec-
trons (from about 50 keV to >100 MeV) observed by V2 and its twin probe,
Voyager 1 (V1) (Hill et al., 2014). In particular, while the particle profiles at
V1 were almost constant in the period 2007-2012, at V2 large variations up to
a factor of 100 were recorded. According to Hill et al. (2014), possible physical
interpretations to explain the enhancement or depression of energetic particle
intensity are related to the Helioshperic Current Sheet (HCS) maximum latitu-
dinal extensions. These northern and southern boundaries enclose the so called
sectored heliosheath region (SHS), where the magnetic field changes polarity
as the HCS is crossed, according to the Parker spiral structure (Parker, 1958).
At higher North/South latitudes, outside the sector region, the heliosheath
is unipolar (UHS). Traveling at a latitude of about 30◦ South, V2 is thought
to have crossed different times the boundary of the SHS, and a correlation
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Figure 5.11. Comparison of three reconstruction methods (correlation,
compressed sensing and genetic optimization) on synthetic dataset. The
synthetic dataset have been made spare by giving them the distribution
as the 2009 V2 data.

was found between the energetic particles flux at V2 and the alternating of
unipolar, high-latitude, and sectored, low-latitude, heliosheath zones. Differ-
ent particle transport properties are expected in these regions. Opher et al.
(2011) suggested that in the sectored region the magnetic field was not lam-
inar but chaotic, with the sector structure being replaced by a sea of nested
magnetic islands. Spectral analysis can be a helpful instrument to characterize
the velocity/magnetic field (turbulent?) fluctuations in different heliosheath
regions (sectored/unipolar). In particular, in this very preliminary analysis, it
has been taken into account the hourly averaged data of the V2 data in the
period that ranges between September 2007 (about 83 AU from the sun) and
June 2010 (about 92 AU from the sun). According to the works of Hill et al.
(2014); Opher (2015), in this time-range we have found 2 periods of SHS, and
2 of USH:

• P1 SHS September 2007 – January 2008
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Figure 5.12. Magnetic field power spectra in the heliosheath for the four
selected periods. The first three columns shows the behaviour of the magnetic
field components (respectively Br, Bt and Bn), while in the last column the
magnetic energy is represented. Spectra are computed on hourly averaged
dataset. The horizontal dashed lines represent the instrumental accuracy.

• P2 UHS January 2008 – March 2008

• P3 SHS March 2008 – February 2009

• P4 UHS February 2009 – June 2010

In the considered period the data gaps problem is worsened, since about
70% of data are lost (tracking issues, noise, instrumental interferences and
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Figure 5.13. Velocity field power spectra in the heliosheath for the four
selected periods. The first three columns shows the behaviour of the
magnetic field components (respectively ur, ut and un), while in the last
column the magnetic energy is represented. Spectra are computed on
hourly averaged dataset. The horizontal dashed lines represent the mean
instrumental accuracy.

other reasons). Figure 5.11 shows the test of the methods on synthetic data
with different spectral index. All the methods achieve the correct mean spec-
tral index, but the great sparsity generates different issues: correlation methods
tends to underestimate the power spectra at high frequencies, compressed sens-
ing is very noisy and genetic interpolation could just give information about
the mean trend.
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The results of the methodology are shown in figure 5.13 for the plasma
velocity field, and in figure 5.12 for the magnetic field. A major problem in
the velocity field analysis is the big uncertainty of the data, due to a poor
instrumental accuracy, which is equal to 0.5% of the instantaneous velocity
module, and it is not constant in time (see http://omniweb.gsfc.nasa.gov).
Because of that, velocity spectral behavior cannot be sufficiently accurate to
reach a statistical characterization of the different periods, since only in the low
frequency range of radial velocity the methods converge to the same solution.

For what concerns the magnetic field, the instrumental accuracy is ±0.03
nT, giving the possibility to evaluate the spectral index. These spectral index
are reported in table 5.5. In particular, it has been found that the spectral
exponents are isotropic and near to −1 for frequency lower than 10−5 Hz
(estimation obtained from the Correlation method), and becomes anisotropic
at higher frequency, with values which ranges from −1.6 to −1.9 (estimation
obtained from genetic optimization and compress sensing). The behavior seems
not to be influenced by HSH/USH region, at least in the scale range considered.
Further investigation are required, using the high-resolution data or improving
the quality of the plasma velocity data.

f < 10−5 f > 10−5

period BR BT BN |B| BR BT BN |B|
P1 -0.91 -1.40 -1.36 -1.30 -1.83 -1.91 -1.66 -1.74
P2 -1.38 -1.33 -1.30 -1.33 -1.63 -1.92 -1.69 -1.70
P3 -1.00 -1.19 -1.11 -1.13 -1.62 -1.60 -1.83 -1.74
P4 -1.20 -1.16 -1.09 -1.13 -1.73 -1.63 -1.85 -1.77

Table 5.5. Spectral indices of the various magnetic components and module
in the heliosheeth. Indices has been computed via linear regression in the
log-log plane. At low frequencies (< 10−5) results achieved with compress
sensing method has been used, while at high frequencies the estimation is
based both on the Genetic Optimization and the Compress Sensing.

5.6 Conclusions
In this chapter we have analyzed and tested methods with the aim of eval-
uate the spectral behavior of gapped time-series. The methods have been
tested with the aim of compute solar wind spectra in different regions of the
heliosphere. Procedures have been validated by testing five different data re-
covery methods (windowed averaged Fourier transforms of short data subsets,
linearly interpolated over short gaps, Blackman-Tukey method, linear inter-
polation plus two-points correlations, and maximum likelihood recovery and
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compressed sensing) both on synthetic data which mimic the behavior of the
well-known homogeneous and isotropic turbulence system and on a continuous
time series of solar-wind measurements from 1 AU, to which data gaps have
been added. In particular, the two test bases have been made lacunous by pro-
jecting the same gap distribution as in the 1979 first semester V2 plasma data
Taking advantage of such methods, it has been possible to compute the power
spectra of the solar slow wind and magnetic field at 5 AU at low latitude from
Voyager 2 measurements, determining spectra for a frequency range extending
over five decades (10−7 − 10−2 Hz). This extended range, much wider than in
any other previous study at this distance, allows to observe the changes in the
spectral slopes providing informations on the structure of the solar wind.

The plasma velocity spectrum presents an intermediate frequency range
with a power law decay exponent of about - 2 for the radial component and of
about -1.5 for the tangential and normal components up to f = 3 · 10−4 Hz,
while some flattening occurs at higher frequencies. The magnetic spectrum
shows a change of spectral index at about f = 5 · 10−5 Hz, in agreement with
Ulysses data near the ecliptic at 4.8 AU. Above this frequency the slope is
−1.76 ± 0.06 and remains constant in the whole range of observed frequencies.
We can therefore conclude that the inertial range extends at least from f =
5 · 10−5 to f = 5 · 10−3 Hz. The variation of the spectral index can be due to
the presence of anisotropies with relevant effects of the parallel sweeping due
to the large scale magnetic fluctuations. In fact, the anisotropy appears to be
significant at frequencies below f = 10−5 Hz, when most of the energy tends
to be concentrated into the radial component of the velocity fluctuations and
in the tangential component of the magnetic field fluctuations.

Alfvénic fluctuations do not appear to play a significant role, indeed the
normalized cross helicity is globally below 1%, because positive and negative
values, corresponding to outward and inward propagating fluctuations, respec-
tively, are equally distributed along the frequency range. The magnetic helicity
shows a small positive polarization of the magnetic field, due to the contribu-
tion of the slowest fluctuations.

In the last part it has been shown some preliminary results on data inside
the heliosheath, where the solar wind interacts with the interstellar medium,
and the system is characterized by the alternation of region with constant
and varying polarity. The spectral analysis could be helpful to understand
differences between such regions, but while it has been possible to reach a first
estimation of the spectral indices of the magnetic field, no significant differences
has been found. Further analysis on high-resolution data are required in order
to point out differences in the spectral behavior.
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Chapter 6

General conclusion

To conclude, in this thesis we have analyzed two different flows, which belong
to different physical contexts, but characterized by the presence of multi-scale
inhomogeneous fluctuations, to which is associated a strong anisotropy, and
by the presence of effects related to stratification / mixing.

In the first part we have performed a set numerical experiments, considered
a shear-less mixing layer obtained through the coupling of two homogeneous
isotropic turbulent fields as initial condition, observing its evolution during the
natural decay. The simulation has been performed with our home-produced
computational code, which allows us to take advantage of the modern massively
parallelized machines.

We have mainly focused on two aspects of the mixing: the behavior of a
passive scalar transported through the interface, and the influence of a thermal
stratification.

For the passive scalar, it has been observed that the mixing thickness (both
of the scalar and self-diffusion of the velocity) follow the same temporal evo-
lution: in particular the growth is faster in two dimensions. A relevant result
obtained concerns the presence of two intermittent fronts in the scalar field.
These fronts are located at the edges of the mixing region, moving away from
the initial position of the interface as the mixing thickness increase, with a
deeper penetration in the high energy region. Such intermittency is not lim-
ited to the large scales, but involves also the small scales. As shown by the
simulation of a simple wavy perturbations of the interface, we have found that
this behavior is not specific to the turbulent transport, instead it is a general
dynamic characteristic of the chosen scalar field initial condition. The inertial
range energy scaling is close to k−3 (for 2D cases) and k−5/3 (for 3D cases),
while the passive scalar tends to k−1.7 (for 2D cases) and k−5/3 (for 3D cases).
Nevertheless, at the end of the transient evolution (10 time scales) in all cases
we found an exponent value which is closer to the three dimensional k−5/3
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forward cascade than to the two dimensional k−1 Batchelor’s scaling.

The influence of a thermal stratification inside the mixing layer has been
investigated, taking into account both stable and unstable configurations. We
have analyzed the dynamics of the velocity field and of unsaturated water va-
por transport (represented as a passive scalar). Different levels of stratification
have been considered, and it was found that a sufficiently intense stratifica-
tion (so with a Froude square number of the order of 1) deeply changes the
mixing dynamics. As a general consideration, we have observed that a stable
stratification damp all the mixing effects, while an unstable condition tends to
enhance the process. This is due to the formation of a sublayer inside the mix-
ing region, characterized of a level of kinetic energy lower/higher than in the
external regions, which can be interpreted respectively as pit (for stable)/peak
(for unstable) of kinetic energy. In these sublayers a great deviation from large-
scale isotropy is observed. We have observed that the entrainment (which in
neutral condition decrease following an exponential law) vanish very quickly
when the Froude square number reaches values of the order of 1. A quali-
tatively similar behavior has been observed also for other physical quantities
(such as fluxes, small-scale anisotropy, etc.). From a spectral point of view, it
has been found that the stratification acts directly on the large-scales of the
vertical velocity, but the influence can be found in the dissipative range of all
the physical variables – both in any of the velocity components and passive
scalars.

In the second part we have carried out an analysis on the Voyager 2 data
in order to characterize, from a statistical and spectral point of view, the solar
wind. The biggest problem faced regards the data sparsity of the measured
time-series. Various techniques for spectral analysis have been implemented
and tested both on synthetic turbulence dataset and on solar wind data at 1
astronomical unit. Exploiting such methods, the solar wind at 5 astronomical
units has been first analyzed, determining spectra for a frequency range ex-
tending over five decades (10−7 − 10−2 Hz). Thanks to such extended range,
we observed the changes in the spectral slopes both in the plasma velocity
than in magnetic field. We have found an anisotropic behavior in the large
scales of velocity field, with a greater spectral index in the radial component.
A more isotropic behavior has been observed at higher frequencies (f = 3·10−4

Hz), with lower spectral index. Also the magnetic spectrum shows a change of
spectral index at about f = 5 · 10−5 Hz, in agreement with Ulysses data near
the ecliptic at 4.8 AU. We have therefore concluded that the inertial range
extends at least from f = 5 · 10−5 to f = 5 · 10−3 Hz. These variations are
probably related to the anisotropy of the physical system, since alfvénic fluc-
tuations do not appear to play a significant role, indeed the normalized cross

111



6 – General conclusion

helicity is globally below 1%, because positive and negative values are equally
distributed along the frequency range. We have then started the analysis of
heliosheath data (around 90 astronomical units, where the solar wind interacts
with the interstellar medium, and the system is characterized by the alterna-
tion of region with constant and varying polarity). In this region the data
sparsity is very poor (only about 30% of data available), but it was possible to
estimate the spectral indices of the magnetic field considering hourly averaged
data. Further analysis on high-resolution data are required in order to better
characterize the whole spectral behavior.

112



Bibliography

Alexakis, A., Mininni, P. D. & Pouquet, A. 2007 Turbulent cascades, transfer,
and scale interactions in magnetohydrodynamics. New J. Physics 9, 298.

Antonia, R. A., Anselmet, F. & Chambers, A. J. 1986 Assessment of local
isotropy using measurements in a turbulent plane jet. J. Fluid Mech. 163, 365–
391.

Behannon, K. W., Acuna, M. H., Burlaga, L. F., Lepping, R. P., Ness,
N. F. & Neubauer, F. M. 1977 Magnetic field experiment for voyagers 1 and
2. Space Sci. Rev. 21 (3), 235–257.

Belcher, J. W. & Davis, L. 1971 Large-amplitude Alfvén waves in the interplan-
etary medium. J. Geophys. Res. 76, 3534–3563.

Bellamy, B. R., Cairns, I. H. & Smith, C. W. 2005 Voyager spectra of density
turbulence from 1 au to the outer heliosphere. J. Geophys. Res. 110 (A10).

van den Berg, E. & Friedlander, M. P. 2007 Spgl1: A solver for large-scale
sparse reconstruction. Http://www.cs.ubc.ca/labs/scl/spgl1.

Biferale, L., Mantovani, F., Pozzati, F., Sbragaglia, M., Scagliarini,
A., Schifano, F., Toschi, F. & Tripiccione, R. 2011 Numerical simulations
of Rayleigh-Taylor front evolution in turbulent stratified fluids. Philos. T. Roy.
Soc. A 369 (1945), 2448–2455.

Biona, CB, Druilhet, A, Benech, B & Lyra, R 2001 Diurnal cycle of temper-
ature and wind fluctuations within an African equatorial rain forest. Agric. Forest
Meteor. 109 (2), 135–141.

Blackman, R. B. & Tukey, J. W. 1958 The measurement of power spectra. Dover
Publications.

Borovsky, J. E. & Denton, M. H. 2010 Solar wind turbulence and shear: A
superposed epoch analysis of corotating interaction regions at 1 au. J. Geophys.
Res. 115.

113



BIBLIOGRAPHY

Bos, W. J., Kadoch, B., Schneider, K. & Bertoglio, J. P. 2009 Inertial
range scaling of the scalar flux spectrum in two-dimensional turbulence. Phys.
Fluids 21, 115105.

Brethouwer, G., Hunt, J. C. R. & Nieuwstadt, F. T. M. 2003 Micro-
structure and lagrangian statistics of the scalar field with a mean gradient in
isotropic turbulence. J. Fluid Mech. 474, 193–225.

Bridge, H. S., Belcher, J. W., Butler, R. J., Lazarus, A. J., Mavretic,
A. M., Sullivan, J. D., Siscoe, G. L. & Vasyliunas, V. M. 1977 The plasma
experiment on the 1977 voyager mission. Space Sci. Rev. 21, 259–287.

Bruno, R. & Carbone, V. 2013 The the solar wind as a turbulence laboratory.
Living Rev. Solar Phys. 10 (2).

Burattini, P., Lavoie, P., Agrawal, A., Djenidi, L. & Antonia, R. A. 2006
Power law of decaying homogeneous isotropic turbulence at low reynolds number.
Phys. Rev. E 73, 066304.

Burattini, P., Lavoie, P. & Antonia, R. A. 2005 On the normalized turbulent
energy dissipation rate. Phys. Fluids 17, 098103.

Burlaga, L. F., Mish, W. H. & Roberts, D. A. 1989 Large-scale fluctuations
in the solar wind at 1 AU: 1978–1982. J. Geophys. Res. 94 (A1), 177–184.

Candes, E. J., Romberg, J. K. & Tao, T. 2006a Robust uncertainty principles:
exact signal reconstruction from highly incomplete frequency information. IEEE
T. Inform. Theor. 52 (2), 489–509.

Candes, E. J., Romberg, J. K. & Tao, T. 2006b Stable signal recovery from
incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59 (8),
1207–1223.

Canuto, C., Hussaini, M.Y., Quaternoni, A. & Zang, T.A. 1988 Spectral
Methods in Fluid Dynamics. Springer Verlag.

Celani, A., Cencini, M., Vergassola, M., Villermaux, E. & Vincenzi, D.
2005 Shear effects on passive scalar spectra. J. Fluid Mech. 823, 99–108.

Chung, D. & Matheou, G. 2012 Direct numerical simulation of stationary ho-
mogeneous stratified sheared turbulence. J. Fluid Mech. 696, 434–467.

Danaila, L. & Antonia, R. A. 2009 Spectrum of a passive scalar in moderate
Reynolds number homogeneous isotropic turbulence. Phys. Fluids. 21, 111702.

Danaila, L., Antonia, R. A. & Burattini, P. 2012 Comparison between ki-
netic energy and passive scalar energy transfer in locally homogeneous isotropic
turbulence. Physica D 241, 224–231.

114



BIBLIOGRAPHY

Davies Wykes, Megan S. & Dalziel, Stuart B. 2014 Efficient mixing in strat-
ified flows: experimental study of a rayleigh-taylor unstable interface within an
otherwise stable stratification. J. Fluid Mech. 756, 1027–1057.

Di Savino, S, Gallana, L, Iovieno, M & Tordella, D 2013 Transient forma-
tion of the passive scalar spectrum at a turbulent interface. In Proceedings of the
XXI AIMETA Conference. Turin, Italy.

Donoho, D. L. 2006 Compressed sensing. IEEE T. Inform. Theory 52 (4), 1289–
1306.

Donzis, D. A. & Yeung, P. K. 2010 Resolution effects and scaling in numerical
simulations of passive scalar mixing in turbulence. PhysicaD 239, 1287–1287.

Drazin, P. & Reid, D. 1981 Hydrodynamic stability. Cambridge (UK): Cambridge
University Press.

Duarte, M.F. & Eldar, Y.C. 2011 Structured compressed sensing: From theory
to applications. IEEE T. Signal Proces. 59 (9), 4053–4085.

Emran, M. S. & Schumacher, J. 2008 Fine-scale statistics of temperature and
its derivatives in convective turbulence. Journal of Fluid Mechanics 611, 13–34.

Fernando, HJS 1991 Turbulent mixing in stratified fluids. Ann. Rev. Fluid Mech.
23, 455–493.

Fraternale, F., Gallana, L., Iovieno, M., Fosson, S., Magli, E.,
Tordella, D., Opher, M. & Richardson, J. D. 2015a Spectral analysis in
the solar wind and heliosheath. In Proceedings of the 14th Annual Internartional
Astrophysics Conference. Tampa Bay, FL, USA.

Fraternale, F., Gallana, L., Iovieno, M., Opher, M., Richardson, J. D.
& Tordella, D. 2016 Turbulence in the solar wind: spectra from voyager 2 data
at 5 au. Phys. Scripta 91 (2), 394–401.

Fraternale, F., Gallana, L., Iovieno, M., Richardson, J. D. & Tordella,
D. 2015b Solar wind plasma: turbulence signature in voyager 2 1979 spectra. In
Proceedings of the Vortical Structures and Turbulence Conference. Rome, Italy.

Frisch, U. 1995 Turbulence: the legacy of A.N. Kolmogorov. The address: Cam-
bridge University Press.

Gallana, L., De Santi, F., Di Savino, S., Iovieno, M., Richiardone, R. &
Tordella, D. 2015a Energy and water vapor transfer in a turbulent stratified
environment. In Proceedings of the 68th Annual Meeting of the APS Division of
Fluid Dynamics. Boston, MA, USA.

115



BIBLIOGRAPHY

Gallana, L., De Santi, F., Di Savino, S., Iovieno, M. & Tordella, D. 2015b
Entrainment temporal evolution across stably and unstably stratified vapor/clear
air interfaces. In Proceedings of the 15th European Turbulence Conference. Delft,
Netherlands.

Gallana, L, Di Savino, S, De Santi, F, Iovieno, M & Tordella, D 2014a
Energy and water vapor transport across a simplified cloud-clear air interface. J.
Phys.: Conf. Series 547 (1), 012042.

Gallana, L., Di Savino, S., De Santi, F., Iovieno, M. & Tordella, D.
2014b Intermittency layers associated to turbulent interfaces. In Proceedings of
the 9th European Fluid Mechanics Conference. Rome, Italy.

Gallana, L., Di Savino, S., De Santi, F., Iovieno, M. & Tordella, D. 2014c
Turbulent transport at a simplified clear air/cloud interface. In Proceedings of the
4th International Conference Turbulent Mixing and Beyond Workshop. Trieste,
Italy.

Gallana, L, Di Savino, S, De Santi, F, Iovieno, M & Tordella, D 2016a
Energy and scalar transport in a stratified turbulent shearless mixing. under sub-
mission on J. Fluids Mech. .

Gallana, L, Fraternale, F, Iovieno, M, Fosson, S, Magli, E, Richardson,
J D, Opher, M & Tordella, D 2016b Voyager 2 solar plasma and magnetic
field spectral analysis for intermediate data sparsity. under pubblication on J. Geo.
Res. 55 (2), 394–401.

Gill, A. E. 1982 Atmosphere-Ocean Dynamics. Academic Press, New York, 662pp.

Gleick, J. 1987 Chaos: making a new science. New York, USA: Penguin Book
New York.

Gotoh, T., Nagaki, J. & Kaneda, Y. 2000 Passive scalar spectrum in the
viscous-convective range in two-dimensional steady turbulence. Physics of Fluids
12, 155–168.

Gotoh, T., Watanabe, T. & Suzuki, Y. 2011 Scalar flux in a uniform mean
scalar gradient in homogeneous isotropic steady turbulence. Journal of Turbulence
12, 1–27.

Hansen, A. E., Marteau, D. & Tabeling, P. 1998 Two-dimensional turbulence
and dispersion in a freely decaying system. Phys. Rev. E 58, 7261–7271.

Hill, ME, Decker, RB, Brown, LE, Drake, JF, Hamilton, DC, Krimigis,
SM & Opher, M 2014 Dependence of energetic ion and electron intensities on
proximity to the magnetically sectored heliosheath: Voyager 1 and 2 observations.
Astroph. J. 781 (2), 94.

116



BIBLIOGRAPHY

Holzer, M. & Siggia, E. D. 1994 Turbulent mixing of a passive scalar. Phys.
Fluids 6, 1820–1837.

Horbury, Tim S & Tsurutani, Bruce 2001 Ulysses measurements of waves, tur-
bulence and discontinuities. The Heliosphere Near Solar Minimum: The Ulysses
perspective, edited by: Balogh, A., Marsden, RG, and Smith, EJ, Springer-Praxis
Books in Astrophysics and Astronomy, Springer, London, UK pp. 167–227.

Hunt, J. C. R., Kaimal, J. C. & Gaynor, J. E. 1988 Eddy structure in the
convective boundary-layer - new measurements and new concepts. Q. J. Royal
Met. Soc. 114, 827–858.

Iovieno, M., Cavazzoni, C. & Tordella, D. 2001 A new technique for a parallel
dealiased pseudospectral Navier-Stokes code. Comp. Phys. Comm. 141, 365–374.

Iovieno, M., Di Savino, S., De Santi, F. & Tordella, D. 2012 Intermittency
layers associated to turbulent interfaces. In Proceedings of the 9th European Fluid
Mechanics Conference. Rome, Italy.

Iovieno, M., Di Savino, S., Gallana, L. & Tordella, D. 2014 Mixing of a
passive scalar across a thin shearless layer: concentration of intermittency on the
sides of the turbulent interface. J. Turb. 15 (5), 311–334.

Iovieno, M, Gallana, L, Fraternale, F, Richardson, J D, Opher, M &
Tordella, D 2016 Cross and magnetic helicity in the outer heliosphere from
voyager 2 observations. Eur. J. Mech. B/FluidsS 55 (2), 394–401.

Iroshnikov, P. S. 1963 Turbulence of a conducting fluid in a strong magnetic field.
Sov. Astron. 7, 566–571.

Jameson, A., Schmidth, W. & Turkel, E. 1981 Numerical solution of the Euler
equations by finite volume methods using Runge-Kutta time stepping schemes.
AIAA J. .

Jayesh & Warhaft, Z. 1994 Turbulent penetration of a thermally stratified in-
terfacial layer in a wind-tunnel. J. Fluid Mech. 277, 23–54.

Joyce, C. J., Smith, C. W., Isenberg, P. A., Gary, S. P., Murphy, N.,
Gray, P. C. & Burlaga, L. F. 2012 Observation of bernstein waves excited
by newborn interstellar pickup ions in the solar wind. Astroph. J. 745, 112–120.

Joyce, C. J., Smith, C. W., Isenberg, P. A., Murphy, N. & Schwadron,
N. A. 2010 Observation of bernstein waves excited by newborn interstellar pickup
ions h+ and he+ as seen by voyager at 4.5 au. Astroph. J. 724, 1256–1261.

117



BIBLIOGRAPHY

Katul, GG, Geron, CD, Hsieh, CI, Vidakovic, B & Guenther, AB 1998
Active turbulence and scalar transport near the forest-atmosphere interface. J.
Appl. Meteor. 37 (12), 1533–1546.

Keisler, S. R. & Rhyne, R. H. 1976 An assesment of prewhitening in estimating
power spectra of atmospheric turbulence at long wavelengths. Nasa Technical
Note D-8288, 1–54.

Kimura, Y. & Herring, J. R. 1996 Diffusion in stably stratified turbulence. Ann.
Rev. Fluid Mech. 328, 253–269.

Klein, LW, Matthaeus, WH, Roberts, DA & Goldstein, ML 1992 Evo-
lution of spatial and temporal correlations in the solar-wind - observations and
interpretation. In Solar Wind seven (ed. E Marsch & R Schwenn), COSPAR Col-
loquia Series, vol. 3, pp. 197–200. 3rd COSPAR Colloquium on Solar Wind Seven,
Goslar, Germany, Sep. 16-20, 1991.

Kolmogorov, A. N. 1941 The Local Structure of Turbulence in Incompressible
Viscous Fluid for Very Large Reynolds’ Numbers. In Dokl. Akad. Nauk SSSR, ,
vol. 30, pp. 301–305.

Koza, J. R. 1992 Genetic programming: on the programming of computers by means
of natural selection. MIT Press Cambridge.

Kraichnan, R. H. 1965 Inertial-range spectrum of hydromagnetic turbulence.
Phys. Fluids 8, 1385–1387.

Kraichnan, R. H. 1974 Convection of a passive scalar by a quasi-uniform random
straining field. J. Fluid Mech. 64, 737–762.

Kraichnan, R. H. 1994 Anomalous scaling of a randomly advected passive scalar.
Phys. Rev. Lett. 72, 1016–1019.

Leamon, RJ, Smith, CW, Ness, NF, Matthaeus, WH & Wong, HK 1998
Observational constraints on the dynamics of the interplanetary magnetic field
dissipation range. J. Geophys. Res. 103 (A3), 4775–4787.

Lee, S. K., Benaissa, A., Djenidi, L., Lavoie, P. & Antonia, R. A. 2012
Scaling range of velocity and passive scalar spectra in grid turbulence. Phys.
Fluids. 24, 075101.

Lin, J. T. & Pao, Y. K. 1979 Wakes in stratified fluids. Ann. Rev. Fluid Mech.
11, 317–338.

Lothon, Marie, Lenschow, Donald H. & Mayor, Shane D. 2009 Doppler
Lidar Measurements of Vertical Velocity Spectra in the Convective Planetary
Boundary Layer. Bound. Lay. Meteor. 132 (2), 205–226.

118



BIBLIOGRAPHY

Lustig, M., Donoho, D.L., Santos, J.M. & Pauly, J.M. 2008 Compressed
sensing mri. Signal Processing Magazine, IEEE 25 (2), 72–82.

Ma, B.K. & Warhaft, Z. 1986 Some aspects of the thermal mixing layer in grid
turbulence. Phys. Fluids 29, 3114–3120.

Malinowski, S. P., Gerber, H., Jen-La Plante, I., Kopec, M. K., Kumala,
W., Nurowska, K., Chuang, P. Y., Khelif, D. & Haman, K. E. 2013
Physics of Stratocumulus Top (POST): turbulent mixing across capping inversion.
Atmos. Chem. Phys. 13 (24), 12171–12186.

Marsch, E. & Tu, C.Y. 1989 Dynamics of correlation-functions with elasser vari-
ables for inhomogeneous mhd turbulence. J. Plasma Phys. 41, 479–491.

Matthaeus, W. H. & Goldstein, M. L. 1982 Measurement of the rugged in-
variants of magnetohydrodynamic turbulence in the solar wind. J. Geophys. Res.
87 (NA8), 6011–6028.

Matthaeus, W. H., Goldstein, M. L. & Smith, C. W. 1982 Evaluation of
magnetic helicity in homogeneous turbulence. Phys. Rev. Letters 48 (18), 1256–
1259.

Mellado, Juan Pedro 2010 The evaporatively driven cloud-top mixing layer. J.
Fluid Mech. 660, 5–36.

Mellado, Juan Pedro, Stevens, Bjorn & Schmidt, Heiko 2014 Wind Shear
and Buoyancy Reversal at the Top of Stratocumulus. J. Atmos. Sci. 71 (3), 1040–
1057.

Mellado, Juan Pedro, Stevens, Bjorn, Schmidt, Heiko & Peters, Nor-
bert 2009 Buoyancy reversal in cloud-top mixing layers. Quart. J. Roy. Meteor.
Soc. 135 (641), 963–978.

Mizeva, I. A., Stepavov, R. A. & Frik, P. G. 2009 The cross-helicity effect on
cascade processes in MHD turbulence. Doklady Physics 54 (2), 93–97.

Moeng, CH 2000 Entrainment rate, cloud fraction, and liquid water path of PBL
stratocumulus clouds. J. Atmos. Sci. 57 (21), 3627–3643.

Moffatt, H. K. 1969 The degree of knottedness of tangles vortex lines. J. Fluid
Mech. 36, 117–129.

Moffatt, H. K. 1978 Magnetic field generation in electrically conducting fluids.
Cambridge University Press.

Moffatt, H. K. & Tsinober, A. 1992 Helicity in laminar and turbulent flows.
Annu. Rev. Fluid Mech. 24, 281–312.

119



BIBLIOGRAPHY

Montgomery, D, Brown, MR & Matthaeus, WH 1987 Density fluctuation
spectra in magnetohydrodynamic turbulence. J. Geophys. Res. 92 (A1), 282–284.

Mydlarski, L. & Warhaft, Z. 1998 Passive scalar statistics in high peclet num-
ber grid turbulence. J. Fluid Mech. 358, 135–175.

Opher, M 2015 The heliosphere: What did we learn in recent years and the current
challenges. Space Sci. Rev. pp. 1–20.

Opher, M., Drake, J. F., Swisdak, M., Schoeffler, K. M., Richardson,
J. D., Decker, R. B. & Toth, G. 2011 Is the magnetic field in the heliosheath
laminar or a turbulent sea of bubbles? Astroph. J. 734 (1).

Orszag, S.A. & Gottlieb, D. 1980 Approximation Methods for Navier-Stokes
Problems. Springer Verlag.

Parker, E. N. 1958 Dynamics of the interplanetary gas and magnetic fields. As-
trophys. J. 128, 664–676.

Podesta, J. J., Roberts, D. A. & Goldstein, M. L. 2007 Spectral exponents
of kinetic and magnetic energy spectra in solar wind turbulence. Astrophys J. 664,
543–548.

Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.

Press, W. H. & Rybicki, G. B. 1992 The time delay of gravitational lens
0957+561. i. methodology and analysis of optical photometric data. Astroph. J.
385 (2, 1), 404–415.

Pumir, A. 1994 A numerical study of the mixing of a passive scalar three dimensions
in the presence of a scalar gradient. Phys. Fluids 6, 2118–2132.

Radkevich, A., Lovejoy, S., Strawbridge, K. B., Schertzer, D. & Lilley,
M. 2008 Scaling turbulent atmospheric stratification. III: Space-time stratification
of passive scalars from lidar data. Quart. J. Roy. Meteor. Soc. 134 (631, B), 317–
335.

Richardson, JD & Decker, RB 2014 Voyager 2 observations of plasmas and
flows out to 104 au. Astrophys. J. 792 (2), 126.

Richardson, J. D., Belcher, J., Tordella, D., Fraternale, F., Gallana,
L. & Iovieno, M. 2015 Voyager 2 observations of plasma in the heliosheath. In
Proceedings of the AGU Fall Meeting. San Francisco, CA, USA.

Richardson, J. D., Liu, Y. & Wang, C. 2008 Solar wind structure in the outer
heliosphere. Adv. Space Res. 41 (2), 237–244.

120



BIBLIOGRAPHY

Roberts, D. A. 2010 Evolution of the spectrum of solar wind velocity fluctuations
from 0.3 to 5 au. J. Geophys. Res. 115.

Roberts, D. A. & Goldstein, M. L. 1987 Spectral signatures of jumps and tur-
bulence in interplanetary speed and magnetic-field data. J. Geophys. Res. 92 (A9),
10105–10110.

Rosenblatt, H. M. 1965 Spectral analysis and parametric methods for seasonal
adjustment of economic time series. Working paper - U. S. Bureau of the Census
23, 235–257.

Rudelson, M. & Vershynin, R. 2006 Sparse reconstruction by convex relax-
ation: Fourier and gaussian measurements. In 2006 40th Annual Conference of
Information Sciences and Systems, Vols. 1-4 , pp. 207–212. Princeton Univ, Dept
Elect Engn; IEEE Informat Theory Soc, 40th Annual Conference on Information
Sciences and Systems (CISS), Princeton, NJ, Mar. 22-24, 2006.

Rybicki, G. B. & Press, W. H. 1992 Interpolation, realization, and reconstruction
of noisy, irregularly sampled data. Astroph. J. 398, 169–176.

Schumacher, J. & Sreenivasan, K. R. 2005 Statistics and geometry of passive
scalars in turbulence. Physics of Fluids 17, 1–19.

Shen, X & Warhaft, Z 2000 The anisotropy of the small scale structure in high
Reynolds number (R(lambda)similar to 1000) turbulent shear flow. Phys. Fluids
12 (11), 2976–2989.

Shraiman, B. I. & Siggia, B. I. 2000 Scalar turbulence. Nature 405, 639–646.

Smith, C. W., Hamilton, K., Vasquez, B. J. & Leamon, R. J. 2006a Depen-
dence of the dissipation range spectrum of interplanetary magnetic fluctuations
upon the rate of energy cascade. Astroph. J. Lett. 645 (1, 2), L85–L88.

Smith, C. W., Vasquez, B. J. & Hamilton, K. 2006b Interplanetary magnetic
fluctuation anisotropy in the inertial range. J. Geophys. Res. 111 (A9).

Sreenivasan, K.R. 1996 The passive scalar spectrum and the obukhov-corrsin
constant. Phys. Fluids 8, 189–196.

Sreenivasan, K. R. & Antonia, R. A. 1997 The phenomenology of small-scale
turbulence. Ann. Rev. Fluid Mech. 29, 435–472.

Tennekes, Hendrik & Lumley, John Leask 1972 A first course in turbulence.
Cambridge (Mass.), London: M.I.T. Press.

Tong, C. R. & Warhaft, Z. 1994 On passive scalar derivative statistics in grid
turbulence. Phys. Fluids 6, 2165–2176.

121



BIBLIOGRAPHY

Tordella, D., Gallana, L., De Santi, F., Di Savino, S., Iovieno, M. &
Richiardone, R. 2014 Turbulent transport across an interface between dry and
humid air in a stratified environment. In Proceedings of the 67th Annual Meeting
of the APS Division of Fluid Dynamics. San Francisco, CA, USA.

Tordella, D. & Iovieno, M. 2006 Numerical experiments on the intermediate
asymptotics of the shear-free turbulent transport and diffusion. J. Fluid Mech.
549, 429–441.

Tordella, D. & Iovieno, M. 2011 Small scale anisotropy in the turbulent shear-
less mixings. Phys. Rev. Lett. 107, 194501.

Tordella, D. & Iovieno, M. 2012 Decaying turbulence: what happens when the
correlation length varies spatially in two adjacent zones. Physica D 242, 270–281.

Tordella, D., Iovieno, M. & Bailey, P. R. 2008 Sufficient condition for gaus-
sian departure in turbulence. Phys. Rev. E 77, 016309.

Tordella, D., Iovieno, M. & Ducasse, L. 2012 Dimensionality influence on
passive scalar transport. Journal of Physics: Conference Series 318, 052042, Pro-
ceedings of the 13th European Turbulence Conference.

Tu, C.-Y & Marsch, E. 1995 Mhd structures, waves and turbulence in the solar
wind: observations and theories. Space Sci. Rev. 73 (1-2), 1–210.

Vallis, G. K. 2006 Atmospheric and Oceanic Fluid Dynamics. Cambridge, U.K.:
Cambridge University Press.

Veeravalli, S. & Warhaft, Z. 1989 The shearless turbulence mixing layer. J.
Fluid Mech. 207, 191–229.

Veeravalli, S. & Warhaft, Z. 1990 Thermal dispersion from a line source in
the shearless turbulence mixing layer. J. Fluid Mech. 216, 35–70.

Vucelja, M., Falkovich, G. & Turitsyn, K. S. 2012 Fractals iso-contours
of passive scalar in two-dimensional smooth random flows. J. Stat. Phys. 147,
424–435.

Warhaft, Z. 2000 Passive scalar in turbulent flows. Ann. Rev. Fluid Mech. 32,
203–240.

Watanabe, T. & Gotoh, T. 2007 Scalar flux spectrum in isotropic steady turbu-
lence with a uniform mean gradient. Physics of Fluids 19, 121707.

Wood, Robert 2012 Stratocumulus Clouds. Mon. Weather Rev. 140 (8), 2373–
2423.

122



BIBLIOGRAPHY

Xu, Guangwu & Xu, Zhiqiang 2015 Compressed sensing matrices from fourier
matrices. IEEE Trans. Inf. Theory 61 (1), 469–478.

Yeung, P.K., Donzis, D. A. & Sreenivasan, K. R. 2004 Simulation of three-
dimensional turbulent mixing for schmidt numbers of order 1000. Flow, Turbu-
lence and Combustion 72, 333–374.

Yokoi, N. 2013 Cross helicity and related dynamo. Geophysical and Astrophysical
Fluid Dynamics 92, 114–184.

Yokoi, N. & Balarac, G. 2011 Cross-helicity effects and turbulent transport in
magnetohydrodynamic flow. J. Physics: Conf. Series 318, 072039.

Zhou, T., Antonia, R. A. & Chua, L. P. 2002 Performance of a probe for
measuring turbulent energy and temperature dissipation rates. Exp. in Fluids 33,
334–345.

Zhou, Y, Matthaeus, WH & Dmitruk, P 2004 Colloquium: Magnetohydrody-
namic turbulence and time scales in astrophysical and space plasmas. Rev. Mod.
Phys. 76 (4), 1015–1035.

123


	Abstract
	Acknowledgements
	Introduction
	I Shearless Turbulent Mixing
	Passive Scalar Transport
	Method
	Passive scalar transport across the interface
	Statistics 

	Intermittency generated by linear wave perturbations of the interface
	Passive scalar spectra across the mixing layer
	Conclusion remarks

	Effects of Stable/Unstable Stratification
	The Boussinesq approximation
	Brunt-Väisälä frequency and Froude number
	The stratified shearless mixing
	Results
	Spatial statistical properties
	Mixing layer and energy pit/peak sublayer
	Flow structure: effects on anisotropy, dissipation and spectra evolution

	Conclusion remarks

	Numerical method

	II Solar Wind and Helioshesheat Spectral analysis
	Solar wind analysis from Voyager probes data. Data reconstruction tecniques and application at 5 AU.
	1979 DAY 1-180 Voyager 2 data
	Spectral analysis of lacunous data: methods and validation with synthetic turbulence data
	Power law spectra at 5 AU.
	Magnetic and Cross helicities
	Power spectra law in the heliosheath: preliminary results
	Conclusions

	General conclusion


