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Abstract

Extreme-scale computer systems take advantage of large arrays of general-purpose multicore processors coupled
with specialized manycore accelerators. In order to support complex applications and correctly feed such processing
elements, increasingly larger memory cores are integrated at di↵erent levels of the hierarchy. However, the adoption
of increasingly aggressive manufacturing processes makes the memory sub-system particularly sensitive to faults.
Error correcting codes (ECCs) allow the memory to recover from faults at run-time without interfering with the
application execution. However, due to the loss of performance introduced every time an error must be corrected, the
persistence of faults requires a more radical repair approach in which faulty cells are physically replaced by spare ones.
Memory redundancy analysis (MRA) algorithms are used to drive the allocation process of spare resources. Many
one-dimensional and two-dimensional MRAs have been proposed, but tools for evaluating their recovering capability
are still not well established. This paper presents SIERRA, a simulation environment for precisely evaluating the
repair e�ciency of an MRA considering di↵erent fault signatures and faulty memory configurations. Our simulation
engine provides a precise estimation of the MRA quality by analyzing the behavior of the MRA on several faulty
memory configurations. To this end, di↵erent parameters such as the area of the memory blocks and the defect
density are taken into account. The evaluation of the quality of an MRA takes into account its repairing capability,
the power consumption derived from its execution, and the area overhead. Thanks to the use of a database for storing
information, our tool is able to speed-up the simulation process by distributing it among several nodes. All these
features make SIERRA essential in supporting the design of next-generation high-performance computers.

Keywords: Software simulator, Computer memory, Redundancy algorithms, Repair memory, BISR structure.

1. Introduction

Next generation of extreme-scale and high-performance computers are expected to execute very complex appli-
cations with an unheard-of level of performance. An exa-FLOPS machine will be able to perform up to 1018 floating
point operations per second. Such level of performance requires the massive adoption of specialized processing
elements, ranging from general-purpose multicore processors to specialized manycore accelerators (e.g., GPGPUs,
FPGAs, etc.). Similarly, an increasing amount of memory and storage will be integrated at all levels of the memory
hierarchy in order to correctly feed this large number of processing elements [1]. To this end, di↵erent kinds of semi-
conductor memory devices will be used, each exploiting aggressive manufacturing technologies and architectures.
For instance, the International Technology Roadmap for Semiconductors (ITRS) [2] indicates that the area devoted to
memory blocks will exceed 90% of the whole chip area in future designs.

The International Exascale Software Project (IESP) roadmap [3] has identified the most relevant issues that must
be solved in order to increase performance of current high-performance systems by a factor of 103. Among the
others, the reliability of the whole system, as well as power and energy issues are the main concerns to deal with.
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In this context, semiconductor memories represent a critical building block. In a computer system equipped with
millions of cores, components’ failure becomes the norm rather than the exception [28]. Since the memory layout
is regular and dense, memory cores are highly sensitive to manufacturing defects, as well as to failures that emerge
during operational activity. Soft-errors are generally caused by the interaction of high-energy particles with the silicon
substrate, thus producing a flip in a cell of the memory device. Conversely, hard faults may manifest during operational
activity of the component. They are caused by undetected manufacturing defects, physical stress due to working
conditions (e.g., presence of high power dissipating hot-spots), device aging, etc. Conventionally, ECCs are popular
techniques used for recovering from soft-errors. Parity bits are stored along with information bits, allowing to detect
and correct erroneous information. However, if the fault persists, a di↵erent approach has to be activated. To this
purpose, memory blocks are equipped with spare elements (e.g., spare rows, spare columns, spare cells, etc.) that
can be programmed, using a dedicated circuitry, to replace faulty elements. The map of the faulty memory cells
is analyzed resorting to dedicated memory redundancy analysis (MRA) algorithms, which are able to identify the
most e�cient allocation schema for the redundant elements. Generally, MRAs are designed to exploit two or more
categories of spare elements (e.g., spare rows and columns, spare rows and cells, etc.) [37, 38, 39, 45]. The problem
of finding the best allocation sequence of spare resources is known to be an NP-complete problem [4].

In this complex scenario, di↵erently from standalone memory chips that can be e�ciently tested and repaired
resorting to standard Automatic Test Equipments (ATEs), embedded memories need to be equipped with embedded
logic for memory test and repair. Focusing on the memory repair logic, to address this problem, several MRAs whose
hardware implementation introduce small area overhead have been proposed [5, 6, 7]. However, the MRA repair
capability is influenced by the specific defect distribution, which is a characteristic of the manufacturing technology.
Thus, tools to early estimate the e�ciency of an MRA, when applied in a specific technological scenario, are crucial for
properly choosing the best repair allocation strategy and to maximize the reliability of the overall memory subsystem.

This paper presents a tool named SIERRA which provides a general and flexible environment to precisely evaluate
the e�ciency of an MRA through simulations. In particular SIERRA provides the following contribution:

• It allows to simulate the application of an MRA on a very high number of faulty memory configurations;

• It automatically generates faulty memory configurations using realistic fault models and realistic defect distri-
butions. To this end, faults arising in spare elements are allowed to occur;

• It is coupled with an external defect simulator [8, 9] or a memory fault simulator [10, 29] to assess the capability
of the test-repair solution to recover from hard faults;

• It measures the e�ciency of the analyzed MRA in terms of repair rate, power consumption, and area overhead;

• It provides a high-level language to easily describe any generic MRA;

• It distributes simulations on a set of computing nodes to speedup the MRA design space exploration;

• It exports results in a graphical way, so that the MRA behavior can be easily captured.

The paper is organized as follows: Section 2 discusses the mathematical formulation of the memory repair prob-
lem, and recent works on the analysis and simulation of MRAs. Section 3 details about the general architecture of
the proposed tool, the way of modeling the memory array blocks, and the fault detection sequences. This section also
provides information regarding the way SIERRA generates and optimally stores faulty memory models. A dedicated
high-level description language used to describe the behavior of an MRA is presented in section 4. This section also
illustrates the way MRAs are simulated and their e�ciency is computed. A validation campaign of the SIERRA
capabilities is provided in section 5. Finally, section 6 outlines the main contributions of the work and concludes the
paper.

2. Background

From the repair standpoint, a R ⇥ C faulty memory array can be modeled as a fault bit map (FBM), i.e., a R ⇥ C
binary matrix whose asserted elements identify the faulty cells. For the sake of simplicity, let sr and sc be the number
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of available spare rows and spare columns respectively (the problem formulation remains valid in case of other types
of spare elements, such as single cells or memory blocks). The memory repair problem consists in finding, if possible,
a set S r of rows and a set S c of columns to repair, such that 8FBMi, j = 1 ) i 2 S r _ j 2 S c, and for which
sr � |S r | ^ sc � |S c|. This problem has been demonstrated to be NP-complete by transforming it in polynomial time
to the bipartite-graph clique problem [4]. Therefore, suboptimal heuristics are usually employed to solve it. Since
memory devices can be arranged in multiple banks, resources can be also shared among banks. In that case, the repair
problem becomes easier.

Memory redundancy analysis or shortly memory redundancy algorithms (MRAs) are algorithms devoted to ana-
lyze the sequence of faulty cells, and to allocate spare resources according to a specific scheme. MRAs are generally
enough simple to be implemented as a circuit. Such circuits are referred to as Built-in Repair Analysis (BIRA) or
Built-in Self-Analysis (BISA). Along with Built-in Self-Test (BIST) and Built-in Self-Diagnosis (BISD) circuits, they
provide hardware solutions to test and repair memory blocks directly on the chip, thus avoiding the usage of expen-
sive external testers. BIST circuits apply a sequence of read/write operations to the memory cells in order to excite
and detect faulty behaviors [47, 48]. The order in which the operations are applied strictly depends on the specific
test algorithm that is implemented. BISD circuits add the capability of providing the address of the faulty cells, as
well as an identification of the fault type [35, 36]. Once a spare resource has been selected and allocated, a Built-in
Self-Repair (BISR) circuit e↵ectively replaces the faulty cell(s). BISR circuits replace faulty cells by reconfiguring
the address decoders by means of a content addressable memory (CAM) or embedded fuses. To summarize, an MRA
algorithm can be implemented as a dedicated circuit directly on the memory chip. This circuit is composed of an
analysis module (BIRA) and a repair module (BISR), which operate in conjunction with a BISD/BIST solution that
provides the address of the faulty cells found during the test phase. Figure 1 depicts the organization of such testable
and repairable memory block.
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Figure 1: The organization of a testable and repairable memory array equipped with a BISD/BIST diagnostic module, a BIRA module for allocating
spare elements, and a BISR circuit for reconfiguring decoders and peripheral memory circuits.

Some simulation tools for evaluating the e�ciency of an MRA have been developed and proposed by Virage Logic
[11, 12], National Tsing Hua University [13, 14, 15, 16, 17], and others [4, 19, 20, 21, 22]. One of the main drawbacks
of the proposed approaches is that, to reduce the simulation complexity, they limit realistic faults into memory devices,
and do not enable the MRA evaluation under an elevated number of di↵erent faulty memory configurations. In fact,
injected defects are generally assumed to only lead the creation of single faulty cells, single faulty rows, or single
faulty columns. Also the order in which the faulty addresses are presented to the MRA is limited to a linear/sorted
order (e.g., from address h0x0 . . . 000i to address h0xF . . . FFFi). These limitations may lead to incorrect results.
Nakahara et. al [23] state that, even a simple MRA can achieve fairly good performance if a simple failure often
occurs. Furthermore, these tools are designed to evaluate the MRA e�ciency only in terms of FMB repair rate, while
power consumption and area overhead are generally not considered.

Huang et al. [24] propose an MRA evaluation framework used to optimize the insertion of shared BIRA+BISR
structures. However, the simulation environment is limited to a small set of fault types and the simulation approach
is time-consuming. Moreover, the framework has been validated using a relatively small number of faulty memories
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considering only an over-simplified fault distribution.
Sehgal et al. [22] present a significant step forward, by proposing a tool for memory array yield analysis. Although

provided results show accurate MRA e�ciency estimations, the tool still presents significant limitations. First, both
fault-free and faulty memory configurations are generated during the analysis. Since fault-free configurations do not
require the execution of the MRA, they should be avoided. Furthermore, only three MRAs have been implemented
and simulated. From this standpoint, although the authors claim that other redundancy algorithms can be simulated,
no flexible mechanisms are described to support this important extension. Finally, area and power overhead estimation
is also omitted.

Chao et al. [25] presented a purely statistical analysis methodology, from which deriving the yield estimation of a
memory, given a selected MRA. The advantage of the methodology is that it only requires scalable mathematical com-
putations, avoiding time-consuming simulations. However, although the yield estimation provided by the approach
is fairly accurate for initial design evaluations, it presents many limitations: (i) the e↵ective behavior of the MRA
(especially when it is coupled with a test algorithm) is not taken into account, (ii) only a single defect distribution
is used to drive the statistical analysis, (iii) only single cell, single row and single column signatures, along with a
limited number of faulty memory configurations are used, and (iv) no area and power overhead estimation is included
in the e�ciency computation.

Recently, INFORMER [18] has been proposed as a fully automated tool for helping high-level designers to es-
timate memory reliability metrics rapidly and accurately. Unlike previous attempts, it integrates a detailed model
for the area and power of the memory under analysis. The main limitation of the tool is represented by the need of
running circuit-level simulations. In fact, this kind of simulations are time-consuming and limit the capability of the
tool of exploring a large number of memory configurations. Moreover, it has been tailored for SRAM circuits, thus
making its use not possible in case of di↵erent memory architectures (e.g., DRAMs). FaultSim [34] has been recently
proposed as a fast simulation tool for the evaluation of the reliability of a memory system. It is a fast and configurable
tool, where Monte Carlo simulations are used to assess the reliability of the memory system. Similarly to INFORMER
the tool is tailored to simulate correction codes such as BCH-1 and ChipKill, and no easy way to implement new ECC
codes and repair schemes is provided, unless to modify the simulator.

Given this premise, the simulation environment we propose represents an attempt to provide an automated solution
to most of the limitations of the analyzed simulation tools and methodologies.

3. SIERRA Architecture

SIERRA is a highly modular and composable simulation environment. To e↵ectively design such a tool we took
into account a set of requirements we considered fundamental to precisely estimate the e�ciency of an MRA. In the
following we shortly list the most important ones:

1. Fast quantitative evaluation of the MRA e�ciency: to take into account di↵erent types of faults that can arise in
a memory device, the simulation environment has to analyze a high number of faulty memory configurations,
keeping the required computations as simple as possible. Information regarding area overhead and power
consumption of the repair circuitry must be included in the e�ciency evaluation.

2. Simulation speedup: when possible, apply techniques to speedup the simulation process (e.g., distributing
memory configurations to analyze among several simulation nodes, skipping simulations of theoretically unre-
pairable faulty memory configurations, etc.).

3. Simulation of realistic faults: only realistic faults (i.e., those that can be simulated using a circuit-level memory
model or are part of manufacturing yield data) must be considered to avoid over– or under– estimation of the
MRA e�ciency [41]. Conversely, all fault models that have not been observed on real devices, can not be
tested, or whose behavior can not be reproduced through electrical simulations must be avoided.

4. Flexible memory array and redundancy circuit configuration: used memory models must be highly configurable
(e.g., partitioning of the array in banks, definition of private and shared redundancy elements, etc.) to reproduce
working conditions of real devices.

5. Simulation of both automatically generated and custom faulty memory configurations: faulty memory configu-
rations should be automatically generated by the simulation environment. However, the user should be able to
define custom configurations known to be hard to solve with the MRA under analysis.

4



6. Additional information available when MRAs fail to repair a faulty memory configuration: whenever MRAs
fail on a faulty memory configuration, information regarding the locations of consumed redundancy resources
are also useful to know whether they have been e�ciently allocated or not.

In order to satisfy these requirements, we implemented SIERRA around a standard database management system
(DBMS). It serves as the main storage repository, keeping all the information regarding faulty memory configurations
and simulation results in a structured form. Using a standard DBMS it is possible to decouple the actual data storage
from the simulation engine (i.e., it is possible in this way to distribute the access requests to the database across
various nodes without interfering with simulation logic). A memory fault simulator (i.e., a circuit-level memory defect
simulator), as well as an area and a power consumption estimation tool, can be plugged into SIERRA, providing a more
precise evaluation of the MRA e�ciency. Simulation flexibility is obtained by decoupling the MRA description from
its actual execution. To this end, a compiler translates a high-level MRA description into a bytecode representation
that is subsequently executed by a virtual processor integrated into the tool.
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Figure 2: SIERRA architecture: the fault bit map (FBM) generator is in charge of generating faulty memory configurations, similarly a compiler
translates a high-level MRA description into a bytecode. A virtual processor (MRA VP) is responsible for the execution of the bytecode, providing
the information required to evaluate the MRA e�ciency.

Figure 2 shows the internal organization of SIERRA. It receives three main information:

1. The characteristics of the memory to repair: to represent real devices, SIERRA enables the specification of the
memory array in terms of the number of rows, number of columns, and banks. To this end, for each bank,
the range of rows and columns belonging to it is specified. Similarly, the set of spare elements is given by
specifying the type of the resource (spare rows, spare columns, single cells, etc.), and marking them as private
for the bank or shared among all the banks.

2. The distribution of the defects in the memory array and their characteristics obtained either from technological
data or from circuit-level simulations.

3. A high-level description of the memory redundancy algorithm under analysis, by means of a dedicated language.
The language is compiled to produce an executable bytecode and executed many times (one time for each FBM
to analyze).

The evaluation of the MRA is performed resorting to an extensive simulation campaign, where a large set of
randomly generated and user provided FBMs are used. The execution of the MRA on a given FBM is compared with
the execution of the Oracle allocation algorithm. This is a memory redundancy analysis algorithm designed to explore
all possible assignments of the spare resources in order to identify the best allocation sequence (worth to note that
albeit it is optimal in terms of repair rate, it is not possible to implement the Oracle behavior in hardware due to its
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large area and power consumption overheads). To better assess the e�ciency of the MRAs under analysis, SIERRA
provides an interface for interacting with external tools such as CACTI [26] and a memory defect/fault simulator
[8, 9, 10]. The former allows SIERRA to consider the area and power e�ciency of the MRA, while the latter provides
a more precise estimation of the e�ciency by simulating the memory test algorithm providing a realistic detection
order of the faulty memory cells. The result of this massive simulation campaign is graphically exported in a 3-D plot.
The sections that follow will detail the characteristics of the di↵erent modules composing our simulation environment.

3.1. Statistical FBM generation
SIERRA supports both the usage of user-defined memory configurations (e.g., hard to repair faulty memory con-

figurations) and the automatic generation of fault bit maps, starting from the distribution of physical points of failure.
A physical point of failure (hereafter indicated simply as a fault) identifies the location within the memory device
where a defect or a stress condition occurred causing an erroneous behavior of the memory. Faults caused by defects
or stress conditions can a↵ect one or more cells. From the memory repair standpoint, it is important to know the
number of cells that are a↵ected by a faulty behavior. Previous works demonstrated through electrical simulations
that spot defects may cause misbehavior of a single cell, as well as of multiple cells [41, 42, 8]. Similarly, parasitic
capacitive variations that may arise between adjacent cells, as well as in the single cell, may lead to faulty behaviors
[40]. Other works have demonstrated that defects occurring in peripheral memory circuits (e.g., address decoders) can
be modeled as equivalent faults in the memory array [43]. Fault signatures are used to abstract the behavior of a faulty
cell, and each fault may generate di↵erent signatures (i.e., clusters of faulty cells) in an FBM. SIERRA considers
eight fault signatures, here referred to as fault classes (FCs), namely: single cell fault (SC), double cell fault in a row
(DCR), double cell fault in a column (DCC), quadruple cell fault (QC), single row fault (SR), single column fault
(SC), double row fault (DR), and double column fault (DC) (see Figure 3). Fault classes SR, SC, DR, and DC are
linear classes since they a↵ect a full row/column or a cluster of two rows/columns. Their specific length may change
from a minimum number of cells to the full length of the row/column. Users can define the list of locations (i.e., cells,
rows, columns, etc.) within the memory array that are a↵ected by a fault, according to the fault signatures described
above.
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Figure 3: An example of a single bank memory with an instance of each FC type showing the di↵erent bit map signatures. The e↵ect of faults in
the peripheral circuits are reflected by equivalent faults in the memory array and/or in the row/column decoder.

The number of instances of each FC (I f c) injected into a FBM is computed as follows:

I f c =
� · Amem · Pf c

Nf c
(1)
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Equation 1 takes into account: (i) the overall density of physical faults (�) obtained from a selected fault distribution
such as Poisson, Polya-Eggenberger, Gamma, Negative Binomial, Uniform, etc. [44, 46], (ii) the area of the memory
array and row/column decoders (Amem), (iii) the probability of occurrence of the FC (Pf c) obtained from external
sources such as manufacturing data, and (iv) the number of possible instances of the selected fault class in the FBM
(Nf c).

Since each FBM is generated by randomly selecting the location of the desired FCs, SIERRA can not guaran-
tee that the generated configuration will be repairable given the available amount of spare elements. Each FBM is
therefore preliminary categorized into one of two classes: theoretically repairable FBMs (TRFBMs) or theoretically
unrepairable FBMs (TUFBMs). This operation is performed by simulating the application of a two phases optimal
MRA, as proposed in [27]. This algorithm, referred as the Oracle, is used in our simulation as a golden comparison
of other suboptimal MRAs. SIERRA enables the user to specify the number of TRFBMs to generate throughout a
dedicated parameter (Gentr) in the configuration file, while a second parameter (Gene f ) establishes an upper bound on
the number of generation attempts required to reach Gentr, thus avoiding infinite loops. The application of the Oracle
is one of the most computationally intensive tasks performed by our simulation environment. To reduce the compu-
tation time, SIERRA performs a preliminary analysis of the generated FBM counting the number of independent FC
instances, i.e., instances of a fault class that do not share rows or columns. If their number is greater than the number
of available spare elements, the FBM can be marked as TUFBM without requiring the execution of the Oracle.
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to simulate

Figure 4: The flowchart describing the sequence of operations performed to generate the required set of theoretically repairable FBMs (TRFBM).

Figure 4 shows the flowchart used to generate the set of required TRFBMs. Since spare elements are simply
additional storage elements (single cells, rows, columns, etc.) of the memory array, faults may arise in these elements
as well. SIERRA takes this aspect into account, thus including these elements in the fault injection process. Whenever
a spare element is marked as faulty, the number of available spare elements of that type is decremented by one.

3.2. Optimized FBM representation
Generating a large set of FBMs representing real large memories may produce an elevated amount of data that

must be stored and processed. This may have a negative impact on the performance of the MRA analysis. To cope
with this problem SIERRA uses an optimized FBM representation, where only the positions of faulty elements are
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stored in the internal database (generally, the number of faulty cells is much lower than the whole size of the memory
array).

Simulation
ID_FBM Bank Row Col Oracle MRA

Result
ID_FBM

int int int intbool bool

oracleREP mraREP FAULTS oracle FAULTSmra

int bool bool int int

Resource
ID_FBM Bank Type Oracle MRA

int int int bool bool
Res-ID
int

Res-IDo Res-IDm

int int

ID_FMB  = identifier of the FBM

Res_ID  = identifier of the spare resource

Bank    = memory bank identifier

Type    = spare resource type 
          (e.g., column, row, etc.)

Oracle  = if true, the resource or the action is 
          used or made by the Oracle

MRA     = if true, the resource or the action is 
          used or made by the MRA

Row     = the row address of a faulty cell

Col     = the column address of a faulty cell

Res-IDo = the identifier of one of the available 
          resources, that is used by the Oracle

Res-IDm = the identifier of one of the available 
          resources, that is used by the MRA

REPoracle = if true, the current FBM has been 
          repaired by the Oracle

REPmra  = if true, the current FBM has been
          repaired by the MRA

FAULTS oracle = the number of faulty cells 
          repaired by the Oracle

FAULTSmra = the number of faulty cells 
          repaired by the MRA

Figure 5: The organization of the simulation database. Three main tables are used to manage the experiments: the resource table describes the
set of redundant resources available for the MRA and the Oracle to repair the memory, the simulation table maintains the description of the faulty
memory configuration, and the table result collects e�ciency results for both the Oracle and the MRA.

Figure 5 shows the organization of this database supporting simulations. It contains three main tables: (i) the
resource table that describes the spare resources that both the MRA and the Oracle can use to repair the faulty memory
configurations, (ii) the simulation table that contains the locations of the faulty cells and allows to keep track of
the repairing process, and (iii) the result table that collects repairing metrics for the MRA and the Oracle. More
specifically, redundant resources are described by their type (e.g., single cell, single row, etc.), their unique identifier,
and two boolean flags that specify if the Oracle and the MRA have used that spare element during the repairing
process.

The simulation table contains only the list of faulty cells, while two boolean flags (i.e., Oracle and MRA) are set
if the corresponding repairing process (i.e., either the MRA or the Oracle) has allocated a spare element that covers
the faulty cell. For instance, if there is a faulty cell located at row 1 and column 2 and the repairing process uses a
spare row replacing the entire row 1, then the corresponding flag is set. An integer identifier of the spare resource is
used to keep track of the allocation scheme (this information is kept separated for the Oracle and the MRA). Having
faulty cells specified by splitting their address as the hbank, row, columni ease the process of generating FBMs; in fact
the FBM generator can easily detect the case of FC instances that are completely screened by other instances, thus
avoiding their actual placement. Finally, the result table allows collecting the repairing metrics for both the Oracle
and the MRA. To this end, both the Oracle and the MRA have a boolean flag that is set if they succeeded to repair
the FBM. Additionally, the number of repaired faults and the number of repaired cells are stored. All the three tables
allow managing di↵erent FBMs at the same time by setting a unique identifier (ID FBM) for each fault bit map.

3.3. Fault detection sequence
To properly analyze the e�ciency of an MRA, the information contained in the FBM must be complemented with

the information regarding the way the test algorithm identifies faulty cells. In fact, whenever the full FBM cannot
be exported and provided to the MRA (as in the case of most BIRA solutions), the order in which the test algorithm
detects the faulty cells may impact the repairing capability. To this end, SIERRA provides both an interface for
an external memory defect/fault simulator, and an embedded way to scan the FBM reproducing the e↵ect of the test
algorithm. In the former case, the test algorithm is simulated on a dedicated tool [8, 9, 10, 29] using the faulty memory
configuration exported by SIERRA. It resorts to a standardized format (XML file) for specifying the location of faulty
cells and their associated fault models. In the latter case, SIERRA supports three detection orders for the selected
FCs, as follows:

8



• Ascending detection order (Oa): the simulator starts the analysis from the fault class with the minimum number
of faulty cells.

• Descending detection order (Od): the simulator starts the analysis from the fault class with the maximum
number of faulty cells.

• Random detection order (Or): a random sequence is used to detect faulty elements in the FBM.

In all cases, di↵erent instances of the same FC are selected randomly. Each of the detection orders has its own
characteristics, allowing the designer to identify lower and upper bounds in the repairing e�ciency of the analyzed
MRA. Detecting large fault clusters first (Od) makes easier to repair the model, which may cause an over-estimation
of the MRA e�ciency. Conversely, late detection of large fault clusters (Oa) increases the repair complexity, which
may underestimate the MRA e�ciency. If FCs are randomly detected, the average MRA performance is captured.

4. MRA Description and Simulation

SIERRA exposes a high-level programming language interface enabling the designer to describe the behavior
and the hardware resources used by any generic MRA [30]. By means of this language called Redundancy Analysis
algorithM Language (RAM-L), the designer defines the set of resources used by the MRA in terms of variables (scalars
and arrays), while the behavior is expressed resorting to general high-level statements, e.g., while-do loops, if-else
statements, etc.

MRA structure in RAM-L (example) 
1
2
3
4

7
8
9

38

# hardware resource declaration
resource

end
# algorithm description
behavior

end

5          register  r_addr, c_addr;
6          register  spare_row, spare_col;

         array  spare_res_no[2];
         register  spare_cnt;

10          spare_res_no[0] := n_spare_rows;
11          spare_res_no[1] := n_spare_cols;
12          r_addr := row_address;
13          c_addr := col_address;
14          if ((r_addr = -1) AND (c_addr = -1))

16                   exit;
15          then

17          else
18                   skip;
19          fi
20          if (spare_cnt < (spare_row + spare_col)
21          then
22                   if (spare_res_no[0] = 0)
23                   then
24                            if (spare_res_no[1] > 0)
25                            then
26
27                                     allocate_spare_col;

                                    spare_cnt := spare_cnt + 1;

28                            else
29                                     exit;
30                            fi
31                   else
32
33                            allocate_spare_row;

                           spare_cnt := spare_cnt + 1;

34                   fi
35          else
36                   exit;
37          fi

Figure 6: The representation in RAM-L of a simple memory redundancy algorithm. A fixed allocation strategy ({R-R- . . . C-C- . . . }) is applied to
repair faulty cells.

A generic RAM-L program is composed of two main sections: (i) the first part declares the variables (storage
resources) used by the MRA, and (ii) the second part encodes the heuristic behavior. Figure 6 shows an example of
MRA description using the RAM-L language. The code in the example assumes that both spare rows and columns
are available for repairing faulty cells. It describes a simple repair strategy that first tries to repair detected faulty cells
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using spare rows (line 31—34). Once all the spare rows have been consumed, it tries to repair the memory array using
spare columns (line 22—30). The simulation of an MRA is a fault driven process. Therefore, special keywords are
reserved to allow the MRA to interact with the simulator itself, in order to obtain specific information at run-time. The
internal state of the simulated MRA can be exported to the simulation environment to share information about available
spare resources and the address of the detected faulty elements. For instance, the address of the next faulty cell to
repair is obtained by using row address and col address keywords. These keywords allow the simulator to assign
the row address and column address to two MRA variables. Similarly, the MRA can obtain the current number of
available spare resources (n spare rows, n spare cols). Keywords are also reserved to specify MRA actions. Possible
actions are: interrupt the test and repair process, skip to repair the current faulty cell, repair the faulty cell with a
specific spare resource, reset the test and repair process, or repair more than one faulty cell at a time, as required by
most state-of-the-art MRAs [31, 32]. Furthermore, some MRAs require the ability to undo previously executed spare
allocations and re-execute the fault detection sequence. Required actions are then represented by a pair of internal
variables (i.e., BIST and BIRA) within the simulation engine. Table 1 shows the full list of supported actions.

Similarly to the VHDL and Verilog behavioral coding style, the RAM-L language has the capability of describing
how hardware resources are used by MRAs. However, di↵erently from HDL languages, our RAM-L is not designed
to support concurrency. In fact, all actions performed by the MRA are simulated sequentially, even when the MRA
structure allows their parallelization. For instance, the CRESTA algorithm ([33]) employs a set of parallel analyzers
to repair the memory, each implementing a specific allocation sequence. The simulation of such MRA is performed
sequentially, one analyzer at a time. Other di↵erences with respect to standard HDL languages are the absence of
time notion, and a limited set of data types. A RAM-L code does not contain any indication of the signals exchanged
by actual hardware structures, and in particular there is no way to specify a clock signal. The RAM-L inability
of describing signals is the main reason for which MRAs are simulated sequentially. In fact there is no possibility
to define events (i.e., changes in the state of a signal) driving the concurrent activation of one or more hardware
structures described by RAM-L code. Concerning data types, our RAM-L language supports a very limited number
of types. Each resource can be either a scalar value, or an array. In any case, values encoded by variables are only
integer numbers. Although this appears as a stringent limitation, it is important to highlight that the class of simulated
algorithms only deal with discrete resources. To this end the number of faulty cells, as well as the number of available
spare resources can be easily represented with an integer number. Finally, it is worth noting that RAM-L supported
constructs are neither designed to be synthesized using a technology library, nor to be mapped onto an FPGA device.

Table 1: Set of actions supported by the simulation environment.

BIST BIRA Action description

0 0 Terminate the current repair session
0 1 Force the same faulty address to be detected
0 2 Undo the last spare allocation
0 3 Reset the allocation of spare elements
1 0 Detect the next fault without repair the current faulty element
1 1 Repair the current faulty element, and detect the next one
2 0 Require the reset of the fault detection subsystem

Whenever the RAM-L code is executed, first SIERRA compiles the program producing an internal bytecode
representation. Then, the simulation engine executes the bytecode by means of an internal virtual processor (MRA VP
– see Figure 7). The virtual processor implements a stack architecture. Four virtual registers are implemented to
execute the bytecode. A private read-only memory block (code segment) is reserved for storing the sequence of
virtual instructions. Each virtual instruction is composed of two fields: (i) the OPCODE field stores the specific
operation code of the instruction encoded as an integer value, while (ii) the ARGUMENT stores an optional integer
parameter associated with the executed instruction. A read-write memory block (data segment) is used as a stack for
storing scalar/array variables and the output values generated by the instruction execution. The code and data segments
represent the virtual memory (VMEM) associated with the MRA VP. VMEM is dynamically allocated within the host
memory, depending on the result of the compilation process (i.e., number and type of variables), and its organization
reflects the variable declaration order in the RAM-L program. Since the memory requirements for the simulation
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of an MRA may change at run-time, the MRA VP can dynamically expand the size of the VMEM. The MRA VP
can execute 28 di↵erent bytecode instructions. Five instructions are devoted to implement a mechanism for allowing
the MRA to directly interact with the simulation environment (i.e., to set the content of the BIST and BIRA internal
simulator variables).

Figure 7: Run-time compiling process with di↵erent data structures allocated in the simulator memory.

During the simulation, the MRA communicates with the simulation engine to receive the address of the next faulty
cell, thus emulating the test procedure of the memory device. Every time the MRA receives a new fault to handle, it
applies its internal heuristic in order to take a proper action. At the basis of the simulation process, SIERRA records
the set of faulty cells that have been repaired by the instantiation of a spare element (e.g., a spare row, a spare column,
etc.). Whenever a redundant element is allocated, all the faulty elements that share the same row i, the same column
j or both with the redundant element are marked as repaired. For instance, if a faulty cell Fi, j is detected and a spare
row R = i is allocated, then all the faulty cells Fi,� which are located on the same row i are automatically repaired.
The action performed by the simulated MRA may also include to temporarily store the information and wait for
further information. To support this behavior and speedup the simulation, all actions are mapped as SQL queries to
the simulation database. The MRA simulation terminates when all faults have been repaired, or there are still faults
to repair but the spare resources are exhausted. At the end of the simulation, the repairing e�ciency is computed and
saved along with that obtained from the execution of the Oracle.

4.1. Distributed simulations
The design space to explore can be very large, due to the number of di↵erent memory arrangements and con-

figurations of spare elements to use for assessing the capability of a given MRA. Furthermore, to correctly evaluate
the e�ciency of the MRA, a very large number of FBMs must be simulated (generally � 1, 000 FBMs), while the
adoption of an external fault simulator can greatly slow the simulation process. Therefore, to reduce the time spent on
simulations and allowing the designer to explore as much as possible redundancy configurations, SIERRA can work
in a distributed fashion. Figure 8 shows the organization of the nodes in the distributed context.

Each simulation machine (namely simulation node) runs an instance of SIERRA. One of the nodes is marked as
the master, while the others become the slaves. The master node is in charge of generating the set of FBMs, as well as
copying the configuration of spare elements for the various slaves. It also provides the bytecode associated to the MRA
under analysis to all the slaves. Instead of simulating di↵erent MRAs at one time, we preferred to design SIERRA in
order to analyze one MRA on multiple FBMs, giving a more detailed view of its real capabilities to the designer. Once
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Figure 8: SIERRA running in a distributed environment. The master server coordinates the simulation on multiple nodes, where slaves are in
charge of executing the MRA on a specific FBM instance.

all nodes received all required information, the setup phase is completed, and the simulation can start. It is worth to
note that each node may eventually run its own copy of the memory fault simulator while the master is still responsible
for summarizing the simulation results and to provide the e�ciency of the MRA. During the simulation phase, each
node emulates the MRA behavior on a specific FBM by issuing SQL queries to the simulation database (we leveraged
on the fact that a modern DBMS is optimized to allow concurrent accesses from a large number of clients). During
the simulation phase, also the master node is in charge of simulating the MRA on a given FBM. All nodes perform the
simulation by executing the MRA bytecode and the Oracle strategy on the assigned FBM. At the end of the simulation,
all statistics on the MRA execution are combined with the area and power overhead (using CACTI tool), in order to
calculate the e↵ective e�ciency. To this end, the memory configuration is conveniently exported in a XML file, which
contains both the organization of the memory array and the technology to use (e.g., 32 nm). In fact, the technology
parameter influences directly both the area occupation and the power consumption of the memory. CACTI has been
modified to parse this XML file and to generate the corresponding internal memory model. The memory is treated
as a bit-oriented array, so that single cells can be addressed. By modeling the memory in this way, it is possible to
extend the array to include the storage cells used by the MRA to perform repairing actions. Since MRA logic cannot
be directly synthesized into actual hardware structures for a subsequent area and power consumption evaluation, we
conveniently modeled logic as an additional 5% of storage space required by the MRA. However, it is worth to note
that in a MRA the majority of the area occupation and power consumption can be ascribed to storage elements, as
indicated by [17]. Thus, our method provides an over-estimation of the area consumed by the MRA logic.

4.2. MRA e�ciency evaluation
SIERRA evaluates the e�ciency (E) of a given MRA by simulating the action of a test algorithm and the repairing

process on the full set of generated TRFBMs (see subsection 3.1).

E = w1 · ER + w2 · EA + w3 · EP (2)

According to equation 2, the e�ciency is computed as the weighted sum of three main components: (i) the ability
of the MRA to repair the full set of TRFBMs – ER, (ii) the area overhead of the BIRA circuit corresponding to the
RAM-L code of the MRA – EA, and (iii) the power consumption of the BIRA circuit corresponding to the analyzed
MRA – EP. Each of these components is expressed as a fraction, thus its value ranges between 0 and 1. The weights
associated with the three e�ciency components can be set by the designer, and reflect their importance for the specific
applications (e.g., for mission critical servers it is more important to protect data against memory errors and thus
repairing memory faults, rather than reducing power and area overheads of the BIRA circuit). More specifically, the
first component is computed as the ratio between the number of repaired TRFBMs and their total number:

ER =
FR

Ftot (3)

For each FBM that fails to be repaired, SIERRA computes two additional metrics that can be used to better understand
the limitations of the MRA: the fault classes repair rate (RRFC) and the faulty cells repair rate (RRcell). The former is
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the number of completely repaired FCs divided by the number of all injected FCs, while the latter is the ratio between
the number of repaired faulty cells and the number of all faulty cells injected in the memory array. Moreover, SIERRA
provides the location of all FCs and the location of all replaced elements. Since FCs are randomly allocated, their
signatures may be fully or partially overlapped. Only non-completely overlapped FC instances are counted when
computing the additional metrics.

The expression for the other two e�ciency metrics are as follows:

EA =
Amem

Amem⇤ EP =
P mem

P mem⇤ (4)

where Amem and P mem are respectively the area and power consumption of the memory array, and Amem⇤ and P mem⇤

are the area and power consumption of the memory array equipped with the BIRA circuitry, respectively.
During the evaluation of an MRA, ER usually converges to a specific value. This implies that the di↵erence be-

tween two consecutive measures of ER (�ER) tends to zero. SIERRA exploits this feature to early stop the simulation
whenever the repairing capability of the MRA reaches the desired accuracy. �Ewin is the number of FBMs to analyze
before updating the value of �ER. Whenever the computed value is lower than a user defined threshold (�Elim), the
simulation ends since the repairing capability of the MRA has been computed with the required accuracy. Setting
�Elim to a large value usually causes the evaluation to end before the convergence of ER. This can be used to quickly
obtain a rough approximation of the MRA capability of repairing faulty memories. Conversely, setting a low �Elim
provides more accurate results at the cost of additional computing e↵ort.

5. Experimental Results

SIERRA has been validated with an extensive experimental campaign. Three state-of-the-art MRAs with di↵erent
repairing capabilities and hardware resource utilization have been selected for the experiments. To evaluate their
performance, a large set of FBMs has been analyzed, considering four probability distributions of the fault classes.
Such distributions, showed in Table 2, have been derived from those used in [21, 31], reflecting di↵erent application
scenarios.Without loss of generality, the e�ciency of algorithms has been evaluated considering a single bank memory
architecture with di↵erent configurations in terms of the size of the memory array and number of available spare
resources. In addition, we used only spare rows and spare columns as redundant elements (the type of available
spare resources only influences the behavior of the MRA). We performed two set of experiments. In the first set we
only considered the capability of each MRA to repair faulty models (repair rate), irrespective of the area and power
consumption. In the second set of experiments we estimated the e↵ective e�ciency of the three MRAs, by including
the area and power estimation. To this purpose, in the first set of simulations we tuned the weights associated with the
e�ciency components (equation 2) in such a way the contribution of EA and EP was zero. This allowed SIERRA to
avoid the calculation of the area and power for the three MRAs.

All simulations have been performed on a group of five workstations equipped with an Intel Core i7TM micro-
processor running at 3.0GHz, 24GiB of main memory and the Linux operating system (the kernel was the 3.13.0-65-
generic version). Workstations have been connected through a standard 1Gb/s Ethernet link. The DBMS (MySQL)
has been exectued on one of these workstations.

5.1. Simulated MRAs
Three state-of-the-art MRAs (namelly MRA1, MRA2, and MRA3), which di↵ers each other for the amount of

storage space required, logic complexity, and their repairing capabilities, have been used in our experiments as a test
vehicle for validating SIERRA. They are briefly described in the following.

• MRA1: it has a simple design aimed at limiting the circuit area overhead. MRA1 is a fault-driven redundancy
algorithm (i.e., it interleaves test and repair analysis) derived from the repair approach presented in [33]. In order
to keep the area consumption under control while preserving an acceptable repair rate, a set of concurrent blocks
(called analyzers – a1, . . . , an respectively) are implemented. We used 4 analyzers. a1 implements the {R-R-
. . . C-C- . . . } allocation sequence and it is executed first, while a2 implements the {C-C- . . . R-R- . . . } sequence.
Similarly, a3 and a4 implements respectively the {R-C- . . . R-C} and {C-R- . . . C-R} allocation strategies. If a1
fails to repair the memory, then a2, a3 and a4 are used in sequence. In this way, MRA1 is able to replicate the
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priority selection mechanism, as in the original approach. Given these characteristics, this redundancy scheme
is better suited for small memory devices.

• MRA2: it works with a fault-driven approach. Di↵erent allocation sequences are modeled as a path from the
root to one of the leaves of a tree data structure (i.e., edges are the allocated elements, while nodes represent
di↵erent states of the algorithm) [21, 31]. A depth-first analysis allows the dynamic exploration of the branches,
by selecting a repairing sequence. A leaf is reached when a successful repairing allocation sequence is found or
no more redundant resources are available. Although the tree has a finite size, increasing the number of spare
resources means increasing the time required to complete the analysis, as well as the storage resources. This
MRA thus represents a good trade-o↵ between hardware complexity and repairing capabilities.

• MRA3: it directly derives from the optimal redundancy analysis algorithm employed by the Oracle. The
algorithm implements a force-repair step followed by a fixed repairing strategy, instead of an exhaustive analysis
of the remaining faults. In this way the algorithm performs a close-to-the-optimum analysis in a shorter time.
However, it presents higher hardware resources demand, requiring a counter for each row/column of the memory
array. Di↵erently from the other two MRAs, the repairing decision is taken on the basis of the data collected
during the test, that are stored in the row and column counters.

Table 2: Fault class probability distributions used for the evaluation of SIERRA using three state-of-the-art MRAs.

Fault class D1 D2 D3 D4
Single cell fault (SC) 0.390 0.350 0.500 0.600
Double cell fault in a row (DCR) 0.120 0.110 0.100 0.100
Double cell faul in a column (DCC) 0.240 0.230 0.100 0.100
Quadruple cell fault (QC) 0.000 0.060 0.030 0.030
Single row fault (SR) 0.040 0.020 0.100 0.100
Single column fault (SC) 0.140 0.140 0.100 0.000
Double row fault (DR) 0.030 0.050 0.035 0.035
Double column fault (DC) 0.040 0.040 0.035 0.035

5.2. MRAs e�ciency analysis
Table 2 shows the four probability distributions used in the experimental campaigns to assess the e�ciency of

the three selected MRAs. In particular, distributions D1 and D2 are representative of the end-of-production repairing
process. In this case, manufacturing process defects tend to produce large clusters of faulty cells. D1 and D2 are
therefore characterized by a lower probability of single cell faults (SC) compared to D3 and D4. The reduction of the
probability of SC is spread on fault classes with a higher number of faulty cells (i.e., DCR, DCC, QC, SC, SR, DC
and DR). During operational activity of the memory device, latent defects or external factors may induce new faulty
elements. In these cases, single faulty cells appear more frequently than clustered faults. Distributions D3 and D4 (see
Table 2) model this situation. They assure the SC is predominant among the other fault classes. For all distributions,
we considered a number of injected defects per FBM in the range of 1 to 10 that fairly simulates the high density of
defects that next generation nanoscale devices will face. Simulations have been performed by considering memory
configurations that span from small arrays of 256⇥256 cells to arrays of 4096⇥4096 elements, all three fault detection
orders (see Subsection 3.3), and the generation of 1,000 FBMs for each configuration. Redundancy configurations
used for the simulations were in the range of (sr = 1, sc = 1) to (sr = 5, sc = 5), where sr and sc are respectively the
number of spare rows and spare columns.

Figure 9 provides a graphical representation of the repair rate obtained by the three MRAs. Plots are organized into
a grid, in which the result of each MRA is reported by column, while rows of the grid represent the application of dif-
ferent fault class probability distributions. Each plot summarizes the number of repaired FBMs over the 1,000 FBMs
analyzed for the specific MRA, when spare elements and injected defects are varied. The repair rate is represented by
means of two concentric bars. The red bar shows the number of TRFBMs that have been generated (thus repaired by
the Oracle), while the white bar reports the number of FBMs that have actually been repaired by the MRA. Taking
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Figure 9: Experimental evaluation of the repair rate of three state-of-the-art MRAs using fault class distributions from D1 to D4. The results are
presented, for each distribution Di, by rows (e.g., plots for distribution D2 are presented in the second row). For each row, the plots refer to MRA1
(column 1), MRA2 (column 2), and MRA3 (column 3). Due to space limitation, only results for the largest array are presented (4096 ⇥ 4096).
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into consideration the first two distributions (i.e., D1 and D2), the performance of MRA1 quickly decreases with the
number of injected defects. What is, however, more surprising is that a similar behavior remains valid also for MRA2
which is more complex in terms of implementation. This result can be partially ascribed to the use of the random
fault detection order, and demonstrates how di↵erent parameters may strongly impact the final yield. Di↵erently, the
repairing rate of the MRA3 remains in general close to the optimum (Oracle). However, its performance is negatively
counterbalanced by the high hardware cost.

Considering the other two distributions (i.e., D3 and D4), additional single faults (SC class) are injected. When
the simple allocation strategy of MRA1 is applied to distributions D3 and D4, the failure rate increases. This behavior
can be ascribed to the fact that the algorithm behaves in a blind way, allocating spare resources in a fixed sequence.
Conversely, the performance of MRA2 is more in line with the expectations: it fails when the number of defects is
higher. A global analysis of the algorithm behavior suggests to use this redundancy algorithm as a good trade-o↵
between performance and hardware cost (i.e., it is more convenient when it is employed with large memory arrays
[30] so that the hardware cost is counterbalanced by its e�cacy). Similar to the prior case, MRA3 maintains a global
behavior close to that of the Oracle. In addition, the result analysis shows an important aspect: MRA behavior is
not only influenced by the distribution of faulty elements in the memory array, but also by the detection sequence.
This makes the capability of SIERRA of interacting with an external memory fault simulator an important key feature
for determining the actual e�ciency of the redundancy algorithm under analysis, particularly once a fair set of spare
elements for the MRA has been determined.
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Figure 10: Experimental evaluation of the e�ciency of three state-of-the-art MRAs using fault class distributions D2. Memory array is set to the
largest configuration (4096 ⇥ 4096). Each graph shows how the repair rate (orange) and e�ciency (blue) change by modifying the number of
available spare resources and the number of injected defects.

To assess the capability of SIERRA to measure the e�ciency of the MRAs also in terms of area and power
consumption, we performed a second set of simulations by setting the three weights in equation 2 equally. This
second campaign of experiments was intended to evaluate how the structures (storage and logic) required by each
MRA can influence the e�ciency w.r.t. the only repair rate capability. Figure 10 shows the simulation results when
faults follow the D2 distribution (similar consideration are still valid for the other three fault distributions). All the
results have been normalized to range between 0 and 1. As expected, the lower repair rate the MRA1 exhibits is
compensated by a more higher e�ciency thanks to a reduced set of resources and a simpler control logic. When the
number of defects is low the e�ciency computed both considering the repair rate alone, and the repair rate with area
and power consumption are close to 1. Increasing the number of defects causes the repair rate to rapidly decrease
towards 0, while the e�ciency falls close to 0.6. Moving to MRA2 performance, we note that the lower e�ciency in
terms of area and power consumption is compensated by a higher repair rate. Globally, the MRA2 performs similar to
the MRA1. In fact, for a high number of defects the repair rate is slightly higher than in the case for MRA1. However,
MRA2 requires more storage resources and a more complex logic leading the e�ciency to fall close to 0.6. More
interesting is the case for MRA3. The repair rate is in general close to the Oracle repair rate, decreasing very slowly.
However, the high demand for storage resources and a complex logic makes the e�ciency to appear lower than the
e�ciency of MRA1 and MRA2, even in the case of a low number of defects.
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5.3. Simulation times
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Figure 11: Experimental evaluation of the simulation time for the three state-of-the-art MRAs using fault class distributions D2. Memory array is
set to the largest configuration (4096 ⇥ 4096).

Looking at the simulation time, we observed that the overall computation time is slightly influenced by the sim-
ulated system (i.e., the MRA and the memory configuration). In general, the simulation of 1,000 FBMs was always
completed in a range between 60 and 100 seconds on a single simulation node, confirming the e�cient implemen-
tation of the simulation engine. Given a memory configuration, the evaluation of the area and power using CACTI
requires less than 1 second to be performed. Accounting also the time to export the memory configuration, the over-
all simulation time remains within a range between 60 and 100 seconds. Figure 11 shows the distribution of times
required to complete the analysis of 1,000 FBMs when the number of defects and the spare resources change. As a
general consideration, the simulation time is higher for more complex MRAs, albeit it is not directly correlated to the
e↵ective time required by the hardware circuit to complete the analysis (in fact, the simulation is always sequential).
In addition, the capability of distributing the simulation, allows SIERRA to e�ciently scale (almost linearly) with the
number of computing nodes. Moving from one to five simulation nodes, we completed the two experimental simula-
tion sets in one fifth of the time w.r.t. the execution of SIERRA on a single node. This features becomes valuable in
an industrial context, where a large number of memory configurations have to be examined.

6. Conclusions

In this paper, we presented SIERRA, a tool able to evaluate the repairing e�ciency of an MRA while considering
di↵erent faulty memory configurations (including realistic fault distributions), area and power consumption of the
BIRA circuitry. The outcome of SIERRA is a detailed description of the MRA e�ciency obtained in realistic con-
ditions. An experimental evaluation demonstrated the e�ciency of the tool and the benefits provided by the analysis
of its results in assessing real capabilities of MRAs. Furthermore, being able to distribute the simulation e↵ort and
scaling with the increase of the number of computing elements, is a desired feature.

Three di↵erent memory redundancy algorithms have been simulated with SIERRA, using four realistic fault distri-
butions. The simulation results confirmed the growing importance of simulating the behavior of MRAs using realistic
sets up, and in association with a memory fault simulator. Given the expected continuous increase of memory devices
placed at di↵erent levels of future high-performance computing systems, along with an increasing rate of failure due
to the adoption of more sophisticated manufacturing technologies, there is a growing interest in finding e�cient allo-
cation schemes for redundant resources. On the basis of these observations, we can conclude that SIERRA represents
a valuable instrument towards the generation of new heuristics for BIRA circuits that can provide very high repairing
e�ciency with reduced costs.
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