
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Cross-Layer Early Reliability Evaluation for the Computing cOntinuum / DI CARLO, Stefano; Vallero, Alessandro;
Gizopoulos, D.; Di Natale, G.; Grasset, A.; Mariani, R.; Reichenbach, F.. - STAMPA. - (2014), pp. 199-205. (Intervento
presentato al convegno 17th Euromicro Conference on Digital System Design (DSD) tenutosi a Verona, IT nel 27-29
Aug. 2014) [10.1109/DSD.2014.65].

Original

Cross-Layer Early Reliability Evaluation for the Computing cOntinuum

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/DSD.2014.65

Terms of use:

Publisher copyright

©2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2571945 since: 2016-10-07T17:48:11Z

IEEE

Cross-Layer Early Reliability Evaluation for the
Computing cOntinuum

Stefano Di Carlo1, Alessandro Vallero1, Dimitris Gizopoulos2, Giorgio Di Natale3,
Arnaud Grasset4, Riccardo Mariani5, Frank Reichenbach6

1Politecnico di Torino, Italy. Control and Computer Engineering Departments Email: {name.familyname}@polito.it
2University of Athens, Greece. Department of Informatics and Telecommunications Email: dgizop@di.uoa.gr

3LIRMM (Universit Montpellier II / CNRS UMR 5506), France. Email: giorgio.dinatale@lirmm.fr
4Thales Research & Technology, France. Email: arnaud.grasset@thalesgroup.com

5Yogitech s.p.a, Italy. Email: riccardo.mariani@yogitech.com
6ABB Corporate Research, Norway. Email: frank.reichenbach@no.abb.com

Abstract—Advanced multifunctional computing systems real-
ized in forthcoming technologies hold the promise of a significant
increase of the computational capability that will offer end-users
ever improving services and functionalities (e.g., next generation
mobile devices, cloud services, etc.). However, the same path that
is leading technologies toward these remarkable achievements
is also making electronic devices increasingly unreliable, posing
a threat to our society that is depending on the ICT in every
aspect of human activities. Reliability of electronic systems is
therefore a key challenge for the whole ICT technology and
must be guaranteed without penalizing or slowing down the
characteristics of the final products. CLERECO EU FP7 (GA
No. 611404) research project addresses early accurate reliability
evaluation and efficient exploitation of reliability at different
design phases, since these aspects are two of the most important
and challenging tasks toward this goal.

Index Terms—reliability, embedded systems, high performance
computing

I. INTRODUCTION

Information technology is significantly changing and in-
fluencing our society, with the introduction of sophisticated
information processing systems. Today’s computing is a true
continuum that ranges from smartphones to mission-critical
datacenter machines, and from desktops to automobiles (Fig-
ure 1) [1]. On aggregate, these computing devices represent
a total addressable market approaching a billion processors a
year, which is expected to explode to more than two billion
per year before 2020. Within this computing continuum, the
same key technologies and industrial players will act across
all computing segments. Therefore, in the near future, we will
likely see embedded systems (ES) with High Performance
Computing (HPC) characteristics and functionalities, HPC
systems used in time- and safety-critical applications, cloud
resources used with very different business models, etc.

For more than three decades, electronic industry has evolved
by roughly doubling the device density (and correspond-
ing performance) every two years following Moore’s law.
However, future device integration technology is expected to
dramatically reduce the device quality, and therefore the oper-
ational reliability of circuits due to higher device variability,

Computing Continuum

Services

Application

System SW

Architectures

Silicon

Figure 1: The computing continuum

manufacturing defects, aging, and higher susceptibility to tran-
sient and permanent faults (soft-errors, wear-out) [2]. The great
challenge for future technologies is building ”dependable”
systems on top of unreliable components, which will degrade
and even fail during normal lifetime of the chip.

Conventional design techniques expend significant amount
of energy to tolerate the device unpredictability by adding
fault tolerance mechanisms at different levels (e.g., tech-
nology, architecture, software). However, the rising energy
costs needed to compensate for increasing unpredictability
are rapidly becoming unacceptable in today’s environment
where power consumption is often the limiting factor on
integrated circuit performance, and energy efficiency is a top
concern. In this era, where low reliability threatens to end
the benefits of feature size reduction, a holistic approach is
required. Such an approach aims at ranging across different
computing disciplines, across computing system layers and
across computing market segments to have a unique reliability
assessment methodology.

On one hand, we need accurate methodologies that reduce
the performance and energy tax paid to guarantee correct
operation of systems. On the other hand, we need an early sys-
tem reliability evaluation. Nowadays, system time-to-market
(TTM) is already pivotal for the market success of both HPC
and ES designs. An increasing number of projects whose
reliability was assessed at very late stages of the design cycle,
miss their announced market entry dates due to major design
changes that in many cases are not affordable. Therefore, early
budgeting for reliability has the potential to save significant
design effort and resources and has a profound impact on the
TTM of a product.

In this scenario, the FP7 Collaboration Project CLERECO
[3] addresses early reliability evaluation with a cross-layer ap-
proach across different computing disciplines, across comput-
ing system layers and across computing market segments. The
fundamental objective is to investigate in depth a methodology
to accurately assess the reliability through all stages of the
design cycle for the future systems of the emerging computing
continuum. CLERECO methodology will consider low-level
information such as raw failure rates as well as the entire
set of hardware and software components of the system that
eventually determine the reliability delivered to the end users.

This paper presents an overview of the CLERECO project.
The paper is organized as follows: Section II introduces
the main CLERECO concepts and ideas while Section III
overviews the characteristics of the upcoming CLERECO
design framework. In order to provide a better understanding
of how CLERECO complements other research efforts in the
reliability field, Section IV briefly reviews related works in this
field. Finally Section V summarizes the main contributions and
concludes the paper.

II. CLERECO RATIONALE

Traditionally, reliability estimation performed at different
stages of the design cycle can lead to worst-case decisions and
over-designed systems. While the required system reliability
can be guaranteed, the cost of the employed reliability mech-
anisms (in terms or area, energy/power, and performance) and
the design time required for their integration and evaluation
are both excessive. Moreover, standard reliability evaluation
approaches strongly rely on massive and time-consuming sim-
ulations and/or fault injection campaigns, which are becoming
a bottleneck due the increasing complexity of computing
systems.

CLERECO addresses the problem of having an early, fast,
and accurate evaluation of computing systems reliability to
support design decisions for hardware and software reliability
enhancing mechanisms in the system. Such a framework will
be a key enabler for the continuation of technology scaling
benefits harnessing for several decades. Moreover, it will also
enable the implementation of the computing continuum that
societal services demand [1]. The benefits of an early and
accurate reliability estimation methodology for the computing
continuum are many. In particular, design time, energy effi-
ciency and system performance would be improved thanks to

CLERECO as it is highlighted in Figure 2.

Es
tim

a
te

d

R
e

lia
b

ili
ty

Reliability
“Costs”
(Area,
Power,
Speed)

Time (Design Refinement)

TTM
Savings

Design
Starts
=0

CLERECO-based flow
Reliability Estimation zones
(different phases)

Traditional Reliability
Estimation zone

Reliability
“Costs”
Savings

Product Reliability Target

Figure 2: The difference between current methodologies em-
ployed to estimate reliability and the new CLERECO ap-
proach. It shows the benefits in terms of costs (performance
and energy tax) and TTM.

A. Design time
CLERECO framework supports the system design process

and avoids under-estimations or over-estimations of the final
system’s reliability that can adversely affect the system devel-
opment cost and/or its TTM constraints. Early and accurate
identification of reliability weaknesses of the computing sys-
tem leads to suitable decisions for the employment of hardware
and software mechanisms against them. When the reliability
weaknesses are identified late in the system design, major re-
design costs may be imposed and TTM can be significantly
affected. Moreover systems are often over-designed to ensure
the fulfillment of the reliability requirements. This is due to
the lack of accurate and early estimation methods. Instead the
system should be developed to fulfill its purpose at minimal
design costs.

B. Energy-efficient reliability
Energy and power consumption is already the primary

limitation in the design of computing systems in all domains.
Typical reliability solutions based on worst-case scenarios
and massive guard-banding at lower layers of abstraction
add excessive energy overheads and performance delimiters
in scaled technologies. For instance, fault tolerance solutions
such as Double Modular Redundancy (DMR) or Triple Mod-
ular Redundancy (TMR) are typically used in high-reliability
systems. This means 100%-200% more area and energy over-
head compared to the unprotected system. CLERECO will
enable the employment of more fine grain reliability solutions
(e.g., use DMR only in the very vulnerable parts of the system)
with a positive impact on the power budget of the system.

C. Reducing the performance impact of reliability
Throughput of systems will also benefit from CLERECO.

Reliability mechanisms based on time redundancy, including

error correcting codes or message duplication are computation
hungry and they may cause up to 40% of system computational
power to be assigned to reliability related tasks. If the faults
and their error propagation are known, it is possible to develop
just the right mitigations to detect and handle errors in an
efficient and accurate way. Again with CLERECO and with the
employment of more fine grain reliability solutions, designers
will be able to obtain significant improvements in achieved
performance.

III. CLERECO FRAMEWORK

The ultimate goal of the CLERECO project is the devel-
opment of a cross-layer methodology and related tools for
systems reliability evaluation that enables: (a) early, fast, and
accurate evaluation of computing systems reliability at every
stage of the design cycle, and (b) provide designers with a
valuable support for reliability related decisions that will in
turn allow the design of reliable systems with improved cost-
related characteristics (area, energy/power, and performance)
and reduced TTM.

Figure 3 details the proposed iterative flow of the
CLERECO framework and its role as a key assistant to the
design team of the system. At each design stage (refine-
ment phase), the expected system’s reliability is evaluated
by CLERECO provided the known information about the
system’s hardware and software components. Depending on
the CLERECO evaluation, corresponding design decisions to
add or remove reliability mechanisms are taken, eventually
leading to a system with just the right level of reliability.

Time (Design Refinement Phases)
Market
Entrance
=TTM

Design
Starts
=0

CLERECO
Methodology & Tools

R
e

lia
b

ili
ty

“Target”
Reliability

Phase 1 Phase 2 Phase 3 Phase n

= CLERECO Framework Reliability Estimation for Phase k

a

b

c “Hint”:
Too high
reliability

a

b

“Hint”:
Too low
reliability

c a

b

“Hint”:
Just right
reliability

c

a
b

c

= HW & SW “known” Information Passed to CLERECO Framework from Phase k to Phaes k+1

= CLERECO “Hints” to Design Team for Phase k + 1

Figure 3: CLERECO reliability oriented design flow

A. CLERECO methodology

In order to develop a cross-layer methodology, CLERECO
investigates several aspects of the reliability in the scenario of
the computing continuum. In particular CLERECO methodol-
ogy aims at:

• assessing all different layers of abstraction of the system
stack. The lower layers that are related to manufacturing
technology will be considered by their inherent raw

error producing rates (i.e., as sources of error) while
higher layers will be considered by their error propagation
profile (i.e., as error blockers/filters, or error amplifiers);

• elaborating a statistical model for the evaluation of the
system’s reliability to eliminate the need for extremely
time consuming and costly solutions such as fault injec-
tion campaigns either at the simulation level or on actual
system prototypes. The statistical model calculates the
expected system’s reliability when fed with reliability-
related information for the hardware components of the
system and the software modules that are expected to run
on top of them;

• providing automatic component selection, which will
match the design team requirements in terms of perfor-
mance, power/energy and reliability.

B. The cross-fertilization of the computing continuum

CLERECO motivations and goals come from the strong
idea that Embedded Systems (ES) and (HPC) High Perfor-
mance Computing, two main computing segments seating on
both ends of the computing systems spectrum, are converg-
ing towards an emerging computing continuum, where the
same technologies and industrial players will act across all
computing segments, and where we will see ES with HPC
functionalities, and HPC platforms used in real-time systems.
Both worlds will merge into this computing continuum and
face the common reliability challenge that sources from the
inherent unreliability of the underlying technologies used in
all domains. In CLERECO we observe a synergy and cross-
fertilization between these two realities and believe that they
may represent a way to ramp-up the research in this field
joining competences and know-how.

ES has historically been involved in design of safety-critical
applications (e.g., aerospace, automotive, robotics, medical,
etc.) requiring high-reliability. ES therefore has established
approaches for the design of reliable systems trying to take into
account reliability starting from the initial phases of the design
and trying to include the side effects that software layers have
on the overall system reliability. One of the main contributions
of ES is also a very clear and precise set of reliability metrics
and standards, which are accurately evaluated at the end of the
design process resorting to massive error injection campaigns.

On the other side, HPC has been the leading technology
segment that pushed the IC and other technologies toward
new limits to achieve higher performance. HPC has therefore
put a significant effort in understanding the impact of new
technologies on the system’s reliability. Together with technol-
ogy improvement, high performance has been guaranteed by
the massive parallelization of HPC computing systems. HPC
may therefore provide reliability definitions and metrics for
large parallel jobs and multi/many cores systems as well as
Reliability Availability Serviceability (RAS) assessment for
large heterogeneous systems.

C. CLERECO approach

The approach adopted by CLERECO to achieve these very
ambitious targets comprehends the analysis of components
used in the computing continuum. In particular, this consists of
the characterization and in-depth understanding of the intrinsic
reliability properties of future scaled CMOS of emerging post-
CMOS technologies, as well as the analysis of the impact of
current and future hardware and software components, includ-
ing their interoperability, on the overall system’s reliability
(see Figure 4).

Statistical system’s reliability
modeling

HW components resiliency
characterization

Silicon/Technology
Errors

SW modules resiliency
characterization

Figure 4: CLERECO early reliability estimation approach

In particular, the CLERECO methodology for early relia-
bility evaluation is comprehensively assessed and validated in
advanced designs from different applications provided by the
industrial partners for the full stack of hardware and software
layers. Moreover, since the target computing is not restricted to
a single application domain, but rather to the new computing
continuum, all the employed different software layers and
the characterization of specific parameters that may affect the
reliability are investigated in details.

CLERECO exploits all commonalities that the computing
continuum provides, but, at the same time, it also addresses the
particularities of each domain, characterizing different phases
of the system operation. A complex computing system may
need to employ different hardware or software mechanisms
(for any of the detection, diagnosis, recovery, and repair
actions) depending on its operation phase, i.e., there may
be low-reliability or high-reliability phases depending on the
workload of the system or the operating conditions. This
tuning of the reliability mechanisms is decided based on the
CLERECO framework outcome for the expected reliability of
the system under a given set of conditions.

CLERECO methodology targets all different design refine-
ment stages, from early conceptual and specification phases, to
architectural design phases, up to silicon prototypes validation
and also during the system operation in the field (to assist

graceful degradation of the system due to aging and wear-out
effects). Depending on the design phase on which CLERECO
is employed, different reliability-related information for the
design components (hardware and software) are used by the
CLERECO framework to deliver accurate estimations for the
expected system reliability.

IV. RELATED WORKS

The global research community has been very active in
researching technological and architectural methods to im-
prove reliability of specific components and systems. However
the CLERECO project takes a different direction, trying to
understand how the application and combination of these
methods impact the overall system’s reliability in order to
reduce the use of aggressive reliability design solutions and
to improve systems performance and energy/power budget
while meeting the requested reliability levels. Having this in
mind this section will specifically overview how reliability is
nowadays evaluated at different design stages.

A. Reliability prediction at circuit and gate-level

Circuit-level reliability estimation tries to estimate the prob-
ability of a given failure mode at the output of a logic gate
hit by a particle or affected by other types of stresses [4], [5].
Today, reliability device simulators have become an integral
part of the design process. These simulators successfully
model the most significant physical failure mechanisms in
modern electronic devices. Moreover, some analyses pointed
out that, the performance improvement of a full technological
generation step can be lost due to process variations [6]. In
response to the need to analyze designs under process vari-
ations, researchers have developed statistical timing analysis
techniques to be applied for deep sub-micron chip designs [7].

Gate-level reliability estimation moves the focus to the
nodes of a netlist [5]. Estimating the error susceptibility of
a node requires computing the probability of sensitizing the
node with an input vector able to propagate the erroneous
value to one of the outputs of the circuit [6]. This however
requires the simulation of several random vectors whose
number significantly increases with the size of the circuit [4],
[5], [8], [9], [10]. Reliability prediction tools now model the
failure probability of chips at the end of life by analyzing only
the single dominant wear-out mechanisms. Modern prediction
tools do not predict the random, post burn-in, failure rate that
would be seen in the field.

B. Reliability prediction at processor architectural level

The research community has provided a lot of results in the
area of Architectural Vulnerability Factor (AVF) calculation
and AVF estimation. The AVF is the probability that a fault
in a processor structure will result in a visible error in the
final output of a program. Most studies estimate reliability
in terms of AVF. Most attempts are offline analysis with
complex simulators [11], [12], [13]. This offline estimation is a
complex process, requiring many resources to track values and
instructions as they travel through a processor. Normally only a

limited number of instructions can be analyzed in a reasonable
amount of time. There has been some work on estimating the
AVF in real time [14], [15]. Walcott [15] et al. apply statistical
analysis using a detailed simulator to analyze the AVF behav-
ior at large scale. Then they use linear regression to explore
the relationship between AVF and various microarchitecture
level variables. Duan et al. [16] proposes the use of boosted
regression trees as a predictive model. Later, Biswas et al. [17]
extend this work by calculating and estimating vulnerability
over short windows of time, providing better opportunities for
reconfigurations. Soundararajan et al. [14] propose a method
to estimate AVF for the reorder buffer (ROB) in the processor.
Fu et al. [18] explores program reliability/vulnerability phase
behavior. They observe that a methodology (based on code
structure) shows promise in classifying program reliability
phase behavior. They also explore the use of performance
counters similar to previous works [15]. However, they only
explore the AVF estimation for the issue queue and the reorder
buffer in an out-of-order processor.

C. Reliability prediction of caches

Memory structures reliability is hard to predict, and deserve
a more specific solution [19]. Following Duan et al. [16] work
on using boosted regression trees as a predictive model, Ma et
al. [20] developed a model based on Bayesian additive regres-
sion trees for the cache memories. Cheng et al. [21] studied
the variability in AVF for different cache configurations. Li et
al. [22] proposed to use simple modifications to the processor
to estimate AVF.

D. Reliability prediction at system level

When analyzing the lifetime reliability of processor-based
systems, it is essential to investigate the impact at system level.
Srinivasan et al. [23] described a model for lifetime analysis
for microprocessors and conducted dynamic reconfigurations
based on the model. In this model, authors assume identical
vulnerability of devices and uniform device density over
the whole chip. Later, Shin et al. [24] made a more fine-
grain model where different structures of the processor (e.g.,
register file, functional units) had different failure mechanisms.
However, the model suffered from the same inaccuracies.

Other works predict lifetime reliability based on simulations
[25]. Similar to previous works [23], [24] , the failure mecha-
nisms do not consider aging effects, which lead to inaccuracies
in the simulation results. Huang and Xu [26] have proposed
AgeSim, a simulation framework for evaluating the lifetime
reliability of SoCs at system level.

Recently, researchers have begun to explore the system-level
impact of variations on power, performance, and reliability.
Humenay et al. [27] and Romanescu et al. [28] developed
models of process variations on pipelined processors. They
show that globally-asynchronous, locally synchronous (GALS)
design techniques may offer ways to mitigate the impact of
correlated within-die variations, but random variations, partic-
ularly within memory structures, cannot be easily addressed
with these coarse-grained approaches.

Reliability assessment is a critical topic, especially in large
and heterogeneous systems. In fact, reliability evaluation, at
system level, often relies on statistical models. Thus, model
selection is crucial to obtain trustworthy results, depending on
the application field. The research activity in this field is active
even if not specifically related to the design flow of complex
digital systems. Extreme value theory is often the theoretical
foundation to build statistical models to evaluate both lifetime
and reliability in several fields [29].

E. Reliability impact of software

Scarce work has focused on systematically including the
software into the reliability evaluation process. The work pub-
lished in [30] analyzes various compiler optimization effects
on the AVF of an embedded processor. Similar approaches
at the compiler level have been also proposed in [31] and
[32]. In [33] the authors proposed a first attempt of performing
static analysis of a computer system including its software. An
interesting solution that includes the software layer is provided
by Sridharan and Kaeli [34]. They propose to compute a
Program Vulnerability Factor (PVF) for a set of benchmarks
exploited to improve AVF computation for several micropro-
cessors. However, neither the final software workload, nor the
full stack are explicitly considered. [35] proposes a solution
that considers the impact of the application software running
on embedded microprocessors however it does not consider
the operating system (OS) and multi-processing solutions in
the overall evaluation. One of the few attempts to consider
the full software stack including the operating system has
been proposed in [36]. This however presents very preliminary
results and it is uncertain how it can be extended to modern
systems employing massive parallelism.

F. Impact of errors

The impact of soft errors is an important emerging concern
in the design and implementation of future microprocessors.
A considerable amount of research at the microarchitecture
level has conducted fault injection studies using software-
based methods [37], [38], [39], [40], [41], [42]. They focus
on understanding how errors in low-level circuits or hardware
structures manifest at the architecture level. Inside this large
body of work about fault injections and soft errors, there
are studies that characterize the fault tolerant behavior of the
system. The susceptibility of commodity operating systems
running on IA-32 and IA-64 microprocessors to soft errors was
investigated in [43]. The results indicated that with improved
microprocessor support like the Machine Check Architecture
(MCA), and a little application knowledge, the system can
reduce the need for reboots due to the detected soft errors.
Additionally, previous works [11], [37] have noticed that not
all faults at the low levels affect program correctness.

Identifying the effects of faults in program behavior and
which programs is more fault resilient at higher levels has
also been deeply studied. Some works [44], [45], [46] have
analyzed certain aspects related to program output require-

ments, algorithm features, and cognitive resilience of various
applications from the application’s standpoint.

Finally, another research vector has explored the possible
anomalous symptoms or atypical events caused by faults, and
used this information to perform error detection at different
levels [47], [48], [49]. This class of research tries to charac-
terize and catch selected events, symptoms, to diagnose the
likely presence of a failure caused by soft errors.

V. CONCLUSIONS

Increasing reliability of the next generation computing sys-
tems while reducing the negative impact of reliability solutions
on the TTM, power budget and performance of the system
is a key achievement for supporting the ICT technology in
the upcoming years. New approaches to precisely evaluate the
reliability of a system at early design stages and therefore to
take into account different abstraction levels and both software
and hardware components are therefore mandatory.

The CLERECO project addresses this problem aiming at
the development of a promising framework to adequately
deal with an increasingly electronic devices unreliability. The
CLERECO consortium including a significant industrial in-
volvement both in the ES and HPC computing sectors, creates
a good opportunity to achieve this goal with the potential to
build a new framework for the efficient design of systems
that achieve tomorrows requirements in terms of performance,
survivability, reliability, cost and power dissipation.

VI. ACKNOWLEDGMENTS

This research has been supported by the 7th Framework Pro-
gram of the European Union through the CLERECO Project,
under Grant Agreement 611404. Moreover, the work has been
supported in part by EUs European Social Fund (ESF) and
Greek national funds under the Thales/HOLISTIC project.

REFERENCES

[1] D. Buchholz and J. Dunlop, “The future of enterprise computing: Pre-
pare for compute continuum.” [Available Online]: http://goo.gl/KYb0H8,
May 2011.

[2] S. Guertin and M. White, “CMOS reliability challenges the future of
commercial digital electronics and nasa.” [Available Online]: http://goo.
gl/p0gxld, 2010.

[3] CLERECO Consortium, “Cross-layer early reliability evaluation for the
computing continuum official website.” [Available Online]: http://www.
clereco.eu, 2013.

[4] M. Omana, G. Papasso, D. Rossi, and C. Metra, “A model for transient
fault propagation in combinatorial logic,” in Proceedings of the 9th
IEEE On-Line Testing Symposium, 2003. IOLTS 2003., pp. 111–115,
July 2003.

[5] A. Maheshwari, I. Koren, and N. Burleson, “Techniques for transient
fault sensitivity analysis and reduction in vlsi circuits,” in Proceedings of
the 18th IEEE International Symposium on Defect and Fault Tolerance
in VLSI Systems, 2003. DFTS 2003., pp. 597–604, Nov. 2003.

[6] K. Bowman, S. Duvall, and J. Meindl, “Impact of die-to-die and within-
die parameter fluctuations on the maximum clock frequency distribution
for gigascale integration,” IEEE Journal of Solid-State Circuits, vol. 37,
pp. 183–190, Feb 2002.

[7] A. Agarwal, D. Blaauw, and V. Zolotov, “Statistical timing analysis for
intra-die process variations with spatial correlations,” in Proceedings of
the International Conference on Computer Aided Design, 2003. ICCAD
2003., pp. 900–907, Nov 2003.

[8] K. Mohanram and N. Touba, “Cost-effective approach for reducing soft
error failure rate in logic circuits,” in Proceedings of the International
Test Conference, 2003. ITC 2003., vol. 1, pp. 893–901, Sept 2003.

[9] M. Sonza Reorda and M. Violante, “Accurate and efficient analysis
of single event transients in vlsi circuits,” in Proceedings of the 9th
IEEE On-Line Testing Symposium, 2003. IOLTS 2003., pp. 101–105,
July 2003.

[10] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi,
“Modeling the effect of technology trends on the soft error rate of
combinational logic,” in Proceedings of the International Conference
on Dependable Systems and Networks, 2002. DSN 2002., pp. 389–398,
2002.

[11] S. S. Mukherjee, C. Weaver, J. S. Emer, S. K. Reinhardt, and T. M.
Austin, “A systematic methodology to compute the architectural vul-
nerability factors for a high-performance microprocessor.,” in MICRO,
pp. 29–42, ACM/IEEE, 2003.

[12] X. Li, S. V. Adve, P. Bose, and J. A. Rivers, “Softarch: An architecture
level tool for modeling and analyzing soft errors.,” in Proceedings of the
International Conference on Dependable Systems and Networks, 2005.
DSN 2005., pp. 496–505, IEEE Computer Society, June 2005.

[13] N. J. Wang, A. Mahesri, and S. J. Patel, “Examining ace analysis
reliability estimates using fault-injection.,” in ISCA (D. M. Tullsen and
B. Calder, eds.), pp. 460–469, ACM, 2007.

[14] N. Soundararajan, A. Parashar, and A. Sivasubramaniam, “Mechanisms
for bounding vulnerabilities of processor structures.,” in Proceedings of
the 34th Annual International Symposium on Computer Architecture,
2007. ISCA 2007., pp. 506–515, ACM, 2007.

[15] K. R. Walcott, G. Humphreys, and S. Gurumurthi, “Dynamic prediction
of architectural vulnerability from microarchitectural state.,” in Pro-
ceedings of the 34th Annual International Symposium on Computer
Architecture, 2007. ISCA 2007., pp. 516–527, ACM, 2007.

[16] L. Duan, B. Li, and L. Peng, “Versatile prediction and fast estimation of
architectural vulnerability factor from processor performance metrics,”
in Proceedings of the IEEE 15th International Symposium on High
Performance Computer Architecture, 2009. HPCA 2009., pp. 129–140,
IEEE, 2009.

[17] A. Biswas, N. Soundararajan, S. S. Mukherjee, and S. Gurumurthi,
“Quantized AVF: A means of capturing vulnerability variations over
small windows of time.” [Available Online] https://cheetah.cs.virginia.
edu/∼gurumurthi/papers/selse09 qavf.pdf, 2009.

[18] X. Fu, J. Poe, T. Li, and J. A. B. Fortes, “Characterizing microarchitec-
ture soft error vulnerability phase behavior.,” in Proceedings of the 14th
IEEE International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems, 2006. MASCOTS 2006.,
pp. 147–155, IEEE Computer Society, Sept 2006.

[19] A. Biswas, P. Racunas, R. Cheveresan, J. S. Emer, S. S. Mukherjee, and
R. Rangan, “Computing architectural vulnerability factors for address-
based structures.,” in Proceedings of the 32Nd Annual International
Symposium on Computer Architecture 2005. ISCA 2005, pp. 532–543,
IEEE Computer Society, may 2005.

[20] A. Ma, Y. Cheng, and Z. Xing, “Accurate and simplified prediction of avf
for delay and energy efficient cache design.,” J. Comput. Sci. Technol.,
vol. 26, no. 3, pp. 504–519, 2011.

[21] Y. Cheng, A. Ma, Y. Tang, and M. Zhang, “Accurate vulnerability
estimation for cache hierarchy,” in Proceedings of the 7th International
Conference on Networked Computing and Advanced Information Man-
agement 2011. NCM 2001., pp. 7–14, IEEE, 2011.

[22] X. Li, S. V. Adve, P. Bose, and J. A. Rivers, “Online estimation of
architectural vulnerability factor for soft errors,” in Proceedings of the
35th International Symposium on Computer Architecture, 2008. ISCA
2008., pp. 341–352, IEEE, 2008.

[23] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers, “The case for
lifetime reliability-aware microprocessors,” Proceedings of the 31st
Annual International Symposium on Computer Architecture, 2004. ISCA
2004, vol. 32, no. 2, p. 276, 2004.

[24] J. Shin, V. V. Zyuban, Z. Hu, J. A. Rivers, and P. Bose, “A framework
for architecture-level lifetime reliability modeling.,” in Proceedings of
the 37th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, 2007. DSN 2007, pp. 534–543, IEEE Computer
Society, June 2007.

[25] T. S. Rosing, K. Mihic, and G. D. Micheli, “Power and reliability
management of socs.,” IEEE Trans. VLSI Syst., vol. 15, no. 4, pp. 391–
403, 2007.

[26] L. Huang and Q. Xu, “Agesim: A simulation framework for evaluating
the lifetime reliability of processor-based socs.,” in Proceedings of the
Design, Automation, and Test in Europe Conference 2010. DATE 2010,
pp. 51–56, IEEE, March 2010.

[27] E. Humenay, D. Tarjan, W. Huang, and K. Skadron, “Impact of parame-
ter variations on multicore architectures,” in Workshop on Architectural
Support for Gigascale Integration (ASGI-06, held in conjunction with
ISCA-33), 2006.

[28] B. Romanescu, S. Ozev, and D. Sorin, “Quantifying the impact of pro-
cess variability on uniprocessor behavior,” in Workshop on Architectural
Reliability, 2006.

[29] R. L. Smith, “Statistics of extremes, with applications in environment,
insurance, and finance,” Monographs on Statistics and Applied Proba-
bility, vol. 99, pp. 1–78, 2004.

[30] T. M. Jones, M. F. O’Boyle, and O. Ergin, “Evaluating the effects of
compiler optimisations on AVF,” in Proceedings of the Workshop on
interaction between compilers and computer architecture (INTERACT-
12), 2008.

[31] V. Sridharan and D. R. Kaeli, “Eliminating microarchitectural depen-
dency from architectural vulnerability.,” in Proceedings of the IEEE 15th
International Symposium on High Performance Computer Architecture,
2009. HPCA 2009., pp. 117–128, IEEE Computer Society, Feb 2009.

[32] J. A. Butts and G. S. Sohi, “Dynamic dead-instruction detection and
elimination.,” in Proceedings of the 10th International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2002. ASPLOS X. (K. Gharachorloo, ed.), pp. 199–210, ACM
Press, 2002.

[33] A. Benso, S. Di Carlo, G. Di Natale, and P. Prinetto, “Static analysis of
seu effects on software applications.,” in Proceedings of the International
Test Conference, 2002. ITC 2002., pp. 500–508, IEEE Computer Society,
2002.

[34] V. Sridharan and D. R. Kaeli, “Using pvf traces to accelerate avf
modeling,” in Proceedings of the IEEE Workshop on Silicon Errors in
Logic-System Effects, pp. 23–24, 2010.

[35] A. Savino, S. Di Carlo, G. Politano, A. Benso, A. Bosio, and G. Di Na-
tale, “Statistical reliability estimation of microprocessor-based systems.,”
IEEE Trans. Computers, vol. 61, no. 11, pp. 1521–1534, 2012.

[36] V. Sridharan and D. R. Kaeli, “The effect of input data on program
vulnerability,” in Workshop on System Effects of Logic Soft Errors
(SELSE-5), 2009.

[37] N. J. Wang, J. Quek, T. M. Rafacz, and S. J. Patel, “Characterizing the
effects of transient faults on a high-performance processor pipeline.,”
in Proceedings of the International Conference on Dependable Systems
and Networks, 2004. DSN 2004., pp. 61–70, IEEE Computer Society,
June 2004.

[38] G. P. Saggese, N. J. Wang, Z. Kalbarczyk, S. J. Patel, and R. K. Iyer,
“An experimental study of soft errors in microprocessors.,” IEEE Micro,
vol. 25, no. 6, pp. 30–39, 2005.

[39] D. Thaker, D. Franklin, J. Oliver, S. Biswas, D. Lockhart, T. Metodi,
and F. Chong, “Characterization of error-tolerant applications when
protecting control data,” in Proceedings of the IEEE International
Symposium on Workload Characterization, 2006., pp. 142–149, IEEE,
Oct 2006.

[40] S. Z. Shazli, M. A. Abdul-Aziz, M. B. Tahoori, and D. R. Kaeli,
“A field analysis of system-level effects of soft errors occurring in
microprocessors used in information systems.,” in Proceedings of the
IEEE International Test Conference, 2008. ITC 2008. (D. Young and
N. A. Touba, eds.), pp. 1–10, IEEE, Oct 2008.

[41] M. Rahman, B. R. Childers, and S. Cho, “Stealth works: Emulating
memory errors,” in Proceedings of the First International Conference
on Runtime Verification, RV’10, (Berlin, Heidelberg), pp. 360–367,
Springer-Verlag, 2010.

[42] S. Pan, Y. Hu, and X. L. 0001, “IVF: Characterizing the vulnerability of
microprocessor structures to intermittent faults.,” IEEE Transactions on
Very Large Scale Integration (VLSI), vol. 20, pp. 777–790, May 2012.

[43] A. Messer, P. Bernadat, G. Fu, D. Chen, Z. Dimitrijevic, D. J. F. Lie,
D. Mannaru, A. Riska, and D. S. Milojicic, “Susceptibility of commodity
systems and software to memory soft errors.,” IEEE Trans. Computers,
vol. 53, no. 12, pp. 1557–1568, 2004.

[44] M. Breuer, “Multi-media applications and imprecise computation,” in
Proceedings of the 8th Euromicro Conference on Digital System Design,
2005., pp. 2–7, IEEE, Aug 2005.

[45] X. Li and D. Yeung, “Application-level correctness and its impact
on fault tolerance,” in Proceedings of the IEEE 13th International

Symposium on High Performance Computer Architecture, 2007. HPCA
2007., pp. 181–192, Feb 2007.

[46] L. Leem, H. Cho, J. Bau, Q. A. Jacobson, and S. Mitra, “ERSA:
Error resilient system architecture for probabilistic applications.,” in
Proceedings of the Design, Automation Test in Europe Conference
Exhibition 2010. DATE 2010., pp. 1560–1565, IEEE, March 2010.

[47] P. Racunas, K. Constantinides, S. Manne, and S. S. Mukherjee,
“Perturbation-based fault screening.,” in Proceedings of the IEEE 13th
International Symposium on High Performance Computer Architecture,
2007. HPCA 2007., pp. 169–180, IEEE Computer Society, Feb 2007.

[48] N. J. Wang and S. J. Patel, “Restore: Symptom-based soft error detection
in microprocessors.,” IEEE Trans. Dependable Sec. Comput., vol. 3,
no. 3, pp. 188–201, 2006.

[49] P. Ramchandran, S. Adve, V. Adve, and Y. Z. M.-L. Li, “Swat: An error
resilient system,” in 4th Workshop on Silicon Errors in Logic - System
Effects (SELSE - IV), 2008.

