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Abstract—Thanks to their flexibility, increasing performances
and low Non-Recurrent Engineering costs, SRAM-based Field
Programmable Gate Array (FPGA) devices often represent the
preferred platforms for the final deployment of highly reliable
systems. In this context, Dynamic Partial Reconfiguration (DPR)
is far from being widely adopted due to the additional complexity
introduced during the hardware design phase, and the depend-
ability issues related to the FPGA reconfiguration process itself.
This paper presents a portable open-source controller for safely
enabling self dynamic and partial reconfiguration of systems im-
plemented on Xilinx FPGAs. The controller embeds configurable
error detection and correction circuitry that enables a safe DPR
by monitoring for partial bitstreams data errors. Experiments
highlight the high performances achieved and the limited hard-
ware resources needed to implement it on different devices. The
HDL source code has been made available through the popular
open-source Cobham Gaisler GRLIB IP-cores library.1

I. INTRODUCTION

Nowadays, FPGAs represent a feasible and popular al-
ternative solution to Application Specific Integrated Circuits
(ASICs), providing flexibility, limited development costs and
continuously growing computing capabilities. These charac-
teristics push designers to adopt them also for the implemen-
tation of final release products with low time-to-market in a
broad range of applications, spanning from high-performance
computing data centers to digital signal and image process-
ing in real-time embedded systems. FPGAs are also widely
employed in mission-critical applications, or more in general,
in those applications demanding high reliability [1], such as
in space where, as example, the development time and costs
for producing new ASICs are not affordable due to the very
narrow market.
Modern SRAM-based FPGAs offer Dynamic Partial Reconfig-
uration (DPR) features [2], i.e., the ability to run-time change
the functionality implemented by selected portions of a circuit
while maintaining the rest of the design in a fully operating
state. Although DPR can be used to increase reliability figures
of a system [3], its adoption in applications demanding high
reliability is actually very limited for two main reasons. The
first one concerns the additional complexity introduced during
the system design phase. To efficiently enable and manage
run-time DPR, designers are often required to develop ad-
hoc external or embedded hardware controllers. The latter,
instead, is related to the dependability of the reconfiguration
process itself. DPR exposes the system to errors affecting both

1GRLIB source code (GPL version) can be downloaded at www.gaisler.com.

the hardware controller and configuration data (i.e., partial
bitstreams) that are used to overwrite portions of the FPGA
configuration memory content at run-time. These errors are
very critical since a mis-reconfiguration can lead, in the
worst case, to a permanent disruption of the entire system
functionality. Recovering from such errors could require a full
device reconfiguration and/or reset of system operations [4].
This paper tackles the aforementioned issues by proposing a
portable open-source embedded controller for safe DPR of
systems implemented on Xilinx FPGAs. The main novelties
w.r.t. state-of-the-art solutions mainly concern its high config-
urability and the possibility to introduce embedded error de-
tection and correction circuitry, which monitors for bitstreams
data errors during reconfigurations. The HDL source code has
been made available through the open source Cobham Gaisler
GRLIB GPL IP-cores library [5].
The paper is organized as follows: Section II briefly overviews
related works, Section III details the proposed controller
architecture, while Section IV shows the achieved results.
Eventually, Section V summarizes the contributions.

II. RELATED WORKS

The Internal Configuration Access Port (ICAP) usually
represents the best choice for enabling DPR, thanks to its
higher bandwidth (i.e., 3.2 Gbps [6]). It provides a 32-bit
interface to the device configuration engine accessible only
through logic implemented in the FPGA.
Xilinx provides several IP-cores for enabling DPR and
interfacing user designs with the ICAP. XPS HWICAP [7] and
AXI HWICAP [8] represent two DPR controllers equipped
with PLB and AXI4-Lite slave bus interfaces, respectively.
Their main limitations concern the restricted applicability to
processor-based systems and the inefficiency of data transfers
due to the slave interface, that leads to reconfiguration
throughputs far below the ICAP theoretical limit. A slightly
more flexible solution is represented by the PRC/EPRC
controller [9], which provides a FIFO user interface that
allows its usage with custom user logic. However, its source
code is not provided and netlists are available only for
Virtex-5 and Virtex-6 devices.
Several works have been proposed in literature to overcome
the limitations of the IP-cores provided by Xilinx. Recently,
generic DPR controllers have been proposed in [10] and
[11]. However, none of the aforementioned solutions takes
into account DPR dependability issues. Few works can be
found in literature targeting the development of reliable DPR
controllers aimed at increasing overall reconfiguration process



reliability. As example, in [12] and [13] authors propose
and discuss several alternatives for increasing reliability of
embedded DPR controllers (e.g., by applying Triple or Dual
Modular Redundancy). Although the proposed solutions
provide DPR controllers that are robust w.r.t. faults affecting
the FPGA device, they do not tackle bitstream integrity issues,
that are the focus of the controller proposed in this paper.

III. PROPOSED ARCHITECTURE

The proposed DPR controller has been designed in order
to provide portability and configurability on different FPGA
families. Depending on the target system and application
requirements it can be configured at design-time, through
VHDL generics, to operate in three different modes: (i)
Synchronous/Asynchronous DPR, (ii) Dependable DPR with
Cyclic Redundancy Check (D2PR-CRC) or (iii) Dependable
DPR with Error Detection and Correction (D2PR-EDAC).

A. Synchronous/Asynchronous DPR

Figure 1 shows the architecture of the proposed controller
in its basic configuration, i.e., Synchronous/Asynchronous
mode.

Fig. 1: DPR controller architecture for Syn-
chronous/Asynchronous DPR mode.

It mainly consists of two control units (i.e., FSM READ
and FSM WRITE), a First-In-First-Out (FIFO) buffer and
clock generation circuitry. The FSM READ is supported by
a Direct Memory Access (DMA) engine and a control and
status registers block. FSM WRITE drives the ICAP interface
and monitors its status. The control and status registers block
includes several registers that can be read and written to setup,
trigger, and monitor the reconfiguration process at run-time.
The DMA is in charge of retrieving 32-bit bitstream data
words from an embedded or external memory, starting from
the address specified by the user through a 32-bit register in
the Control and Status registers block. Obviously, depending
on the actual system implementation, a custom wrapper may
be needed to adapt the interface of the DMA engine to the
user requirements (e.g., to connect the controller to a bus
infrastructure or directly to a memory controller. If the system
clock frequency is greater than the one sustainable by the
ICAP (i.e., 100 Mhz), the proposed controller is configured
in Asynchronous DPR mode. The FIFO buffer is used to
transfer data across two different clock domains, i.e., System
clock and ICAP clock. This buffer is implemented using one
or more FPGA embedded Block-RAMs, and its depth can be
configured through VHDL generics. ICAP clock is generated
exploiting a clock manager hard macro sourced by the System
clock. The FSM READ module is in charge of managing the

bitstream data retrieval through the DMA. As soon as data are
available in the buffer, the FSM WRITE controller reads-out
and deliver them to the ICAP.
On the other hand, if the system clock frequency is lower
than 100 MHz, the FIFO buffer and ICAP clock generation
circuitry are not instantiated, since all modules, including the
ICAP, can operate synchronously w.r.t. the input system clock
(Synchronous DPR).
The registers block and DMA engine make the proposed
architecture suitable to be employed in systems with custom
user interfaces and also in processor-based bus infrastructures,
allowing the processor to control and manage the reconfigu-
ration process through software drivers. In this last case, the
advantage deriving from the adoption of DMA is twofold: on
one hand it frees the processor from directly managing the data
transfer and repeatedly polling the status of the reconfiguration,
while, on the other hand it accelerates bitstream data retrieval
operations [14].
The maximum reconfiguration throughput in both operating
modes can be estimated by the following equation:

Max TP =
BS

max{Tsys, TICAP } · BS
32

≤ 400MBytes/s

(1)
where BS represents the bitstream size in bits, while Tsys and
TICAP are the system and ICAP clock periods, respectively.
In Equation 1, the denominator represents the time required to
write BS bits of data to the 32-bit interface of the ICAP.
The Synchronous/Asynchronous configuration do not natively
provide any bitstream error detection and/or correction func-
tionality. It represents a solution to enable DPR with very
low hardware overheads. This configuration can be used when
reliability is not a major concern, or if the user logic or memory
controller used to retrieve bitstream data embed error detection
and correction capabilities.

B. Dependable DPR (D2PR)

Monitoring for partial bitstream data errors is essential
to avoid FPGA mis-reconfigurations due to a corrupted par-
tial bitstream. Two alternative methods and DPR controller
architectures are presented. Both methodologies are based
on introducing information redundancy at design-time in the
partial bitstream data files generated by the Xilinx EDA tools.
The first approach aims at detecting partial bitstream data er-
rors by performing periodic on-line cyclic redundancy checks.
At design-time the partial bitstream generated by Xilinx tools
is parsed and processed by a software routine in order to
compute and embed CRC signatures. In particular, the partial
bitstream is split in blocks of 32-bit words. A signature is then
computed for each data block and appended at the end of it
to compose a new protected version of the partial bitstream.
Figure 2 shows the architecture of the DPR controller when
configured in D2PR-CRC mode. With respect to the Asyn-
chronous mode, the FSM READ is assisted by an on-line CRC
Generator and a CRC checker. Basically, whenever a Protected
Bitstream word is read from the memory through the DMA,
it is directly written in the FIFO buffer. In addition, it is sent
to the CRC generator, implemented as a parallel 32-bit Linear
Feedback Shift Register (LFSR) [15], that computes at run-
time a 32-bit signature in a single clock cycle. Whenever a
data block is completely received, the associated pre-computed



Fig. 2: DPR controller architecture for D2PR-CRC mode.

signature is read trough the DMA and compared with the one
extracted at run-time by the CRC generator. If no errors are
detected, the currently received data block is validated and
FSM WRITE can start reading it from the FIFO in order to
deliver bitstream data to the ICAP. While the buffer is being
emptied, FSM READ instructs the DMA engine to retrieve
the following data block. Obviously, the FIFO buffer must be
sized in order to store at least one full data block. The data
block size can be configured by the user at design-time. This
parameter has a direct impact on (i) bitstream storage memory
requirements, (ii) actual reconfiguration throughput, and (iii)
error detection capabilities.
Equation 2 shows the relationship between the total Protected
Bitstream Size (PBS) and the user-defined data block size
(Blk).

PBS = BS + 32 ·
⌈ BS

BlkS

⌉
(2)

The second term of Equation 2 represents the additional
contribution given by the 32-bit signatures embedded in the
partial bitstream. The maximum reconfiguration throughput
that can be achieved by the proposed architecture can be
estimated by the following equation:

Max TP =
BS

max{Tsys, TICAP } · PBS
32 + TICAP · BlkS

32
(3)

In Equation 3, the first term of the denominator represents the
overall time needed to read the protected bitstream through
the DMA, while the second term considers the additional
latency, introduced by the adopted buffering approach, for
delivering the last data block to the ICAP after its validation.
The 32-bit CRC error detection approach provides detection
of all burst errors, up to 32 bits in a single data block, and a
tunable coverage on random errors depending on the chosen
CRC polynomial and data block size [16] (see Section IV).
Finally, it is worth mentioning that, with respect to the
Xilinx PerFrameCRC functionality offered only by 7Series
FPGAs [6], the proposed approach represents a more flexible
solution, allowing designer to tune memory requirements,
error detection capabilities and timing overhead depending on
the constraints imposed by the target application.
In D2PR-EDAC mode, the proposed controller provides
partial bitstream error detection and correction capabilities
through an Error Correcting Code (ECC). In particular, a
Single Error Correction Double Error Detection (SECDED)
ECC has been chosen due to its representative target error
model and its limited code and hardware overheads [17].

Partial bitstreams generated by the Xilinx EDA tools must be
first processed at design-time by a software routine in order
to produce a Protected bitstream composed of SECDED
encoded words packets, that will be subsequently decoded by
the DPR controller at run-time. The partial bitstream is split
in blocks of 4 32-bit words. Each 32-bit word is encoded.
The SECDED encoding process results in 7 bits overhead
on a 32 bits input word [17]. The 28 overhead bits resulting
from the encoding process are then grouped in a single 32-bit
word and appended at the end of the 4-words data block
(similarly to the aforementioned CRC approach) to compose
a SECDED packet.
The architecture of the DPR controller configured in D2PR-
EDAC mode is depicted in Figure 3. In this case, FSM

Fig. 3: DPR controller architecture for D2PR-EDAC mode.

WRITE is assisted by an on-line SECDED decoder, that
checks and decode the received words and, if a single error
is found, correct them. SECDED packets are continuously
read through the DMA and 32-bit encoded data words are
written in the FIFO. FSM WRITE continuously reads out data
from the buffer until an entire 5-words SECDED packet is
reconstructed. Whenever the fifth word of a packet is read out,
the decoding phase starts. It lasts four clock cycles, needed to
decode four 32-bit bitstream data words. At each clock cycle
a data word is decoded and delivered to the ICAP. If present,
any single error is corrected before writing the data word in
the configuration port. On the other hand, the reconfiguration
process is terminated if uncorrectable errors are found during
the decoding process. At the end of this phase, FSM WRITE
restarts the process by reading the following 5-words packet
from the FIFO.
Similarly to the DPR controller operating in D2PR-CRC mode,
the SECDED Protected Bitstream Size and the maximum
throughput achievable by the proposed controller can be
estimated using Equations 2-3. However, in this operating
mode, data block size (BlkS) is fixed and equal to 128 bits.
Integrating error correction in the DPR controller allows
to avoid interruptions during reconfiguration processes due
to single bitstream data errors, therefore preserving overall
system performances.

IV. EXPERIMENTAL RESULTS

The proposed DPR controller has been implemented on
a Virtex6-vlx240t FPGA in order to be compared with other
portable state-of-the-art and vendor solutions. The test-case is
represented by a system in which the DPR controller is directly
interfaced to an on-chip memory, implemented using Block-
RAMs, storing the partial bitstream that is used to reconfigure
an FPGA portion. User logic must trigger and monitor the



TABLE I: Comparison of the proposed DPR controller with
state of the art and vendor solutions. The target device is a
Virtex6-vlx240t FPGA.

Implementation LUTs FFs BRAMs Throughput
[MB/s]

[10] 586 672 8 399.8
[11] 673 254 5 253

XPS-HWICAP [7] 799 746 1 8.5
AXI-HWICAP [8] 502 477 1 9.1

Synchronous 249 112 - 400
Asynchronous 443 226 1 400

D2PR-CRC 588 278 1 395.4
D2PR-EDAC 592 310 1 319.9

reconfiguration process by reading/writing the values in the
Control and Status registers block. Reconfiguration time and
throughput have been measured using an hardware timer
embedded in the DPR controller. The system frequency is set
to 200 MHz, ICAP frequency is fixed to 100 MHz, and the
size of the bitstream needed to change the functionality of
the selected reconfigurable FPGA portion is equal to 119.4
KiBytes.
When configured in D2PR-CRC mode, the CRC polynomial
implemented by the CRC generator is x32+x18+x14+x3+1.
This particular polynomial provides detection of all burst errors
up to 32 bits in a data block and detection of all 5 random
errors for data blocks smaller than 31 Kib [16]. When oper-
ating in D2PR-CRC mode, the theoretical throughput can be
maximized by finding the data block size value that maximize
Equation 3. In the considered test case, the data block size has
been set to BlkS = 5.5Kib to maximize the reconfiguration
throughput.
Results shown in Table I highlight that it is possible to monitor
bitstream data errors incurring in limited reconfiguraton timing
overheads if the optimal bitstream data block size is selected at
design-time when the proposed DPR controller is configured
in D2PR-CRC mode. The measured throughput values match
the ones estimated using Equations 1 and 3, since the DPR
controller is directly interfaced to a fast on-chip memory,
and the throughput bottleneck is represented by the maximum
ICAP clock frequency (i.e., 100 MHz).
With respect to state-of-the-art and vendor solutions, the pro-
posed controller provides similar hardware overheads while
being able to monitor and eventually correct bitstream data er-
rors. At the same time it is able to sustain high reconfiguration
throughputs. It is worth noting that both XPS HWICAP and
AXI HWICAP can be used only in conjunction with processor-
based systems, since they show an OPB or AXI bus slave
interface. The processor or an external master in the bus is
directly in charge of managing bitstream data trasfer, thus
leading to increased timing overheads.
The HDL source code of Synchronous/Asynchronous and
D2PR-CRC modes has been already released and is part of
the open-source Cobham Gaisler AB GRLIB IP-cores Library
(v.1.4.1-b4156) [5]. GRLIB also includes several examples
of LEON3-processor based systems including the proposed
controller for Virtex-4, Artix-7 and Virtex-7 devices. The
source code for D2PR-EDAC mode will be made available
in the next GRLIB release.

V. CONCLUSIONS

This paper proposed an open-source controller for safe
dynamic and partial reconfiguration of Xilinx FPGA-based
systems. The proposed controller is highly configurable and
portable on different FPGA device families. Its source code
has been made available through a popular open-source IP
cores library.
Experimental results demonstrate the hardware overheads
and performances of the proposed controller, highlighting its
ability to monitor for partial bitstream data errors without
incurring in notable hardware and timing overheads w.r.t.
state-of-the-art solutions.
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