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Convergence Analysis of the Distributed Analytical
Representation and Iterative Technique
(DARIT-Field) for the Field Coupling
to Multiconductor Transmission Lines

Jun Guo, Yan-Zhao Xie, Ke-Jie Li, and Flavio Canavero

Abstract—This paper investigates the convergence and error
evaluation of the distributed analytical representation and iter-
ative technique (DARIT-field) which is a new approach for the
analysis of field coupling to multiconductor transmission lines. The
DARIT-field method has the advantage of high computational ef-
ficiency over the other methods. In order to know the convergence
speed and the error at each iteration step of DARIT-field, an ana-
lytic expression of iterative error is derived by combining the two
telegrapher’s equations into a matrix equation and using the eu-
clidean norm to explore its upper bound. The expression shows that
the convergence speed is mainly influenced by three parameters,
namely coupling factor (CF), terminal loads, and the line length
to excitation field wavelength ratio (d/λ). The convergence speed
is a function of CF, terminal loads, and the line length to excita-
tion field wavelength ratio (d/λ). These results allow the users to
make a compromise between computational cost and accuracy by
selecting the number of iterations.

Index Terms—Analytical solution, convergence, matrix norm,
transmission line modeling, waveform relaxation.

I. INTRODUCTION

THE electromagnetic pulse (EMP) may couple to the mul-
ticonductor transmission lines (MTLs) and induce high

voltages and currents which would make serious damage to the
equipments connected to MTLs. So, it is important to investigate
in this kind of field-wire coupling and to predict the effects in
modern electronic circuits [1]–[10]. Generally, one uses trans-
mission line approximation method to calculate the responses
of MTLs when excited by incoming EMP plane wave. How-
ever, the process contains many steps of decoupling algorithm
(by means of similarity transformation) and matrix inversion
which are all time-consuming tasks. The processing time will
be too long for the simulation of a large number of coupled
transmission lines [1]–[10].

Therefore, it is important to find other ways which can avoid
the need to inverse the matrix when solving transmission line
equations. In 2010, Xie et al. proposed an approach using
the distributed analytical representation and iterative technique
(DARIT) method which is based on the waveform relaxation
and transverse partitioning (WR-TP) for the crosstalk computa-
tion between MTLs [11]. Henceforth, this approach is named as
the DARIT-crosstalk method. In 2013, Xie et al. extended the
DARIT-crosstalk method to the DARIT-field (for the prediction
of field coupling to lines) method [12]. The DARIT-field method
could be employed to the area of EMP radiated field interaction
with transmission lines which can avoid the need for invers-
ing the matrix when solving MTL equations. The voltages and
currents at the terminals are solved by the Baum–Liu–Tesche
(BLT) equation [11], [13] at each iteration (more details of the
DARIT-field see [12]). However, the method has certain limi-
tations due to the need for more iterations to get the required
accuracy in some situations, therefore, it is important to find the
key factors which have profound influence on the convergence
and to study the dependence of these factors on the convergence
of this method.

Such concern for DARIT-field is similar to any WR process.
Some convergence analyses of WR have been done in [15]–[35].
Especially in [15], it provided a rigorous conceptual and theoret-
ical framework for explaining the convergence of WR method.
In this paper, the iteration results of DARIT-field method are
shown and the convergence is analyzed. An expression of rel-
ative error after nth iteration is deduced by combining the two
equations of telegrapher’s equations into a matrix equation and
exploring the upper bound of relative error by using the matrix
norm. Three key factors are found from the expression and the
dependence of them is investigated. The results from the actual
examples show the accuracy of the conclusion.

The rest of this paper is organized as follows. Section
II describes the basic idea of the proposed DARIT-field ap-
proach and the four steps of iteration. Section III presents the
derivation process of relative error formula and studies the re-
lationship between the three key factors and the convergence.
Sections IV and V present the validation examples and conclu-
sions, respectively.

II. OUTLINE OF THE DARIT-FIELD

The problem to be investigated is shown in Fig. 1. It consists
of MTLs of length d and the number of conductors N (the
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Fig. 1. Configuration of MTLs to be investigated.

reference conductor is not included), with linear loads at each
end of the lines. All the lines are excited by the incoming EMP
plane wave. For this problem, the load responses of voltages and
currents at each line end are to be determined.

A. Basis of the Proposed Algorithm

The EMP wave is first converted to the frequency domain by
fast Fourier transform (FFT). Then, the formulas are derived
in frequency domain. Last, the results in the frequency domain
were converted back to the time domain by IFFT.

The Telegrapher’s equations of the MTLs in the frequency
domain are described by a set of differential equations in the
following form:

dV(x, ω)
dx

+ Z′(ω)I(x, ω) = V′(x, ω)

dI(x, ω)
dx

+ Y′(ω)V(x, ω) = I′(x, ω) (1)

where V(x, ω) and I(x, ω) are the vectors of the N voltages
and currents on the lines. V′(x, ω) and I′(x, ω) are the source
terms whose detailed expressions depend upon the coupling
model used, e.g., Taylor model (used in this paper), Agrawal
Model, and Rachidi Model. Z′ and Y′ are the N × N matrices
of the line impedances and admittances which, in general, are
frequency-dependent and can be written as

Z′(ω) = R′(ω) + jωL′(ω),Y′(ω) = G′(ω) + jωC′(ω).
(2)

The Telegrapher’s equations in (1) for line i could be ex-
pressed as follows:

dvi(x, ω)
dx

+z′ii(ω)ii(x, ω) = −
N∑

j = 1
j �= i

z′ij (ω)ij (x, ω) + V ′
i (x, ω)

dii(x, ω)
dx

+y′
ii(ω)vi(x, ω) = −

N∑

j = 1
j �= i

y′
ij (ω)vj (x, ω) + I ′i(x, ω)

(3)

where V ′
i (x, ω) and I ′i(x, ω) are the general source terms of line

i due to the incoming EMP wave. The summation terms in (3)

are the neighboring effects on line i due to the coupling of other
adjacent lines. By applying waveform relaxation techniques to
(3), we obtain a recursive set of decoupled differential equations
in the frequency domain

dv
(r+1)
i (x, ω)

dx
+ z′ii(ω)i(r+1)

i (x, ω) = −
N∑

j = 1
j �= i

z′ij (ω)i(r)
j

(x, ω) + V ′
i (x, ω)

di
(r+1)
i (x, ω)

dx
+ y′

ii(ω)v(r+1)
i (x, ω) = −

N∑

j = 1
j �= i

y′
ij (ω)v(r)

j

(x, ω) + I ′i(x, ω) (4)

where r represents the rth iteration, r ≥ 0.
Hereafter, we simply present the derived formulas of two

iterations. In order to make a distinction between different it-
erations, the general subscript index at these two iterations are
represented by m, n, respectively.

B. Iteration 1

The general subscript index of this step is m. At this iteration,
there are no coupling effects due to the neighboring line since
the initial states of the lines are zeros. The only exciting source
is from the illuminating EMP wave. Therefore, (4) could be
simplified and rewritten as

dv
(1)
m (x, ω)

dx
+ z′mm (ω)i(1)

m (x, ω) = V ′
m (x, ω)

di
(1)
m (x, ω)

dx
+ y′

mm (ω)v(1)
m (x, ω) = I ′m (x, ω). (5)

C. Iteration 2

The general subscript index of this step is n. At this iteration,
each line is excited by the incoming EMP wave and the cou-
pling effects of all the other adjacent lines. For the voltages and
currents on the nth line, we have

dv
(2)
n (x)
dx

+ z′nn i(2)
n (x) = −

N∑

m = 1
m �= n

z′nm i(1)
m (x) + V ′

n (x)

di
(2)
n (x)
dx

+ y′
nnv(2)

n (x) = −
N∑

m = 1
m �= n

y′
nm v(1)

m (x) + I ′n (x).

(6)

D. More Iterations

The calculation method of more iterations is the same as in
Iteration 2. The Telegrapher’s equations for these two steps are
the same as in Iteration 2 except the indexes.
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III. CONVERGENCE OF THE DARIT-FIELD

A. Solution of Equation

The convergence analysis starts from the telegrapher’s (1). In
order to solve the differential equations, let us take the concept
of the combined voltage wave to represent the distribution of
voltage and current on the lines. Denoting that

W+(x, ω) = V(x, ω) + Zc(ω)I(x, ω)

W−(x, ω) = V(x, ω) − Zc(ω)I(x, ω) (7)

where

Zc(ω) =
√

Z′(ω)Y′(ω)−1 (8)

is the characteristic impedance of MTLs.
Taking (7) to (1) and simplifying the expression, it can be

written as

dW+(x, ω)
dx

+ γ(ω)W+(x, ω) = W′
+(x, ω)

dW−(x, ω)
dx

− γ(ω)W−(x, ω) = W′
−(x, ω) (9)

where

W′
+(x, ω) = V′(x, ω) + Zc(ω)I′(x, ω)

W′
−(x, ω) = V′(x, ω) − Zc(ω)I′(x, ω)

γ(ω) =
√

Z′(ω)Y′(ω). (10)

Looking at the parameter γ(ω), it is the propagation constant
of MTLs and is split into a diagonal part and a nondiagonal
part. The diagonal part will be denoted with γD(ω) and the
nondiagonal part will be denoted with γN (ω). Taking them into
(9), it can be written as

dW+(x, ω)
dx

+ γD(ω)W+(x, ω) = W′
+(x, ω)

− γN (ω)W+(x, ω)

dW−(x, ω)
dx

− γD(ω)W−(x, ω) = W′
−(x, ω)

+ γN (ω)W−(x, ω).

(11)

The two first-order equations mentioned previously can be com-
bined in a single first-order equation, in which the Ψ(x, ω) and
the Ψ′(x, ω) are vectors with 2N elements

dΨ(x, ω)
dx

+ D(ω)Ψ(x, ω) = Ψ′(x, ω) − N(ω)Ψ(x, ω)
(12)

where we have defined

Ψ(x, ω) =
[
W+(x, ω)
W−(x, ω)

]
∈ R2N

Ψ′(x, ω) =
[
W′

+(x, ω)
W′

−(x, ω)

]
∈ R2N (13)

and

D(ω) =
[

γD(ω) 0

0 −γD(ω)

]
∈ R2N × R2N

N(ω) =
[

γN (ω) 0

0 −γN (ω)

]
∈ R2N × R2N . (14)

If the term −N(ω)Ψ(x, ω) in (12) is considered as an input
excitation now, the general solution of (12) can be solved as

Ψ(x, ω) = e−D(ω )xΨ(x0 , ω) +
∫ x

x0

e−D(ω )(x−x ′)[Ψ′(x′, ω)

− N(ω)Ψ(x′, ω)
]
dx′. (15)

The parameter Ψ(x0 , ω) is the initial vector of Ψ(x, ω) that
corresponds to W+(0, ω) on near-end and W−(d, ω) on far-
end, respectively. It can be solved by BLT equations

Ψ(x0 , ω) = M(I − ΓM)−1Ψs

Ψs =
∫ x1

x0

e−D(ω )(x1 −x)[Ψ′(x, ω) − N(ω)Ψ(x, ω)
]
dx.

(16)

The vector parameters x0 and x1 are the boundary conditions.
It is denoted as

x0 =
[
0

d

]
∈ R2N , x1 =

[
d

0

]
∈ R2N . (17)

The parameter M and Γ are represented as

M =
[

0 ρ1
ρ2 0

]
∈ R2N × R2N

Γ =
[

e−γD 0
0 e−γD

]
∈ R2N × R2N (18)

where

ρ1 = (Z1 − Zc)(Z1 + Zc)−1

ρ2 = (Z2 − Zc)(Z2 + Zc)−1

ρ1 ,ρ2 ∈ RN × RN . (19)

In general case, the recursions could be written as

Ψ(r+1)(x, ω) = e−D(ω )xM(I − ΓM)−1

∫ x1

x0

e−D(ω )(x1 −x)[Ψ′(x, ω)

− N(ω)Ψ(r)(x, ω)
]
dx

+
∫ x

x0

e−D(ω )(x−x ′)[Ψ′(x′, ω)

− N(ω)Ψ(r)(x′, ω)
]
dx′. (20)

For the simplification of the cumbersome integral formula men-
tioned previously, bring in the convolution symbols which is
defined as

e−D(ω )x ∗ Ψ′(x, ω) =
∫ x

x0

e−D(ω )(x−x ′)Ψ′(x′, ω)dx′. (21)
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Then, (20) is converted into

Ψ(r+1)(x, ω) = e−D(ω )xM(I − ΓM)−1

e−D(ω )x1 ∗
[
Ψ′(x1 , ω) − N(ω)Ψ(r)(x1 , ω)

]

+ e−D(ω )(x) ∗
[
Ψ′(x, ω) − N(ω)Ψ(r)(x, ω)

]
.

(22)

If we denote the parameter of (22) by

k1(x, ω) = e−D(ω )x

k2(x, ω) = e−D(ω )xM(I − ΓM)−1

k3(x, ω) = −e−D(ω )xN(ω)

B(ω) = M(I − ΓM)−1 (23)

(22) can be written as

Ψ(r+1)(x, ω) =
[
k2(x, ω)k1(x1 , ω) ∗ Ψ′(x1 , ω)

+ k1(x, ω) ∗ Ψ′(x, ω)
]

+
[
k2(x, ω)k3(x1 , ω) ∗ Ψ(r)(x1 , ω)

+ k3(x, ω) ∗ Ψ(r)(x, ω)
]
. (24)

Taking notice of the two parts in the iterative formula (24), the
one is a constant which only depends on the excitation of the
field whereas the other is the iterative item. Denote that

S(r+1)(x, ω) = Ψ(r+1)(x, ω) − Ψ(r−1)(x, ω)

= k2(x, ω)k3(x1 , ω) ∗
[
Ψ(r)(x1 , ω)

− Ψ(r−1)(x1 , ω)
]

+ k3(x, ω) ∗
[
Ψ(r)(x, ω) − Ψ(r−1)(x, ω)

]

= k2(x, ω)k3(x1 , ω) ∗ S(r)(x1 , ω)

+ k3(x, ω) ∗ S(r)(x, ω)

S(1)(x, ω) = Ψ(1)(x, ω). (25)

Then, we have the recursive equation defining all the S(r)(x, ω)
iterates.

The first iteration in the DARIT-field method is to deal with
the incoming EMP wave interacting with each line indepen-
dently. So, the term N(ω) in the first iteration is 0. The value of
variable Ψ(x, ω) after the first iteration is

S(1)(x, ω) = Ψ(1)(x, ω)

= k2(x, ω)k1(x1 , ω) ∗ Ψ′(x1 , ω)

+ k1(x, ω) ∗ Ψ′(x, ω)

= k2(x, ω)
∫ x1

x0

e−D(ω )(x1 −x)Ψ′(x, ω)dx

+
∫ x

x0

e−D(ω )(x−x ′)Ψ′(x′, ω)dx′. (26)

According to (25), at the second iteration and after, the recur-
sions of r + 1th iteration can be written as

S(r+1)(x, ω) = k2(x, ω)k3(x1 , ω) ∗ S(r)(x1 , ω)

+ k3(x, ω) ∗ S(r)(x, ω)

= k2(x, ω)
∫ x1

x0

e−D(ω )(x1 −x)

×
[
− N(ω)

]
S(r)(x, ω)dx

+
∫ x

x0

e−D(ω )(x−x ′)[ − N(ω)
]
S(r)(x′, ω)dx′.

(27)

Taking the euclidean norms of the both sides in (27), it is con-
verted into

‖S(r+1)(x, ω)‖ = ‖k2(x, ω)
∫ x1

x0

e−D(ω )(x1 −x)[ − N(ω)
]

× S(r)(x, ω)dx +
∫ x

x0

e−D(ω )(x−x ′)[− N(ω)
]

× S(r)(x′, ω)dx′‖

≤ ‖k2(x, ω)‖
∫ x1

x0

‖e−D(ω )(x1 −x)[ − N(ω)
]

× S(r)(x, ω)dx‖

+
∫ x

x0

‖e−D(ω )(x−x ′)[− N(ω)
]
S(r)(x′, ω)dx′‖

≤ ‖ − N(ω)‖
[
‖k2(x, ω)‖

∫ x1

x0

‖e−D(ω )(x1 −x)‖

× ‖S(r)(x, ω)dx‖ +
∫ x

x0

‖e−D(ω )(x−x ′)‖‖

× S(r)(x′, ω)dx′‖
]
. (28)

Since the function ‖e−D(ω )(x1 −x)‖ and ‖e−D(ω )(x−x ′)‖ are con-
tinuous on the space, they have the upper bounds that we denote
as A1(ω) and A(ω), respectively. Noting that x1 is a constant
vector, and

x ∈ [x0 , x1 ], x′ ∈ [x0 , x] (29)

we have

max
(∥∥e−D(ω )(x1 −x)

∥∥)
= A1(ω) ≤ A(ω)

= max
(∥∥e−D(ω )(x−x ′)

∥∥)
. (30)

Then, (28) is converted into

‖S(r+1)(x, ω)‖ ≤ ‖ − N(ω)‖A(ω)
[
‖k2(x, ω)‖

∫ x1

x0

‖S(r)(x, ω)dx‖ +
∫ x

x0

‖S(r)(x′, ω)dx′‖
]
. (31)
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In order to explore the upper bound of ‖S(r+1)(x, ω)‖ by the
recursion (31), solving the ‖S(1)(x, ω)‖ first

‖S(1)(x, ω)‖ = ‖k2(x, ω)‖
∫ x1

x0

‖e−D(ω )(x1 −x)Ψ′(x, ω)‖dx

+
∫ x

x0

‖e−D(ω )(x−x ′)Ψ′(x′, ω)‖dx′

≤ A(ω)
[
‖k2(x, ω)‖

∫ x1

x0

‖Ψ′(x, ω)‖dx

+
∫ x

x0

‖Ψ′(x′, ω)‖dx′
]
. (32)

Since the function ‖Ψ′(x, ω)‖ is continuous on the space, it has
an upper bound that we denote as Φ(ω). Noting also that

‖Ψ′(x, ω)‖ ≤ Φ(ω). (33)

Then, (32) is converted into

‖S(1)(x, ω)‖ ≤ A(ω)Φ(ω)
[
‖k2(x, ω)‖

∫ x1

x0

dx +
∫ x

x0

dx′
]

≤ A(ω)Φ(ω)
[
‖k2(x, ω)‖‖(x1 − x0)‖

+ ‖(x − x0)‖
]

≤ A(ω)Φ(ω)d
[
‖k2(x, ω)‖ + 1

]
. (34)

According to (31) and (34), the upper bound of ‖S(r)(x, ω)‖
can be obtained

‖S(r)(x, ω)‖ ≤ Φ(ω)‖N(ω)‖r−1[A(ω)
]r

[
‖k2(x, ω)‖ + 1

]r dr

r!
. (35)

Note that the expression of upper bound of ‖S(r)(x, ω)‖ is the
series form, the upper bound of ‖Ψ(x, ω)‖ can be derived from
the summation of it

‖Ψ(x, ω)‖ ≤ ‖ lim
n→∞

n∑

r=1

S(r)(x, ω)‖

≤ lim
n→∞

n∑

r=1

Φ(ω)‖N(ω)‖r−1[A(ω)
]r

×
[
‖k2(x, ω)‖ + 1

]r dr

r!

=
Φ(ω)

‖N(ω)‖{e
{‖N(ω )‖A(ω )d[‖k2 (x,ω )‖+1]} − 1}.

(36)

B. Error Analysis

Based on the previous study, the expression of ‖Ψ(x, ω)‖ is
the series form. Then, the residual error after nth iteration is

given by

Rn (x, ω) = Ψ(x, ω) −
n∑

k=1

S(k)(x, ω) =
∞∑

k=n+1

S(k)(x, ω).

(37)
Taking the matrix norms of both sides in (37) and using the
Lagrange Remainder Term, we get the following expression
about upper bound of the residual error:

‖Rn (x, ω)‖ ≤
∞∑

k=n+1

Φ(ω)‖N(ω)‖k−1[A(ω)
]k

×
[
‖k2(x, ω)‖ + 1

]k dk

k!

= Φ(ω)‖N(ω)‖n
[
A(ω)

]n+1[‖k2(x, ω)‖+1
]n+1

× dn+1

(n + 1)!

{
e

{
‖N(ω )‖A(ω )d

[
‖k2 (x,ω )‖+1

]}
−1

}
.

(38)

Above all, the relative error ρn (ω) of the DARIT-field method
can be given by

ρn (ω) =
‖Rn (x, ω)‖
‖Ψ(x, ω)‖

= ‖N(ω)‖n+1[A(ω)
]n+1[‖k2(x, ω)‖ + 1

]n+1 dn+1

(n + 1)!

=

{
A(ω)‖N(ω)‖d

[
‖e−D(ω )xB(ω)‖ + 1

]}n+1

(n + 1)!

≤
{
A(ω)‖N(ω)‖d

[
A(ω)‖B(ω)‖ + 1

]}n+1

(n + 1)!
. (39)

Note that there are four parameters namely ‖N(ω)‖, A(ω),
‖B(ω)‖ and d in the expression of (39) which may influence
the convergence speed.

The first parameter is ‖N(ω)‖ which is derived from the
nondiagonal part of propagation constant γ(ω). It describes the
coupling intensity of the multiconductor lines. To research it, an-
other parameter named coupling factor (CF) is used to describe
the coupling degree of the MTLs is introduced. The larger the
CF is, the more serious the coupling is. CF is defined by the
per-unit-length (p.u.l.) inductance parameters as follows:

CF = max
i, j

i �= j

√
l′2ij

l′ii l′jj
(40)

where l′ij is the (i, j)th cell of the L′ matrix.
To study the relationship between ‖N(ω)‖ and CF, model the

microstrip structure with a symmetrical and lossy three conduc-
tors with the length, height, and diameter equal to 10 cm, 1 cm,
and 1 mm which is above the lossy ground. The relative dielec-
tric constant and electrical conductivity of ground are 10 and
0.01 S/m, respectively. The loads on both sides are 50 Ω. The
frequency and amplitude of the excitation field are 1 GHz and 1
V/m, respectively. We set the distance between lines from 11 to
30 mm to make the CF range from 0.06 to 0.24. The relationship
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Fig. 2. Relationship between ‖N(ω)‖ and CF.

Fig. 3. Relationship between ‖N(ω)‖ and frequency.

between ‖N(ω)‖ and CF is shown in Fig. 2. It can be seen from
the figure that ‖N(ω)‖ increases with CF, in other words, the
relative error increases monotonically with the CF.

Because of the frequency dependence of ‖N(ω)‖, relation-
ship between ‖N(ω)‖ and frequency is also investigated. The
microstrip structure modeling in this example is like the ex-
ample mentioned previously except that the distance between
lines is 2 cm which is constant and the frequency of excitation
field ranges from 1 kHz to 100 MHz. The relationship between
‖N(ω)‖ and frequency is shown in Fig. 3. Noting the curve in
Fig. 3, the ‖N(ω)‖ increases almost linearly with the frequency.
In order to explore the essence of the convergence, transform
the formula of (39) to

ρn (ω) =

{
A(ω)‖N(ω)λ‖(d/λ)

[
A(ω)‖B(ω)‖ + 1

]}n+1

(n + 1)!
(41)

and study the relationship between ‖N(ω)λ‖ and frequency as
shown in Fig. 4. Note that the value of ‖N(ω)λ‖in Fig. 4 is al-
most constant with the increase of frequency. It has only 5.3 dB
decrease when the frequency ranges from 1 kHz to 100 MHz
whereas the value of 1/λ increases 100 dB. From what men-
tioned previously, it can be said that the parameter ‖N(ω)λ‖
has a monotonical relationship with CF and barely depends on
other parameters such as frequency.

The second parameter is ‖B(ω)‖ which is defined in (23) and
mainly describes the influence factor of the terminal loads. To
study the relationship between ‖B(ω)‖ and loads, model the
microstrip structure with a symmetrical and lossy three con-

Fig. 4. Relationship between ‖N(ω)λ‖ and frequency.

Fig. 5. Relationship between ‖B(ω)‖ and Z2 .

Fig. 6. Relationship between ρ and Z2 after each iteration.

ductors with the length, height, diameter, and distance between
lines equal to 10 cm, 1 cm, 1 mm, and 5 mm which is above
the lossy ground. The relative dielectric constant and electrical
conductivity of ground are 10 and 0.01 S/m, respectively. The
frequency and amplitude of the excitation field are 100 MHz
and 1V/m, respectively. The load Z1 connected on near-end is
matched load whereas the load Z2 connected on far-end ranges
from 1 Ω to 1 MΩ. The relationship between ‖B(ω)‖ and Z2
is shown in Fig. 5. From the figure, it can be seen that with
the increase of Z2 , ‖B(ω)‖ decreases first and then increases.
To investigate in the relationship between load Z2 and rela-
tive error ρ, plot the figure in Fig. 6. It can be seen from the
plot that with the increase of Z2 , ρ decreases first and then in-
creases, the curve shape of which is quite like the one in Fig. 5.
Furthermore, when the value of Z2 reaches approximately equal
to the characteristic impedance of line, ρ reaches the minimum.
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Fig. 7. Relationship between A(ω) and frequency.

It indicates that the terminal loads of line are key factors of the
convergence.

The third parameter is A(ω). From the definition of A(ω), we
know that it is a frequency-dependent parameter. To research the
relationship between A(ω) and frequency, model the microstrip
structure as in the example which describes the relationship
between ‖N(ω)‖ and frequency. The relationship between A(ω)
and frequency is shown in Fig. 7. From the figure, we can see
that A(ω) is almost constant with the increase of frequency.

The last parameter is the line length to wavelength ratio d/λ.
It describes the relative geometric dimensioning between the
MTLs and the excitation field. From the conclusions drawn
above, the parameters A(ω), ‖B(ω)‖, and ‖N(ω)λ‖ in (41) are
all independent on d or frequency, so the ratio parameter d/λ

can be seen as an individual parameter which can have a direct
influence on the relative error, in other words, it is an essence
factor of the convergence.

From the expression of relative error mentioned previously
and the parameters we have investigated, it can be concluded
that, the key factors of convergence are CF, loads, and d/λ. The
weaker the coupling is, the faster the convergence is. Further-
more, the larger the d/λ is, the slower the convergence is. Last,
to reach convergence quickly, the loads on terminals should be
approximately equal to the characteristic impedance of line. The
conclusion will be validated with actual examples in the next
section.

IV. VALIDATION OF THE CONVERGENCE OF DARIT-FIELD

In order to demonstrate the validity of the proposed DARIT-
field algorithm for the calculation of EMP coupling to MTLs
and the formula of convergence derived previously, we present
some case studies which are commonly encountered. In all these
examples, the MTLs were illuminated by the incoming EMP
wave which was defined by IEC 61000-2-9

E(t) = E0k(e−αt − e−βt) (42)

where E0 = 5e4, k = 1.3, α = 4e7, β = 6e8.
First, we demonstrate the validity of DARIT-field to han-

dle MTLs. A symmetrical and lossy nine conductors microstrip
structure with length of 1 cm, height of 1 mm, diameter of
0.1 mm, and distance between lines of 1.5 mm which is above
the lossy ground is considered. The relative dielectric constant
and electrical conductivity of ground are 10 and 0.01 S/m, re-

Fig. 8. Induced waveform of far-end of line #1. (a) Voltage waveform. (b)
Current waveform.

spectively. The loads on sides are 50 Ω at near-end and 1 pF
at far-end. Fig. 8 shows a sample of the waveforms computed
with DARIT-field (after Iteration 4) compared to the waveforms
computed from the conventional stamp method [1], [10]. As
seen from the plots, the results are in very good agreement.

Then, we present three examples to validate the formula of
convergence derived before. The first example demonstrates the
iterative error with different CFs. The second example illustrates
the relationship between iterative error and the terminal loads
of line. The third example illustrates the relationship between
iterative error and the line length to wavelength ratio d/λ.

A. Example 1: The Relationship Between Iteration
Error and the CF

The purpose of this example is to quantitatively illustrate
the relative error of the DARIT-field as a function of different
CFs. Since the relative error ρn (ω) mentioned previously is
deduced by the euclidean norms, it represents the global error
of the method. In order to propose another equivalent parameter
which can be easily calculated, a relative error ε based on energy
norm in frequency domain is defined as follows:

ε =

∣∣∣∣∣

∫ fm a x

fm in
|S1(ζ)|2dζ −

∫ fm a x

fm in
|S2(ζ)|2dζ

∫ fm a x

fm in
|S1(ζ)|2dζ

∣∣∣∣∣

∼=
∣∣∣∣∣

∑Nf

k=1 |S1(fk )|2 −
∑Nf

k=1 |S2(fk )|2
∑Nf

k=1 |S1(fk )|2

∣∣∣∣∣ (43)
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Fig. 9. Dependence of relative error on CF.

where Nf is the number of sampling points in the frequency do-
main and fk is the value of frequency at the kth sampling point.
S1 and S2 represent the reference value obtained by the con-
ventional stamp method and the value obtained by the proposed
method, respectively.

To model the microstrip structure, a symmetrical and lossy
three conductors above the lossy ground are considered. The
length, height, and diameter of lines are equal to 10 cm, 1 cm,
and 1 mm, respectively. The relative dielectric constant and elec-
trical conductivity of ground are 10 and 0.01 S/m, respectively.
The loads on both sides are 50 Ω. We produce ten cases with
CFs from 0.05 to 0.45 by changing the distance between lines
from 5 to 35 mm. The waveform of exciting source is the IEC
HEMP pulse with α = 0◦, ψ = 30◦, and φ = 0◦. Fig. 9 shows
the relative error with the varied CFs after iteration 1, 2, 3, 4,
respectively. As seen from the plot, the relative error increases
with the increase of the CF, the curve shape of which is quite
like the conclusions mentioned previously.

B. Example 2: The Relationship Between Convergence
and Loads

Since the reflection coefficients in the solutions are differ-
ent from the line parameters as they depend on both the line
properties and the nature of the termination impedance, the ob-
jective of this example is to illustrate the relationship between
convergence and terminal loads. A symmetrical and lossy three
conductors microstrip structure with length of 10 cm, height of
1 cm, diameter of 1 mm, and distance between lines of 5 mm
which is above the lossy ground is considered. The loads on
near-end are equal to characteristics impedance and on far-end
varied of 1, 10, 100, 1000, 10 000, 100 000, and 1000 000 Ω.
The relative dielectric constant and electrical conductivity of
ground are 10 and 0.01 S/m, respectively. The waveform of ex-
citing source is the IEC HEMP pulse with α = 0◦, ψ = 30◦,
and φ = 0◦. Fig. 10 shows the dependence of relative error on
loads after iterations 1–4. As seen clearly from the plot, the rel-
ative error decreases first and then increases with the increase
of loads. Meanwhile, it becomes smaller after each iteration,
which corresponds to Fig. 6.

Note that the notation of y-axis ρ in Fig. 6 represents the
error which is derived from the formula derivation, whereas
the notation of y-axis relative error in Fig. 10 is derived from

Fig. 10. Dependence of relative error on loads after each iteration.

the calculation result from the actual computational example.
Strictly speaking, ρ is different from relative error, although
the ρ in Fig. 6 and the relative error in Fig. 10 are related.
The difference between them mainly results from the inequality
zoom tasks in the formula derivation process of ρ. But since the
inequality zoom level in formula derivation is controlled below
a reasonable extent, ρ still represents the nature of relative error
qualitatively, and the validation mentioned previously provides
the proof for this conclusion.

C. Example 3: The Relationship Between Convergence
and the Line Length to Wavelength Ratio

This example illustrates the line length to wavelength ratio
d/λ which is an innate character of the convergence. For il-
lustrating quantitatively, we set two groups of parameters and
calculate the relative error in frequency domain between the
proposed algorithm and the conventional method. The relative
error in frequency domain εf (ω) is defined as

εf (ω) =
|Siter(ω) − Sconv(ω)|

|Sconv(ω)| (44)

where Siter represents the result from the iteration method, Sconv
represents the result from the conventional method.

Then, we calculate the εf (ω) with the two groups of param-
eters and make a comparison between them. The comparison
makes sense if the d/λmin in these two groups keeps the same.
The model in the first group includes three symmetrical and
lossy conductors which are excited by the continuous electro-
magnetic wave of amplitude of 1 V/m and the frequency range
of the source is from 100 kHz to 100 MHz with length of 10 cm,
height of 1 cm, diameter of 1 mm, and distance between lines
is 1 cm above the lossy ground. The second group is the same
as the first except that the lower bound frequency, upper bound
frequency, and length change to 50 kHz, 50 MHz, and 20 cm,
respectively. Fig. 11(a) shows the relationship between relative
error in frequency domain and d/λ after each iteration when
d = 10 cm. It can be seen from the figure that with the increases
of d/λ, the relative error also increases. Fig. 11(b) shows the
relationship of relative error in frequency domain and d/λ after
each iteration when d = 20 cm. It can be seen from the plot that
the value of relative error is almost the same as in Fig. 11(a)
at the same point of d/λ though their lengths are different. It



9

Fig. 11. Relationship between relative error in frequency domain and d/λ

after each iteration with different d. (a) d = 10 cm. (b) d = 20 cm.

indicates that the convergence is only dependent on the ratio
parameter d/λ rather than only on d or frequency.

V. SUMMARY AND CONCLUSION

This paper discusses the convergence of the DARIT-field
which is an iterative approach (Jacobi iteration) to predict EMP
coupling to MTLs. An expression of relative error after nth
iteration has been derived by combining the two equations of
telegrapher’s equations to a matrix equation and exploring the
upper bound of the relative error by using the matrix norm.
From the theoretical analysis and the validation examples, we
can get some conclusions. First, the relative error increases with
CF. Second, the relationship between the convergence and ter-
minal loads is nonlinear. With the increase of terminal loads, the
relative error presents a down and up trend whereas the lowest
value turns out when the terminal loads equal to characteris-
tic impedance of line. Finally, the iteration relative error is a
monotone increasing function of the line length to wavelength
ratio d/λ. Above all, the convergence speed is depending on
the CF, terminal loads, and the line length to excitation field
wavelength ratio (d/λ). These convergence properties allow the
users to make a compromise between computational cost and
accuracy by selecting the number of iterations.
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