
23 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Free-vibration tailoring of single- and multi-bay laminated box structures by refined beam theories / Carrera, Erasmo;
Filippi, Matteo; Mahato, P. K.; Pagani, Alfonso. - In: THIN-WALLED STRUCTURES. - ISSN 0263-8231. - STAMPA. -
109:(2016), pp. 40-49. [10.1016/j.tws.2016.09.014]

Original

Free-vibration tailoring of single- and multi-bay laminated box structures by refined beam theories

Publisher:

Published
DOI:10.1016/j.tws.2016.09.014

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2656746 since: 2016-11-21T13:58:04Z

Elsevier



Free-vibration tailoring of single- and multi-bay laminated box

structures by refined beam theories

E. Carreraa∗, M. Filippia†, P. K. Mahatob‡, A. Pagania§
aDepartment of Mechanical and Aerospace Engineering, Politecnico di Torino,

Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
bDepartment of Mechanical Engineering,

Indian School of Mines, Dhanbad-826004, India.

Submitted to:

Thin-Walled Structures

∗Professor of Aerospace Structures and Aeroelasticity, e-mail: erasmo.carrera@polito.it
†Research Fellow, e-mail: matteo.filippi@polito.it
‡Assistant Professor, e-mail: mahato.pk.mech@ismdhanbad.ac.in
§Research Fellow, e-mail:alfonso.pagani@polito.it

1



Abstract

By employing refined beam theories, free vibration analysis and tailoring of laminated composite box struc-

tures are discussed in this work. Higher-order models are implemented utilizing the Carrera Unified For-

mulation (CUF), according to which the mechanical variables are expressed in terms of arbitrary expansion

of the generalized unknowns. The proposed 1D models have only pure displacement variables, are geo-

metrically consistent and have component-wise capabilities because Lagrange polynomials are used in the

framework of CUF to formulate refined kinematics theories. Moreover, since the finite element method is

used to interpolate the generalized unknowns, arbitrary anisotropy, geometry and boundary/loading condi-

tions can be considered with no loss of generality. The resulting methodology is exploited to analyze single-

and multi-bay composite laminated box beams for aerospace applications. Particular emphasis is given

to the parametric study and tailoring of the lamination scheme versus free vibration characteristics for

various box structures. Also, the effects of cut-offs are investigated. The numerical results are compared

to those from the literature and commercial finite element software tools. The study widely demonstrates

the high computational efficiency and the refined capabilities of the proposed CUF-based models, which can

be considered as ideal candidates for the detailed tailoring of aerospace composite structures and, possibly,

for future implementation into an optimization procedure.

Keywords: Laminated box beams; Composite beams; Free vibration analysis; Tailoring; Carrera Unified

Formulation.
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1 Introduction

In modern times, laminated composite beams, plate, and shells are extensively used in various weight-

sensitive structures like high-speed aircraft, rockets, and launch vehicles because of their high specific

strength and stiffness. Also, the directional properties of this class of composite materials represent

a significant advantage and allow the analysts to tailor, eventually, the mechanical characteristics of

structures given the design requirements and loading conditions.

Starting from the past centuries, many researchers have worked on the development of theories able

to model the mechanical behaviour and the rheological characteristics of laminated composite structures

accurately. It is clear that the classical theories of Kirchhoff (for plates) and Euler-Bernoulli (for beams)

are inadequate for the modelling the composite structures. Modern models for composite structures can

be divided into two main macro-categories: Equivalent Single Layer (ESL) and Layer-Wise (LW) theories.

In ESL theories, the number of unknowns is independent of the number of layers: many eminent works

fall into this category, and some of them are briefly discussed in the following. First- and second-order

shear deformation theories (see for example [1] and [2], respectively) emerged out with improved results

if compared to classical models. Third-order shear deformation theories, which satisfy the homogeneous

condition of the shear stress at the unloaded boundaries, were also proposed for the analysis of beams [3]

and plates [4]. Recently, a new inverse hyperbolic zig-zag shear deformation theory was studied by Sahoo

and Singh [5] for static analysis of sandwich laminated plates. In this work, the authors represented

their refined distribution of in-plane displacement along the thickness and compared it to the third-order

polynomial expansions from conventional theories. Carrera [6] compared different 2D theories in order

to investigate the effects of the curvature and the shear deformation on the buckling and vibrations

of cross-ply laminated shells. Shi and Lam [7] carried out free vibration analysis of composite beams

using higher order theory and assuming the odd power of the z-coordinate for the axial displacement.

The mixed finite element (FE) formulation was utilized by the Ozutok et al. [8] for the free vibration

analysis of the cross-ply laminated beam, whereas Rao et. al. [9] applied mixed formulation through the

thickness continuity of transverse stress and displacement field. Banerjee et al. [10] used the dynamic

stiffness method for the vibration analysis of the composite beams for the application to aircraft wings.

ESL results in efficient theories of structures for laminates. However, the main drawback of this ap-

proach is that the continuity of transverse shear and normal stresses is not always assured. In models

based on LW approach, the number of degrees of freedom (from now on DOFs) depends directly on the

number of layers. LW represents a more accurate representation of the reality, although it is generally

more expensive than ESL concerning computational costs. One of the earlier attempts to describe com-

posite laminates by LW approach can be attributed to Lekhnitskii [11], who proposed plane-stress models

to reproduce piecewise continuous displacement and transverse stress fields in the thickness direction of

composite plates and beams in his book. Robin and Reddy [12] used the LW laminate theory to develop
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a layer-wise displacement-based FE model for laminated composite plates. Shimpi and Ainapure [13] pre-

sented an LW trigonometric shear deformation theory based on FE method for beam structures. Dinghe

et al. [14] proposed a static analysis of LW/solid element method for sandwich plates structures. Kapuria

et al. [15, 16] used refined hybrid theory and third-order zig-zag plate theory for through-the-thickness

representation of structural deformation and electrical potential.

The main aim of the present paper is to propose an efficient and still effective structural model for

the free vibration analysis and composite tailoring [17] of structures for aerospace applications, such

as box beams including cut-offs and reinforcements. Considerable work for the modelling of metallic

homogeneous box structures was carried out by Vlasov [18]. Composite box beams, on the other hand,

present anisotropic behavior which results in different types of structural coupling, such as extension-

twisting, extension-bending, etc. Due to the complex anisotropy and mechanical response composite box

structures are affected by, 3D-like structural models are commonly employed , see for example [19, 20].

Nevertheless, 3D models are computationally costly, and many researchers attempted to develop simple

and efficient 1D beam theories for the analysis of this kind of constructions. Kim and White [21, 22]

developed a 3D-like laminated box beam model of arbitrary cross-sections beam. The primary and

secondary torsional warping and transverse shear effects were included for the analysis of thin- and thick-

wall beams with close cross-section. Dancila and Armanios [23] studied the effect of couplings. Volvoi et.

al. [24, 25] also assessed different box beam models. Yu et. al. [26] formulated a generalized beam model

(based on a Timoshenko-like formulation) for the analysis of initially curved and twisted, thin- and thick-

walled anisotropic composite beams. In this work, the classical and non-classical couplings were included

based on the VAM (Variational Asymptotic Method). The same authors [27] developed a generalized

model for anisotropic composite box structures based on the Vlasov theory. Wu et. al [28] presented

the initial-value solutions of static equilibrium differential equations of single-cell, thin-walled composite-

laminated box beams under bending loads with consideration of both shear lag and shear deformation.

Vo and Lee [29, 30] developed an analytical model of thin-walled composite box beams. This model was

based on the first-order shear-deformable beam theory and accounted for all the structural couplings

coming from the material anisotropy. Qin and Librescu [31] considered the transverse shear and the

nonuniformity of membrane shear as well as the primary and secondary warping. The static and dynamic

analyses of CUS (Circumferentially Uniform Stiffness) and CAS (Circumferentially Asymmetric Stiffness)

beam were analysed in [31]. Shadmehri et al. [32] incorporated material anisotropy, transverse shear,

warping inhibition, nonuniform torsional model, and rotary inertia for the analysis of CAS box beams.

Also, Friedmann et al. [33] examined the compatibility between the FE cross-sectional analysis method

based on VABS (Variational Asymptotic Beam Section Analysis) and a helicopter rotor blade model

which is part of a comprehensive rotorcraft analysis code. This research resulted in an improved model

able to take into account arbitrary cross-sectional warping, in-plane stresses, and moderate deflections.
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Recently, beam elements for the analysis of composite box beams were also developed by Mitra et. al.

[34] and Sheikh and Sheikh and Thomsen [35]. The latter work, particularly, described a model able to

analyse both closed and open cross-section composite box structures.

In this paper, an advanced 1D model for the analysis of composite box structures with cut-off and

transverse reinforcements is proposed. Particular emphasis is given to the vibration tailoring of the

lamination sequences, which is an important topic in modern industrial applications. The devised model

is based on the Carrera Unified Formulation (CUF), which allows one to implement theories of structures

in an automatic manner by expressing the generalized mechanical variables in terms of generic expansion

on the beam cross-section. Although CUF was initially developed for plate and shell structures [36, 37],

it has been employed extensively during the last decade for the development of beam theories [38]. In

this paper, in particular, Lagrange Expansion (LE) CUF beam models are employed, because of their

capabilities to readily deal with arbitrary material anisotropy and complex geometries in a component-

wise scenario, see for example [39, 40, 41, 42, 43, 44]. The paper is organized as follows: (i) First,

preliminary considerations about elasticity and CUF are briefly discussed; (ii) The FE formulation of LE

models are, then, proposed in Section 2.3; (iii) Numerical results and comparison with solutions from the

literature and commercial FE codes are subsequently proposed in Section 3; (iv) The main conclusions

are finally remarked in the concluding section.

2 Unified formulation

2.1 Preliminaries

The adopted coordinate frame is presented in Fig. 1, together with a generic beam geometry. The beam

boundaries over y are 0 ≤ y ≤ L, whereas the cross-section is denoted to as Ω. The three-dimensional

displacement vector is

u(x, y, z) =

{
ux uy uz

}T
(1)

For the sake of simplicity, the stress (σ) and strain (ε) components are grouped as follows:

σp =

{
σzz σxx σzx

}T
, εp =

{
εzz εxx εzx

}T
σn =

{
σzy σxy σyy

}T
, εn =

{
εzy εxy εyy

}T (2)

The subscript ”n” stands for terms lying on the cross-section, while ”p” stands for terms lying on planes

which are orthogonal to Ω. The displacement and strain components are related each other by means of
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Figure 1: Coordinate frame of the beam model.

linear relationships, which are given in the following:

εp = Dpu

εn = Dnu = (DnΩ +Dny)u
(3)

where:

Dp =


0 0 ∂

∂z

∂
∂x 0 0

∂
∂z 0 ∂

∂x

 , DnΩ =


0 ∂

∂z 0

0 ∂
∂x 0

0 0 0

 , Dny =


0 0 ∂

∂y

∂
∂y 0 0

0 ∂
∂y 0

 (4)

The Hooke law is used to express stress-strain dependency as follows:

σ = C̃ε (5)

According to Eq. (2), Eq. (5) becomes:

σp = C̃ppεp + C̃pnεn

σn = C̃npεp + C̃nnεn

(6)

In this paper, particular attention is given to composite box structures. Box beams can be considered

as constituted by a certain number of walls made of anisotropic material. Each wall of the box is made of a

combination of orthotropic fibre-composite layers whose material coordinate system (1, 2, 3) generally do

not coincide with the physical coordinate system (x, y, z), see Fig. 2. With respect to the global reference

system, the single layer of the composite box structure is anisotropic, thus, the matrices containing the

material coefficients are fully populated:

C̃pp =


C̃11 C̃12 C̃14

C̃12 C̃22 C̃24

C̃14 C̃24 C̃44

 , C̃pn =


C̃15 C̃16 C̃13

C̃25 C̃26 C̃23

C̃45 C̃46 C̃43

 , C̃nn =


C̃55 C̃56 C̃35

C̃56 C̃66 C̃36

C̃35 C̃36 C̃33

 (7)
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Figure 2: Physical and material reference systems.

The explicit forms of the coefficients of the matrices C̃ij are not here reported for the sake of brevity,

but they can be found in [45] as functions of the rotations of the fibres both in xy- and xz-planes.

2.2 Refined LE beam theories

Within the framework of CUF, the three-dimensional displacement field is the expansion of generic cross-

sectional functions, Fτ

u(x, y, z) = Fτ (x, z)uτ (y) τ = 1, 2, . . . ,M (8)

where uτ is the vector of the generalized displacements, M is the number of terms of the expansion and τ

indicates summation. Depending on the choice of Fτ functions, beam theories with different kinematics

and approximation order can be straightforwardly implemented. In this work, 1D CUF models are

implemented by means of LE (Lagrange Expansion), which utilizes Lagrange polynomial expansions of

the primary mechanical variables for the development of refined kinematics beam theories. For example,

a bi-quadratic beam theory can be developed by employing a nine-point (L9) Lagrange polynomial set

as Fτ cross-sectional functions. For the sake of clearness, the L9 polynomials are given in the following:

Fτ = 1
4 (r2 + r rτ )(s2 + s sτ ) τ = 1, 3, 5, 7

Fτ = 1
2s

2
τ (s2 − s sτ )(1 − r2) + 1

2r
2
τ (r2 − r rτ )(1 − s2) τ = 2, 4, 6, 8

Fτ = (1 − r2)(1 − s2) τ = 9

(9)

where r and s vary from −1 to +1, whereas rτ and sτ are the coordinates of the nine zeroes of the L9

and whose locations in the natural coordinate frame are graphically shown in Fig. 3. The refined beam
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Figure 3: Natural coordinate system and zeroes of the L9 polynomial set.

model given by the use of one single L9 polynomial set for the approximation of the kinematics is

ux = F1 ux1
+ F2 ux2

+ F3 ux3
+ ...+ F9 ux9

uy = F1 uy1 + F2 uy2 + F3 uy3 + ...+ F9 uy9

uz = F1 uz1 + F2 uz2 + F3 uz3 + ...+ F9 uz9

(10)

where ux1
, ..., uz9 are the displacement variables of the problem and they represent the translational

displacement components at the L9 zeroes. In fact, refined LE models make use of only displacement

variables.

The kinematics of LE beam models can be further enhanced by using higher-order Lagrange polyno-

mials or, eventually, by adopting a combination of Lagrange polynomials on the cross-section domain Ω.

The latter, also allows one to deal with complex geometries (see [46]) and to develop physically consistent

refined models in a component-wise scenario [42, 41, 43, 44].

2.3 Finite element formulation

The finite element approach is adopted to discretize the structure along the y-axis. Thus, the generalized

displacements uτ (y) are approximated as follows:

uτ (y) = Ni(y)qτi i = 1, 2, . . . , p+ 1 (11)

where Ni stands for the i-th shape function, p is the order of the shape functions, and i indicates

summation. qτi is the following vector of the FE nodal parameters:

qτi =

{
quxτi quyτi quzτi

}T
(12)

For the sake of brevity, the shape functions Ni are not reported here. They can be found in many

reference texts, for instance in [47]. However, it should be underlined that the choice of the cross-section
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polynomials sets for the LE kinematics (i.e. the choice of the type, the number and the distribution of

cross-sectional polynomials) is completely independent of the choice of the beam finite element to be used

along the beam axis. In this work, 1D Lagrange elements with four nodes (B4) are adopted, i.e. a cubic

approximation along the y-axis is assumed.

The stiffness and mass matrices of the elements are obtained hereinafter through the principle of

virtual displacements, which in the case of undamped free vibration states

δLint =

∫
V

(δεTp σp + δεTnσn)dV = −δLine (13)

where Lint stands for the strain energy and Line is the work of the inertial loadings. δ stands for the

virtual variation. The virtual variation of the strain energy δLint is rewritten using Eqs. (3), (6), (8) and

(11) to give

δLint = δqTτiK
ijτsqsj (14)

Kijτs is the stiffness matrix in the form of the fundamental nucleus. In a compact notation, it can be

written as

K ij τ s = I
ij

l /
(
D T
np Fτ I

)[
C̃np

(
Dp Fs I

)
+ C̃nn

(
Dnp Fs I

)]
+(

D T
p Fτ I

)[
C̃pp

(
Dp Fs I

)
+ C̃pn

(
Dnp Fs I

)]
. Ω +

I
ij,y
l /

[ (
DT
np Fτ I

)
C̃nn +

(
D T
p Fτ I

)
C̃pn

]
Fs . Ω IΩ y +

I
i,y j

l IΩ y / Fτ

[
C̃np

(
Dp Fs I

)
+ C̃nn

(
Dnp Fs I

)]
. Ω +

I
i,y j,y
l IΩ y / Fτ C̃nn Fs . Ω IΩ y

(15)

where

IΩ y =


0 1 0

1 0 0

0 0 1

 / . . . . Ω =

∫
Ω

. . . dΩ (16)

(
I
ij

l , I
ij,y
l , I

i,y j

l , I
i,y j,y
l

)
=

∫
l

(
NiNj , NiNj,y , Ni,y Nj , Ni,y Nj,y

)
dy (17)

The nine components of the fundamental nucleus of the matrix Kijτs can be found in explicit form in

[39].

The virtual variation of the work of the inertial loadings is

δLine =

∫
V

ρδuT üdV (18)

where ρ is the density of the material and ü is the acceleration vector. Equation (18) is rewritten using
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Eqs. (8) and (11):

δLine = δqTτiM
ijτsq̈sj (19)

where M ijτs is the fundamental nucleus of the mass matrix. In compact form it can be written as:

M ijτs = Iijl C (FτρIFs) B (20)

It should be noted that both Kijτs and M ijτs do not depend either on the expansion order or on

the choice of the Fτ expansion polynomials. These are the key points of CUF that makes possible the

straightforward formulation of any-order multiple class theories. In fact, the fundamental nuclei have

to be expanded according to the indexes τ and s in order to obtain the elemental FE matrices of the

arbitrary-order beam theory. The elemental matrices can then be assembled in the classical way of FEM

by using beam nodes indexes i and j.

Once the global FE matrices are assembled, the undamped dynamic problem can be written as follows:

Mq̈ + Kq = 0 (21)

Introducing harmonic solutions, it is possible to compute the natural frequencies, ωk, by solving a classical

eigenvalue problem,

(−ω2
kM + K)qk = 0 (22)

where qk is the kth eigenvector.

3 Results and Discussion

3.1 Validation

Six-layer plate

To validate the present methodology, the free vibration analysis of a six-layer plate with a symmetric

stacking sequence was carried out first. The plies are of equal thickness and they are made of orthotropic

material with Young modulus along the fibre direction equal to EL = 98 GPa, Young modulus along a

transverse direction ET = 7.90 GPa, shear modulus GLT = 5.60 GPa, Poisson ratio ν = 0.28 and density

ρ = 1520 Kg/m3. The length, the width and the total thickness of the structure are equal to 305, 76.2

and 0.804 mm, respectively.

The proposed composite plate is modelled by means of the present beam theory and, in particular,

six quadratic (L9) Lagrange polynomials are used to formulate the theory kinematics. In other words,

one L9 polynomial set is used to approximate each layer on the beam cross-section. On the contrary, ten
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Table 1: Natural frequencies [Hz] of the six-layer plate for various stacking sequences.

Present 6L9 Exp. [48] 2D FE [48]

B1 B2 T1 B1 B2 T1 B1 B2 T1

[02/90]s 11.23 70.340 39.684 11. 70.5 42.0 11.1 69.5 39.5
[152/0]s 8.941 62.848 42.946 9.4 66.2 45.8 8.9 62.7 42.9
[302/0]s 6.315 37.525 57.778 6.6 40.0 59.1 6.3 37.3 56.9
[452/0]s 4.891 30.258 50.906 4.8 29.8 51.3 4.9 30.1 49.4
[602/0]s 4.185 26.126 42.555 4.3 27.1 47.7 4.2 26.1 41.7
[752/0]s 3.879 24.288 36.879 3.8 25.1 38.9 3.9 24.3 36.7
[902/0]s 3.804 23.839 35.103 3.7 24.3 38.2 3.8 23.9 35.1

B: bending mode; T: torsional mode.

4-node (B4) elements are adopted along the beam axis. The total number of the degrees of freedom of

the proposed beam model of the composite plate is 3627. Table 1 quotes both bending (B) and torsional

(T) natural frequencies of the plate for various stacking sequences and it compares the computed results

with the experimental evidences and the finite element solutions provided in [48]. The comparisons reveal

good agreement with the reference solutions.

CUS box beam

In the second validation test case, the same composite box beam as analyzed in [49] is considered. The

cantilever beam is prismatic with length L = 762 mm, width b = 24.21 mm and height h = 13.46 mm.

Each wall of the box has a total thickness equal to t = 0.762 mm and it is made of six equal layers. In this

example, a CUS (Circumferentially Uniform Stiffness) stacking sequence [θ]6 is addressed. Each layer of

the structure is made of an orthotopic material, whose density and mechanical properties along the fibre

(L) and transverse (T) directions are: ρ = 1601 Kg/m3, EL = 142 GPa, ET = 9.8 GPa, GLT = 6.0 GPa,

GTT = 4.83 GPa, νLT = 0.42, νTT = 0.5. The proposed CUF beam structural model makes use of four

L9 polynomials (one for each wall of the box) to approximate the cross-section kinematics, whereas ten

4-node beam finite elements are utilized along the longitudinal axis.

Figure 4-a shows, in a graphical form, the natural frequencies related to some important vertical (VB)

and horizontal (HB) bending mode shapes for various angles θ. Also, the figure compares the results

by the present model, which is referred to as 4L9, with the analytical solution provided by Armanios

and Badir [49]. Figure 4-b shows the influence of θ on the natural frequencies related to twist-extension

modes. According to the notation used in [49], S modes correspond to twist-extension modes which are

dominated by the torsion (note that, when θ = 0 deg, the mode S is purely torsional). On the contrary,

the twist-extension modes which are dominated by extensional deformations are denotes to as P in Fig.

4-b.

From the results given, it should be clear that ply angles up to 60 deg have a significant influence on

the natural bending frequencies and the proposed beam model is in good agreement with the analytical
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Figure 4: Natural frequencies vs. ply angle for the CUS box beam with [θ]6 lamination scheme.

Lay-up Flanges Webs
Top Bottom Left Right

Case 1 θ θ θ θ
Case 2 θ θ 0 0
Case 3 0 0 θ θ
Case 4∗ θ k1θ k1k2θ k1k2k3θ
∗: k1 = −1, k2 = 2, k3 = −1

Table 2: The different lamination sequences of the single-layer box beam.

reference solutions. Moreover, unlike S modes, the twist-extension modes dominated by extension (modes

P) are significantly affected by θ in the case of the CUS box beam under consideration.

3.2 Tailoring of single-layer box beam

In this section, the vibration tailoring of a composite box structure is discussed. The dimensions of the

cross-section (i.e., the width b and the height h) are assumed to be equal as in the previous analysis case.

The length-to-height ratio, L/h, is assumed equal to 15 and each wall of the box is made of one single

layer of thickness equal to t = 0.762 mm. Table 2 shows the different lamination schemes addressed in

the following analysis.

The mathematical LE beam models considered in the proposed assessments consist of seven 4-node

beam elements along the longitudinal axis. On the other hand, various approximations of the cross-

section kinematics are assumed and they are depicted in Fig. 5, where each rectangle represents one L9

polynomials set. It is, thus, clear that two 16L9 and one 24L9 models are considered.

For validation purpose, Table 3 quotes the important natural frequencies by the proposed LE models

and a solid model by MSC.Nastran built with 8-node hexahedral 3D finite elements. In the table, the

first two bending modes in the plane yz (Byz), the first bending mode in the plane xy (Bxy), the first

12



16L9(a) 16L9(b) 24L9

Figure 5: L9 approximations of beam kinematics of the single-layer box beam.

16L9(a) 16L9(b) 24L9 MSC.Nastan

DOFs 5280 6336 7920 360000

Case 1

1Byz 232.02(−0.15) 233.28(0.38) 233.66(0.55) 232.38
1Bxy 373.11(0.83) 371.69(0.45) 372.49(0.67) 370.01
2Byz 1381.9(0.70) 1379.1(0.50) 1384.2(0.87) 1372.2
1T 2499.3(20.9) 2061.3(−0.24) 2079.3(0.62) 2066.4
1S 3677.4(−0.09) 2932.1(−20.3) 3040.8(−17.3) 3680.9

Case 3

1Byz 610.78(1.03) 605.73(0.20) 607.20(0.44) 604.52
1Bxy 711.23(0.24) 710.05(0.07) 710.31(0.11) 709.49
2Byz 2784.9(11.4) 2510.7(0.47) 2580.2(3.25) 2498.9
1T 1816.1(−1.60) 1700.6(−7.86) 1743.5(−5.54) 1845.8
1S 3020.3(−3.13) 2767.8(−11.2) 2818.1(−9.61) 3117.9

Table 3: Comparisons of frequencies for Case 1 and 3 with θ = 45 deg.

torsional mode (T) and the first shell-like mode (S) are reported. It should be underlined that shell-like

modes are those vibration modes that are dominated by cross-sectional deformations. The results listed

in the table are related to the first and third lamination sequences of Table 2 with θ = 45 deg. For the

sake of clarity, the number of degrees of freedom (DOFs) is given and the percentage differences between

the present beam theories and the 3D FEM model are reported in brackets.

From the analysis conducted, it is clear that, in the case of bending frequencies (B), the maximum

difference (11.4%) with respect to the solid reference model occurs for the 16L9(a) beam model. For the

torsional frequency, this difference increases up to 20.9% for the lamination scheme Case 1. Contrarily,

the 16L9(b) and 24L9 beam theories predict lower shell type frequencies than the 3D FEM model. The

differences between the two 16L9 models are due to the occurrence of significant in-plane deformations

(also present in the case of bending and torsional mode shapes), which can be accurately predicted by

using more than two quadratic polynomial sets along the length of the walls. However, the 16L9(a)

model may be used for the modelling of stiffer cross-sections. To highlight the significant transversal

deformations involved in the proposed analysis, Fig. 6 shows the torsional (T) and shell type (S) mode

shapes by the 16L9(b) model and Case 1.

The vibration tailoring of the composite box is discussed in the following. In the remaining analyses,

the 16L9(b) model (see Fig. 5) is employed. For the different lamination schemes (Case 1 to 4, see

Table 2), Fig. 7 shows the variations of the natural frequencies versus θ. In particular, the graphs are

related to the first bending modes (Fig. 7a-c), the mode dominated by the torsion (Fig. 7d) and the first

13



(a) Torsional mode (1T) (b) Shell-like mode (1S)

Figure 6: Important mode shapes of the single-layer box. Case 1 (θ = 45 deg), 16L9(b) beam model.

Mode 1Byz 1Bxy 2Byz 1T 1S

623.07 979.60 2258.8 1573.2 2398.3

Table 4: Natural frequencies [Hz] of the single-layer box beam and θ = 0 deg. 16L9(b) beam model.

mode that involves significant cross-sectional deformations (Fig. 7e). The natural frequencies (f) are

given in the non-dimensional form f/fθ=0, where fθ=0 is the corresponding value for θ = 0. For the sake

of completeness, the important frequencies for the composite box and θ = 0 are given in Table 4.

The results provided reveal that:

• With the exception of Case 4 and θ = 90 deg, the bending frequencies 1Byz and 1Bxz decrease

monotonically as the fibre angle increases. For both these mode shapes, Case 1 determines the

maximum relative variations (about 70%).

• The second bending frequency 2Byz increases slightly with angle θ, when the third lamination

scheme (Case 3) is adopted. The same phenomenon is not verified in the case of Cases 1, 2 and 4.

• For all the lamination schemes (Cases 1 to 4) and in almost the whole domain, the torsional

frequencies increase with respect to the reference value as the fibre angle is increased. The maximum

percentage variation (about 44%) occurs for Case 4 and θ = 35 or 70 deg.

• In the case of shell-like vibration mode and Case 1 stacking sequence, the natural frequency sharply

increases for values of θ higher than 30 deg.

3.3 Tailoring of two-layer box beam

In this analysis case, the box beam of the previous analysis case is considered and each wall is now made

of two layers of equal thickness, t=0.381 mm. The lamination scheme of the inner layers is [θ] whereas

for the outer layers is [kθ], where k is a constant value equal to -1, 0 and 2. The adopted CUF LE model

utilized 32L9 on the beam cross-section and seven 4-node beam elements along the longitudinal direction.

Figure 8 shows the frequency variations [Hz] for the three values of the parameter k. The results show

that:
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Figure 7: Variations vs θ of the non-dimensional natural frequencies of the single-layer box beam for
various lamination schemes. 16L9(b) beam model.
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Figure 8: Variations of frequencies [Hz] of the two-layered box beam as functions of θ. 32L9.
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Nr. of ribs 1Byz 1Bxy 2Byz 1T 1S

1 411.88 647.08 2347.7 2388.8 3134.6
2 410.74 644.73 2321.5 2937.8 3534.1
3 408.50 640.41 2325.1 3204.3 3940.0

Table 5: Frequency [Hz] of the two-layered box beam with one, two and three ribs. θ=30 and k=-1.

• For k =-1, the increasing of the fibre angle entails the decreasing of the bending frequencies 1Byz

and 1Bxz. In fact, for high values of θ, the bending stiffness of the structure is lowered since the

fibres are oriented circumferentially. For the same reason, the shell-type frequency increases as

θ rises. On the other hand, the frequencies related to 2Byz and the torsional mode reach their

maximum at θ=20 and 60 deg, respectively.

• The second configuration with k =0 leads to a slighter decreasing rate of the bending frequencies

1Byz and 1Bxz with respect to the previous case. The torsional natural frequency is lower than

the second flexural one 2Byz within the whole range of interest. Although the maximum shell type

frequency is lower than that one of the previous lamination scheme, it still increases as the fibre

angle increases;

• In the case k =2, the three bending frequencies 1Byz, 1Bxz and 2Byz reach their minimum values

for θ = 55 deg. For approximately the same fibre angle, both torsional and shell type frequencies

reach their maximum values.

3.4 Effects of ribs and cut-offs

The effects of transverse reinforcements on the free vibration characteristics of the two-layered box beam

of the previous example are evaluated. For this analysis case, the k parameter of Section 3.3 is assumed to

be equal to −1 and the 16L9(a) beam model of Fig.5 is adopted. The structural configurations considered

are reinforced with one, two and three equidistant ribs. Each metallic reinforcement is modelled with one

single B4 beam element along its thickness (0.762 mm) and 17L9 are adopted on the rib cross-section.

For further details on the modelling of reinforced-shell structures by LE the reader is referred to [41]. The

material adopted for the ribs is an aluminium alloy and has the following mechanical properties: E=75

Gpa, ν=0.33 and ρ=2700 kg/m3.

Table 5 lists the natural frequencies for the single- to the three-rib configurations assuming θ=30. As

expected, the most significant variations concern the frequencies related to the mode shapes dominated

by the torsional and shell type deformations. The relative increments of these frequencies between the

structures with one and three ribs are 34.1% and 25.7%. In Fig.9, the variations of the bending, torsional

and shell type frequencies with the fibre angle are shown.
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Figure 9: Variations of frequencies [Hz] of the two-layered box beam with one, two and three ribs.
16L9(a).

The following conclusions stem from the analysis:

• The bending frequencies are not significantly affected by the number of ribs.

• As far as the torsional frequency is concerned, significant differences between the three configura-

tions are evident when 15< θ <70 deg.

• The first shell-type frequency increases as the ply angle rises. As expected, the highest values of

the shell-type natural frequency are related to the structure with three ribs.

By referring to the composite box beam with three ribs, the effects of a cut-off on the frequencies

are evaluated in the final analysis case. The opening is located in the middle bay and it has a width

(along the x-axis) and a length (along the y-axis) equal to b/2 and 2L/9, respectively. The related results

are shown in Fig. 10, where the important frequencies are graphically shown versus the fibre orientation

angle. The analysis suggests that:

• The cut-off affects the variations of the bending frequencies only partially.

• On the other hand, a significant decreasing of the torsional stiffness of the whole structure is observed

as the cut-off is considered. In fact, the difference between the maximum torsional frequency with

and without the opening is about 27%.

• Although the shell type modes appear at lower frequencies with respect to those of the case without

the cut-off (see Fig. 9c), the eigenvalues increase with the fibre angle.

4 Conclusions

In this paper, refined beam theories have been used to study the free vibration characteristics of laminated

thin-walled structures in a composite tailoring scenario. Enhanced one-dimensional models have been
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Figure 10: Variations of frequencies [Hz] of the two-layered box beam with three ribs and one cut-off.

conceived using the Carrera Unified Formulation (CUF) and the governing equations have been solved by

the finite element method. According to CUF, refined beam theories have been formulated by adopting

an LE (Lagrange Expansion) of the primary mechanical unknowns. Thus, higher-order 1D models that

are geometrically and physically consistent can be developed in a straightforward manner by only utilizing

displacement variables. Moreover, composite box structures including reinforcements and cut-offs can be

easily implemented due to the capability of the present methodology to deal with full material anisotropy

and component-wise accuracy. Various composite box beams with single- and two-layer laminated walls

have been analysed and the attention has been focussed on the parametric study and tailoring of the

lamination scheme versus free vibration analysis. Classical and non-classical lamination sequences have

been considered, and the variations of the bending, torsional, and shell-type frequencies against fibre

orientation angles have been evaluated. Moreover, the effects of transversal reinforcements and cut-offs

on the dynamic behaviour have been studied. The provided comparisons have revealed that the 1D-

CUF approach yields eventually the same results of the high-fidelity (3D solid) element solutions with a

lower computational cost. The efficiency and the accuracy of the proposed LE models, thus, make the

proposed formulation a good candidate for the tailoring analysis of composite box structures, eventually

to be coupled with optimisation algorithms.
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