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The current studies on the development of the EU DEMO breeding blanket include among the options 

the use of liquid Lithium-Lead (17Li-83Pb) as tritium breeder (and multiplier), with different 

coolants. As the tritium is steadily produced in the blanket during the reactor operation, suitably 

efficient strategies for the Tritium Extraction System (TES) from the breeder must be developed, 

allowing a closed fuel cycle in situ and avoiding tritium accumulation in the machine.  The Permeator 

Against Vacuum (PAV) appears to be one of the most promising solutions to achieve this goal.  In 

this paper, the performance of a PAV system is studied by means of different models describing the 

transport of tritium in the liquid PbLi and in the metallic membrane separating it from the vacuum. 

The comparison of the results for different membrane materials and size of the device, for a given 

target efficiency, allows to optimize the PAV design, also taking into account corrosion issues. The 

approximations and limitations of the adopted models are also addressed. 
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I. Introduction 

 

The history of the DEMO breeding blanket designs in the EU is now over 20 

years long.1,2 Several of the options currently under study, namely the Dual-Coolant 

Lithium-Lead (DCLL), the Helium-Cooled Lithium-Lead (HCLL) and the Water-

Cooled Lithium-Lead (WCLL), use liquid Lithium-Lead (17Li-83Pb), PbLi in the 

following, as tritium breeder (and multiplier). 

As the tritium is steadily produced in the blanket during the reactor operation, and 

as it is needed to close the fuel cycle in situ, while at the same time it cannot be left to 

accumulate an inacceptable inventory in the machine, suitably efficient strategies for the 

Tritium Extraction System (TES) from the breeder must be developed. 

Among the TES options currently under consideration, the Permeator Against 

Vacuum (PAV), appears to be one of the most promising solutions for the DCLL, 

HCLL and WCLL Breeding Blanket (BB).3 

The PAV operating principle is simple: PbLi with a certain concentration of 

tritium flows in a channel delimited for a given length by a membrane permeable to 

tritium. Vacuum is maintained on the other side of the membrane, so that the difference 

between the tritium partial pressure on the two sides of the membrane drives the flux of 

tritium from the PbLi side to the extraction, leaving a lower tritium concentration at the 

outlet of the channel. As opposed to the undesired permeation of tritium through the 

walls in the rest of the circuit, which may lead to safety issues and reduced tritium 

breeding ratio, here the relatively low solubility and the resulting high partial pressure 

of tritium in PbLi, together with a suitably permeable and corrosion resistant material 

for the membrane, are at the basis of the PAV potential for operation. 
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In this paper, two models for the prediction of the PAV efficiency are applied to 

the HCLL and WCLL. The first model, widely adopted in these kind of analyses,4,5,6 

considers only bulk phenomena in the membrane, while the second accounts for both 

diffusion and surface effects at the interface membrane-vacuum, as they may lead to an 

intermediate regime.7 The analysis, application and systematic comparison of both 

models, objective of the current work, is motivated by the necessity to understand 

whether the presence of surface effects may influence the PAV design parameters (i.e. 

channel length for a prescribed efficiency). Both models are also used to assess by a 

sensitivity study how the main TES design parameters affect the PAV system size for a 

given target efficiency requested. The influence of tritium inlet concentration and PbLi 

temperature in the HCLL/WCLL range of operation is considered, as well as the role of 

the physical constants entering the model (e.g. Sievert constant and diffusivity).  

II. Model description 

In Figure 1 a sketch of the PAV geometry is given, as well as a plot of the radial 

section of the pipe considered by the models adopted in the following, with the 

identification of the physical quantities of interest.  
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(a) 

                    

(b) 

Fig. 1. Schematics of the Permeator Against Vacuum (PAV) system8 (a) and radial section of the channel, 

with identification of the unknowns of the problem (b). 

 

 

II.A Simplified analytical model 

A first modelling option, adopted in Refs. 9-11 and described in detail in Ref. 10, 

focuses on the transport of tritium in the PbLi bulk and in the membrane, neglecting 

both the presence of helium bubbles mixed with PbLi and all surface effects on both the 

PbLi and vacuum side, assuming that permeation through the membrane is influenced 

only by bulk phenomena (diffusion). As a consequence of the latter assumption, 

Sievert’s law 𝐶 = 𝐾√𝑝 is applicable and the concentration CT,w2 on the vacuum side (p 

= 0) vanishes. At the interface between PbLi and the membrane the continuity of tritium 
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partial pressure is usually assumed in the literature, obtaining the following relation 

through the Sievert constants Ks for the membrane and Kl for PbLi: 

𝐶𝑇,𝑤1

𝐾𝑠
=

𝐶𝑇,𝑤𝑙

𝐾𝑙
.     (1) 

The mass transfer coefficient of tritium in PbLi, appearing in the definition of the 

flux J (Ref. 10), is taken from Ref. 12. The efficiency is evaluated as 𝜂 = 1 − 𝐶𝑜𝑢𝑡/𝐶𝑖𝑛. 

The tritium inlet concentration Cin is assumed constant. Calculations are carried out 

assuming a requested efficiency of 80% (Refs. 4 and 13) and obtaining the 

corresponding needed length of the system L, for given geometrical (channel hydraulic 

diameter and membrane thickness) and physical (temperature and pressure) parameters. 

Due to the linearity of the model, the efficiency is independent on the inlet 

concentration Cin. 

II.B Model accounting for surface effects 

While the previous model assumes that permeation through the membrane is 

influenced only by bulk phenomena (diffusion), a model accounting also for surface 

phenomena is now introduced, as suggested in Ref. 7. In this model, recombination and 

desorption processes occurring at the membrane-vacuum interface could be as rate 

limiting as diffusion, and tritium flux J at this interface can be modeled with the 

relation:14,15 

𝐽 = 2𝑘𝑅 ∙ 𝐶𝑇,𝑤2
2                                                       (2) 

where the recombination constant kR is introduced. The boundary condition at the 

vacuum side is again p = 0, but this does not imply 𝐶𝑇,𝑤2 = 0 as in the previous model, 

since Sievert’s law is not applied here. 
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Regarding surface effects occurring at the PbLi-membrane interface, to the best of our 

knowledge there is no model in the literature describing the kinetics of atomic hydrogen 

in non-equilibrium conditions (i.e. Sievert’s law not applicable). Only models for gas-

solid interfaces, where non-dissolved atomic hydrogen interacts with a metal, are 

available.7,14 Therefore, we assume for the sake of simplicity equilibrium conditions on 

this surface, thus allowing to use (1), also considering that surface effects occurring at 

the vacuum side should be dominant with respect to those occurring at the PbLi side. In 

fact, at the PbLi-membrane interface, no dissociation energy must be provided (tritium 

is in atomic form in PbLi) and two atoms of tritium are not required to be adjacent in 

order to be desorbed. 

Eq. (2) is coupled with the equations of the previous model10 in the bulk of PbLi and in 

the membrane. The result is a set of equations (tritium balance in PbLi, flux in PbLi 

boundary layer, diffusive current in the membrane, eq. (2), eq. (1) applied at the PbLi-

membrane interface) that cannot be solved analytically, and, more importantly, the inlet 

concentration Cin now affects the efficiency of the PAV. Since the HCLL and WCLL 

designs are characterized by different values of Cin, this parameter is considered in the 

parametric analysis presented in the next sections. 

 

III. Results  

III.A Comparison of different membrane materials 

The first set of results presented focuses on the comparison of the choice of the 

membrane material, performed adopting the simplified analytical model, in order to 

identify as a first step the membrane with the best performance. The two main options, 

based on previous analysis,11 are Fe and Nb. Nb has a higher tritium permeability with 



 

 

8 

 

respect to Fe, thus allowing to improve the extraction performance, but it tends strongly 

to oxidize at high temperature. For this reason, a Pd coating should be envisaged, 

although it is not considered in this preliminary design stage. However, the Pd coating 

should not affect our results significantly, because of its high permeability16 and small 

thickness (in the range of m). 

The data adopted for the comparison are summarized in Table I. Two temperature 

values are chosen, assuming as minimum the design outlet T of PbLi in the BB, and 

then considering an upper limit, still compatible with the material mechanical 

properties, to increase efficiency. The channel hydraulic diameter and PbLi flow speed 

are varied in a reasonable range: the minimum speed ensures Re = 104 and therefore a 

turbulent regime, while the upper limit is still compatible with corrosion constraints. A 

parametric analysis on the diffusivity Dl is also performed, assuming the minimum and 

maximum value available in the literature, since the range of variation of this parameter 

covers several orders of magnitude. The same approach is also adopted for the choice of 

the Sievert’s constant, bearing in mind that the Kl value from Ref. 20 is considered to be 

the most reliable and conservative.  

 
TABLE I: Input data adopted in the analytical model calculations for the comparison of Fe and Nb as 

membrane materials. 

η [-] 0.8 

Membrane 
thickness [mm] 

0.5 

T PbLi [°C] 300 550 

ρ PbLi [kg/m3] 9.8∙103 (Ref. 17) 9.5∙103 (Ref. 17) 

 PbLi [Pa s] 2.2∙10-3 (Ref. 17) 1.0∙10-3 (Ref. 17) 

Dl [m2/s] 
8.6∙10-10 (Ref. 18) 4.8∙10-9 (Ref. 18) 

6.5∙10-10 (Ref. 19) 9.9∙10-10 (Ref. 19) 

Kl [mol/m3/Pa0.5] 
2.8∙10-2 (Ref. 20) 6.3∙10-2 (Ref. 20) 

9.9∙10-4 (Ref. 21) 1.1∙10-3 (Ref. 21) 

PNb [mol/m/s/Pa0.5] 6.2∙10-6 (Ref. 16) 6.5∙10-7 (Ref. 16) 

PFe [mol/m/s/Pa0.5] 1.6∙10-11 (Ref. 16) 1.5∙10-10 (Ref. 16) 
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Fig. 2. PAV length as a function of PbLi flow speed adopting Nb as membrane material for different 

hydraulic diameters do. Kl from Ref. 20. Circles: Dl from Ref. 18; stars: Dl from Ref. 19. (a): operation 

temperature T = 300 oC; (b): T = 550 oC .  

 

The use of a Fe membrane turns out not to be practical (not shown), since very 

long (from hundreds to thousands of meters, depending on temperature and speed) 

channels are needed to achieved the required efficiency. 11   

In the case of Nb, see Fig. 2, increasing the diameter affects the results because 

the ratio between the cross section and wetted perimeter increases. The needed channel 

length shows a non-linear behavior with respect to speed, typical when transport across 

PbLi is rate limiting. The PAV shows better performances, i.e. a shorter channel is 

sufficient, at higher temperatures, due to the increased tritium diffusivity in PbLi. 

 

III.B Comparison of modelling options for the Nb membrane 

Having identified Nb as the best option for the membrane material, we now 

compare the results obtained with the model not accounting for surface phenomena to 

those obtained with the model accounting for surface effects. To evaluate the 

(a) (b) 
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permeating tritium flux in this case, the value of kR in (2) is necessary. kR can be 

expressed as:13,21 

𝑘𝑅 = √
2

3

1.3∙1024

𝑁𝐴∙𝐾𝑆0
2 ∙√𝑇

exp (
2(𝐸𝑆−𝐸𝐶)

𝑅𝑇
)                                     (3) 

where KS0 = 0.127 mol m-3 Pa-0.5 (Ref. 21) is the pre-exponential coefficient of Sievert 

constant, ES = 34 kJ mol-1 (Ref. 22) is the heat of solution of tritium in PbLi, EC = 40 

kJ mol-1 is the activation energy for dissociative adsorption (considering the more 

conservative value from Ref. 22) and NA is the Avogadro number. The term √2/3 is 

introduced to take into account that the formula for kR was originally defined for 

deuterium. 

Since the model depends on the inlet concentration of tritium, we consider two 

different ranges: 20-30 Pa for HCLL and 50-80 Pa for WCLL. Starting from the inlet 

pressure of tritium in PbLi, the corresponding concentration Cin is obtained applying 

Sievert’s law. 

 

To understand how Cin and kR affect the system performance, a parametric analysis is 

carried out, see Fig. 3. The increase of the inlet concentration in the range 20-80 Pa 

leads to a non-negligible reduction of the PAV length (up to 15%), especially if the 

lower operating temperature is assumed. This is due to the imposed relation (2) between 

the tritium flux and the concentration, which is affected by its inlet value. In fact, if Cin 

increases, consequently also CT,w2 increases.  Since the tritium flux J is proportional to 

CT,w2
2, its increase will results in a reduced length of the PAV system needed to achieve 

the prescribed 80% efficiency. Instead, results obtained with the first model do not 

depend on Cin, as already commented in Section II.A. 
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Fig. 3. Normalized PAV length as function of inlet concentration. Data adopted: d0=10 mm; v=0.5 

m/s; Kl from Ref. 20 and Dl from Ref. 19, conservatively. 

 

 

 

Fig. 4. Comparison of the Nb membrane PAV system length as a function of PbLi flow speed foreseen by 

the two models  (I = simplified, II = including surface effects), considering two different values of tritium 

inlet pressure, two temperatures of operation and do = 10 mm. Kl from Ref. 20, conservatively. Circles: Dl 

from Ref. 18; stars: Dl from Ref. 19. (a): operation temperature T = 300 oC; (b): T = 550 oC  

 

 

In Fig. 4 we compare the needed PAV system length foreseen by the two models 

illustrated above. Fig. 4 demonstrates that surface phenomena play a non-negligible role 

in tritium transport, affecting the resulting PAV length, which is especially true when 

(a) (b) 
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the resistance associated to the diffusion in PbLi is lower, i.e. at higher flow speed and 

assuming a higher value of Dl (resulting in an increased mass transfer coefficient), while 

the resistance associated to recombination is independent of the flow speed, and 

becomes therefore more dominant. In conclusion, all results show that transport in the 

membrane is a limiting factor and needs to be considered in the system design phase. 

The influence of the value of the Sievert constant is also analyzed. The value of Kl 

affects the solution of the problem since it is used in the evaluation of the inlet condition 

Cin and it also appears in Eq. (1). The assumption of a smaller Kl implies a reduced inlet 

concentration, resulting in a longer PAV length needed (see Fig. 3). However, the use of 

a smaller Sievert constant20 in Eq. (1) at the PbLi-membrane interface results in a more 

relevant reduction of the PAV length with respect to the previous effect. Figure 5, 

comparing two limiting values of Kl proposed in the literature, shows that the 

uncertainty on Kl strongly affects the PAV length, especially for increasing flow speed.  

 

Fig. 5. Comparison of the PAV system length with Nb membrane for two different values of Sievert 

constant. LA stands for the length computed using Kl from Ref. 21, while LB with Kl from Ref. 20. Circles: 

Dl value from Ref. 18; stars: Dl value from Ref. 19. 
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IV. Conclusions and perspective 

In this work an analysis of the PAV system is presented, adopting two different 

models for tritium transport. The first model neglects surface phenomena at material 

interfaces, assuming diffusion as the limiting phenomenon, while the second takes into 

account both bulk diffusion and surface phenomena. Both models require a set of 

parameters characterizing PbLi and the membrane material. 

A sensitivity study was performed with respect to the main design parameters 

(inner PAV channel diameter, PbLi speed and inlet temperature), and input parameters 

(tritium solubility and diffusivity in PbLi, PAV inlet concentration), showing their 

impact on the PAV length for a prescribed efficiency of 80%.  

The results show that the most suitable material for the membrane is Nb, and the 

comparison of the two modelling options shows that surface phenomena are a limiting 

factor, changing the length of the PAV channels up to a factor 3 in the most 

conservative scenario, and therefore cannot be neglected, . 

 Moreover, both the Sievert constant and the diffusivity, which are known only 

with high uncertainty, strongly affect the system design. Assuming the most 

conservative values for these two constants in the simplified model, PAV length 

becomes few tens of meters, a value that is much different from the few meters obtained 

by previous studies4,5,6. The reason for this difference is clearly associated to the choice 

of the value of these parameters. 

Both models lead to a value of the channel length of several tens of meters, in 

order to reach the design extraction efficiency of 80%. Therefore, to limit the 

geometrical size of the PAV system, the possibility to arrange the pipes in concentric 

spirals is currently under consideration. In this perspective, the potential effect of the 
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different geometry on tritium permeation will be assessed, and other engineering aspects 

influencing the design, such as the pressure losses along the channels, will be evaluated. 

An experimental campaign on a mock-up test of the PAV system is foreseen to validate 

the computational results. 
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