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Abstract 

During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, 
especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent 
degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict 
the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation 
company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model 
needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were 
obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D 
rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The 
overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a 
model can be useful in the goal of predicting turbine blade life, given a set of FDR data. 
 
© 2016 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Scientific Committee of PCF 2016. 
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Abstract

When dealing with mixed-mode brittle fracture of cracked elements, T -stress affects both the stress field and the energy balance.
This problem is investigated here through the coupled Finite Fracture Mechanics (FFM) criterion by varying mode mixity of the
main crack. Results are presented in terms of the critical stress intensity factors (SIF) and the critical kinking angle. As concerns
pure mode I loading conditions, if T > 0 is large enough, the crack ceases to propagate collinearly and the critical SIF deviates
from the fracture toughness of the material. On the other hand, for mode II loading conditions, if T < 0 is sufficiently low, the
critical SIF ceases to increase and the critical kinking angle jumps to an infinitesimal value.
c⃝ 2016 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the Scientific Committee of ECF21.
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1. Introduction

T -stress effects on crack kinking in brittle fracture mechanics have been investigated since seventies (Williams and
Ewing, 1972; Carpinteri et al., 1979; Cotterell and Rice, 1980; Kariahaloo, 1981; Yukio et al., 1983; Sumi et al., 1985;
He et al., 1991; Becker et al., 2001; Christopher et al., 2007; Lazzarin et al., 2009), but it was only since the middle
of nineties, that failure criteria based on a linear-elastic analysis combined with an internal material length have been
successfully proposed (Kosai et al., 1993; Seweryn, 1998; Smith et al., 2001).

More recently, also coupled stress and energy approaches of FFM were formalized in this framework. Leguillon
and Murer (2008) modified the criterion proposed in Leguillon (2002) to include T -stress effects: the analysis was
carried out numerically, by a two-scale asymptotic matching procedure (Leguillon, 1993). On the other hand, in the
present work, the problem is faced by the approach put forward in Cornetti et al. (2006): the criterion is similar to
that presented in Leguillon and Murer (2008), but the stress condition is averaged and not of punctual type (Cornetti
et al., 2014; Sapora and Mantic, 2016). It is important to remark that according to FFM, the crack advance becomes a
structural parameter, allowing to remove some inconsistencies related to the criteria previously introduced.
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aDepartment of Structural, Geotechnical and Building Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
bGroup of Elasticity and Strength of Materials, School of Engineering, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092 Sevilla,

Spain

Abstract

When dealing with mixed-mode brittle fracture of cracked elements, T -stress affects both the stress field and the energy balance.
This problem is investigated here through the coupled Finite Fracture Mechanics (FFM) criterion by varying mode mixity of the
main crack. Results are presented in terms of the critical stress intensity factors (SIF) and the critical kinking angle. As concerns
pure mode I loading conditions, if T > 0 is large enough, the crack ceases to propagate collinearly and the critical SIF deviates
from the fracture toughness of the material. On the other hand, for mode II loading conditions, if T < 0 is sufficiently low, the
critical SIF ceases to increase and the critical kinking angle jumps to an infinitesimal value.
c⃝ 2016 The Authors. Published by Elsevier B.V.

Peer-review under responsibility of the Scientific Committee of ECF21.

Keywords: Crack kinking, brittle fracture, FFM;

1. Introduction

T -stress effects on crack kinking in brittle fracture mechanics have been investigated since seventies (Williams and
Ewing, 1972; Carpinteri et al., 1979; Cotterell and Rice, 1980; Kariahaloo, 1981; Yukio et al., 1983; Sumi et al., 1985;
He et al., 1991; Becker et al., 2001; Christopher et al., 2007; Lazzarin et al., 2009), but it was only since the middle
of nineties, that failure criteria based on a linear-elastic analysis combined with an internal material length have been
successfully proposed (Kosai et al., 1993; Seweryn, 1998; Smith et al., 2001).

More recently, also coupled stress and energy approaches of FFM were formalized in this framework. Leguillon
and Murer (2008) modified the criterion proposed in Leguillon (2002) to include T -stress effects: the analysis was
carried out numerically, by a two-scale asymptotic matching procedure (Leguillon, 1993). On the other hand, in the
present work, the problem is faced by the approach put forward in Cornetti et al. (2006): the criterion is similar to
that presented in Leguillon and Murer (2008), but the stress condition is averaged and not of punctual type (Cornetti
et al., 2014; Sapora and Mantic, 2016). It is important to remark that according to FFM, the crack advance becomes a
structural parameter, allowing to remove some inconsistencies related to the criteria previously introduced.

∗ Corresponding author. Tel.: +39-011-0904911 ; fax: +39-011-0904899.
E-mail address: alberto.sapora@polito.it

2452-3216 c⃝ 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Scientific Committee of ECF21.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.prostr.2016.06.248&domain=pdf


1976 Alberto Sapora et al. / Procedia Structural Integrity 2 (2016) 1975–1982
2 Sapora et al. / Structural Integrity Procedia 00 (2016) 000–000

The FFM analysis is carried out by exploiting asymptotic expressions for the asymptotic stress field and the crack
driving force available in the Literature (Amestoy and Leblond, 1992; Seweryn, 1998). The coupled equations provid-
ing the critical load and kinking angle are derived analytically and then solved numerically. It is found that positive
T -stresses decrease both the critical failure load and the critical kinking angle, whereas an opposite trend is observed
for negative T -values. Furthermore, in pure mode I loading conditions, there exists a critical threshold T+ > 0 above
which the crack ceases to propagate collinearly and the critical mode I SIF KI f deviates from the fracture toughness
KIc of the material (Cotterell and Rice, 1980; Smith et al., 2001; Leguillon and Murer, 2008; Cornetti et al., 2014).
On the contrary, under mode II loading conditions (indeed, note that KI = 0 does not represent, strictly speaking, a
pure mode II condition since T = 0 corresponds to a symmetrical load), theoretical predictions show an infinitesimal
critical kinking angle and a unit limit value for the ratio between the critical mode II SIF KII f and KIc, below a critical
value T− < 0 (Sapora and Mantic, 2016).

2. FFM criterion

The coupled FFM criterion by Cornetti et al. (2006); Carpinteri et al. (2008) is based on the assumption of a finite
crack extension ∆ and on the contemporaneous fulfilment of two conditions. The former is a stress requirement: the
average circumferential stress σθθ (r,θ) on ∆, prior to the crack extension, must be greater than the material tensile
strength σu. By referring to a cracked element with a polar reference system placed at the notch root (Fig.1), we have
in formulae:

∫ ∆

0
σθθ (r,θ)dr ≥ σu∆. (1)

The latter is the energy balance: the integral of the crack-driving force on ∆, representing the energy available for
a crack increment, must be higher than the fracture energy (Gc) times the crack increment ∆. By means of Irwin’s
relationships, the condition can be expressed in terms of the SIFs related to the kinked crack, kI and kII for mode I
and mode II, respectively, and of the fracture toughness KIc, namely:

∫ ∆

0
[kI(c,θ)2 + kII(c,θ)2]dc ≥ K2

Ic∆. (2)

The FFM criterion is thus described by the coupled inequalities (1) and (2), and in order to be implemented the
functions σθθ , kI and kII are required.

2.1. Stress field and SIFs functions

By taking the T -stress effects into account, the circumferential stress field σθθ (r,θ) at the crack tip can be approx-
imated as (see Fig.1 with c = 0):

σθθ (r,θ) =
KI√
2πr

f I
θθ (θ)+

KII√
2πr

f II
θθ (θ)+T sin2θ , (3)

where KI ,KII are the SIFs related to the main crack and f I
θθ , f II

θθ are two angular functions (see the Appendix, Eq.
(A.1)). On the other hand, by dimensional analysis concepts and the principle of superposition, the SIFs related to a
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Fig. 1. Cracked element with polar coordinate system and kinked crack of length c.

kinked crack of length c can be expressed as (He et al., 1991; Amestoy and Leblond, 1992):

kI(c,θ) = β11(θ)KI +β12(θ)KII +β1(θ)T
√

c, (4)

and

kII(c,θ) = β21(θ)KI +β22(θ)KII +β2(θ)T
√

c. (5)

Approximating analytical expressions for the angular functions β presented by Amestoy and Leblond (1992) are
reported in the Appendix (Eqs. (A.2)-(A.7)). Tabulated values can be also found in Tada et al. (1985); Melin (1994);
Fett et al. (2004). Note that β2,β12 and β21 are odd functions, whereas β1,β11 and β22 result to be even.

Before proceeding, let us now introduce, for the sake of clarity:

• the functions f i
θθ =

√
2/π f i

θθ (i = I, II);
• the mode-mixity related to the main crack, ψ = arctan(KII/KI).
• the characteristic length, lch = (KIc/σu)

2;
• the dimensionless crack advance, δ = ∆/lch;

• the dimensionless T -stress, τ = T
√

lch/
√

K2
I +K2

II ;
• the combinations for the angular functions,

β 1 = β1β11+β2β21, β 2 = β1β12+β2β22, β 11 = β 2
11+β 2

21, β 22 = β 2
12+β 2

22, β 12 = 2(β11β12+β21β22).

2.2. Implementation and results

At incipient failure (KI = KI f ), the coupled conditions (1) and (2) become a system of two equations in two
unknowns: the critical crack advancement δc and the failure load, implicitly embedded in the KI f function. The
substitution of Eqs. (3), (4) and (5) into Eqs. (1) and (2) provides after some simple manipulations (Cornetti et al.,
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Fig. 2. T -stress effects on FFM fracture loci. From the top to the bottom, curves refer to τ =−0.3,−0.2,−0.1,0 (dashed line), 0.1, 0.2, 0.3.

2014):




KI f

KIc
=

√
δ

f I
θθ + tanψ f II

θθ + τ̄sin2θ
,

δ =
( f I

θθ + tanψ f II
θθ + τ̄sin2θ)2

(β 11 +β 12tanψ +β 22tan2ψ)+
4τ̄
3
(β 1 +β 2tanψ)+

τ̄2

2
(β 2

1 +β 2
2 )

,
(6)

where τ̄ = τ
√

δ (1+ tanψ), for the sake of simplicity.
Observe that, for given loading and structural properties, ψ and τ are fixed. In order to implement FFM, the latter

equation in (6) should be firstly solved: a different crack advance δ corresponds to a different kinking angle θ . Each
couple (δ ,θ ) must be substituted into the former equation: the actual crack advance δc and critical kinking angle θc
are those which minimize the KI f function. The relationship KII f = tanψKI f then provides the corresponding value
for KII f .

FFM results are presented in Figs. 2 and 3, for the fracture loci and the critical kinking angle, respectively. By
assuming KI ,KII > 0, as T increases, the failure load decreases, as well as the critical kinking angle θc, which tends
asymptotically towards −90◦.

As concerns pure mode I loading conditions (KII = 0), if T > 0 is sufficiently large,τ ≥ τ+ = 0.42 ,the crack does
not propagate collinearly any more (θc different from 0◦) and KI f deviates from KIc. This phenomenon has been
already described in the Literature (Cotterell and Rice, 1980; Smith et al., 2001; Leguillon and Murer, 2008; Cornetti
et al., 2014) on the basis of some experimental observations (Selvarathinam and Goree, 1998; Chao et al., 2001). FFM
predictions are presented in Figs. 4 and 5. The present results, showing nearly continuous functions, are in qualitative
agreement with those derived in Smith et al. (2001), but slightly differ from those proposed in Leguillon and Murer
(2008) where the existence of a θc-jump from 0◦ to −72◦ was detected at a threshold tensile τ+ = 0.704. . On the
other hand, in the case of a compressive T -stress (T < 0), the straight crack path always reveals to be stable.



 Alberto Sapora et al. / Procedia Structural Integrity 2 (2016) 1975–1982 1979Sapora et al. / Structural Integrity Procedia 00 (2016) 000–000 5

0 10 20 30 40 50 60 70 80 90
−80

−70

−60

−50

−40

−30

−20

−10

0

ψ (deg)

θ c (d
eg

)

τ

Fig. 3. T -stress effects on FFM critical kinking angle. From the top to the bottom, curves refer to τ = −0.3,−0.2,−0.1,0 (dashed line), 0.1, 0.2,
0.3.

As regards mode II loading conditions (KI = 0), an increasing tensile T -stress provides decreasing kinking angles
θc from −75.5◦ (T = 0, Sapora et al. (2014)) to −90◦ (T → ∞). The trend is similar for compressive T -stress till the
threshold τ = τ− ≃ −0.325. Below τ−, the kinking angle becomes infinitesimal and KII f keeps equals to KIc (Figs. 4
and 5). The reason of this behavior is imputable to the fact that the shear contribution to the strain energy release rate
prevails and the maximum released energy corresponds to θc = 0◦. In order for the stress requirement in (1) to match
this condition, the crack advance (which is not reported here) must become infinitesimal too, so that tensile stresses
result to be high enough.

In order to overcome this drawback, as suggested by Sapora and Mantic (2016), let us observe that estimates of
the toughening of elements under shear should consider possible local plastic and viscoelastic dissipation, crack face
asperity shielding and frictional effects: the assumption of Gc to be constant is reasonable only if the GI-contribution
to the energy release rate (ERR) prevails, whereas a larger amount of dissipated energy should be associated to crack
kinking dominated by GII (Hutchinson and Suo, 1992; Liechti and Chai, 1992; Banks-Sills and Ashkenazi, 2000;
Mantič et al., 2006). One of the most implemented fracture criterion writes (Hutchinson and Suo, 1992):

GI

GIc
+

GII

GIIc
= 1, (7)

where GIIc = GIc/γ has the interpretation of pure mode II toughness and γ is a parameter weighting the mode II-
contribution. It vanishes for γ → 0, whereas γ = 1 corresponds to an ideally brittle material. Note that the condition
γ → 0 provides the basis for the well-known kII = 0 criterion proposed on the basis of simple symmetry arguments
by Goldstein and Salganik (1974), and that an analogous relationship to (7) was adopted by Seweryn (1998) and
suggested by Leguillon and Murer (2008).
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Fig. 4. T -stress effects on FFM failure loads for pure mode I and mode II loading conditions.
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Fig. 5. T -stress effects on FFM critical kinking angle for pure mode I and mode II loading conditions.

In order to improve FFM predictions (Sapora and Mantic, 2016), from an equivalent point of view, one could
consider the following modified ERR in the energy balance:

G = GI + γGII . (8)
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3. Conclusions

It was shown that T -stress effects reveal to be more significant for i) sufficiently high T -magnitudes; ii) prevailing
mode II conditions; iii) less brittle materials (i.e., higher lch). Indeed, for a specific test, since all the parameters KI ,KII
and T generally vary as the mode mixity ψ varies, the real impact of T -stress on predictions should be discussed from
case to case, after evaluating these three parameters. Whereas for mode I loading conditions the crack propagation
reveals to be unstable for τ ≥ 0.42, for mode II loading conditions a singular behavior was observed for τ ≤−0.325.
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Appendix A. Angular functions

The following equations hold for what concerns the angular functions related to the stress field:

f I
θθ (θ) = cos3(θ/2), f II

θθ (θ) =−3sin(θ/2)cos2(θ/2) (A.1)

whereas the approximating expressions for the functions β in Eq. (4) and (5) can be found in Amestoy and Leblond
(1992), with m = θ/π:

β11 = 4.1m20 +1.63m18 −4.059m16 +2.996m14 −0.0925m12 −2.88312m10 +5.0779m8+
+(π2/9−11π4/72+119π6/15360)m6 +(π2 −5π4/128)m4 −3π2m2/8+1,

(A.2)

β12 = 4.56m19 +4.21m17 −6.915m15 +4.0216m13 +1.5793m11 −7.32433m9 +12.313906m7+
+(−2π −133π3/180+59π5/1280)m5 +(10π/3+π3/16)m3 −1.5πm,

(A.3)

β21 =−1.32m19 −3.95m17 +4.684m15 −2.07m13 −1.534m11 +4.44112m9 −6.176023m7+
+(−2π/3+13π3/30−59π5/3840)m5 − (4π/3+π3/48)m3 +π/2m,

(A.4)

β22 = 12.5m20 +0.25m18 −7.591m16 +7.28m14 −1.8804m12 −4.78511m10 +10.58254m8+
+(−32/15−4π2/9−1159π4/7200+119π6/15360)m6 +(8/3+29π2/18−5π4/128)m4 − (4+3π2/8)m2 +1,

(A.5)

β1 =−13.7m20 −2.85m18 +10.947m16 −7.314m14 −6.0205m12 +26.66807m10 −50.70880m8+

+63.665987m6 −47.93339m4 +(2π)3/2m2,
(A.6)
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β2 = 6.62m19 +9.69m17 −12.781m15 +3.043m13 +15.6222m11 −39.90249m9 +61.174444m7+

−59.565733m5 +12
√

2πm3 −2
√

2πm.
(A.7)
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