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Abstract

This paper presents a mixed two dimensional model for the analysis of mechanical response in anisotropic multilayered
plates, with particular attention to the behavior along the thickness of the plate. It is well known that the study of
anisotropic material structures requires to take into account cross-elasticity effects that make the solution converge very
slowly. The finite element method showed successful performances to approximate the solutions of these structures.
In this regard, two variational formulations are available to calculate the stiffness matrix, the Principle of Virtual
Displacement (PVD) and the Reissner Mixed Variational Theorem (RMVT). Here, a strategy similar to MITC (Mixed
Interpolated of Tensorial Components) approach, in the RMVT formulation, is adopted to formulate advanced locking-
free finite elements. Then, assuming the transverse stresses as independent variables, the continuity at the interfaces
between layers is easily imposed. The displacement field is defined according to the Reissner-Mindlin theory and the
shear stresses are assumed parabolic along the thickness by means of RMVT. The normal strain εzz and the normal
stress σzz are discarded. The shear stresses σxz and σyz are interpolated in each element according to the MITC. By
comparing the results with benchmark solutions from literature, it is shown that the element exhibits both properties
of convergence and robustness and provides very accurate results in terms of transverse shear stresses of the anisotropic
multilayered plate.

Key words: Anisotropic plates, Finite Elements, Mixed Interpolation of Tensorial Components, Reissner Mixed
Variational Theorem;

1. Introduction

With the development of high performance fiber rein-
forced composite materials for structural applications has
come an increased interest in solutions to anisotropic plate
problems. A large number of solutions exist for bending,
buckling, and free vibration of specially orthotropic rect-
angular plates in which the principal elastic axes are par-
allel to the sides of the plate. Many of these solutions are
summarized in References [1]-[3],

In most structural applications, however, fiber rein-
forced composites are constructed of unidirectional plies
in which the fiber axis is oriented at an angle θ to the x
axis as illustrated in Figure 1. For such a composite sym-
metrically laminated about the mid-plane, the bending re-
sponse is governed by the flexural equation of a homoge-
neous anisotropic plate [4, 5], including the cross-elasticity
bending stiffness terms D16 and D26. Moreover, a number
of complicating effects arise in the analysis of multilayered
composite structures due to the intrinsic discontinuity of
the mechanical properties at each layer–interface to which
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high shear and normal transverse deformability is associ-
ated. An accurate description of the stress and strain fields
of these structures requires theories that are able to satisfy
the so–called Interlaminar Continuity (IC) conditions for
the transverse stresses (see Whitney [6], and Pagano [7],
as examples).

Transverse anisotropy of multilayered structures make
it difficult to find closed form solutions and the use
of approximated solutions is necessary. It can there-
fore be concluded that the use of both refined two–
dimensional theories and computational methods become
mandatory to solve practical problems related to multi-
layered anisotropic structures. Among the several avail-
able computational methods, the Finite Element Method
(FEM) has played and continues to play a significant role.
In this work, the Reissner’s Variational Mixed Theorem
(RMVT) is used to derive plate finite elements. As a main
property, RMVT permits one to assume two independent
fields for diplacement and transverse stress variables. The
resulting advanced finite elements therefore describe a pri-
ori interlaminar continuous transverse stress fields.

For a complete and rigorous understanding of the founda-
tions of RMVT, reference can be made to the articles by
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Professor Reissner [8]-[10] and the review article by Car-
rera [11]. The first application of RMVT to modeling of
multilayered flat structures was performed by Murakami
[12],[13]. He introduced a first order displacement field in
his papers, in conjunction with an independent parabolic
transverse stress LW field in each layer (transverse nor-
mal stress and strain were discarded). An extension to a
higher order displacement field was proposed by Toledano
and Murakami in [14]. While in [15], they extended the
RMVT to a layer-wise description of both displacement
and transverse stress fields. These papers [12]-[15] should
be considered as the fundamental works in the applications
of RMVT as a tool to model multilayered structures. Fur-
ther discussions on RMVT were provided by Soldatos [16].
A generalization, proposing a systematic use of RMVT
as a tool to furnish a class of two dimensional theories
for multilayered plate analysis, was presented by Carrera
[17]-[19]. The order of displacement fields in the layer was
taken as a free parameter of the theories. Applications
of what is reported in [17],[18] have been given in sev-
eral other papers [20]-[27], in which closed-form solution
are considered. Layer-wise mixed analyses were performed
in [28] for the static case. As a fundamental result, the
numerical analysis demonstrated that RMVT furnishes a
quasi three-dimensional a priori description of transverse
stresses, including transverse normal components. Sand-
wich plates were also considered in [21]. Recently, Messina
[29] has compared RMVT results to PVD (Principle of
Virtual Displacements) ones. Transverse normal stresses
were, however, discarded in this work. In [30]-[32], Car-
rera and Demasi developed multilayered plate elements
based on RMVT, that were able to give a quasi–three-
dimensional description of stress/strain fields. But in these
works, they still employ the selective reduced integration
[33] to overcome the shear locking phenomenon.

Recently, authors adopted the Mixed Interpolation of Ten-
sorial Components (MITC) to contrast the locking. Ac-
cording to this technique, the strain components are not
directly computed from the displacements but they are in-
terpolated within each element using a specific interpola-
tion strategy for each component. For more details about
MITC, the readers can refer to the works [34]-[38]. In
[39], the authors formulated plate/shell elements based on
displacement formulation that showed good properties of
convergence thanks to the use of the MITC. Then in [40],
they adopted the same strategy of the MITC to interpo-
late the transverse stresses that are modelled a-priori by
the RMVT. In this way, they demonstrated that IC con-
ditions are satisfied and the shear locking is contrasted at
the same time, by means of the RMVT. The plate elements
proposed in [40] have nine nodes. The displacement field
is defined according to the Reissner-Mindlin theory and
the shear stresses are assumed parabolic along the thick-
ness by means of RMVT. The normal strain εzz and the
normal stress σzz are discarded. The shear stresses σxz
and σyz are interpolated in each element according to the

MITC.

This paper presents the extension of the plate elements
in [40], formulated for the analysis of isotropic multilay-
ered structures, to the analysis of anisotropic multilayered
plates. It is here demonstrated that these elements not
only satisfy IC conditions but they also take into account
the cross-elasticity effects of anisotropic materials provid-
ing good results in terms of transverse shear stresses. Plate
finite elements based on Reissner-Mindlin assumptions and
displacement formulation are considered for comparison
purposes. Comparisons with 3D solutions are also pro-
vided. Future companion works will be devoted to the
higher order RMVT models and the analysis of anisotropic
multilayered shell structures.

Figure 1: Unidirectional ply.

2. Anisotropic multilayered materials

The constitutive equations describing the relations be-
tween the stress tensor σ̃ = σij , i, j = 1, . . . 3 and the
strain tensor ε̃ = εij , i, j = 1, . . . 3 for linear elastic mate-
rials are given by the generalized Hooke’s law:

σij = C̃ijhkεhk, i, j, h, k = 1, ...3, (1)

where C̃ijhk is the fourth-order elasticity tensor of material
constants. Referring to the reference system (ξ, η, ζ) of the
material, we introduce the stress vector:

σ̂ = [σξξ σηη σξη σξζ σηζ σζζ ]
T

and analogously the strain vector:

ε̂ = [εξξ εηη εξη εξζ εηζ εζζ ]
T ,

assuming that:

εξη = ε12 + ε21, εξζ = ε13 + ε31, εηζ = ε23 + ε32.
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For orthotropic materials, the Hooke’s law (1) can be writ-
ten in the matrix form σ̂ = Cε̂, where the elasticity matrix
C is symmetric with 9 independent coefficients:


σξξ
σηη
σξη
σξζ
σηζ
σζζ

 =


C11 C12 0 0 0 C13

C22 0 0 0 C23

C66 0 0 0
C44 0 0

sym C55 0
C33




εξξ
εηη
εξη
εξζ
εηζ
εζζ

 ,
(2)

We observe that the indices order in C refers to the clas-
sical Voigt-Kelvin notation.

In this paper we consider laminated structures made of
Nl orthotropic laminae that are supposed to be perfectly
bonded together. Let the structure occupies a region V =
Ω×(− t

2 ,
t
2 ), where Ω is the middle surface and t > 0 is the

thickness of the plate. We assume Ω as reference surface
of the laminated plate. The k-layer is described by the
ζk, ζk+1 coordinates respect to the reference surface and
by the thickness tk = ζk+1 − ζk with

t =

Nl∑
k=1

tk.

Multilayered structures are often composed of layers made
up with different orientations. Therefore it needs to write
the previous relations from the reference system (ξ, η, ζ)
into the reference problem system (x, y, z). Assuming that
the two systems have the same origin and the ζ and z-
axes are coincident, the classical coordinate transforma-
tion reads:

 ξ
η
ζ

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 x
y
z

 , (3)

where θ is the angle which the ξ-axis forms with the x-axis
counterclockwise. Let σ and ε be the stress and strain vec-
tor in the reference problem system (x, y, z), respectively.
For each layer the stress and the strain transformations
hold and the constitutive law in the reference problem sys-
tem reads as:

σ(k) = C̄(k)ε(k). (4)

that in explicit form is:
σxx
σyy
σxy
σxz
σyz
σzz

 =


C̄11 C̄12 C̄16 0 0 C̄13

C̄22 C̄26 0 0 C̄23

C̄66 0 0 C̄63

C̄44 C̄45 0
sym C̄55 0

C̄33




εxx
εyy
εxy
εxz
εyz
εzz

 ,
(5)

Note that the coefficients C̄16, C̄26, C̄36 and C̄45 appear.

3. RMVT formulation

The analysis of multilayered structures is difficult when
compared to one-layered ones. A number of complicat-
ing effects arise when their mechanical behavior as well
as failure mechanisms have to be correctly understood.
This is due to the intrinsic discontinuity of the mechanical
properties at each layer–interface to which high shear and
normal transverse deformabilty is associated. An accurate
description of the stress and strain fields of these structures
requires theories that are able to satisfy the so–called In-
terlaminar Continuity (IC) conditions for the transverse
stresses (see Whitney [6], and Pagano [7], as examples).
Among these theories, the variational statement RMVT
has been usefully employed to modeling of multilayered flat
structures (see e.g. [12], [15] and the references therein).

3.1. The one-layered plate

Here we deal with the description of stress and strain
fields in the k−th lamina of a multilayered plate subjected
to static loadings. As a main property, RMVT permits
one to assume two independent fields for diplacement and
transverse stress variables and thus enables one to describe
a priori interlaminar continuous transverse stress fields.
Following this approach the stress and the strain vectors
are written in terms of the in-plane and transverse com-
ponents (for semplicity we omit the index k) :

σ̂ = [σ̂p σ̂n], ε̂ = [ε̂p ε̂n] (6)

Further subscripts H, G and M are introduced. H means
that the stresses are computed by Hooke’s law, G means
that the strains are computed from geometrical relations
and M stands for Model. Let us suppose that the lam-
ina occupies a region Vk = Ω × (− tk2 ,

tk
2 ) and that it is

subjected to external layer force p. Thus, in the reference
lamina system, the RMVT formulation can be written as
follows:∫

Vk

[
δε̂pGσ̂pH + δε̂nGσ̂nM + δσ̂nM(ε̂nG − ε̂nH)

]
dξdηdζ

= δLe
(7)

where the third term variationally enforces the compati-
bility condition of the transverse strains ε̂nG = ε̂nH and
δLe is the virtual variation of the work made by p. Now
we take into account the Reissner-Mindlin assumption,
σζζ = 0, ([41], [42]) which implies that the transverse stress
vector is reduced to a two components vector:

σ̂nM = [σξζ σηζ ] (8)

and that the strain component εζζ can be neglected. Thus
the constitutive relations (5) are decoupled in the in-plane
and out-of-plane components in this way: σξξ

σηη
σξη

 =

 C11 C12 C16

C22 C26

sym C66

 εξξ
εηη
εξη

 (9)
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[
σξζ
σηζ

]
=

[
C44 C45

sym C55

] [
εξζ
εηζ

]
. (10)

Let Cpp and Cnn be the elasticity matrices in (9) and (10)
respectively, we can write:

σ̂pH = Cppε̂pG, σ̂nM = Cnnε̂nH (11)

and expressing ε̂nH in terms of the independent variable
σ̂nM we have:

ε̂nH = (Cnn)−1σ̂nM. (12)

Upon substitution of the first of (11) and of (12) into (7) we
obtain the variational formulation in RMVT framework:∫

Vk

[
δε̂pG Cpp ε̂pG + δε̂nGσ̂nM+

δσ̂nM

(
ε̂nG − (Cnn)−1σ̂nM

)]
dξdηdζ = δLe

(13)

In the case that the k−th lamina is orthotropic The elastic
coefficients of the matrices Cpp and Cnn are experimentally
determined in terms of engineering constants such as the
Young modulus E, the transverse elasticity modulusG and
the Poisson’s ratio ν. They are:

Cpp =



E1

1− ν12ν21

E2ν12

1− ν12ν21
0

E2

1− ν12ν21
0

sym G12


, (14)

Cnn =

[
G13 0

0 G23

]
. (15)

where E1, E2, ν12, ν21 are the Young modulus and the
Poisson’s ratio, respectively, in the ξ, η directions of the
lamina system and are linked to each other by: ν21/E2 =
ν12/E1. G13, G23, G12 are the transverse elasticity mod-
ulus in the planes (ξ ζ), (η ζ), (ξ η) respectively.

3.2. The anisotropic multilayered plate

The splitting of the Hooke’s law (11) in the in-plane and
out-of-plane components leads to write the relation (4) for
the k-th lamina in the following form:

σ
(k)

pH = C̄(k)
pp ε

(k)

pG, σ
(k)

nM = C̄(k)
nn ε

(k)

nH, (16)

where

ε
(k)

nH = (C̄(k)
nn )−1σ

(k)

nM, (17)

Now we can write the variational formulation for the k-th
lamina in the reference problem system as:∫

Vk

[
δε

(k)

pG C̄(k)
pp ε

(k)

pG + δε
(k)

nGσ
(k)

nM+

δσ
(k)

nM

(
ε

(k)

nG − (C̄(k)
nn )−1σ

(k)

nM

)]
dxdydz = δLe

(18)

4. A model for multilayered plates based on
FSDT (First-order Shear Deformation Theory)
in RMVT

The RMVT approach is suitable to develop two-
dimensional modelling of multilayered structures. The
behavior of displacements and transverse stresses is ex-
pressed in the thickness plate z-direction according to a
z power expansion. In this work we use the first order
expansion of the Reissner-Mindlin model for the displace-
ments field, while we assume that the transverse stresses
are parabolic functions independent in each layer. Thus,
referring to the usual notations, we denote our model by
the code EM1-2. The previous assumptions correspond to
adopt an equivalent single layer description (ESL) for the
displacements and a layer-wise (LW) description for the
transverse stresses. In fact, the treatment at the layer level
permits an accurate description of the transverse stresses
distribution along the thickness of the multilayered plate.

In particular, let u be the displacements field,
u = [ux, uy, uz], the Reissner-Mindlin kinematic assump-
tions are:

ux(x, y, z) = z θx(x, y)

uy(x, y, z) = z θy(x, y)

uz(x, y, z) = w(x, y).

(19)

The functions θx and θy are the rotations of the normal
to the undeformed middle surface Ω in the x-z and y-
z planes, respectively. Both the transverse displacement
and the rotations depend only on (x, y) and thus their de-
scription is made at the multilayered level. Note that the
membrane displacements are discarded in the expansion
of ux and uy, although the membrane-bending coupling
should be taken into account in anisotropic materials. At
a first attempt, the authors want to demonstrate that the
present mixed model provides accurate results in terms
of transverse shear stresses independently of the displace-
ment field.

The displacement assumptions above lead to express the
in-plane and out-plane strains in terms of the rotations and
the transverse displacement in this way:

εpG(θ) =

[
z
∂θx
∂x

, z
∂θy
∂y

, z(
∂θx
∂y

+
∂θy
∂x

)

]T
εnG(θ, w) =

[
θx +

∂w

∂x
, θy +

∂w

∂y

]T
, θ = [θx, θy]T

(20)

In order to model the stresses σ
(k)

nM = [σ
(k)
xz , σ

(k)
yz ] in the

layer-wise approach we assume that in any k-layer, k =
1, ...Nl, the stresses are written in the following form:

σ(k)
xz = Ft(z)σ

(k)
xzt + Fb(z)σ

(k)
xzb

+ F2(z)σ(k)
xz2

σ(k)
yz = Ft(z)σ

(k)
yzt

+ Fb(z)σ
(k)
yzb

+ F2(z)σ(k)
yz2

(21)

The subscripts t and b denote values related to the k-layer
top and bottom surfaces respectively and the thickness
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functions Ft(z), Fb(z), F2(z) are defined as follows:

Ft(z) =
P0 + P1

2
, Fb(z) =

P0 − P1

2
,

F2(z) = P2 − P0,
(22)

where Pj = Pj(z) is the Legendre polynomial of j−order.
By introducing the non-dimensioned layer coordinate τk
with −1 ≤ τk ≤ 1 the Legendre polynomials are:

P0 = 1, P1 = τk, P2 =
3τ2
k − 1

2
(23)

Such a choice makes the model particularly suitable to
impose the interlaminar transverse stress continuty (IC)
by linking:

σ(k)
xzt = σ(k+1)

xzb

σ(k)
yzt

= σ(k+1)
yzb

(24)

for k = 1, ...Nl − 1. Moreover, the homogeneous top and
bottom conditions are easily imposed.

Finally, by combining the FSDT assumptions with
the layer-wise approach (21), the problem (18) will
be expressed in each k−layer in terms of the
k−independent variables θx, θy, w and the variables

σ
(k)
xzt , σ

(k)
xzb , σ

(k)
xz2 , σ

(k)
yzt , σ

(k)
yzb , σ

(k)
yz2 .

In particular we introduce the suitable spaces: Θ, W and
Σ of admissible rotations, vertical displacement and trans-
verse stresses respectively.

Let us consider the three-component vector of curvatures
κ(θ):

κ(θ) =

[
∂θx
∂x

,
∂θy
∂y

,
∂θx
∂y

+
∂θy
∂x

]T
(25)

and the normal stress vector σ
(k)
n =

∫
Ik

σ
(k)

nM dz, Ik =

[−tk/2, tk/2], namely:

σ(k)
n =[

σ
(k)
xzt

∫
Ik
Ft(z)dz + σ

(k)
xzb

∫
Ik
Fb(z)dz + σ

(k)
xz2

∫
Ik
F2(z)dz

σ
(k)
yzt

∫
Ik
Ft(z)dz + σ

(k)
yzb

∫
Ik
Fb(z)dz + σ

(k)
yz2

∫
Ik
F2(z)dz

]
.

(26)
We observe that the normal stress vector can therefore be
expressed in terms of the unknowns vectors, σt,σb,σ2:

σt = [σ(k)
xzt , σ

(k)
yzt

]T ,

σb = [σ(k)
xzb
, σ(k)

yzb
]T ,

σ2 = [σ(k)
xz2 , σ

(k)
yz2

]T ,

σ(k)
n = σ(k)

n (σt,σb,σ2).

(27)

Integrating (18) along the thickness of each layer, we ob-
tain the variational formulation of the RMVT model in-

volving FSDT approach:

Find (θ, w,σt,σb,σ2) ∈ Θ×W ×Σ3 :

t3k
12

∫
Ω

δκ(θ)C̄(k)
pp κ(θ) dx dy +∫

Ω

δεnG(θ, w)σ(k)
n (σt,σb,σ2)dx dy = δLe∫

Ω

δσ(k)
n (σt,σb,σ2)εnG(θ, w) dx dy −∫

Ω

δσ(k)
n (σt,σb,σ2)(C̄(k)

nn )−1σ(k)
n (σt,σb,σ2)dx dy = 0

(28)
Finally, in order to fully describe the multilayered struc-
ture it is necessary to assemble the Nl problems (28), hold-
ing in each layer.

5. Finite element approximation

In this paper we introduce an advanced locking-free fi-
nite element to treat the multilayered plates. We con-
sider a strategy similar to MITC approach tailored to the
RMVT formulation.
Let we introduce a shape regular and conforming rectan-
gular grid Th of elements of diameter h for the domain Ω,
which we assume rectangle for simplicity. The reliability of
these elements in terms of mesh distortion, already demon-
strated in [43] for mixed elements based on displacement
formulation, will be evaluated in future companion works.
We consider a particular MITC finite element, known as
MITC9 (see [44]). This element is characterized by the
following choice of the finite element spaces:

Θh ⊂ Θ, Θh = Θh ×Θh,

Wh ⊂W, Σh ⊂ Σ.
(29)

More precisely we set:

Θh =
{
v ∈ H1(Ω) : v|Q ∈ Q2( Q) ∀ Q ∈ Th

}
(30)

where Q2( Q) is the space of polynomials of degree at most
2 in each variable,

Wh =
{
v ∈ H1(Ω) : v| Q ∈ S2( Q) ∀ Q ∈ Th

}
(31)

where S2( Q) denotes the space of serendipity polynomials
of degree 2,

Σh =
{
s : s| Q ∈ Σx × Σy ∀ Q ∈ Th,

s · τ continuous at the interelement boundaries
}

(32)
where τ is the tangential unit vector to each edge of each
element Q,

Σx = Q1( Q) + span{y2}

and

Σy = Q1( Q) + span{x2}.
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The degrees of freedom for the spaces Θh and Wh on each
element are the usual ones. The shape functions for the lo-
cal spaces Σx and Σy are uniquely determined by suitable
degrees of freedom as described in ([36],[39]). The Figure 2
shows the degrees of freedom for the approximate spaces.

Figure 2: Degrees of freedom for the approximate spaces

Under these choices the problem (28) is discretized layer
by layer in the following way:

Find (θh, wh,σ
t
h,σ

b
h,σ

2
h) ∈ Θh ×Wh × (Σh)3 :

t3k
12

∫
Ω

δκ(θh)C̄(k)
pp κ(θh) dx dy +∫

Ω

δεnG(θh, wh)σ(k)
n (σth,σ

b
h,σ

2
h)dx dy = δLe∫

Ω

δσ(k)
n (σth,σ

b
h,σ

2
h)εnG(θh, wh) dx dy −∫

Ω

δσ(k)
n (σth,σ

b
h,σ

2
h)(C̄(k)

nn )−1σ(k)
n (σth,σ

b
h,σ

2
h)dx dy = 0

(33)
In Figure 3 we show the structure of the stiffness matrix
related to the problem (33). In particular, we point out the
differences between the anisotropic and the isotropic case.
The assembling of the stiffness matrix at multilayer-level is
carried out by summing the stiffness matrices of the layers
where the ESL description is used (rotations and trans-
verse displacement) and by imposing the continuity con-
ditions when the shear stresses are taken into account. Fi-
nally in the approximation of the multilayered plate prob-
lem with our model EM1-2, the vertical displacement and
the rotations are constant along the thickness, while the
transverse shear stresses are parabolic on each layer and
they are linked together by the interlaminar stress conti-
nuity condition. Due to the polynomial spaces chosen for
the FEM approximation, the continuity between adjacent
elements is not directly imposed for the transverse shear
stresses.

x� y�

x��

y��

w

w�

)(k

xzt
�

)(k

xzb
� )(

2

k

xz�
)(k

yzt
�

)(k

yzb
�

)(

2

k

yz�

)(k

xzb
��

)(k

xzt
��

)(

2

k

xz��

)(k

yzt
��

)(k

yzb
��

)(

2

k

yz��

unchanged coefficients respect to the  isotropic case

new coefficients respect to the  isotropic case

modified coefficients respect to the isotropic case

Figure 3: Stiffness matrix for k-layer

6. Numerical results

In order to assess the implemented finite element EM1-2
a large numerical investigation is conducted. We present
the convergence studies and the comparison to three-
dimensional exact analysis and to other available finite
element results. Different types of multilayered plates
are treated, in particular a symmetric cross-ply plate
(90o/0o/90o) and two antisymmetric angle-ply laminates
(−45o/45o) and (0o/60o). The mechanical properties of
the used laminae are the following:

E1 = 25GPa, E2 = 1GPa,

G12 = G13 = 0.5GPa, G23 = 0.2GPa

ν12 = 0.25,

(34)

let a and b be the dimensions of the lamina of thickness
t as indicated in Figure 4. The vertical displacement and
the stresses are normalized according to the formula:

w̄ = w
100E2t

3

pza4

σ̄xz =
σxz

pz(a/t)
, σ̄yz =

σyz
pz(a/t)

.
(35)

Different loadings as well as boundary conditions are con-
sidered and an analysis of locking phenomenon is pre-
sented. The achieved results show a good numerical per-
formance of our EM1-2 model.
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Figure 4: Multilayered structure geometry

Table 1: Vertical displacement of (90o/0o/90o) laminate

a/t 3D EM1-2 FSDT

4 2.820 2.2204 2.0547
10 0.919 0.77996 0.75315
20 0.610 0.5726 0.5659

100 0.508 0.5061 0.5059
1000 0.5034 0.5034

6.1. Cross-ply symmetrical plate (90o/0o/90o)

We consider a simply-supported laminate loaded with a
bisinusoidal uniformly distributed pressure applied at the
top surface:

p = (0, 0, pz), pz(x, y) = sin (
πx

a
) sin (

πy

b
). (36)

The geometrical properties are:

a = 1m, b = 3m, tk =
1

3
t, k = 1, 2, 3, (37)

In Table 1 we report the vertical displacement w̄ evalu-
ated at the point (a/2, b/2, 0) for a/t = 4 ÷ 1000 by our
EM1-2 model compared with the 3D solution (see [45]) and
classical FSDT theory (with ’classical’ we mean that the
membrane displacements are included). A uniform mesh
5 × 5 is considered. In Figures 5 and 6 the behaviour of
the transverse shear stress σ̄xz at the points (0, b/2, z/t)
is shown for a/t = 4 and a/t = 1000 respectively. We
compare the results with those obtained with Layer-wise
Mixed model of fourth order (LM4) that can be used as
a quasi-3D solution. We present also the comparison with
the FSDT model to validate the improvement of the solu-
tion obtained by our EM1-2 model. Analogously, in Fig-
ures 7 and 8 the behaviour of the transverse shear stress
σ̄yz at the points (a/2, 0, z/t) is shown for a/t = 4 and
a/t = 1000 respectively. In Figure 9 we show that the
EM1-2 approach leads to a locking-free finite element to
treat the orthotropic multilayered plate.

6.2. Antisymmetric angle-ply plate (−45o/45o)

We consider two simply-supported square plates (a =
b = 1) with lay-out (−45o/45o) and thicknesses tk =

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
−0.5

0

0.5

z
/t

 

 

EM1−2

FSDT

LM4

Figure 5: Shear stress σ̄xz of (90o/0o/90o) laminate for a/t = 4

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
−0.5

0

0.5

z
/t

 

 

EM1−2

FSDT

LM4

Figure 6: Shear stress σ̄xz of (90o/0o/90o) laminate for a/t = 1000

1
2 t, k = 1, 2. One plate is subjected to a uniformly dis-
tributed (UD) load and the other is subjected to the si-
nusoidally distributed (SSL) load (36). We analyze the
effect of the lamination scheme and the shear deforma-
tion on the transverse stresses. In Table (2) a convergence
study with different mesh sizes is presented in terms of
transverse shear stresses σ̄xz at the point (0, b/2, 1/4), in
both the cases of load UD and SSL and thickness ratios
a/t = 4, 1000. It is demonstrated that the results con-
verge for the mesh 12×12 and this last is used for the
following analyses. Then, in Table 3 we compare our nu-
merical results with those obtained in [46] for the thickness
ratios a/t = 10, 20, 100, 1000. Moreover, we show the be-
haviour of the transverse shear stresses σ̄xz and σ̄yz at
the points (0, b/2, z/t) and (a/2, 0, z/t) respectively, in the
case of bisinusoidally distributed load. We consider both
the cases a/t = 10 and a/t = 1000. In Figures 10 and 11
the stresses σ̄xz obtained by EM1-2 model and FSDT ap-
proach are shown and in Figures 12 and 13 the stresses σ̄yz
are represented. We remark that the results obtained by
EM1-2 model are in agreement with the results reported

7



Table 2: Transverse shear stresses σ̄xz , (−45o/45o) laminate

a/t EM1-2

n 4×4 6×6 8×8 12×12 14×14

UD 0.4249 0.4371 0.4432 0.4472 0.4480
4

SSL 0.2068 0.2110 0.2124 0.2133 0.2135
UD 0.4189 0.4188 0.4275 0.4293 0.4297

1000
SSL 0.2098 0.2112 0.2131 0.2137 0.2138

Table 3: Transverse shear stresses σ̄xz , (−45o/45o) laminate

a/t load Reddy EM1-2

UD 0.4238 0.4382
10

SSL 0.2143 0.2134
UD 0.4205 0.4318

20
SSL 0.2143 0.2134
UD 0.4189 0.4286

100
SSL 0.2143 0.2135
UD 0.4293

1000
SSL 0.2137

0 0.01 0.02 0.03
−0.5
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0.5

z
/t
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Figure 7: Shear stress σ̄yz of cross-ply symmetrical plate
(90o/0o/90o) for a/t = 4
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Figure 8: Shear stress σ̄yz of (90o/0o/90o) laminate for a/t = 1000

by Reddy in Figures 6.4.4 and 6.4.5 of [46]. We observe
that unlike in antisymmetric cross-ply laminates the stress
σ̄yz is not zero at (0, b/2, z/t) although small compared to
that at (a/2, 0, z/t).

The robustness of our element respect to the locking
phenomenon is shown in Figure 14, where the transverse
displacement is plotted for very thin laminates. Although
the comparison with classical FSDT solution highlights a
drawback of the present model in the description of the
displacements, it is demonstrated that EM1-2 element is
locking free in the analysis of anisotropic plates.

6.3. Antisymmetric angle-ply plate (0o/60o)

We consider a square plate (a = b = 1) with lay-out
(0o/60o) and thicknesses tk = 1

2 t, k = 1, 2, subjected to
a uniformly distributed load. We analyze such a lami-
nated plate with arbitrary combination of boundary con-
ditions and we compare our results with those presented
in [47]. We denote by F,C and S the free, clamped and
simply supported boundary conditions respectively. More
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Figure 9: Transverse displacement w̄ of (90o/0o/90o) laminate ver-
sus the thickness
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Figure 10: Shear stress σ̄xz of (−45o/45o) laminate for a/t = 10

specifically for antisymmetric angle-ply laminates the sim-
ply supported conditions are:

w = θx = 0 at x = 0, x = a

w = θy = 0 at y = 0, y = b
(38)

We use a 4-word notation, such as CCSF, to indicate the
boundary conditions on the four edges of the plates or-
dered in this way: x = 0, y = 0, x = a, y = b. In
Figure 15 we report the transverse shear stresses σ̄yz at
(a/4, b/4, z/t) obtained by our EM1-2 model related to
a/t = 10 and three different boundary conditions: CFCC,
SCCS, SCFF. The results are in agreement with those re-
ported by Naserian Nik and Tahani in Figure 7(a) of [47].
In Figure 16 we report the transverse shear stresses σ̄xz at
(a/4, b/4, z/t) obtained by our model related to a/t = 10
and three different boundary conditions: CFFC, CSCS,
FCSS. Also these results are in agreement with those re-
ported in Figure 7(b) of [47]. In order to test the ro-
bustness of EM1-2 element with respect to the locking
phenomenon we analyze the behaviour of the transverse
displacement, the transverse shear stresses σ̄yz and σ̄xz
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Figure 11: Shear stress σ̄xz of (−45o/45o) laminate for a/t = 1000
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Figure 12: Shear stress σ̄yz of (−45o/45o) laminate for a/t = 10

at (a/4, b/4, z/t) when a/t = 10, 100, 1000 for meaningful
cases of boundary conditions. In particular, in Figures 17,
18 and 19 a locking study for transverse displacement w
and transverse stresses σ̄yz, σ̄xz in the SCCS case is pre-
sented. Also here, the discrepancy with classical FSDT so-
lution is present but EM1-2 element doesn’t show locking
in the analysis of very thin anisotropic plates (see Fig. 17).

7. Conclusions

This work presents the analysis of anisotropic multilay-
ered plates by means of an advanced locking-free finite
element (EM1-2). The problem is modelled by adopting
the variational formulation based on RMVT. A mixed the-
ory with equivalent single layer (ESL) descriptions for the
displacements and a layerwise (LW) description for the
transverse stresses is considered. In particular a first order
displacements field in conjunction with a parabolic trans-
verse stresses field independent in each layer is adopted.
The continuity condition of the transverse shear stresses at
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Figure 13: Shear stress σ̄yz of (−45o/45o) laminate for a/t = 1000

Figure 14: Transverse displacement w̄ of (−45o/45o) laminate versus
the thickness

the interfaces between layers (IC) is easily imposed by as-
suming the stresses as independent variables. The in-plane
approximation is performed by a strategy similar to MITC
(Mixed Interpolated Tensorial Components) finite element
approach in order to contrast the locking. Due to the
polynomial spaces chosen for the FEM approximations,
the continuity of transverse shear stresses is not imposed
between adjacent elements. Different benchmark tests of
multilayered composite plates are considered to validate
both properties of convergence and robustness of the el-
ement EM1-2 with respect to the 3D solutions, even in
the case of anisotropic structures. Although the compari-
son with the FSDT solution highlights a drawback of the
present model in the description of the displacements that
will be overcome in future companion works, EM1-2 results
show an improvement in terms of transverse shear stresses
with respect to the piecewise constant FSDT approxima-
tions. The analysis of the solution performed versus the
thickness of the structure for different boundary condi-
tions and different thickness ratios confirms that EM1-2
is a locking-free finite element able to provide convergent

-0.1 0 0.1 0.2 0.3 0.4
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0.5
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Figure 15: Shear stress σ̄yz of (0o/60o) laminate for a/t = 10
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Figure 16: Shear stress σ̄xz of (0o/60o) laminate for a/t = 10

and accurate results even for multilayered plates with very
high degree of anisotropy.
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