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The c-map of four dimensional non-linear theories of electromagnetism is considered both in the rigid 
case and in its coupling to gravity. In this way theories with antisymmetric tensors and scalars are 
obtained, and the three non-linear representations of N = 2 supersymmetry partially broken to N = 1
related. The manifest Sp(2n) and U(n) covariance of these theories in their multifield extensions is also 
exhibited. This construction extends to H-invariant non-linear theories of Born–Infeld type with non-
dynamical scalars spanning a symmetric coset manifold G/H and the vector field strengths and their 
duals in a symplectic representation of G as is the case for extended supergravity.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In this paper we formulate the c-map for Born–Infeld-like 
theories [1] (for a review, see [2]), i.e. for non-linear theories 
which generalize the canonical Born–Infeld (BI) electromagnetism 
to multi-vector, tensor and scalar fields. As for ordinary super-
symmetric theories, the c-map is defined [3,4] both in the rigid 
and gravitational cases, by the uplifting of a formal dimensional 
reduction of the four-dimensional theory on a circle to three di-
mensions [5]. Starting with a multi-vector generalization of the BI 
theory, the resulting three-dimensional model, obtained upon di-
mensional reduction and dualization of the vectors to scalar fields, 
is a non-linear model describing scalar fields only. This model pro-
vides a consistent non-linear theory for scalar fields in four dimen-
sions, which in turn can be Legendre-transformed into a non-linear 
theory of antisymmetric rank-2 tensor fields.

This is most easily accomplished using the linear description of 
BI theories, in which the Lagrangian is made quadratic in the vec-
tor field-strengths by adding suitable Lagrange multipliers in the 
form of non-dynamical scalar fields [6,8]. Integrating out these ex-
tra fields through their equations of motion, one obtains the BI 

* Corresponding author.
E-mail addresses: laura.andrianopoli@polito.it (L. Andrianopoli), 

riccardo.dauria@polito.it (R. D’Auria), sergio.ferrara@cern.ch (S. Ferrara), 
mario.trigiante@polito.it (M. Trigiante).
http://dx.doi.org/10.1016/j.physletb.2016.05.038
0370-2693/© 2016 The Author(s). Published by Elsevier B.V. This is an open access artic
SCOAP3.
action (or one of its multifield generalizations). One of the advan-
tages of this formulation is that it makes the global symmetries of 
the BI theory manifest. Moreover it is the most convenient formu-
lation in which to derive the BI-like theories from supersymmetric 
ones.

For the case of a single vector field, the three alternative 
formulations displayed in this paper, namely the scalar–scalar, 
scalar–tensor, tensor–tensor theories [9,10] are in fact related to 
different non-linear representations of the N = 2 superalgebra 
spontaneously broken to N = 1. While in the Born–Infeld case the 
goldstino multiplet is an N = 1 vector multiplet [11], in the scalar–
tensor theory it is an N = 1 real linear multiplet [12] and in the 
scalar–scalar case it is an N = 1 chiral multiplet [13]. The two 
latter theories correspond to D3 brane actions in five and six di-
mensions [12].

The paper is organized as follows. In section 2 we recall the 
basics of the c-map [3,4] relating special and quaternionic (Hyper-
Kähler) geometries in N = 2 local (rigid) theories. In section 3 we 
recall the main ingredients for the “linear realization” of BI-like 
theories, as developed in [8]. In section 4 we derive the c-map of 
the Born–Infeld theory coupled to gravity, which reproduces the 
bosonic part of the non-linear chiral multiplet action of [10,12]. 
In section 5 it is shown how all non-linear theories discussed in 
[11,12] are reproduced using the c-map operation and Legendre 
transforms. In particular this implies that such theories have a su-
persymmetric completion. The paper ends with some concluding 
remarks.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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2. Local and rigid c-map

Let us recall, in this section, the formal steps to get the c-map 
of the Lagrangian describing N = 2 vector multiplets both in the 
supergravity and rigid-supersymmetry cases.

Local c-map Let us start from an N = 2 supergravity model of vec-
tor multiplets in four dimensions [3] whose bosonic Lagrangian has 
the following general form:

e−1L4 = − R

2
+ gij̄ ∂μzi∂μ z̄j̄ − 1

4
F �
μν g�� F � μν

+ 1

4
F �
μνθ��

∗ F � μν , (2.1)

where μ,ν = 0, 1, 2, 3, the index � enumerates the vector fields 
and F �

μν = ∂μ A�
ν − ∂ν A�

μ . If the theory is invariant under axial ro-
tations, we can formally perform a dimensional reduction, along 
the isometry direction, to three dimensions on a background with 
metric:

ds2 = e−2U gμ̂ν̂ dxμ̂dxν̂ − e2U (dx3 + A(3))2 , (2.2)

where μ̂, ̂ν = 0, 1, 2 and gμ̂ν̂ = gμ̂ν̂ (xρ̂ ), A(3) = A(3)

μ̂
(xν̂ )dxμ̂ are 

the D = 3 metric and Kaluza–Klein vector. The vectors in D = 4
reduce to three dimensional ones as follows:

A� = Â�
μ̂(xν̂ )dxμ̂ + ζ�(xν̂ ) V 3 , V 3 = dx3 + Â(3) . (2.3)

where V 3 is proportional to the vielbein in the isometry direction 
and we have set A�

3 = ζ� . The corresponding field strengths read:

F � = F̂ � + F �
3 V 3 , where F̂ � = dÂ� + ζ� F̂ (3) , F̂ (3) = dA(3) .

(2.4)

Next we consider the D = 3 Lagrangian which is given by the four-
dimensional one written in terms of three dimensional fields, plus 
a Chern–Simons term inducing the dualization of the D = 3 vector 
fields A(3) , Â� to scalar degrees of freedom a, ζ̃�:

ê−1L3 = − R̂

2
+ ∂μ̂U∂μ̂U − e4U

8
F̂ (3)

μ̂ν̂
F̂ (3) μ̂ν̂ + gij̄ ∂μ̂zi∂μ̂ z̄j̄ +

− e2U

4
F̂ �
μ̂ν̂ g�� F̂ � μ̂ν̂ + e−2U

2
∂μ̂ζ�g�� ∂μ̂ζ�

− 1

2 e
εμ̂ν̂ρ̂ F̂ �

μ̂ν̂θ��∂ρ̂ζ� +
+ e−1LC S , (2.5)

where LC S = 1
2 εμ̂ν̂ρ̂ F̂ �

μ̂ν̂
∂ρ̂ ζ̃� − 1

4 εμ̂ν̂ρ̂ F̂ (3)

μ̂ν̂
ωρ̂ , and we have de-

fined εμ̂ν̂ρ̂ = εμ̂ν̂ρ̂3, so that ε012 = 1. The vector ωμ̂ is given in 
terms of scalar degrees of freedom and reads:

ωμ̂ ≡ ∂μ̂a + ζ� ∂μ̂ζ̃� − ∂μ̂ζ� ζ̃� . (2.6)

Integrating out F̂ �
μ̂ν̂

and F̂ (3)

μ̂ν̂
we find the following equations:

F̂ � μ̂ν̂ = −e−2U

e
εμ̂ν̂ρ̂ g−1 ��(θ�� ∂ρ̂ζ� − ∂ρ̂ ζ̃�)

F̂ (3) μ̂ν̂ = −e−4U

e
εμ̂ν̂ρ̂ ωρ̂ . (2.7)

Replacing the above solutions in L3 we find the final expression of 
the three dimensional Lagrangian fully written in terms of scalar 
degrees of freedom and exhibiting manifest Sp(2n) structure [5]:
ê−1L3 = − R̂

2
+ ∂μ̂U∂μ̂U + e−4U

4
ωμ̂ ωμ̂

+ gij̄ ∂μ̂zi∂μ̂ z̄j̄ + e−2U

2
∂μ̂ζ T g ∂μ̂ζ +

+ e−2U

2

(
∂μ̂ζ̃ T − ∂μ̂ζ T θ

)
g−1

(
∂μ̂ζ̃ − θ∂μ̂ζ

)
=

= − R̂

2
+ ∂μ̂U∂μ̂U + e−4U

4
ωμ̂ ωμ̂ + gij̄ ∂μ̂zi∂μ̂ z̄j̄

+ e−2U

2
∂μ̂ZMMMN∂μ̂ZN , (2.8)

being ZM = {ζ�, ζ̃�} and

M ≡
(

g + θ g−1θ −θ g−1

−g−1θ g−1

)
. (2.9)

Eq. (2.8) is the bosonic Lagrangian of n + 1 hypermultiplets (con-
taining the scalars {ζ�, ζ̃� , zi, ̄zj̄ , U , a}) coupled to gravity in 
D = 3, N = 2 supergravity, one of the multiplets (corresponding to 
U , a and, say, ζ 0, ζ̃0) being the universal hypermultiplet contain-
ing the degrees of freedom of the supergravity multiplet in D = 4. 
The scalars (ZM , a) are acted on by the isometries

δZM = αM , δa = β − αM
CMNZN , (2.10)

which close a characteristic Heisenberg algebra [4]. However, since 
hypermultiplets couple in the same way both to D = 3 and to 
D = 4 supergravity, it can be promoted to a D = 4 Lagrangian de-
scribing the coupling of n + 1 hypermultiplets to D = 4 supergrav-
ity, by just extending the range of indices to 0, . . . , 3. The related 
scalar geometry is of quaternionic Kähler type [14,15].

Rigid c-map This case is obtained from the local one by setting 
gμ̂ν̂ = ημ̂ν̂ , U = ∂μ̂U = 0 and A(3) = F̂ (3) = 0, that is ωμ̂ = 0. Equa-
tion (2.3), where now � = 1, · · · , n, becomes:

A� = Â�
μ̂(xν̂ )dxμ̂ + ζ�(xν̂ )dx3 , (2.11)

and we define F̂ �
μ̂ν̂

= ∂μ̂ Â�
ν̂

− ∂ν̂ Â�
μ̂

. The D = 3 Lagrangian reads:

L3 = gij̄ ∂μ̂zi∂μ̂ z̄j̄ − 1

4
F̂ �
μ̂ν̂ g�� F̂ � μ̂ν̂ + 1

2
∂μ̂ζ�g�� ∂μ̂ζ�

− 1

2
εμ̂ν̂ρ̂ F̂ �

μ̂ν̂θ��∂ρ̂ζ� +LC S , (2.12)

where LC S = 1
2 εμ̂ν̂ρ̂ F̂ �

μ̂ν̂
∂ρ̂ ζ̃� . Solving with respect to F̂ �

μ̂ν̂
we 

find:

F̂ � μ̂ν̂ = −εμ̂ν̂ρ̂ g−1 ��(θ�� ∂ρ̂ζ� − ∂ρ̂ ζ̃�) . (2.13)

Substituting in the Lagrangian we find:

L3 = gij̄ ∂μ̂zi∂μ̂ z̄j̄ + 1

2
∂μ̂ZMMMN∂μ̂ZN . (2.14)

Analogously to the Lagrangian in the local case, given by eq. (2.8), 
eq. (2.14) is the bosonic Lagrangian of n hypermultiplets (corre-
sponding to {ζ�, ζ̃�, zi, ̄zj̄ }) in D = 3, N = 2 rigid supersymmetry, 
but it can be promoted to a D = 4 Lagrangian of the same form 
which describes an Hyper-Kähler sigma-model of a restricted type 
[16,3].
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3. Linear description of Born–Infeld theories

In this section we briefly recall the linear description of BI the-
ories in terms of auxiliary fields, introduced in [6–8]. This descrip-
tion does not rely on supersymmetry although, for special choices 
of the scalar sector and of the parameters, it can be embedded in 
a supersymmetric theory. As extensively discussed in [8], the four-
dimensional Lagrangian generalizing BI to n vector fields can be 
put in the form (up to an additive constant):

L = −1

4
F T
μν g F μν + 1

4
F T
μν θ ∗ F μν − 1

2λ
Tr(NM) + const. ,

(3.1)

where N is a constant 2n ×2n symmetric matrix, g and θ are n ×n
symmetric matrices function of a set of ns scalar fields φs , λ is a 
parameter which should be taken small to obtain a well-defined 
non-linear description.

The non-dynamical scalar sector can be integrated out through 
its algebraic equations of motion [8], thus yielding a non-linear 
n-vector Lagrangian of BI type. These equations of motion can be 
cast in the following manifestly symplectic-covariant form:

F
T
μν∂sMF

μν = −4

λ
Tr (N∂sM) . (3.2)

Here F = (F �, G�) is a symplectic vector built out of the electric 
field strengths F �

μν and their magnetic duals

G� μν ≡ −εμνρσ
δL

δF �
ρσ

,

satisfying the field equations:

∂[μFνρ] = 0 ; ∗
Fμν = −CMFμν , (3.3)

the latter being the so-called “twisted self-duality condition” [17], 
and C the 2n × 2n symplectic invariant matrix

C=
(

0 1
−1 0

)
.

The effective symmetry preserved by the non-linear Lagrangian 
depends on both the symmetry of the scalar sector and the in-
variance of the matrix N . Suppose the scalar fields span a homo-
geneous symmetric space of the form G/H , and that the matrix 
M(φ) defines a mapping between this manifold and Sp(2n)/U(n):

{φs} ∈ G

H
−→ M(φ) ∈ Sp(2n)

U(n)
. (3.4)

Any isometry generator of G , described by a Killing vector kα , cor-
responds to a symplectic matrix (tα)M

N , so that

φs → φs + δφs = φs + εαks
α : M → M+ δM , (3.5)

with

δM = εαks
α∂sM = εα(tαM+MtT

α) . (3.6)

The on-shell global invariance of the non-linear theory is described 
by the generators tα of G further satisfying the following condi-
tions:

ks
αF

T
μν∂sMF

μν = 2FT
μνtαMF

μν = 0 ; tα N + NtT
α = 0 . (3.7)

These conditions define the group G 
⋂

Inv(N) [8], where Inv(N) ⊂
Sp(2n) is the invariance group of the metric N . In the case 
N MN = δMN , which is the choice we will make in what follows, 
Inv(N) = U(n) and the global symmetry of the non-linear theory 
is the maximal compact subgroup H of G . Using the twisted self-
duality condition, the first of (3.7) can be cast in the form:

F
T
μνtαC

∗
F

μν = 0 . (3.8)

These reproduce, in a symplectic invariant way, the conditions first 
found in [1].

Using the above setting, we can associate with each extended 
supergravity model, with n vector fields and a symmetric scalar 
manifold G/H , a non-linear Born–Infeld theory featuring an on-
shell symmetry H . This is done by adding to the bosonic La-
grangian the H-invariant potential 1

2λ
Tr(M) and dropping the 

kinetic terms of the scalar fields, so that they become non-
dynamical. The map (3.4) is built-in the mathematical structure 
of extended supergravities and is defined by the embedding of G
inside Sp(2n) [1]. The symplectic matrix M has the general form 
M = LLT , where L is the Sp(2n)-representation of the coset rep-
resentative. The non-linear BI theory originates by integrating the 
scalar fields out through their algebraic equations of motion.

In the following we shall consider the case G = Sp(2n), H =
U(n) and N MN = δMN . We postpone to a future work the study of 
non-linear theories with a smaller on-shell symmetry group, ob-
tained by considering the non-dynamical scalar fields in a smaller 
coset G/H .

4. c-Map of BI+gravity

We start from the linearized form of 1-vector BI coupled to four 
dimensional gravity which is obtained by coupling, for n = 1, the 
Lagrangian (3.1) to gravity:

L = e

(
− R

2
− 1

4
Fμν g F μν + 1

4
Fμν θ ∗ F μν − 1

2λ
Tr(M) + 1

λ

)
,

(4.1)

where μ, ν = 0, 1, 2, 3 and M was defined in Eq. (2.9).
Upon dimensional reduction on a circle and dualization of vec-

tors to scalars, as discussed in Section 2, we end up with a 3D 
hypermultiplet Lagrangian which can be promoted to a four di-
mensional one

L′
4 = − R

2
+ ∂μU∂μU + e−4U

4
ωμωμ + e−2U

2
∂μZT M∂μZ

− e−2U

2λ
Tr(M) + e−2U

λ
. (4.2)

Integrating out g, θ we find:

L4 = ∂μU∂μU + e−4U

4
ωμωμ + e−2U Ln.l. , (4.3)

where

Ln.l. ≡ 1

λ

×
(

1 −
√

1 − λ (∂μζ∂μζ + ∂μζ̃ ∂μζ̃ ) + λ2 (∂μζ∂μζ∂ν ζ̃ ∂ν ζ̃ − (∂μζ∂μζ̃ )2)

)
.

(4.4)

Notice that we still have the Heisenberg algebra of isometries. For 
the case of rigid supersymmetry we find:

L4 = Ln.l. . (4.5)

The coupling of the non-linear hypermultiplet to gravity is thus 
described by the following Lagrangian:

ê−1L4 = − R̂ + ∂μU∂μU + e−4U

ωμωμ + e−2U Ln.l. , (4.6)

2 4
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which expands, for small λ, as follows

ê−1L4 = − R̂

2
+ ∂μU∂μU + e−4U

4
ωμωμ

+ e−2U

2
(∂μζ∂μζ + ∂μζ̃ ∂μζ̃ ) + O (λ) . (4.7)

5. c-Maps and their duals in the rigid theory

5.1. Tensor + scalar theory in BI form

Let us reconsider the general form of the 2-derivative La-
grangian in 4D admitting a dual BI form [8], for a single field. The 
Lagrangian has the general form:

L′ = g

2λ

(
� + �2 − λ

2
X

)
+ θ

(
1

4
Y − �

λ

)
+ 1

λ

(
1 − √

1 + �
)

(5.1)

where

X ≡ Fμν F μν (5.2)

Y ≡ 1

2
Fμν Fρσ εμνρσ (5.3)

and variation with respect to g and θ “dualizes” (5.1) into the BI 
Lagrangian:

L′|g,θ = 1

λ

⎛
⎝1 −

√
1 + λ

2
X − λ2

16
Y 2

⎞
⎠ = LB I .

As discussed above, we can again consider the dimensional reduc-
tion from 4 to 3 dimensions of the gauge field strength (in the case 
∂3 Aμ = 0). When decomposing μ → μ̂, 3, the kinetic and topolog-
ical terms of (5.1) reduce respectively to:

X → Fμ̂ν̂ F μ̂ν̂ − 2∂μ̂ζ ∂μ̂ζ (5.4)

Y → −2Fμ̂ν̂∂ρ̂ζ εμ̂ν̂ρ̂ (5.5)

However, the same terms (5.4), (5.5) would be obtained in the di-
mensional reduction of the four dimensional Lagrangian for a real 
scalar ζ plus an antisymmetric tensor field Hμνρ = 3∂[μBνρ] (in 
the case ∂3 Bνρ = ∂3ζ = 0), where:

X ≡ −1

3
Hμνρ Hμνρ − 2∂μζ∂μζ (5.6)

Y ≡ 2

3
Hμνρ∂σ ζεμνρσ (5.7)

if we identify Bμ̂3 = Aμ̂ , Hμ̂ν̂3 = Fμ̂ν̂ = ∂μ̂B ν̂3 − ∂ν̂ Bμ̂3.1 In this 
case the non-linear form of the Lagrangian is (as in [10]):

Lscal.−tensor = 1

λ

×
⎛
⎝1 −

√
1 − λ

(
1

6
Hμνρ Hμνρ + ∂μζ∂μζ

)
− λ2

36
(Hμνρ∂σ ζεμνρσ )2

⎞
⎠ .

(5.8)

and it can be generalized to the case of n fields on the same lines 
as in [8].

1 Note that, under the hypothesis ∂3 Bνρ = 0, the 3D non-dynamical term Hμ̂ν̂ρ̂ =
εμ̂ν̂ρ̂ ∂3φ , vanishes for any φ.
We can further dualize the scalar ζ to an antisymmetric ten-
sor. The resulting model describes two antisymmetric tensors and 
reads [10]:

Ln.lin−tensor = 1

λ

×
(

1 −
√

1 − λ(H1 · H1 + H2 · H2) − λ2((H1 · H2)2 − H1 · H1 H2 · H2)
)
,

(5.9)

where we have used the convention that Hi · H j ≡ 1
3! Hi μνρ Hμνρ

j , 
i = 1, 2 and H1 μνρ, H2 μνρ are the field strengths corresponding 
to the two antisymmetric tensors.

Equations (4.4) and (5.9) will be generalized to 2n scalars and 
2n antisymmetric tensors, respectively, in the following.

Before proceeding with the derivation of the multi-scalar and 
multi-tensor non-linear actions, let us briefly recall the main facts 
about the relation, mentioned in the Introduction, of these descrip-
tions to representations of the N = 2 algebra broken to N = 1. 
In [8] it was shown that the multi-vector field generalization of 
(5.1), or, equivalently, (3.1), reproduces, for a suitable choice of the 
matrix N in the scalar potential, the N = 2 model of [18]. The 
latter features a spontaneous supersymmetry breaking to N = 1
by virtue of FI terms, which define the matrix N MN in (3.1), and 
which induce a constant matrix C A

B in the local realization of the 
supersymmetry algebra [19]:

{Q Aα, J̄μβ̇
B(x)} = 2σν

αβ̇
Tμν(x) δB

A + 4σμαβ̇ C A
B , (5.10)

which is an essential ingredient in order to have spontaneous 
partial global supersymmetry breaking [20,21]. In this model the 
goldstino multiplet is an N = 1 vector multiplet [11]. Other repre-
sentations of the N = 2 algebra broken to N = 1 are possible, in 
which, as mentioned in the introduction, the goldstino multiplet 
is an N = 1 chiral or linear multiplet. These cases were investi-
gated in [13,12], although only in the presence of a single chiral 
and tensor gauge multiplet (i.e. the goldstino one), respectively. 
The actions they find in the two works are (4.4) and (5.8), respec-
tively. Below we generalize the actions (4.4) and (5.9) to a generic 
number of fields. The generalization of (5.8) is then obtained by 
dualizing half of the scalar fields to antisymmetric tensors.

5.2. The multi-scalar Born–Infeld Lagrangian

In the spirit of the procedure of [8], outlined in section 3, the 
problem of determining the U(n)-duality invariant multi-scalar BI 
action is that of minimizing the linearized Lagrangian density

Llin.−scalar = 1

2
∂μZT M ∂μZ − 1

2λ
Tr(M) + n

λ

= −1

2
Tr(PM) + n

λ
(5.11)

with respect to the non-dynamical scalars g��, θ�� contained in 
the matrix M introduced in (2.9), where we have defined the 2n ×
2n matrix PMN as follows:

PMN ≡ 1

λ
δMN − ∂μZM∂μZN

= 1

λ

(
1n − λ∂ζ · ∂ζ T −λ∂ζ · ∂ζ̃ T

−λ∂ζ̃ · ∂ζ T 1n − λ∂ζ̃ · ∂ζ̃ T

)
, (5.12)

and we have used the short-hand notation ∂φ · ∂ξ ≡ ∂μφ∂μξ . The 
above tensor is manifestly covariant under the U(n) subgroup of 
Sp(2n, R).

We shall determine the BI Lagrangian by minimizing (5.11) with 
respect to M. The resulting Lagrangian is
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Ln.lin.−scalar = −1

2
Tr

(√−PCPC

)
+ n

λ
, (5.13)

and is manifestly invariant with respect to U(n). The square root 
in (5.13) is defined, in the basis in which the argument is diago-
nal with eigenvalues λi , as the non-negative diagonal matrix with 
diagonal entries 

√|λi|. In our case the matrix −PCPC, being λ
small, is positive definite.

The above formula will be derived in two ways: Solving a con-
strained variational problem and using purely algebraic procedures 
based on matrix theory.

Variational derivation We try to retrieve the result (5.13) using the 
Lagrangian method of minimization of a function in the presence 
of constraints among the variables.

In our case the variables are the matrix elements of M and 
the constraints it obeys are the propriety to be a symmetric and 
symplectic matrix, namely

ϕ2 ≡ MT −M = 0 , (5.14)

ϕ1 ≡ MT
CM−C= 0 . (5.15)

The above mentioned method amounts to minimizing a linear 
combination of the Lagrangian (5.11) together with the two con-
straints ϕ1 and ϕ2, namely

∂

∂MR S

[
Llin.−scalar + Tr

(
1

4
λ1ϕ1 + 1

4
λ2ϕ2

)]
= 0 (5.16)

where Llin.−scalar is

Llin.−scalar = −1

2
Tr(PM) + const.

while λ1 and λ2 are two Lagrangian multipliers implementing the 
constraints (5.14), (5.15), which are antisymmetric matrices since 
so are the left-hand-side of equations (5.14) and (5.15). We obtain 
from (5.16) in matrix notation:

−P + CMλ1 + λ2 = 0. (5.17)

Let us try to solve the constrained equation setting λ2 = 0; it fol-
lows

M = −CPλ−1
1 . (5.18)

In order to find the explicit expression of M, we have still to com-
pute λ1. This is done setting together the above result with the 
two constraint equations (5.14) and (5.15). Equation (5.14) inserted 
in (5.18) gives

CPλ−1
1 = λ−1

1 PC (5.19)

while from equation (5.15) we find

PCP = −λ1 Cλ1, (5.20)

that is

(Cλ1)
2 = −CP CP. (5.21)

Thus we have found the value of λ1

λ1 = ±C
−1 (−CP CP)

1
2 . (5.22)

Finally inserting (5.22) in (5.18), we further retrieve the value 
of M2

M = −CP (−CP CP)−
1
2 C = − (−CP CP)−

1
2 CP C. (5.23)

2 The sign is chosen such that M be positive definite.
Algebraic derivation In order to prove Eq. (5.13) we first determine 
a lower bound Lmin for Llin.−scalar and then determine a symmet-
ric symplectic matrix Mmin such that:

Llin.−scalar[Mmin] = Lmin . (5.24)

It is useful to write the Lagrangian density in the following form:

Llin.−scalar = −1

2
Tr(PM) + n

λ
= 1

2
Tr(PCM−1

C) + n

λ

= 1

2
Tr(AB) + n

λ
, (5.25)

where we have used the symplectic property of M, CM =
M−1

C, and have defined the following matrices:

A = −i PC , B = i M−1
C . (5.26)

Both matrices A and B are diagonalizable with real eigenvalues 
and moreover B squares to one:

B2 = 12n ⇒ |λi(B)| = 1 , (5.27)

λi(B) denoting the eigenvalues of B . If we denote by B D the diago-
nalized B and Ã the form of A in the basis in which B is diagonal, 
we can write the following inequalities:

|Tr(AB)| = |Tr( ÃB D)| = |
∑

i

λi(B) Ãii| ≤
∑

i

| Ãii| ≤
∑

i

|λi(A)| .

(5.28)

The latter sum can also be written as follows:∑
i

|λi(A)| = Tr
(√

A2
)

= Tr
(√−PCPC

)
. (5.29)

We therefore find that (as above, the final sign assignment is cho-
sen such that M be positive definite):

|Tr(AB)| ≤ Tr
(√−PCPC

)
⇒

Tr(AB) = Tr(PCM−1
C) ≥ −Tr

(√−PCPC

)
. (5.30)

This allows us to write a lower bound for the Lagrangian:

Lmin = −1

2
Tr

(√−PCPC

)
+ n

λ
. (5.31)

The value Mmin for M at which the Lagrangian equals this lower 
bound is given by

M−1
minC = −√−PCPC (PC)−1 ⇒
Mmin = (−CPCP)−

1
2 C

−1PC > 0 . (5.32)

Thus the BI Lagrangian reads:

Ln.lin.−scalar = −1

2
Tr

(√−PCPC

)
+ n

λ
, (5.33)

and is manifestly U(n)-invariant. We can write its explicit form by 
expanding the argument of the square root at lowest order in λ
(recall that λ � 1):

−PCPC = 1

λ2

[
12n − λ

(
∂Z · ∂ZT −C∂Z · ∂ZT

C

)
− λ2

(
∂Z · ∂ZT

C∂Z · ∂ZT
C

)]
, (5.34)

so that
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Ln.lin.−scalar = 1

λ

(
n − 1

2

× Tr
√

12n − λ
(
∂Z · ∂Z T −C∂Z · ∂Z T C

) − λ2
(
∂Z · ∂Z T C∂Z · ∂Z T C

))
.

(5.35)

For n = 1 the matrix A = −i PC has two eigenvalues λi(A) = ±x, 
where

x = 1

λ

×
√

1 − λ (∂μζ∂μζ + ∂μζ̃ ∂μζ̃ ) + λ2 (∂μζ∂μζ∂ν ζ̃ ∂ν ζ̃ − (∂μζ∂μζ̃ )2)

> 0 , (5.36)

and thus Tr
√−PCPC = Tr(|A|) = 2x so that we find (4.4).

5.3. Coupling to gravity

Just as we did in the two-scalar case, we can write the multi-
scalar non-linear Lagrangian coupled to gravity. It is

ê−1L4 = − R̂

2
+ ∂μU∂μU + e−4U

4
ωμωμ + e−2U Ln.l.−scalar ,

(5.37)

where Ln.lin.−scalar is given by (5.35), with ημν replaced by the 
space–time metric gμν . This action describes the c-map of n-vector 
BI action.

5.4. Dualizing scalars into tensors

In the absence of gravity, the non-linear scalar Lagrangian (5.13)
exhibits shift symmetries associated with the 2n scalars ZM . This 
is also apparent in the linearized form of the Lagrangian (5.11). 
This allows us to dualize all the scalars into tensor fields. To this 
end it is convenient to work with (5.11) and to write:

L′ = 1

2
ηT

μMημ − 1

2λ
Tr(M) + n

λ
−HT

μ(ημ − ∂μZ) , (5.38)

where we have suppressed the symplectic indices and Hμ ≡
(HM μ), ημ ≡ (ηM

μ ). Upon variation of L′ with respect to Hμ we 
get back (5.11), while by varying L′ with respect to ZM we find 
the condition ∂μHM μ = 0 which implies that, locally,

HM μ ≡ 1

3!εμνρσ Hνρσ
M , where H Mμνρ = 3∂[μB M νρ] . (5.39)

The equations obtained by varying L′ with respect to ηM
μ are:

Mημ = Hμ ⇒ ημ = M−1Hμ . (5.40)

Replacing the solution to the above equation in L′ , up to total 
derivatives we find:

L′
0 = −1

2
HT

μC
T MCHμ − 1

2λ
Tr(M) + n

λ
= −1

2
Tr(P̂M) + n

λ
,

(5.41)

where now the 2n × 2n matrix P̂MN is defined as follows:

P̂MN ≡ 1

λ
δMN + (CHμ)M(CHμ)N . (5.42)

The non-linear theory is obtained by minimizing the action with 
respect to the matrix M. This can be done along the same lines 
as in Sect. 5.2, thus obtaining:
Ln.lin.−tensor = −1

2
Tr

(√
−P̂CP̂C

)
+ n

λ
, (5.43)

which is manifestly U(n)-invariant. For n = 1 the above Lagrangian 
reduces to Eq. (5.9).

6. Conclusions

In this investigation we considered the c-map of non-linear
theories of vectors fields and their c-map counterparts. In doing 
so multi-fields non-linear scalar and tensor theories are obtained 
of the type considered in [9,10]. The c-map can be extended by 
coupling these non-linear theories to gravity then obtaining a de-
formation of Quaternionic-Kähler manifolds of N = 2 theories. It 
would be interesting to discuss the supersymmetric extensions of 
these theories, at least for the N = 1, 2 cases. In order to achieve 
this a non-linear constraint preserving the lower supersymmetry 
should be found.
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