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Abstract: In this paper we study some properties of the newly found Arnold-Beltrami

flux-brane solutions to the minimal D = 7 supergravity. To this end we first single out

the appropriate Free Differential Algebra containing both a gauge 3-form B[3] and a gauge

2-form B[2]: then we present the complete rheonomic parametrization of all the generalized

curvatures. This allows us to identify two-brane configurations with Arnold-Beltrami fluxes

in the transverse space with exact solutions of supergravity and to analyze the Killing spinor

equation in their background. We find that there is no preserved supersymmetry if there are

no additional translational Killing vectors. Guided by this principle we explicitly construct

Arnold-Beltrami flux two-branes that preserve 0, 1
8 and 1

4 of the original supersymmetry.

Two-branes without fluxes are instead BPS states and preserve 1
2 supersymmetry. For each

two-brane solution we carefully study its discrete symmetry that is always given by some

appropriate crystallographic group Γ. Such symmetry groups Γ are transmitted to the

D = 3 gauge theories on the brane world-volume that would occur in the gauge/gravity

correspondence. Furthermore we illustrate the intriguing relation between gauge fluxes in

two-brane solutions and hyperinstantons in D = 4 topological sigma-models.
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3.2 Rheonomic parameterization of the curvatures 11

3.3 Bosonic lagrangian of D = 7 supergravity 13

4 The bosonic lagrangian and the embedding of flux 2-branes in

supergravity 13

4.1 Comparison of minimal D = 7 supergravity according to the TPvN con-

struction with the flux brane action 14

4.2 Comparison of TPvN SUSY rules with the rheonomic solution of Bianchi

identities 15

5 The Killing spinor equation 16

5.1 The supersymmetry of pure 2-branes 19

5.2 The supersymmetry of flux 2-branes 20

6 Examples of flux 2-branes and their (super)-symmetries 21

6.1 The Arnold-Beltrami flux 2-brane with octahedral symmetry and no pre-

served supersymmetry 21

6.2 The Arnold-Beltrami flux 2-branes with bosonic symmetry Dnn[U(1)×U(1)]

and 4 Killing spinors 24

6.3 The Arnold-Beltrami flux 2-brane with [D4 ⊗ Z2] n U(1) bosonic symmetry

and 2 Killing spinors 27

7 Uplift of the minimal D = 7 model to D = 11 supergravity 29

8 Conclusions 32

A The algebraic basis of D = 7 supergravity 33

A.1 Pseudo Majorana spinors in D = 7 33

A.2 Fierz identities 34

A.3 The FDA in the Poincaré case 36
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case 40

B.3 Construction of the bosonic action of ungauged minimal D = 7 supergravity 43

C Detailed derivation of the rheonomic solution of Bianchi identities 44

C.1 Rheonomic solution of the Bianchis for the curvatures of degree p ≤ 2 44

C.1.1 Equations from the 3Ψ sector of the torsion-Bianchi 45

C.1.2 Equations from the 2Ψ-1V 45

C.1.3 Equations from the gravitino Bianchi at 3Ψ-level 46

C.1.4 Equation for c3 from the dilaton Bianchi 46

C.1.5 Equations from the 2Ψ-1V sector of the FΛ-Bianchi 47

C.1.6 Equations from the 3Ψ-level of the FΛ curvature 47

C.2 Solving the Bianchis for curvatures of degree p = 3, 4 47

C.2.1 Equations from the 2Ψ-2V sector of the G[3]-Bianchi 48

C.2.2 Equations from the 3Ψ sector of the G[4]-Bianchi 49

C.2.3 Equations from the 2Ψ sector of the G[4]-Bianchi 49

D Constraints on the rheonomic action coefficients from comparison with

TPvN and the flux brane action 50

D.1 Embedding the 2-brane solution in supergravity 51

D.1.1 Matching with the pure brane action 52

D.2 Matching with the flux brane action 52

E Auxiliary items of the construction 53

E.1 D = 7 gamma matrices in the antisymmetric basis 53

E.1.1 Pauli matrices 54

E.2 D = 7 gamma matrices in the split basis 54

1 Introduction

Minimal supergravity in D = 7 contains 16 supercharges and it is usually named N = 2

since the 16 supercharges are arranged into a pair of pseudo-Majorana spinors.

The Poincaré (ungauged) version of the theory has been constructed independently by

Townsend and van Nieuwenhuizen in [1] and by Salam and Sezgin in [2] in two different

formulations that use respectively a three-form gauge field B
[3]
µνρ and a two-form gauge

field B
[2]
µν , in addition to the graviton gµν , the gravitino Ψα

A|µ (α = 1, . . . , 8, µ = 0, 1, . . . , 6,

A = 1, 2), the dilatino χαA, three gauge fields AΛ
µ (Λ = 1, 2, 3) and the dilaton φ, that are

common to both formulations. From the on-shell point of view the number of degrees of
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freedom described by either B
[3]
µνρ or B

[2]
µν is the same and the two types of gauge fields are

electric-magnetic dual to each other.

The gauging of the theory was also independently considered both in [1] and in [2].

The coupling of minimal D = 7 supergravity to n vector multiplets was constructed by

Bergshoeff et al. in [3] on the basis of the two-form formulation and shown to be based on

the use of the coset manifold:

M3n+1 = SO(1, 1) × SO(3, n)

SO(3)× SO(n)
(1.1)

as scalar manifold that encodes the spin zero degrees of freedom of the theory.

In all the quoted references the construction was done using the Noether coupling

procedure, up to four-fermion terms in the Lagrangian and up to two-fermion and three-

fermion terms in the transformation rules. Correspondingly the on-shell closure of the

supersymmetry algebra was also checked only up to such terms.

There is a renewed interest in this supergravity theory in relation with the classification

of Arnold-Beltrami fields [4] recently obtained by one of us, in a different collaboration,

in [19]. These fields, originally introduced by Beltrami as solutions of the first order equa-

tion that bears his name [4], were shown to have high relevance in mathematical hydrody-

namics by Arnold who proved a famous theorem according to which the only flows capable

of admitting chaotic streamlines are the Beltrami flows [5, 6, 8, 9]. This theorem originated

a vast literature on the so named ABC-flows that correspond to the simplest solutions of

Beltrami equation [7, 10–18].1 The Beltrami vector fields live on three-dimensional tori

and in mathematical hydrodynamics are interpreted as velocity fields of some fluid. They

can also be used as compactification fluxes in the transverse space to the world volume

of 2-brane solutions of D = 7 supergravity theory. This new interpretation of Beltrami

fields, jocosely described by the authors as a Sentimental Journey from Hydrodynamics to

Supergravity, was proposed in [20]. In this way the rich discrete symmetries of Arnold-

Beltrami fields that are now turned from flows into fluxes can be transmitted to the three

dimensional gauge theories living on the world volume of the two-brane. Another intriguing

relation of this type of 3D-vector fields with the tri-holomorphic hyperinstantons, namely

with the instanton configurations of four-dimensional sigma-models that are singled out by

the topological twist, was recently pointed in [21]. The intriguing set of multi-sided rela-

tions implied by different interpretations of Beltrami vector fields is graphically summarized

in figure 1 which provides a sort of conceptual map for the present paper.

In [20] the explicit construction of 2-brane solutions with Arnold-Beltrami fluxes was

performed but their embedding in d = 7 supergravity was not discussed and what is the

most relevant issue, namely the residual supersymmetry that they might preserve, was not

explored. This is the main goal of the present paper.

With this motivation, we have first reconsidered the construction of minimal D = 7

supergravity in the approach based on Free Differential Algebras (FDA) and rheonomy

1The ABC flows have been discovered by Gromeka in 1881, rediscovered by Beltrami [4], and proposed for

study in hydrodynamics in [5] and in magnetohydrodynamics, in [10, 11]. Further important contributions

on ABC flows are contained in refs. [12–18].
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Figure 1. Different applications of the Arnold-Beltrami equation.

(for reviews see [25] and also the second volume of [26]). The goal is that of clarifying the

algebraic structure underlying the theory, thus providing a solid basis for the analysis of

the 2-branes mentioned above.

In this paper we present the complete rheonomic solution of Bianchi identities which,

as it is well known, implicitly implies the fermionic and bosonic field equations of all the

fields. The request that the rheonomic parameterizations of the 2-form curvature G[3] and

of the 3-form curvature G[4] should be compatible completely fixes all the coefficients in

the rheonomic parameterizations and therefore determines all supersymmetry transforma-

tion rules including higher order terms in the fermion fields. As we show, upon suitable

rescalings, these transformation rules fully coincide with those derived (up to linear order

in the fermions) by the authors of [1, 3]. This consistency check, hand in hand with another

important test already obtained in [20], is instrumental in order to put our analysis on solid

grounds. In [20] it was shown that Beltrami flux 2-brane solutions of a bosonic theory with

the same content as D = 7 supergravity can exist if and only if the ratios between the

coefficients in the action are exactly the same as those determined by the authors of [1].

This leads to an exact prediction on the bosonic subset of the coefficients appearing in the

geometric lagrangian of D = 7 supergravity, whose explicit form, including the four-fermi

terms, is still under construction. We plan to present it in a forthcoming paper.

The information mentioned above is sufficient to embed the Arnold-Beltrami flux-

branes into D = 7 supergravity and to write down the precise form of the Killing spinor

equation in general terms and to polarize on this type of backgrounds.

The main result of this paper is the analysis of the supersymmetry preserved by

2-branes and flux 2-branes. Without fluxes the 2-branes preserve 1
2 of the original su-
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persymmetry and they always admit eight Killing spinors. With Arnold-Beltrami fluxes

supersymmetry is usually completely broken, unless the solution, besides discrete symme-

tries has also extra translational Killing vectors. With two translational Killing vectors

one can preserve 1
4 of the original supersymmetry, corresponding to the presence of four

Killing spinors. With one translational Killing vector one can preserve 1
8 of the original

supersymmetry, corresponding to the presence of two Killing spinors. The presence of the

translational Killing vectors is a necessary, yet not sufficient condition. Accurate choices

of the fluxes have to be made which lead to certain precise discrete symmetries illustrated

in our worked out examples.

Our paper is organized as follows

a) In section 2 we review the construction, introduced in [20] of two-branes in seven di-

mensions with Arnold-Beltrami fluxes in the transverse space;

b) In section 3 we give the rheonomic description of D = 7 supergravity, namely the

definition and parametrization of the curvatures in superspace and the action;

c) In section 4 we discuss the explicit embedding of the flux brane solutions into super-

gravity. This is a necessary essential intermediate step in order to be able to discuss

the residual supersymmetry.

d) In section 5 we write the Killing spinor equation and investigate its general properties.

There we present the logic of a computerized algorithm devised to investigate the

presence or absence of Killing spinors.

e) In section 6 we present three explicit cases of flux 2-brane solutions with zero, 1
4 and 1

2

preserved supersymmetry, respectively. We carefully discuss the discrete symmetries

of these solutions.

f) In section 7 we briefly discuss the uplifting of Arnold-Beltrami flux 2-branes to D = 11

supergravity.

g) Section 8 contains our conclusions.

h) In the appendices we define the conventions and discuss in some detail the rheonomic

construction and the derivation of the parametrizations of the curvatures as solutions

to the Bianchi identitites. We also derive the correspondence between the quantities

in this formalism and the corresponding ones in [1].

2 D = 7 two-branes with Arnold-Beltrami fluxes in the transverse

directions

In this section we review the construction of [20] based on the general form of p-brane

actions which is described in many places in the literature (in particular we refer the

reader to chapter 7, Volume Two of [26] and to all the papers there cited) and we focus

on the the case p = 2 in D = 7. The concern of [20] was the elementary 2-brane solution

– 4 –
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in D = 7. It was shown in [20] that this latter exists for all values of the exponential

coupling parameter a defined below. Each value of a corresponds to a different value of

the dimensional reduction invariant parameter ∆ also defined below. Obviously D = 7

supergravity corresponds to a unique value of ∆ which, as we recall in section D.1, is the

magic ∆ = 4 for which the solution becomes particularly simple and elegant and typically

preserves one half of the supersymmetries.

Subsequently, in [20], on the background of the 2-brane solution it was considered the

inclusion of fluxes of an additional triplet of vector fields, in this way mimicking the bosonic

field content of D = 7 supergravity. In presence of a topological interaction term between

the triplet of gauge fields and the 3-form which defines the 2-brane, it was shown that

the fluxes can be introduced into the framework of an exact solution if they are Arnold-

Beltrami vector fields satisfying Beltrami equation. The only conditions for the existence

of such a solution is ∆ = 4 plus a precise relation between the coefficients of the kinetic

terms in the lagrangian and the coefficient of the topological interaction term. Clearly this

relation is precisely satisfied by the coefficients of minimal D = 7 supergravity as we show

in the present paper.

2.1 The general form of a 2-brane action in D = 7

In the mostly minus metric that we utilize, the correct form of the action in D = 7 admitting

an electric 2-brane solution is the following one:

A2brane =

∫
d7xL2brane

L2brane = detV

(
−R[g] − 1

4
∂µϕ∂µϕ +

1

96
e−aϕ Fλµνρ Fλµνρ

)
(2.1)

where a is a free parameter, ϕ denotes the dilaton field with a canonically normalized

kinetic term2 and:3

Fλµνρ ≡ ∂[λ Aµνρ] (2.2)

is the field-strength of the three-form A[3] which couples to the world volume of the two-

brane.

The field equations following from (2.1) can be put into the following convenient form:

�cov ϕ =
a

48
e−aϕ Fλµνρ Fλµνρ (2.3)

d ?
[
e−aϕ ? F[4]

]
= 0 (2.4)

Ricµν =
1

4
∂µϕ∂νϕ + Sµν (2.5)

Sµν = − 1

24
e−aϕ

(
Fµ... F

...
ν − 3

20
gµν F.... F

....

)
(2.6)

2Note that in the notations adopted in this paper and in all the literature on rheonomic supergravity

the normalization of the curvature scalar and of the Ricci tensor is one half of the normalization used in

most textbooks of General Relativity. Hence the relative normalization of the Einstein term R[g] and of

the dilaton term ∂µϕ∂µϕ is 1
4

and not 1
2
.

3Note also that in the notations of all the literature on rheonomic supergravity the components of the

form Q[p] = dΩ[p−1] are defined with strength one, namely Qλ1...λp = 1
p!

(
∂λ1Ωλ2...λp + (p! − 1)-terms

)
.

– 5 –
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and they admit the following exact electric 2-brane solution:

ds2 = H(y)−
8

5∆ dξµ ⊗ dξν − H(y)
12
5∆ dyI ⊗ dyJ δIJ

ϕ = −2a

∆
log H(y)

F[4] = 4 d
[
H(y)−1 dξµ ∧ dξν ∧ dξρ εµνρ

]
(2.7)

where the seven coordinates have been separated into two sets ξµ (µ = 0, 1, 2) spanning the

2-brane world volume and yI (I = 3, 4, 5, 6) spanning the transverse space to the brane. In

the above solution H(y) is any harmonic function living on the 4-dimensional transverse

space to the brane whose metric is assumed to be flat:

�R4 H(y) ≡
4∑
I=1

∂2

∂(yI)2
H(y) = 0 (2.8)

and the parameters a and ∆ are related by the celebrated formula:

∆ = a2 + 2
d d̃

D − 2
= a2 +

12

5
(2.9)

which follows from d = 3, d̃ = 2 and D = 7. Physically d is the dimension of the electric

2-brane world volume, while d̃ is the dimension of the world-sheet spanned by the magnetic

string which is dual to the 2-brane.

In section D.1 we will discuss the relation of the brane action (2.1) with the bosonic

action of minimal ungauged D = 7 supergravity and show that the specific coefficients of the

kinetic terms appearing in this latter determine the value of ∆. Indeed the supersymmetry

of the action imposes ∆ = 4. In a later section we discuss the Killing spinors admitted by

the solution (2.7).

The above solution can be written also in the case in which the transverse space to the

brane is still flat but has a topology different from R4. In the following sections we shall

indeed consider a transverse space has the topology of R+ × T 3, which is suitable for the

introduction of the Arnold-Beltrami fluxes. In this case the solution can still be interpreted

as a 2-brane since, in the absence of these extra fluxes, it has the form given above, i.e. of

an extended two-dimensional object electrically coupled to the 3-form, although H(y) is a

harmonic function on R+×T 3. This has an important bearing on the space-time geometry

(in particular in the near-horizon limit), which we shall not discuss here. We shall just

briefly comment on it at the end of subsection 2.2.1.

2.2 The two-brane with Arnold-Beltrami fluxes

As a next step, in [20] the two-brane action (2.1) was generalized introducing also a triplet

of one-form fields AΛ, (Λ = 1, 2, 3) whose field strengths are denoted FΛ ≡ dAΛ. In this

way we mimic the field-content of minimal D = 7 supergravity. Explicitly one has the new

– 6 –
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bosonic action:

Aflux
2brane =

∫
d7xLflux

2brane

Lflux
2brane = detV

(
−R[g] − 1

4
∂µϕ∂µϕ +

1

96
e−aϕ Fλµνρ Fλµνρ

+
ω

8
e
a
2
ϕ FΛ

λµ FΛ|λµ
)
− κ Fλ1...λ4 FΛ

λ5λ6
AΛ
λ7
ελ1...λ7 (2.10)

where two new real parameters ω and κ do appear. Crucial for the consistent insertion of

fluxes is the topological interaction term with coefficient κ.

The modified field equations associated with the new action (2.10) can be written in

the following way:

�cov ϕ =
a

48
e−aϕ Fλµνρ Fλµνρ − ω

a

8
eaϕ FΛ

λµ FΛ|λµ (2.11)

d
[
e−aϕ ? F[4]

]
= 1152κ FΛ ∧ FΛ (2.12)

d
[
e
a
2
ϕ ? FΛ

]
= 8

κ

ω
F[4] ∧ FΛ (2.13)

Ricµν =
1

4
∂µϕ∂νϕ + S[4]

µν + S[2]
µν (2.14)

S[4]
µν = − 1

24
e−aϕ

(
Fµ... F

...
ν − 3

20
gµν F.... F

....

)
(2.15)

S[2]
µν = −ω 1

4
e
a
2
ϕ

(
FΛ
µ. F

Λ| .
ν − 1

10
gµν FΛ

.. FΛ|..
)

(2.16)

In [20] the above equations were solved with the same ansatz as in the previous case for the

metric, the dilaton and the 4-form, introducing also a non trivial FΛ in the transverse space

spanned by the coordinates y. Explicitly, the ansatz considered in [20] is the following one.

ds2 = H(y)−
8

5∆ dξµ ⊗ dξν − H(y)
12
5∆ dyI ⊗ dyJ δIJ

ϕ = −2a

∆
log H(y)

F[4] = 4 d
[
H(y)−1 dξµ ∧ dξν ∧ dξρ εµνρ

]
FΛ = d

[
WΛ

I (y) dyI
]

(2.17)

2.2.1 Arnold-Beltrami vector fields on the torus T3 as fluxes

In order to solve the above equations a change of topology was put forward in [20]. In

the brane solutions without fluxes the transverse space to the brane volume was chosen

flat and non compact, namely R4. To introduce the fluxes one mantains it flat but one

compactifies three of its dimensions by identifying them with those of a three-torus T3. In

other words one performs the replacement:

R4 → R+ ⊗ T3 (2.18)

Secondly, on the abstract T3-torus one utilizes the flat metric consistent with octahedral

symmetry, namely according to the setup of [19] one identifies:

T3 ' R3

Λcubic
(2.19)

– 7 –
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where Λcubic denotes the cubic lattice, i.e. the abelian group of discrete translations of the

euclidian three-coordinates {X,Y, Z}, defined below:

Λcubic 3 γn1,n2,n3 : {X,Y, Z} → {X + n1, Y + n2, Z + n3} ; n1,2,3 ∈ Z (2.20)

Functions on T3 are periodic functions of X,Y, Z, with respect to the translations (2.20).

According to (2.18) one splits the four coordinates yI as follows:

yI =

 U︸︷︷︸
∈R

, X, Y, Z︸ ︷︷ ︸
≡X∈T3

 (2.21)

In [19], one of us, in a different collaboration, has classified and constructed all the solutions

of Beltrami equation:

? dY[1] = µY[1] (2.22)

for one-forms Y[1] defined over the three-torus (2.19) outlining the strategy to construct

the same solutions also in the case of other crystallographic lattices like, for instance, the

hexagonal one. These solutions are organized in orbits with respect to the cubic lattice

point group, namely the 24-elements octahedral group O24 and their parameter space

is decomposed into irreducible representations of appropriate subgroups of a universal

classifying group with 1536 elements [19]. Using such one-forms Y[1] as building blocks

for the brane fluxes appeared very appealing in [20] since it introduces the corresponding

discrete symmetries into the brane solution.

Explicitly the last of the ansätze (2.17) was specialized in the following way:

FΛ = λ d
[
e2πµU WΛ (X)

]
(2.23)

WΛ (X) = EΛ
A YA (X) (2.24)

where YA (X) denotes a basis of solutions of Beltrami equation (2.22) pertaining to eigen-

value µ and the embedding matrix EΛ
A is a constant matrix which constructs three linear

independent combinations of such fields. Furthermore λ is some numerical parameter.

It was shown in [20] that all field equations (2.11)–(2.16) are solved if the following

conditions are verified

∆ = 4 ⇔ a = 2

√
2

5

κ =
ω

384

�R+×T3 H(U,X) = − λ
2

24
exp [2π µU ] µ2 J(X)

J(X) ≡
3∑

Λ=1

3∑
i=1

WΛ(X)iW
Λ(X)i (2.25)

The first two conditions of (2.25) are a specification of the parameters in the brane la-

grangian. It was already noted in [20] that such a specification corresponds to selecting a

– 8 –
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bosonic lagrangian that, up to field redefinitions, is equivalent to the bosonic lagrangian

of minimal D = 7 supergravity. The third equation is the only differential condition that

solves the entire system of field equations. The function H(y) appearing in the metric, in

the dilaton and in the three-form B[3] needs to satisfy a inhomogeneous Laplace equation

whose source J(X) is entirely determined by the Beltrami vector fields according to the

formula displayed in the last of eqs. (2.25). The component H̊(y) of H(y) satisfying the

homogeneous part of this differential equation is a harmonic function on the transverse

space which is determined by the electric coupling of the extended object to the 3-form, as

discussed in 2.1. The remaining part of the function is determined by the inhomogeneous

term and thus depends on the Arnold-Beltrami fluxes. The harmonic function H̊(y) has

the general form:

H̊(y) = 1− U +
∑
k

e±|k|U ck(X) , (2.26)

where k = (n1, n2, n3) is an integer three-component vector and ck(X) a function on T 3

made of cosines and sines, solution to the equation �T 3ck(X) = −|k|2 ck(X). In the

absence of the Arnold-Beltrami fluxes, this function completely determines the geometry

of the solution. In this case, we can consider, along the lines of [23, 24], a stack of infinitely

many 2-branes continuously distributed along the directions of T 3. This amounts in H(y)

to integrating along the three compact directions which would single out only the 1 − U
term. The resulting solution is effectively a domain wall in four dimensions obtained by

vertically reducing the seven-dimensional flux-less 2-brane.

2.3 Relation of the Arnold-Beltrami fluxes with hyperinstantons

In the recent paper [21] the relation between Beltrami equation (2.22) and the defining

equation of tri-holomorphicity was explored. It was shown in the past in [22] that a

suitable definition of what we can name a tri-holomorphic map from a flat HyperKähler

four-dimensional manifold HK4 to any HyperKähler manifold HK4n:

q : HK4 → HK4n (2.27)

naturally emerges from the topological twist of an N = 2 supersymmetric sigma model in

D = 4. The following first order differential equation:

q? −
3∑

x=1

Jx ◦ q? ◦ jx = 0, (2.28)

where Jx denote the three complex structures of the target manifold HK4n and jx those

of the base manifold is obtained as the BRST-variation of the antighost produced by the

twist. Henceforth eq. (2.28) defines in a unique algebraic way the instantonic maps on

which the functional integral should be localized in the topological version of the sigma-

model. For this reason the maps satisfying eq. (2.28) were dubbed hyperinstantons in [22]

and it was also observed that they are tri-holomorphic since eq. (2.28) can be interpreted as

the statement that they are holomorphic with respect to the average of the three complex

structures. In [21] the base manifold was chosen to be R+ × T3 while the target manifold
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was simply chosen to be R4. In this way the equation of tri-holomorphicity was applied

to maps:

q : R+ × T3 → R4 (2.29)

It was shown in [21] that, under very mild assumptions, the general solution of equa-

tion (2.28) is as follows. Let G(X) be a generic function on the T3 torus , let Y(X) be a

solution of Beltrami equation (2.22) corresponding to eigenvalue µ and define:

Φ (U,X) = e−2µUG (X)

A (U,X) = e− 2µU Y (X) (2.30)

where U is the positive real variable spanning R+. Then the image of the point {U,X} ∈
R+×T3 with respect to a map q that satisfies the tri-holomorphic constraint (2.28) is given

by {q0,q} ∈ R4, where:

q0 (U,X) = − ∂U Φ (U,X)

q (U,X) = ∇Φ (U,X) + A (U,X) (2.31)

the operator ∇ representing the derivatives with respect to the torus coordinates.

Next, if we interpret the four components {q0,q} as the components of a gauge 1-form

in R− × T3 (where U→ −U), namely if we set:

A = q0dU + q · dX (2.32)

we obtain:

A = dΦ (U,X) + e−2µU Y (2.33)

We recall also that this gauge connection satisfies a suitable gauge fixing (see [21] for a

complete discussion). It appears clearly from eq. (2.33) that the function Φ (U,X) is just

an irrelevant gauge transformation which has no influence on the gauge field strengths

appearing in supergravity. Apart from it the gauge fields entering the brane solutions

as fluxes are just hyperinstantons in the transverse directions to the brane, namely on

R− × T3. The restriction to R− ⇔ R+ on the sigma-model side of this correspondence is

greatly illuminated by it. Indeed on the supergravity side U has to be negative in order

to keep the metric real. Choosing the parameter λ appropriately we can arrange that

U = 0, which is a boundary in the sigma model, corresponds to a metric singularity in

supergravity. This singularity is the brane itself, since U is nothing else but the distance

from the brane.

3 Rheonomic D = 7 supergravity

The aim of this paper is to embed the considered 2-branes in supergravity and to investigate

their supersymmetries. To this end it would in principle suffice to work with the Lagrangian

and supersymmetry transformation laws of [1]. We believe it instructive, however, to

describe the same D = 7 supergravity using the systematic algebro-geometric framework of

rheonomy. This approach makes the symmetries of the theories manifest and also provides
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a systematic procedure for computing the higher-order fermion terms (which, however, are

not relevant to our present analysis and thus will be dealt with in a future work).

In the the present section we give the definitions of the curvatures and their superspace

parametrizations solutions to the Bianchi identities. In the appendices we describe in detail

the derivation of these results through the solution of the Bianchi identities in superspace.

Eventually we shall mach the quantities in the rheonomic description to the corre-

sponding ones in [1] and study the supersymmetry properties of our flux-2-brane solutions.

3.1 Definition of the curvatures in the Poincaré case

We use the same notations as in [20]. In particular ΨA and χA are the two gravitini and

the two dilatini, respectively, satisfying the pseudo-Majorana condition, see appendix A.

We also denote, in the rheonomic conventions, by φ the dilaton, B[2], B[3] the 2-form and

the 3-form, respectively, and by AΛ the three vector fields.

The curvatures as forms in superspace are defined as follows:

Ta ≡ dV a − ωab ∧ V b︸ ︷︷ ︸
DV a

− i

2
Ψ
A ∧ Γa ΨA (3.1)

Rab ≡ dωab − ωac ∧ ωcb (3.2)

ρA ≡ dΨA −
1

4
ωab Γab ΨA︸ ︷︷ ︸

DΨA

(3.3)

FΛ ≡ dAΛ − i
1

2
e−

1
2
φ σ

Λ|B
A Ψ

A ∧ ΨB (3.4)

G[3] ≡ dB[2] + FΛ ∧ AΛ− e−φ Ta ∧ Va

+ i
1

2
e−

1
2
φ σ

Λ|B
A Ψ

A ∧ ΨB ∧ AΛ− i

2
e−φ Ψ

A ∧ Γa ΨA ∧ V a (3.5)

G[4] ≡ dB[3]− 1

2
eφ Ψ

A ∧ Γab ΨA ∧ V a ∧ V b (3.6)

dφ ≡ dφ (3.7)

DχA ≡ dχA −
1

4
ωab Γab χA , (3.8)

where Ta is the torsion 2-form, Rab the space-time curvature 2-form, ρA the gravitini field

strengths, FΛ the vector field strengths, and G[3], G[4] the 2-form and the 3-form field

strengths, respectively.

3.2 Rheonomic parameterization of the curvatures

Below we give, in the spirit of the rheonomic approach, the superspace parametrizations

of the curvatures, solutions to the Bianchi identities. They already encode all information
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about the field equations and supersymmetry transformation rules of the theory.

Ta = 0 (3.9)

Rab =Rabcd V c ∧ V d− i Θ
ab|A
c ΨA ∧ V c− i

9

10
eφ Gabc Ψ

A ∧ ΓcΨA

− i
1

10
eφ Gpqr Ψ

A ∧ ΓabpqrΨA + i
4

5
e

1
2
φFΛ|ab σ

Λ|B
A Ψ

A ∧ΨB

+ i
1

10
e

1
2
φFΛ

pq σ
Λ|B

A Ψ
A ∧ Γabpq ΨB (3.10)

ρA ≡ ρA|ab V a ∧ V b− i
(
MB

A Γa + ΓaNB
A

)
ΨB ∧ V a

− 11

64
Γm χA Ψ

C ∧ ΓmΨC −
5

128
ΓmnχA Ψ

C ∧ Γmn ΨC

− 15

64
χB σ

Λ|B
A σ

Λ|D
C Ψ

C ∧ΨD −
1

384
ΓpqrχB σ

Λ|B
A σ

Λ|D
C Ψ

C ∧ ΓpqrΨD (3.11)

FΛ ≡FΛ
ab V

a ∧ V b− 1

2
e−

1
2
φ σ

Λ|B
A Ψ

A
Γa χB ∧ V a (3.12)

dφ = Φa V
a + Ψ

A
χA (3.13)

DχA ≡DaχA V a + PBA ΨB (3.14)

where the matrices appearing in the fermionic curvatures are the following ones:

MB
A = i

1

8
eφ δAB /G+ i

1

4
e

1
2
φ /FBA (3.15)

NB
A = i

1

40
eφ δAB /G− i

3

20
e

1
2
φ /FBA (3.16)

PBA = δAB

(
− i

1

5
eφ /G + i

1

2
/Φ

)
+ i

1

5
e

1
2
φ /FBA (3.17)

having defined

/G ≡ Gabc Γabc ; /FBA ≡ F
Λ
ab Γab σ

Λ|B
A ; /Φ ≡ Φa Γa (3.18)

In addition to the above rheonomic parameterizations we introduce those of the higher-form

curvatures, namely:

G[3] ≡ Gabc V a ∧ V b ∧ V c+
1

2
e−φ Ψ

A
Γab χA ∧ V a ∧ V b (3.19)

G[4] ≡ 1

12
e2φ εa1...a3b1...b4 Ga1a2a3 V b1 ∧ · · · ∧ V b4 − i

1

3
eφ Ψ

A
Γabc χA ∧ V a ∧ V b ∧ V c

(3.20)
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3.3 Bosonic lagrangian of D = 7 supergravity

The bosonic lagrangian has the form:

Lungauged
Bkin = f1R

a1a2 ∧ V a3 ∧ · · · ∧ V a7εa1...a7

+f2Φa1

(
dφ−Ψ

A
χA

)
∧ V a2 ∧ · · · ∧ V a7εa1...a7

+f3e
φFΛ|a1a2

(
FΛ+

1

2
e−

1
2
φσ

Λ|B
AΨ

A
ΓaχB ∧ V a

)
∧ V a3 ∧ · · · ∧ V a7εa1...a7

+f4Gabc
(
G[4]+i

1

3
eφΨ

A
ΓpqrχA ∧ V p ∧ V q ∧ V r

)
∧ V a ∧ V b ∧ V c

+f5

(
G[3]−1

2
e−φΨ

A
ΓabχA ∧ V a ∧ V b

)
∧
(
G[4] +

1

2
eφΨ

A ∧ ΓabΨA ∧ V a ∧ V b

)
+
(
−360f2ΦaΦa − 120f3e

φFΛ|abFΛ
ab − 6f4e

2φGabcGabc
)

Vol7

Vol7 ≡
1

7!
εa1...a7V

a1 ∧ · · · ∧ V a7 (3.21)

In principle the coefficients are fixed by the previously given solution to the Bianchi iden-

tities. For the sake of simplicity, in the appendix, the coefficients f1,...,5 are fixed in the

appendix D.1.1 by comparison to the TPvN construction.

4 The bosonic lagrangian and the embedding of flux 2-branes in super-

gravity

Next we consider the form of the bosonic lagrangian of minimal D = 7 supergravity, as

it emerges from the rheonomic construction and we address the embedding of the flux

2-branes described in section 2.2 into solutions of supergravity field equations.

As mentioned earlier, in a separate paper we plan to present the explicit derivation of

the D = 7 lagrangian utilizing the rheonomic approach and completing the task with the

inclusion of all 4-fermi terms. Yet, as we stressed several times, the field equations of the

theory are already implicitly determined by the complete solution of the Bianchi identities.

In the spirit of such an observation we can already determine (up to an overall scale) all

the coefficients f1,...,5 appearing in the bosonic action, by considering the embedding of the

2-brane solutions; at the same time our embedding procedure provides a cross check of

the rheonomic construction with the Noether construction of [1]. Indeed we organize the

embedding procedure in the following steps:

A) First, considering the bosonic supergravity lagrangian as derived in [1], we easily work

out the rescalings that bring it to the standard flux 2-brane form of eq. (2.10).

B) Secondly, comparing the supersymmetry transformation rules derived in [1] with those

that follow from our rheonomic solutions of the Bianchi identities, we work out the

rescalings that connect our normalizations of the supergravity fields with those of [1]

and of the standard flux 2-brane form of eq. (2.10).
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C) Finally, knowing all relative normalizations we derive the constraints on the coefficients

of the rheonomic lagrangian necessary for its bosonic sector to be identical (up to

rescalings) with the 2-brane form of eq. (2.10) and hence to the action obtained

in [1]. The direct verification that the rheonomic construction of the action yields

precisely these coefficients f1,...,5, and the determination of the remaining ones, will

be presented in a future paper.

4.1 Comparison of minimal D = 7 supergravity according to the TPvN con-

struction with the flux brane action

In this subsection we make a comparison between the action (2.10) and the bosonic action

of minimal D = 7 supergravity as it was derived in [1], which, for brevity we name TPvN.

Since the authors of [1] use the Dutch conventions for tensor calculus with imaginary

time, the comparison of the lagrangians at the level of signs is difficult, yet at the level of

absolute values of the coefficients it is possible, by means of several rescalings. First we

observe that the normalization of the Einstein term in eq. (2) of TPvN is the same, if we

take into account the already stressed 1
2 difference in the definition of the Ricci tensor and

scalar curvature. Secondly we note that the normalization of the dilaton kinetic term in

eq. (2) of TPvN, namely 1
2 becomes that of the action (2.10), namely 1

4 if we define:

φTPvN =
1√
2
ϕ (4.1)

A check that this is the correct identification arises from inspection of the dilaton factor in

front of the three-form kinetic term. Using eq. (3) of TPvN, we see that according to this

construction such a factor is:

exp

[
− 4√

5
φTPvN

]
= exp

[
−2

√
2

5
ϕ

]
(4.2)

This confirms the value a = − 2
√

2
5 leading to the miraculous value ∆ = 4 of the di-

mensional reduction invariant. Thirdly we consider the necessary rescalings for the A[3]

and AΛ gauge fields. Taking into account the different strengths of the exterior derivatives

(see unnumbered eqs. of [1] in between eq. (1) and (2)) we see that in order to match the

normalizations of (2.10) we have to define:

ATPvNλµν =
1

4
√

2
A

[3]
λµν ⇒ F TPvNλµνρ =

1√
2
Fλµνρ

AΛ|TPvN
µ =

√
ω

8
AΛ
µ ⇒ F

Λ|TPvN
λµ =

√
ω

2
FΛ
λµ (4.3)

with these redefinitions we can calculate the value of κ according to TPvN. We find:

1

48
√

2
F TPvNµνρσ F

Λ|TPvN
κλ AΛ|TPvN

τ εµνρσλκτ =
ω

384
FµνρσF

Λ
κλA

Λ
τ ε

µνρσλκτ (4.4)

which implies:

κ =
ω

384
(4.5)
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In this way the bosonic action of supergravity, according to TPvN is mapped into the flux

brane action (2.10) by means of the rescalings (4.4) and (4.1). This shows that Arnold-

Beltrami flux branes are solutions of minimal D = 7 supergravity and of no other theory

of the same type which is not supersymmetric.

4.2 Comparison of TPvN SUSY rules with the rheonomic solution of Bianchi

identities

The next step in our agenda is the comparison of the supersymmetry transformation rules

derived in [1] with those derived from our rheonomic solution of the Bianchi identities in

order to find the appropriate rescalings that map our normalizations of the supergravity

fields into those of [1]. Combining the results of the previous section 4.1 with the comparison

explored in the present section we arrive at the relation between the bosonic supergravity

fields of our algebraic rheonomic construction and the fields utilized in the flux-brane

action (2.10), namely we achieve the desired embedding of flux 2-brane solutions into

supergravity.

Let us proceed systematically. We set:

φ = λϕ =
√

2λφTPvN

B[3] = τ A[3]

⇓
Gλµνρ = τ Fλµνρ ⇒ Gλµνρ =

√
2 τ F TPvNλµνρ (4.6)

Our goal is to determine the rescaling factors λ and τ . The first is immediately determined

by comparison of the dilaton depending scaling factors in the transformation rules and it

was already fixed by the requirement a = 2
√

2
5 . We have:

λ =

√
2

5
(4.7)

To fix the second we consider the supersymmetry transformation rules of the dilatinos

displayed in eq. (4) of [1]. We find:

δSUSYχ
TPvN
A =

(
1

2
/D φTPvN +

1

24
√

10
exp

[
2

√
2

5
φTPvN

]
Γλµνρ F TPvNλµνρ

)
εA + FΛ

µν terms

(4.8)

In the rheonomic approach the supersymmetry transformation of the dilatinos is ob-

tained from the rheonomic parametererization of their covariant differential encoded in

eqs. (B.14) and (B.17). We obtain:

δSUSY χA = PBA εB (4.9)

which has to be compared with eq. (4.8). An absolute comparison requires the relative

normalizations of the dilatinos χA and χTPvNA , to be given below, although for the time

being we may just focus on the ratio of the coefficients of the /D φTPvN and /F TPvN terms.

Indeed this ratio is independent from the normalization of the dilatino field.
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First, recalling the duality relation (A.30) with ν = 1
12 we find:

Γa1...a4 Ga1...a4 = 2 Γa1...a3 Ga1...a3 = 2 /G (4.10)

Secondly utilizing the rescalings (4.6) and eq. (4.10) we convert eq. (4.8) to

δSUSY χ
TPvN
A =

(√
5

4
/D φ +

expφ

12
√

20 τ
/G

)
εA + FΛ

µν terms (4.11)

Consistency with our own result from Bianchi identities requires:

1
12
√

20 τ√
5

4

=
c1

c3
=

2

5
⇒ τ =

1

12
(4.12)

In this way the embedding of the flux 2-brane system in our rheonomic formulation of D = 7

supergravity is completly fixed. A summary of the conversion table is displayed below:

φ =

√
2

5
ϕ ; B[3] =

1

12
A[3] ; AΛ = σAΛ (4.13)

The reascaling of the supergravity vector fields encoded in the symbol σ is not fixed so far

since the normalization of the vector fields is also adjustable in the flux-brane lagrangian

by means of the free parameter ω.

In appendix D we show that the above comparisons imply the following prediction on

the coefficients of the supergravity bosonic action:

f2 =
5

12
f1 ; f3 = 2 f1 ; f4 = − f5 = − 60 f1 (4.14)

When these relations are fulfilled the bosonic action of supergravity (B.30) is mapped into

the flux-brane action (2.10) by means of the rescalings (4.13), the constraint κ = ω
384 is

respected and the supersymmetry transformation rules in the background of any brane

solution can be worked out from the rheonomic parametrization of the FDA curvatures

satisfying Bianchi identities.

For the sake of completeness we also give the dictionary for the fermionic fields and

the supersymmetry parameter:

χTPvNA =

√
5

2
χA ; ψTPvNA =

√
2 ΨA ; εTPvNA =

√
2 εA , (4.15)

where we have renamed χTPvNA the spin one-half fields denoted by λi in [1].

5 The Killing spinor equation

Let us now come to the central issue of the present paper that is the discussion of preserved

supersymmetries in the background of Arnold-Beltrami flux brane solutions. We start by

writing the Killing spinor equations in general terms.
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According to a well-established procedure, given a classical bosonic solution of super-

gravity, where the fermion fields are set to zero, one considers the supersymmetry variation

of the fermions in such a background and imposes their vanishing. This yields a set of al-

gebraic and first-order differential constraints on the supersymmetry parameters εA. By

definition, the number of independent solutions to such equations is the number of pre-

served supersymmetries and each solution is named Killing spinor.

The supersymmetry variations of the gravitinos and of the spin one-half fermions

(dilatinos) are determined from the rheonomic parameterizations of the fermionic curva-

tures (B.11), (B.14) using the definitions (B.15), (B.16) and (B.17) and the final values

of the coefficients displayed in eq. (B.27). In this way, for any supergravity bosonic back-

ground, we obtain the following Killing spinor equations:

0 = δψA ≡ DεA − eφ
(

1

40
Γa/G+

1

8
/GΓa

)
V a︸ ︷︷ ︸

S

δBA εB − i e
φ
2

(
1

4
/F x Γa −

3

20
Γa /F

x

)
V a︸ ︷︷ ︸

Ωx

σ
x|B
A εB

0 = δχA ≡
(
eφ

5
/G+

1

2
/Φ

)
︸ ︷︷ ︸

S

δBA εB −
i e

φ
2

5
/F x︸ ︷︷ ︸

Ox

σ
x|B
A εB . (5.1)

where:

DεA ≡ dεA −
1

4
ωab Γab εA (5.2)

is the Lorentz covariant derivative (ωab being the spin connection) and where the operators

/G, /Φ and /F x have been defined in eq. (B.18).

In order to discuss the Killing equation in a general form it is convenient to adopt a Kro-

necker product notation and put the candidate Killing spinors (A.4) into a 16-component

row vector as it follows:

ε ≡

(
ε1

ε2

)
(5.3)

and rewrite the two equations (5.1) in the following way:

0 = ∇ ε ≡ dε + Θ ε (5.4)

0 = Pε (5.5)

where the generalized connection Θ is a one-form valued 16× 16 matrix with the following

structure:

Θ =

(
Σ + Ω3 Ω1 + i Ω2

Ω1 − i Ω2 Σ − Ω3

)
Σ ≡ − 1

4
ωab Γab − S (5.6)

in terms of the previously introduced operators, while the 16 × 16 matrix P is defined as

follows:

P ≡

(
S + O3 O1 + iO2

O1 − iO2 S − O3

)
(5.7)
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Having rewritten the Killing spinor equations in the more abstract although much more

transparent form (5.4)–(5.5), the discussion of their solubility becomes much simpler. The

first order differential equation (5.4) has an integrability condition that reads as follows:

R ε = 0 (5.8)

where R [Θ] denotes the 2-form curvature of the generalized connection (5.6), namely:

R = dΘ + Θ ∧Θ (5.9)

Hence the necessary condition for the existence of Killing spinors is that both matrices

R [Θ] and P should have rank smaller than 16 in order to admit a non-trivial Null-Space.

Indeed the maximal possible number of Killing spinors is given by:

# of Killing spinors ≤ dim
[
Null-Space (R)

⋂
Null-Space (P)

]
(5.10)

In eq. (5.10) the sign ≤ is due to the fact that eq. (5.8) is a necessary but in general

not a sufficient condition. Once the candidate Killing spinor has been restricted to the

space Null-Space (R)
⋂

Null-Space (P), the differential equation (5.4) has to be explicitly

integrated and, previous experience with this type of problem, suggests that new obstruc-

tions might arise. On the contrary if the rank of R is 16 we can safely conclude that all

supersymmetries are broken by the considered background.

Having anticipated this general discussion we consider the case of brane-solutions uti-

lizing the split basis of gamma matrices introduced in section E.2.

We adopt the index convention (E.5) and we summarize the flux-brane solution as

follows:

φ = − 2

5
log [H] ; H = H(y) (5.11)

V a = H−
1
5 dξa (5.12)

V P = H
3
10 dyP ; yP ≡ {U,X, Y, Z} (5.13)

B[3] =
1

12
H−1 1

3!
εabcdξ

a ∧ dξb ∧ dξc (5.14)

AΛ =
1

2
√

2
ω λ exp[2π µU ] WΛ (5.15)

where the inhomogeneous harmonic function H(U,X, Y, Z) satisfies eq. (2.25). Another

essential ingredient that we need is the spin-connection. For this latter we easily find:

ωab = 0 (5.16)

ω
a
P = −1

5
dξaH−

3
2∂PH (5.17)

ωPQ =
3

10
H−1

(
dyP ∂QH − dyQ ∂

PH
)

(5.18)

Next let us analyze the structure of the algebraic matrix operators entering the definition

of the projector P and of the connection Θ. Let us begin with the structure of the operator
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S. We find:

S = 12×2 ⊗ Ŝ

Ŝ = − 2

5


0 0 ∂1H+i∂4H

H13/10 i (∂2H+i∂3H)

H13/10

0 0 i (∂2H−i∂3H)

H13/10
∂1H−i∂4H
H13/10

0 0 0 0

0 0 0 0

 (5.19)

On the other hand the operators Ωx have the following structure:

Ωx = 12×2 ⊗ Ω̂x (5.20)

Ω̂x = λ


Ax Bx 0 0

Cx Dx 0 0

0 0 0 0

0 0 0 0

 (5.21)

the parameter λ corresponding to that in front of Beltrami vector fields (see eq. (5.15)), so

that λ = 0 means pure branes without fluxes, and the specific form of the submatrices

Mx =

(
Ax Bx

Cx Dx

)
(5.22)

depends on the specific form of the chosen Beltrami field.

These informations are sufficient to conclude that the rank of the 16 × 16 matrix P

is always 8 both in presence and in absence of fluxes, namely both with λ 6= 0 and with

λ = 0.

5.1 The supersymmetry of pure 2-branes

If we do not introduce Arnold-Beltrami fluxes we have 2-brane solutions of the form (5.11)–

(5.14), where H is a harmonic function on R+⊗T3 and λ = 0. In that case the Null-Space

of P is simply given by those ε1,2 in eq. (A.4) where all the θi are set to zero. Next we can

verify that

Null-Space(P) ⊂ Null-Space(R) (5.23)

This suggests that there might be 8 Killing spinors. Indeed making the following replace-

ment in eq. (A.4):

θi = 0 ; ξi = H(y)
1
10 χi (i =, 1 . . . , 8) (5.24)

where χi are constant anticommuting spinors we can easily verify that the corresponding

ε defined in (5.3) satisfies both eqs. (5.4) and (5.5) for any choice of the harmonic function

H. Therefore we come to the conclusion that the pure 2-branes described above preserve

8 supersymmetry charges, namely they are BPS states breaking 1
2 of the supersymmetry

charges and preserving the other half.
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5.2 The supersymmetry of flux 2-branes

When we turn on Arnold-Beltrami fluxes, things become much more complicated since the

curvature matrix R has no longer a universal form and its structure critically depends on

the choice of the vector field triplet W. A priori it is by no means clear whether flux-

branes preserving any supersymmetry can exist or any of them necessarily breaks all the

supersymmetries. In order to decide this crucial point we have considered many explicit

solutions, in particular those already presented in [20]. By means of a specially developed

code we have constructed the corresponding 2-form R and then, since its form is in all cases

too much involved for any analytical study we have resorted to numerical calculations. An

algorithm based on random number generation probes the rank of all the 16× 16-matrices

RI
J |ab obtained by expanding the curvature of the generalized spinor connection RI

J along

the vielbein:

RI
J = RI

J |ab V
a ∧ V b (5.25)

Since we are in 7-dimensions, for each randomly chosen point in R+ × T3 we obtain a set

of 21 matrices and the maximum rank displayed by this set is the rank of the curvature

2-form. If this rank is 16 we conclude that there cannot be any Killing spinors and that

supersymmetry is completely broken. On the other hand, if the maximal rank is less than

16 for all the 21 matrices mentioned in eq. (5.25) in a conveniently ample set of random

points, this is a strong indication that the curvature has a non vanishing Null-Space and

one can attempt to calculate its form analytically. The result of this numerical investigation

was the following. All the models considered in [20] and several others that we have tested

break supersymmetry entirely, leading to the conclusion that it is generically very hard and

unlikely to hit a case where Killing vectors do exist. Actually we were strongly tempted

to assume that flux-brane break all supersymmetries always. Yet, by means of several

trials and by some educated guess, we were able to produce counterexamples of an Arnold-

Beltrami flux-brane which respectively preserves 1
4 and 1

8 of the original supersymmetry.

As we emphasize below the presence of Killing spinors is entangled with the presence of

additional translational Killing vectors that are instead absent in generic flux-branes.

Because of the relation between the Arnold-Beltrami flux-branes and the hydrody-

namical models [5–18] where the same three-dimensional vector fields are used as flows

(i.e. velocity fields of a fluid) it is interesting to stress what follows.

According to Arnold Theorem [5, 6] that of satisfying Beltrami equation is a neces-

sary yet not sufficient condition for a stationary flow to admit chaotic stream-lines. In

particular if there are additional continuous symmetries of the vector field, this introduces

extra conserved charges that can lead to integrability and bar the existence of any chaos.

Furthermore if the integral curves of the vector field are all planar, this also inhibits chaotic

behavior on very general grounds. The so named ABC-flows [10–18] obtained from a par-

ticular truncation of the general solution of Beltrami equation with the lowest eigenvalue

µ = 1 were extensively studied in the literature on mathematical hydrodynamics since

they have interesting and helpful discrete symmetries but no continuous ones.

From our analysis of the Killing spinor equation it emerges that in order to have Killing

spinors the flux 2-brane has to have some additional translational Killing vectors on the
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torus T3. In particular with two translational Killing vectors we obtain a flux 2-brane

that preserves 1
4 of the supersymmetry, with one additional Killing vector we obtain a flux

2-brane that preserves 1
8 of the supersymmetry, while the request of three translational

Killing vectors suppresses all the fluxes and preserves 1
2 of the original supersymmetry (the

maximal value for BPS states).

Since the anticommutator of spinor charges produces translations, it is rather natu-

ral that the existence of Killing spinors implies additional Killing vectors, besides those

associated with the conformally flat brane-world-sheet. From the point of view of the

correspondence between supergravity flux 2-branes and hydro-models it is relevant that

supersymmetry excludes chaotic stream-lines and vice-versa.

Furthermore it is very much interesting to analyze the 2-brane solutions from the

point of view of discrete/continuous symmetries. With just a discrete group of symmetries

Γ we break all supersymmetries. When we preserve some supersymmetry, in addition to

U(1) or U(1)2 (respectively corresponding to the 1
8 and 1

4 case), we have some residual

discrete symmetry Γ that it is quite relevant to single out. Indeed Γ is transmitted to the

gauge theory on the brane world-volume and the composite operators in the gauge/gravity

correspondence have to be organized into irreducible representations of such a Γ.

In the next section we present a few examples of flux 2-branes with and without

supersymmetry where all such symmetries are carefully analysed.

6 Examples of flux 2-branes and their (super)-symmetries

In this section we present just three explicit examples of Arnold-Beltrami flux 2-branes, one

with no preserved supersymmetry, one with 1
4 , the last with 1

2 . We advocate the relation

of preserved supersymmetry with the presence of extra translational Killing vectors and

we carefully analyze the discrete symmetries of each of the considered branes.

6.1 The Arnold-Beltrami flux 2-brane with octahedral symmetry and no pre-

served supersymmetry

In [20] it was presented the case of the 2-brane solution where the triplet of Arnold-

Beltrami fields spans an irreducible tri-dimensional representation of a rather large discrete

group, namely the irreducible representation D12 of the group GF192 described both in [19]

and [20]. In the present section we reconsider that solution from a different standpoint

and we decode its symmetries in a more explicit way, moreover showing that it breaks all

supersymmetries.

The triplet of vector fields that we want to consider is the following one:

W (X) =


W1 = 2 dX cos(2πZ)− 2 dY sin(2πZ)

W2 = 2 dX cos(2πY ) + 2 dZ sin(2πY )

W3 = 2 dY cos(2πX)− 2 dZ sin(2πX)

(6.1)

Any linear combination of these vector fields forms the celebrated ABC-flow of Hydrody-

namics [10–18].
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Since the components of the vector field depend on all the three coordinates X,Y, Z

we have no continuous translation symmetry on the three-torus and there are no further

translational Killing vectors besides those corresponding to the conformally flat directions

of the 2-brane world-volume:

ξa → ξa + ca (6.2)

There is however a residual global isometry forming a Z2×Z2 group. The reader can easily

verify that the following three substitutions leave each of the three one-forms in eq. (6.1)

invariant:
T1 :

{
X → −X − 1

2 , Y → −Y − 1
2 , Z → Z + 1

2

}
T2 :

{
X → −X, Y → Y + 1

2 , Z → −Z − 1
2

}
T3 :

{
X → X + 1

2 , Y → −Y, Z → −Z
} (6.3)

Each of the above translations squares to the identity, since it corresponds to some integral

shift of the coordinates X,Y, Z which, on the T3 torus means no shift. In addition to

these translational symmetries, the supergravity solution generated by the vector field

system (6.1) has a very interesting symmetry:

Γ = O24 ⊗ Z2 (6.4)

The octahedral group O24, which is isomorphic to the symmetric group S4, is one of the

exceptional finite subgroups of SO(3). Abstractly it can be described by two generators

and three relations:

O24 =
(

T, S |T3 = 1 , S2 = 1 , (S T)4 = 1
)

(6.5)

An explicit representation by means of orthogonal integer valued 3 × 3 matrices with unit

determinant is the following one:

D[T] =

 0 0 1

−1 0 0

0 −1 0

 ; D[S] =

−1 0 0

0 0 −1

0 −1 0

 (6.6)

The map D realizes an immersion of the octahedral group into the group SO(3):

D : O24 ↪→ SO(3) (6.7)

If we add the matrix:

D[Z] =

−1 0 0

0 −1 0

0 0 −1

 (6.8)

which has determinant −1 and commutes with both D[T] and D[S]:

[D[T] , D[Z]] = [D[S] , D[Z]] = 0 (6.9)

we realize a homomorphic embedding:

D : O24 × Z2 ↪→ O(3) (6.10)
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The claimed symmetry of the supergravity 2-brane solution under the group (6.4) stems

from the following identities that the reader can easily verify:

W (TX) = D[T] ·W (X)

W (SX) = D[S] ·W (X)

W (ZX) = D[Z] ·W (X) (6.11)

where the action of the three generators on the torus coordinates is defined below:

TX =

{
3

4
− Y, Z +

1

4
,−X − 1

2

}
SX =

{
X +

1

2
, Y +

1

2
, Z +

1

2

}
ZX =

{
1

2
− Y,X,Z − 3

4

}
(6.12)

It is important to stress that the three transformations (6.12) are defined modulo any

additional transformation of the Z2 × Z2 group generated by the translations (6.3) which

leave the vector fields (6.1) invariant. From a group theoretical point of view the group

GF192 mentioned in [20] and [19] is the semidirect product:

GF192 ∼ Γ n (Z2 × Z2) (6.13)

both Γ and (Z2 × Z2) being invariant subgroups. We can look at the map D as a homo-

morphical embedding:

D : GF192 ↪→ O(3)

ker[D] ∼ Z2 × Z2 (6.14)

the kernel of the homomorphism being the normal subgroup generated by the transla-

tions (6.3). This way of thinking shows that the supergravity flux 2-brane solution gener-

ated by the triplet of Beltrami fields (6.1) has the large discrete symmetry GF192. Indeed

it suffices to utilize the global O(3) symmetry of supergravity and we can set:

∀γ ∈ GF192 : W (X)′ ≡ D[γ]−1 W (γX) = W (X) (6.15)

all the other fields, dilaton, metric and 3-form, being already invariant.

Indeed the inhomogeneous harmonic function produced by the choice (6.1) is the fol-

lowing one:

H(y) = 1− 1

8
λ2e4πU (6.16)

and all the other bosonic fields follow from eqs. (5.11)–(5.15).

Localized on this solution the projector P has still rank 8. The difference with the pure

brane case is just the following. In the eight null-vectors of P, the parameters θi, instead of

being put to zero, are forced to be point-dependent linear combinations of the ξi. Hence the

dilatino supersymmetry transformation rule can be nullified by eight independent spinors
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Figure 2. On the left the plot of one arbitrarily chosen vector field in the Beltrami space defined

by eq. (6.1). On the right the plots of some of its integral curves in the 3-torus represented as a

cube with identified opposite faces.

also in this case. However, the situation is dramatically different at the level of the gravitino

transformation rule. As our computer code demonstrates, in any randomly chosen point,

the rank of the curvature R is always 16 which bars the existence of any Killing spinors.

This brane solution has a large discrete symmetry but breaks all supersymmetries.

In order to get a visual appreciation of the difference between Beltrami fields that lead

to non-supersymmetric and to supersymmetric 2-branes we have produced some plots. In

figure 2 you see the plot of an arbitrarily chosen vector field in the three-dimensional vector

space spanned by (6.1). On the right side a plot of some of its streamlines, namely of its

integral curves, is shown.

6.2 The Arnold-Beltrami flux 2-branes with bosonic symmetry Dn n
[
U(1)×

U(1)
]

and 4 Killing spinors

The next example we consider is a flux 2-brane that preserves 1/4 of the original super-

symmetry, namely possesses 4 Killing spinors. As discussed above on general grounds we

aspect in this case two translational Killing vectors. This means that eq. (6.13) defining

the complete bosonic group of the previously considered solution is replaced by:

Gbosonic ∼ Γ n [U(1)×U(1)] (6.17)

the two U(1)’s being the continuous translation groups generated by the two additional

Killing vectors. The question remains: what is the discrete group Γ in this case? We show

that using a cubic momentum lattice the answer is:

Γ = D4 (6.18)

where D4 denotes a dihedral group. There is also a second solution based on the hexagonal

lattice which yields:

Γ = D6 (6.19)
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To see this let us consider the two cases together:

W[4] (X) =


W1 = dX cos(2πZ)− dY sin(2πZ)

W2 = − dY cos(2πZ) − dX sin(2πZ)

W3 = 0

(6.20)

W[6] (X) =


W1 = dX cos

(
4πZ√

3

)
− dY sin

(
4πZ√

3

)
W2 = − dY cos

(
4πZ√

3

)
− dX sin

(
4πZ√

3

)
W3 = 0

(6.21)

Abstractly the dihedral group Dn can be described by two generators and three relations:

Dn =
(

A,B |An = 1 , B2 = 1 , (B A)2 = 1
)

(6.22)

An explicit representation by means of orthogonal integer valued 3 × 3 matrices with unit

determinant is the following one:

D4 : D[A4] =

 0 1 0

−1 0 0

0 0 1

 ; D[B] =

−1 0 0

0 1 0

0 0 −1



D6 : D[A6] =

 1
2

√
3

2 0

−
√

3
2

1
2 0

0 0 1

 ; D[B] =

−1 0 0

0 1 0

0 0 −1


(6.23)

The map D realizes an immersion of the two dihedral groups into the group SO(3):

D : D4,6 ↪→ SO(3) (6.24)

The claimed symmetry of the supergravity 2-brane solution under the group (6.4) stems

from the following identities:

W[4,6]

(
D[A−1

4,6] ·X
)

= D[A4,6] ·W[4,6] (X)

W[4,6]

(
D[B−1] ·X

)
= D[B] ·W[4,6] (X) (6.25)

where the action of the two generators on the torus coordinate is given, this time, by

standard matrix multiplication. Hence, just as in the previous case, the complete semidirect

product group:

Gbosonic = D4,6 n (UX(1)×UY(1)) (6.26)

is an isometry group for the supergravity solution since the matrices D[A] and D[B] are

orthogonal and O(3) is a global symmetry of the supergravity lagrangian.

The inhomogeneous harmonic functions for these brane-solutions are the following ones:

H4(y) = 1− 1
48λ

2e4πU

H6(y) = 1− 1
48λ

2e
8π√

3
U (6.27)

and the rest of the solution is obtained from eqs. (5.11)–(5.15).
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Figure 3. On the left the plot of one arbitrarily chosen vector field in the Beltrami space defined

by eq. (6.20). On the right the plots of some of its integral curves in the 3-torus represented as a

cube with identified opposite faces. It is evident from the picture that all the integral curves are

planar. This a consequence of the two Killing vectors in the X and Y directions.

Calculating the R curvature associated with this solution we find that in any point the

rank of its 21 vielbein components is bounded from above by 12. Indeed, with little effort,

we find a set of 4 null vectors which surprisingly are null-vectors also of the matrix P. In

this four dimensional subspace the Killing spinor equation is easily integrated by taking

all the non vanishing components proportional to H
1
10 where H is the inhomogeneous

harmonic function. Finally we arrive at the following explicit form of 4 indipendent Killing

spinors:

ε1 = H4,6(y)
1
10



0

χ4

0

0

0

χ3

0

0


; ε2 = H4,6(y)

1
10



χ2

0

0

0

χ1

0

0

0


(6.28)

The considered flux-brane solution preserves 1
4 of the original supersymmetry.

In the spirit of comparison with the previous case that breaks all supersymmetries,

in figure 3 we have displayed the plot of an arbitrary vector field in the two-dimensional

vector space defined by eq. (6.20). The two Killing vectors in the X and Y directions imply

that the integral curves are always planar for any element of this vector space and this is

quite evident from the figure.

A last comment on this solution concerns a question that might arise in relation with

the structure of equations (6.20) and (6.21). One might ask why we should not consider

other dihedral groups with n 6= 4, 6. Indeed it suffices to write the same formulae with a

different angle namely:

cos

[
4π√

3
Z

]
→ cos

[
2π√
m
Z

]
(6.29)
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The answer why the replacement (6.29) is generically forbidden comes from classical results

of crystallography. The coordinates X,Y, Z are supposed to span a torus R3/Λ and in the

present case it suffices to consider the planar projection of the lattice Λ which produces a

tessellation of the plane. Hence the considered dihedral group must be in the list of the so

named Wall Paper Point Groups which is finite. Besides D4 and D6 we might still have

D3 and D2. We have not explicitly constructed the corresponding supergravity solutions

but it is rather clear that they are bound to be completely analogous.

6.3 The Arnold-Beltrami flux 2-brane with [D4 ⊗ Z2]nU(1) bosonic symmetry

and 2 Killing spinors

The next example we consider is a flux 2-brane that preserves 1/8 of the original supersym-

metry, namely possesses 2 Killing spinors. On general grounds in this case we expect just

one additional Killing vector. This means that eqs. (6.13) and (6.17) defining the complete

bosonic groups of the previously considered solutions should now be replaced by:

Gbosonic ∼ Γ n U(1) (6.30)

the U(1) factor being the continuous translation group generated by the unique additional

Killing vector. The question is the same as in the previous case: what is the discrete group

Γ here? We show that using a cubic momentum lattice the answer is:

Γ = D4 × Z2 (6.31)

where D4 denotes once again the dihedral group. To see this let us consider the following

triplet of Beltrami vector fields:

Ŵ (X) =


W1 = dX cos(2πZ)− dY sin(2πZ)

W2 = dX cos(2πY ) + dX sin(2πZ) + dZ sin(2πY ) + dY cos(2πZ)

W3 = dX sin(2πY )− dZ cos(2πY )

(6.32)

Abstractly the dihedral group Dn is described in eq. (6.22). In this case, relevant to us

is the following representation by means of orthogonal integer valued 3 × 3 matrices with

unit determinant:

D4 : D[A] =

 0 0 −1

0 1 0

1 0 0

 ; D[B] =

−1 0 0

0 −1 0

0 0 1

 (6.33)

The map D realizes an immersion of the dihedral group D4 into the group SO(3):

D : D4 ↪→ SO(3) (6.34)

If we add the matrix:

D[Z] =

−1 0 0

0 −1 0

0 0 −1

 (6.35)
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which has determinant −1 and commutes with both D[A] and D[B]:

[D[A] , D[Z]] = [D[B] , D[Z]] = 0 (6.36)

we realize a homomorphic embedding:

D : D4 × Z2 ↪→ O(3) (6.37)

The claimed symmetry of the supergravity 2-brane solution under the group (6.31) stems

from the following identities that the reader can easily verify:

Ŵ (AX) = D[A] · Ŵ (X)

Ŵ (BX) = D[B] · Ŵ (X)

Ŵ (ZX) = D[Z] · Ŵ (X) (6.38)

where the action of the three generators on the torus coordinate is defined below:

AX =

{
X,

1

4
− Z, Y − 3

4

}
BX = {−X,−Y,Z}

ZX =

{
X,Y +

1

2
, Z +

1

2

}
(6.39)

Hence, just as in the previous case, the complete semidirect product group (6.30) is an

isometry group for the supergravity solution since the matrices D[A] and D[B], D[Z] are

orthogonal and O(3) is a global symmetry of the supergravity lagrangian.

The inhomogeneous harmonic function for this brane-solution is the following one:

Ĥ(y) = 1− 1

96
λ2e4πU (4 − 2 sin [2π(Y − Z)] + 2 sin [2π(Y + Z)]) (6.40)

and the rest of the solution is obtained from eqs. (5.11)–(5.15).

Calculating the R curvature associated with this solution we find that in any point the

rank of its 21 vielbein components is bounded from above by 14. Indeed, with little effort,

we find a set of 2 null vectors which miraculously are null-vectors also of the matrix P. In

such two-dimensional subspace the Killing spinor equation is easily integrated by taking all

the non vanishing components proportional to Ĥ
1
10 (y) where Ĥ(y) is the inhomogeneous

harmonic function (6.40). Finally we arrive at the following explicit form of the two linearly

independent Killing spinors:

ε1 = Ĥ
1
10 (y)



iχ2

0

0

0

iχ1

0

0

0


; ε2 = Ĥ

1
10 (y)



0

χ2

0

0

0

χ1

0

0


(6.41)

In conclusion the considered flux-brane solution preserves 1
8 of the original supersymmetry.
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Figure 4. On the left the plot of one arbitrarily chosen vector field in the Beltrami space defined

by eq. (6.32). On the right the plots of some of its integral curves in the 3-torus represented as a

cube with identified opposite faces.

In the spirit of comparison with the previous case that breaks all supersymmetries, in

figure 4 we have displayed the plot of an arbitrary vector field in the three-dimensional vec-

tor space defined by eq. (6.32). The Killing vector in the direction X is visually appreciated

by the shape of the vector field plot.

Let us finally comment on the structure of the inhomogeneous harmonic function (6.40).

For the first time among the considered examples this latter has a non trivial dependence

on the T3 torus coordinates. Obviously it has to be a function invariant under the action

of the group (6.30). Invariance under the continuous translation of the coordinate X are

guaranteed by the fact that Ĥ(y) does not depend on X. The invariance under the discrete

part (6.31), whose action on the torus is defined in eq. (6.39) is a priori less obvious, yet it

is indeed true, as it can be verified by explicit calculation.

In figure 5 we present a visualization of this dihedral symmetric function.

7 Uplift of the minimal D = 7 model to D = 11 supergravity

In this section we illustrate how the minimal ungauged D = 7 model, with no vector

multiplets, is embedded, as a consistent truncation, in eleven-dimensional supergravity.

Consider the latter theory compactified on a 4-torus T4, which yields the maximal seven

dimensional supergravity, and write the SO(4) symmetry of the internal manifold as:

SO(4) = SO(3)+ × SO(3)−. The minimal D = 7 supergravity with no vector multiplets

describes the truncation of the maximal eleven dimensional theory to the SO(3)−-singlets.

This corresponds to an orbifold reduction from D = 11 and it is a consistent truncation of

the eleven dimensional supergravity.

To show this let us prove that the projection on the dimensionally reduced theory

yields the right field content and amount of supersymmetry. Being a restriction to singlets

with respect to a symmetry group of the maximal D = 7 model, it is consistent. Let us
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Figure 5. Visualization of the inhomogeneous harmonic function Ĥ(y) defined by eq. (6.40). The

function Ĥ does not depend on X. It depends only on U, Y, Z. To visualize it we have plotted the

two argument function H(U0, Y, Z) defined over the square Y,Z, for various values of the constant

parameter U0. When U0 = 0 we have the most oscillating surface. As U0 → −∞ the surface plot

approaches that of a constant and this corresponds to the asymptotic flatness of the supergravity

solution. Note that we have also fixed one reference value of the parameter λ, explicitly λ =
√

6.

denote by hatted indices the D = 11 ones, so that

Rigid indices: â = 0, . . . , 10 ; â = (a, m) ; a = 0, . . . , 6 ; m = 1, 2, 3, 4 ,

Coordinate indices: µ̂ = 0, . . . , 10 ; µ̂ = (µ, α) ; µ = 0, . . . , 6 ; α = 1, 2, 3, 4 ,

The SO(4) = SO(3)+ × SO(3)− vector and spinor-representations, as usual, read:

Vα ∈
(

1

2
,
1

2

)
; ξ ∈

(
1

2
,0

)
+

(
0,

1

2

)
. (7.1)

Restricting to the SO(3)− - singlets, all tensors with an odd number of m, n internal indices

are projected out while spinors are halved. In particular the moduli of the internal metric

on T4 are frozen to the origin of GL(4,R)/SO(4), except the determinant of the internal

vielbein, which is SO(4)-invariant and corresponds to the dilaton. After the projection the

internal vierbein therefore reads:

Vα
m = e−

5
12
φ δmα . (7.2)

By the same token the Kaluza-Klein vectors Bα
µ are truncated out.

The toroidal dimensional reduction of the 3-form yields:

Ĉ
[3]
µ̂ν̂ρ̂ → B[3]

µνρ , C[2]
µνα , C

[1]
µαβ , C

[0]
αβγ . (7.3)

Upon truncation to the SO(3)−-singlets, the only surviving fields are the 3-form B
[3]
µνρ and

the projection of the vector fields C
[1]
µαβ on the adjoint representation of SO(3)+. This
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projection is effected by restricting to the components of C
[1]
αβ ≡ C

[1]
µαβ dx

µ along the basis

ω(+) Λ of self-dual 2-forms on the internal T4:

C
[1]
αβ |proj ∝ AΛ ω

(+) Λ
αβ ; ?T4ω(+) Λ = ω(+) Λ ; dω(+) Λ = 0 . (7.4)

where summation over the repeated Λ index is understood and

ω(+) Λ = J
(+) Λ
αβ dyα ∧ dyβ ,

JΛ being the SO(3)+ generators:

J (+) 1 =


0 1

2 0 0

−1
2 0 0 0

0 0 0 1
2

0 0 −1
2 0

 ; J (+) 2 =


0 0 −1

2 0

0 0 0 1
2

1
2 0 0 0

0 −1
2 0 0

 ; J (+) 3 =


0 0 0 1

2

0 0 1
2 0

0 −1
2 0 0

−1
2 0 0 0

 .

(7.5)

The three components AΛ ≡ AΛ
µ dx

µ are the three vector fields of the seven-dimensional

minimal model. The dimensionally reduced eleven-dimensional six-form yields the following

seven-dimensional fields:

Ĉ[6] −→ C[6], C[5]
α , C

[4]
αβ , C

[3]
αβγ , C

[2]
α1β1α2β2

. (7.6)

Upon truncation, the only surviving fields are a two-form B[2], dual to three-form B[3], and

the three 4-forms A[4]Λ dual to the vector fields, defined as follows:

B[2] ∝ 1

4
C

[2]
α1β1α2β2

J (+) Λ |α1β1J (+) Λ |α2β2 ; A[4]Λ ∝ 1

2
C

[4]
αβ J

(+) Λ |αβ . (7.7)

From the above definitions and the form of the field strength of the eleven dimensional

six-form, we find the correct expression of the field strength of B[2]:

F̂[7] ≡ dĈ[6] + F̂[4] ∧ Ĉ[3] + . . . → G[3] = dB[2] + FΛ ∧ AΛ + . . . (7.8)

Finally let us consider the fermionic sector. The D = 11 gravitino yields:

Ψ̂→ ΨA, ΨA′ , ΨAα, ΨA′α ,

ΨA ∈
(

1

2
,0

)
, ΨA′ ∈

(
0,

1

2

)
,

ΨAα ∈
(

1

2
,0

)
⊗
(

1

2
,
1

2

)
=

(
0 + 1,

1

2

)
; ΨA′α ∈

(
0,

1

2

)
⊗
(

1

2
,
1

2

)
=

(
1

2
, 0 + 1

)
(7.9)

The projection singles out the D = 7 gravitino field ΨA and the spinors χA originating

from the
(

1
2 , 0

)
-component of ΨA′α:

χA ∝ (γα)A
A′ ΨA′α . (7.10)
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On the seven-torus T7 = T3 × T4, product of the T3 in the seven-dimensional space-time

and the internal T4, we can write the Englert equation for 3-forms Y[3] defined on T7:

?T7 dY[3] = µY[3] . (7.11)

Upon restricting to 3-forms of the type Y[3] = Y[1] Λ(X) ∧ ω(+) Λ, the Englert equation

reduces to the Arnold-Beltrami one considered in the present paper:

?T7 d(Y[1] Λ∧ω(+) Λ) = ?T3dY[1] Λ∧?T4ω(+) Λ = µY[1] Λ∧ω(+) Λ ⇔ ?T3dY[1] Λ = µY[1] Λ .

(7.12)

The dictionary defined in the present section allows to uplift any solution to the minimal

D = 7 supergravity, with no vector multiplets, to eleven dimensions, including the Arnold-

Beltrami 2-branes extensively discussed in the previous sections, which describe M2-branes

with fluxes.

8 Conclusions

The main result of the present paper is the analysis the supersymmetry properties of

the Arnold-Beltrami flux 2-branes suitably embedded in supergravity. This required the

study of the Killing spinor equation on the corresponding background and of its solutions.

Instrumental to this investigation was the geometric reconstruction of minimal D = 7 su-

pergravity in terms of Free Differential Algebras and rheonomy. Indeed we have completely

solved Bianchi identities, fixing the precise form of the supersymmetry transformation rules

to all orders in the boson and including higher order terms in the fermion fields.

We have also presented four explicit examples of solutions

1. One solution with no supersymmetry and a discrete symmetry

Gbosonic = (O24 × Z2)︸ ︷︷ ︸
Γ

n [Z2 × Z2]︸ ︷︷ ︸
transl.

(8.1)

where O24 denotes the octahedral group.

2. One solution with 4 Killing spinors and a discrete symmetry:

Gbosonic = D4︸︷︷︸
Γ

n [U(1)×U(1)]︸ ︷︷ ︸
transl.

(8.2)

where D4 denotes the dihedral group of index 4.

3. One solution with 4 Killing spinors and a discrete symmetry:

Gbosonic = D6︸︷︷︸
Γ

n [U(1)×U(1)]︸ ︷︷ ︸
transl.

(8.3)

where D6 denotes the dihedral group of index 6. (We have also advocated that similar

solutions should exist for D2 and D3).
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4. One solution with 2 Killing spinors and a discrete symmetry

Gbosonic = (D4 × Z2)︸ ︷︷ ︸
Γ

n U(1)︸︷︷︸
transl.

(8.4)

where O24 denotes the octahedral group.

The perspectives of further investigations based on the results we have achieved so far are

three-fold.

A) On the one hand we plan to complete our geometrical reconstruction of minimal D = 7

supergravity, coupled to a generic number of vector fields and including higher order

terms in the fermion fields, obtaining the action and after that studying the gaugings

of the theory utilizing the method of the embedding tensor [27, 28, 32].

B) A fully-fledged search of supersymmetric flux 2-branes should be attempted considering

all the crystallographic lattices and all their Point Groups. An ambitious aim would

be to establish more stringent a priori conditions for the existence of Killing spinors.

C) Finally it would be interesting to study more general M2-branes in the eleven-dimen-

sional supergravity characterized by fluxes which are solutions to the Englert equa-

tion (7.11).
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A The algebraic basis of D = 7 supergravity

In the present section we clarify the algebraic basis of minimal D = 7 supergravity in

terms of Free Differential Algebras, preparing the stage for its ex novo reconstruction in

the rheonomic approach.

A.1 Pseudo Majorana spinors in D = 7

The main property of the Clifford algebra in D = 7 with Minkowski signature (see eq. (E.1))

is that there is only one type of conjugation matrix, namely C− (see [25, 26]) and that this

latter is symmetric:

C− Γa C−1
− = −ΓTa ; C− = CT− ; C2

− = 18×8 (A.1)

This being the case one can always choose a basis where C− is just the identity matrix

in eight-dimensions and the gamma-matrices are all antisymmetric as described in ap-

pendix E.1 Hence there are no Majorana spinors but, just as in d = 5, we can introduce
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doublets of pseudo-Majorana gravitino one-forms. Minimal D = 7 supergravity corre-

sponds to the case where we have just one such doublet that we name ΨA (A = 1, 2):

Ψc
A ≡ (Ψ

A
)T = −Γ0Ψ?

A = εAB ΨA (A.2)

An explicit solution of the pseudo-Majorana constraint in the gamma matrix basis described

in appendix E.1 is shown below:

Ψ1 =



α1 + iβ1

α2 + iβ2

α3 + iβ3

α4 + iβ4

α5 + iβ5

α6 + iβ6

α7 + iβ7

α8 + iβ8


; Ψ2 =



−iα7 − β7

−iα3 − β3

iα2 + β2

−iα8 − β8

iα6 + β6

−iα5 − β5

iα1 + β1

iα4 + β4


(A.3)

where α1,...,8 and β1,...,8 are real components. This explicitly shows that minimal D = 7

supergravity is based on a superalgebra with 16 supercharges, just one half of the maxi-

mum 32.

When we discuss Killing spinors for the 2-brane solutions we utilize another gamma

matrix basis well adapted to the split of 7-dimensions in 3 + 4. Such a basis is described

in appendix E.2. The explicit form of a pair of pseudo-Majorana spinors in this basis is

provided here below:

ε1 =



ξ1 − iξ2

ξ3 + iξ4

θ1 − iθ6

θ2 + iθ5

ξ5 − iξ6

ξ7 + iξ8

θ3 − iθ8

θ4 + iθ7


; ε2 =



ξ4 + iξ3

ξ2 − iξ1

θ5 + iθ2

θ6 − iθ1

ξ8 + iξ7

ξ6 − iξ5

θ7 + iθ4

θ8 − iθ3


(A.4)

where ξ1, . . . , ξ8 and θ1, . . . , θ8 are two octets of real anticommuting parameters. The

particular form of this parameterization is already adapted to the projection that will be

enforced by the spin one-half fermion transformation rules in the Killing spinor equation.

This projection will simply delete the eight parameters θ.

A.2 Fierz identities

As usual, the core of any supergravity construction is provided by the 4-Ψ and 3-Ψ Fierz

identities. Indeed from the 4-Ψ Fierz identities one obtains the available Chevalley cocycles

that give rise to the Free-Differential Algebra extension of the super Poincaré algebra. This

latter encodes the p-form gauge fields that complete the gravitational multiplet. On the

other hand 3-Ψ Fierz are crucial in the construction of a rheonomic parameterization of

the curvature which solves Bianchi identities.
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The first step in this analysis is provided by counting the 2-Ψ independent components

and arranging them into a complete set of bosonic-currents. In this case, since we have

16-supercharges, the number of independent components of the symmetric wedge product is

# of components of Ψα
A ∧ Ψβ

B =
1

2
16× 17 = 136 (A.5)

Introducing the three Pauli matrices σ
Λ|A

B (Λ = 1, 2, 3, A,B = 1, 2) according to the

conventions of appendix E.1.1 we can distribute the 136 components in the following ex-

haustive set of fermionic currents:

name current # of components

Ja = i Ψ
A ∧ Γa ΨA 7

Jab = Ψ
A ∧ Γab ΨA 21

JΛ = iσ
Λ|B

A Ψ
A ∧ ΨB 3

JΛ
pqr = σ

Λ|B
A Ψ

A ∧ ΓpqrΨB 105

136

The factors i have been placed in the above formulae in such a way as to make the corre-

sponding fermion currents real. There are two fundamental 4-Ψ Fierz identities that might

be deduced by means of group theory, counting the number of singlet representations that

appear in the symmetric product of 4-Ψ but which we have simply verified with a computer

programme by direct evaluation. They are the following ones:

Ja ∧ Ja = + JΛ ∧ JΛ (A.6)

Jab ∧ Ja = 0 (A.7)

The above two identities are the basis for the existence of two distinct FDAs both able

to describe the degrees of freedom of the D = 7 graviton multiplet in the Poincaré case.

As we will illustrate below the FDA associated with identity (A.6) is the one implicitly

chosen by Bergshoeff et al. in their construction of the minimal theory in [3]. The FDA

associated with the second identity is associated with the formulation of [1] in terms of a

gauge three-form B[3].

Besides the above 4-Ψ Fierz identities there are also some 3-Ψ ones that are quite

relevant in the supergravity construction.

The basic 3-Ψ Fierz identity is the one below and it is related with the closure of the

anti de Sitter superalgebra. Let us define the following three structures:

Π
(1)
A = Γa ΨA ∧ Ψ

B ∧ Γa ΨB

Π
(2)
A = Γab ΨA ∧ Ψ

B ∧ Γab ΨB

Π
(0)
A = iσ

Λ|B
A ΨB ∧ iσ

Λ|D
C Ψ

C ∧ ΨD (A.8)

By explicit evaluation or by more lengthy group theoretical methods one can prove that the

following linear combination vanishes identically if and only if the here mentioned condition
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on the coefficients is satisfied:

µΠ
(1)
A + ν Π

(2)
A + ρΠ

(0)
A = 0

iff⇔ µ + 6 ν + ρ = 0 (A.9)

Another important Fierz identity which we will use in the solution of the Bianchi identities

is obtained as follows. Define the following structures:

Σ
(1)
b = Ψ

A
Γb Γp χA ∧ Ψ

C ∧ Γp ΨC

Σ
(2)
b = Ψ

A
Γb Γpq χA ∧ Ψ

C ∧ Γpq ΨC

Σ
(3)
b = iσ

Λ|A
B Ψ

B
Γb χA ∧ iσ

Λ|D
C ∧ Ψ

C ∧ ΨD

Σ
(4)
b = iσ

Λ|A
B Ψ

B
Γb Γpqr χA ∧ iσ

Λ|D
C ∧ Ψ

C ∧ ΓpqrΨD (A.10)

where χA is a generic (anticommuting) pseudo-Majorana spin 1
2 zero-form.

By explicit evaluation we find that the linear combination:

`b ≡ g1 Σ
(1)
b + g2 Σ

(2)
b + g3 Σ

(3)
b + g4 Σ

(4)
b (A.11)

vanishes if and only if:

`b = 0
iff⇔ g3 =

1

6
(−5 g1 − 14 g2) ; g4 =

1

36
(2 g2 − g1) (A.12)

A.3 The FDA in the Poincaré case

The Poincaré algebra, which we denote osp(2, 6|2), has two Chevalley cocycles respectively

of degree 3 and 4 that we show below:

K[3] = − i
1

2
σ

Λ|A
B Ψ

B ∧ ΨA ∧ AΛ +
i

2
Ψ
A ∧ Γa ΨA ∧ V a (A.13)

K[4] =
1

2
Ψ
A ∧ Γab ΨA ∧ V a ∧ V b (A.14)

The first cocycle is closed (dK[3] = 0) as a consequence of the fundamental Fierz iden-

tity (A.6). The second cocycle is closed (dK[4] = 0) as a consequence of the fundamental

Fierz identity (A.6).

The most general FDA is obtained by adjoining to the set of 1-forms V a, ωab, AΛ, ΨA

a 2-form B[2] and a 3-form B[3] and by enlarging the set of the super Poincaré curvatures

in the following way:
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A.3.1 Definition of the curvature p-forms

Ta ≡ dV a − ωab ∧ V b︸ ︷︷ ︸
DV a

− i

2
Ψ
A ∧ Γa ΨA (A.15)

Rab ≡ dωab − ωac ∧ ωcb (A.16)

ρA ≡ dΨA −
1

4
ωab Γab ΨA︸ ︷︷ ︸

DΨA

(A.17)

FΛ ≡ dAΛ − i
1

2
e−

1
2
φ σ

Λ|B
A Ψ

A ∧ ΨB (A.18)

G[3] ≡ dB[2] + FΛ ∧ AΛ− q e− δ φ Ta ∧ Va

+ i
1

2
e−

1
2
φ σ

Λ|B
A Ψ

A ∧ ΨB ∧ AΛ− i

2
e− δ φ Ψ

A ∧ Γa ΨA ∧ V a (A.19)

G[4] ≡ dB[3]− 1

2
e− θ φ Ψ

A ∧ Γab ΨA ∧ V a ∧ V b (A.20)

dφ ≡ dφ (A.21)

DχA ≡ dχA −
1

4
ωab Γab χA (A.22)

where q, δ, θ are numerical parameters.

Some comments are in order in relation with the above definitions. The basis for

the construction of any FDA is provided by the two fundamental structural theorems by

Sullivan for whose discussion we refer the reader to [26]. The zeroth order step is provided

by the minimal algebra which, as stated by the second of Sullivan’s theorems, requires a

Chevalley cohomology class of the superalgebra defined by the Maurer Cartan equations.

In the present case the minimal FDA is simply given by:

The minimimal FDA.

0 = dV a − ωab ∧ V b − i

2
Ψ
A ∧ Γa ΨA (A.23)

0 = dωab − ωac ∧ ωcb (A.24)

0 = dΨA −
1

4
ωab Γab ΨA (A.25)

0 = dÂΛ − i

2
σ

Λ|B
A Ψ

A ∧ ΨB (A.26)

0 = dB[2] − K[3] (A.27)

0 = dB[3] − K[4] (A.28)

where the cohomology classes K[3,4] were singled out above in eqs. (A.13)–(A.14). The

transition from the minimal FDA to the complete one encoded in eqs. (A.15)–(A.22) is

related to Sullivan’s first theorem stating that the most general FDA is the semidirect sum

of a contractible FDA with a minimal one. As it was observed many years ago by one of us

in [29], this mathematical theorem has a deep meaning relative to the gauging of algebras:

1. The contractible generators ΩA(p+1) of any given FDA are to be physically identified

with the curvatures.
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2. The Maurer Cartan equations that begin with dΩA(p+1) are the Bianchi identities.

3. The algebra which is gauged is the minimal subalgebra.

4. The Maurer Cartan equations of the minimal subalgebra are consistently obtained

by those of the full algebra by setting all contractible generators to zero.

When a minimal FDA contains only one-forms, namely when it describes an ordinary

Lie (super)-algebra, its corresponding decontracted gauged version is uniquely determined.

Indeed the contractible generators, i.e. the curvatures, are introduced deforming the Maurer

Cartan equations by means of new 2-forms that replace the 0 on the left hand side. Instead

when the minimal FDA is proper, namely when it contains p-forms with p > 1, the gauging

is not unique. The contractible generators, namely the curvatures, can be introduced

not only on the left-hand side of the generalized Maurer Cartan equations, but also in

appropriate combinations on the right hand side. This involves the appearance of new

coefficients that have to be selected by the use of other principles. This is what happens

in the case under consideration. There are three modifications involved in the gauging

procedure that leads from eqs. (A.23)–(A.28) to eqs. (A.15)–(A.22).

The first modification corresponds to the introduction of the dilaton field φ which we

know should be there since it is comprised in the graviton multiplet. This is trivially done

by rescaling the field ÂΛ → exp
[

1
2 φ
]
AΛ. The normalization of the dilaton is arbitrarily

fixed at this level in the pure (super) Lie algebra subsector; then a relative coefficient to be

later fixed by Bianchi consistency of the rheonomic parameterizations has to be introduced

in the curvatures of the B[2,3]-forms. Such coefficient has been named δ.

The second modification is precisely related with the introduction of curvature terms

in the definition of the G[3]-curvature. Taking into account Lorentz invariance and scale

dimensions we write:

G[3] ≡ dB[2] + αFΛ ∧ AΛ− q e−φ Ta ∧ Va

+ i
1

2
e−

1
2
φ σ

Λ|B
A Ψ

A ∧ ΨB ∧ AΛ− i

2
e− δ φ Ψ

A ∧ Γa ΨA ∧ V a (A.29)

which at φ = 0 and at zero-curvatures reduces to eq. (A.27). The coefficient α is fixed

to α = 1 by the requirement that in the Bianchi identities do not appear any bare AΛ

fields, on the other hand the coefficient q should be fixed later by the requirement that the

Bianchi identities admit a consistent rheonomic solution. In this respect we should remind

ourselves that from the physical point of view, the graviton multiplet just contains the

degrees of freedom of a 2-form, or in a dual formulation of a 3-form. Hence, when writing

the ansatz for the rheonomic parameterization of the FDA curvatures in (A.19)–(A.20), we

should write their inner components in the following way:

G[3] = Ga1a2a3 V
a1 ∧ V a2 ∧ V a3 + outer part

G[4] = ν e(1−θ)φ εb1...b3a1...a4 Gb1...b3 V a1 ∧ V a2 ∧ V a3 ∧ V a4 + outer part (A.30)

As we are going to see the parameter θ will remain a free parameter up to the very end in

the solutions of Bianchi identities and it will be fixed only at the level of the Lagrangian,
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requiring that this latter includes the following topological term:

L ⊃ G[4] ∧G[3] (A.31)

with no factor in front which depends on the dilaton. It will be particularly rewarding

that such a condition will set the other coefficients to the values utilized in [3] and [1],

which constitutes a very powerful check on the consistency of our solution of the Bianchi

identities. It should also be noted that at the purely bosonic level the above term reduces

to the following:

G[4] ∧G[3] bosonic limit
=⇒ dB[3] ∧ dB[2] + dB[3] ∧ FΛ ∧ AΛ

= −B[3] ∧ FΛ ∧ FΛ + d (something) (A.32)

namely, up to a total divergence the term (A.31) is the topological term whose presence was

advocated by the authors of [1]. Furthermore, as we have already stressed in section 2.2, the

term (A.32) is the crucial one for the existence of flux 2-branes with Arnold-Beltrami fluxes,

whose coefficient is to be precisely that one fixed by supersymmetry in the supergravity

lagrangian. Hence we can say that Arnold-Beltrami flux branes are a direct consequence

of the FDA structure analysed in the present section.

B Construction of minimal D = 7 Poincaré supergravity

In this section we perform the construction ex novo of minimal D = 7 supergravity using

the rheonomic approach.

As it is standard in such an approach we begin with the Free Differential Algebra and

with its associated Bianchi identities that we solve in toto with a rheonomic parameteriza-

tion of all the p-form curvatures. Such rheonomic parameterization already implies the field

equations that can be worked out from it with some care. Alternatively one can construct

the action whose consistency with the rheonomic parameterizations already determined

from the Bianchi identities imposes constraints on the relative coefficients of its terms able

to fix them completly. In this way the field equations of the theory can be worked out from

the action as well.

B.1 The Free Differential Algebra

We begin by writing the complete form of the Bianchi identities for the Poincaré FDA

comprising both the three-form and the two-form curvatures. Next we will solve the Bianchi

identities rheonomically showing that a consistent solution does indeed exist with uniquely

fixed parameters.
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B.1.1 Bianchi identities

From the curvatures defined in eqs. (A.15)–(A.22), by exterior differentiations we obtain

the following Bianchi identities:

DTa = −Rab ∧ V b + i Ψ
A ∧ Γa ρA = 0 (If Ta = 0) (B.1)

DRab = 0 (B.2)

DρA = − 1

4
Rab ∧ Γab ΨA (B.3)

dFΛ = i
1

4
e−

1
2
φ dφ ∧ Ψ

A ∧ σΛ|B
A ΨB + i e−

1
2
φ Ψ

A ∧ σΛ|B
A ρB (B.4)

dG[3] = − q e− δ φRab ∧ Va ∧ Vb− q e− δ φ Ta ∧ Ta + FΛ ∧ FΛ + q e− δ φ dφ ∧ Ta ∧ Va

−i
(q + 1)

2
e− δ φ Ta ∧ Ψ

A ∧ ΓaΨA +i
δ

2
e− δ φ dφ ∧Ψ

A ∧ ΓaΨA ∧ V a

+ i e−
1
2
φ Ψ

A ∧ σΛ|B
A ΨB ∧ FΛ−i (q − 1) e− δ φ Ψ

A ∧ ΓaρA ∧ V a (B.5)

dG[4] = − e− θ φ Ψ
A ∧ ΓabΨA ∧ Ta ∧ V b +

θ

2
e− θ φ dφ ∧Ψ

A ∧ ΓabΨA ∧ V a ∧ V b

+ e− θ φ Ψ
A ∧ ΓabρA ∧ V a ∧ V b (B.6)

and

d dφ = 0 (B.7)

DDχA = − 1

4
Rab ∧ Γab χA (B.8)

Let us now turn to study the rheonomic solution of the Bianchi identities.

B.2 Ansatz for the rheonomic parameterization of the curvatures in the

Poincaré case

First of all let us write a complete rheonomic ansatz for the curvature parameterizations.

We begin by writing a rheonomic parameterization of all the curvatures for the forms of

degree p ≤ 1 that correspond to a standard superalgebra enlarged with the dilaton and the

dilatino zero-forms. In such a rheonomic parameterization we introduce also a three-index

antisymmetric tensor Gabc which later can be identified with the space-time components of

either the three-form or the four-form curvature. Explicitly we set:

Ta = 0 (B.9)

Rab =Rabcd V c ∧ V d− i Θ
ab|A
c ΨA ∧ V c− iλ1 e

δ φ Gabc Ψ
A ∧ ΓcΨA

− iλ2 e
δ φ Gpqr Ψ

A ∧ ΓabpqrΨA− iµ1 e
1
2
φFΛ|ab σ

Λ|B
A Ψ

A ∧ΨB

− iµ2 e
1
2
φFΛ

pq σ
Λ|B

A Ψ
A ∧ Γabpq ΨB (B.10)

ρA ≡ ρA|ab V a ∧ V b− i
(
MB

A Γa + ΓaNB
A

)
ΨB ∧ V a

+ g1 Γm χA Ψ
C ∧ ΓmΨC + g2 ΓmnχA Ψ

C ∧ Γmn ΨC

− g3 χB σ
Λ|B

A σ
Λ|D

C Ψ
C ∧ΨD − g4 ΓpqrχB σ

Λ|B
A σ

Λ|D
C Ψ

C ∧ ΓpqrΨD (B.11)
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FΛ ≡FΛ
ab V

a ∧ V b + a1 e
− 1

2
φ σ

Λ|B
A Ψ

A
Γa χB ∧ V a (B.12)

dφ = Φa V
a + Ψ

A
χA (B.13)

DχA ≡DaχA V a + PBA ΨB (B.14)

where Θ
ab|A
c is a spinor-tensor linear in the gravitino field strength ρA|ab and where the

matrices appearing in the fermionic curvatures are the following ones:

MB
A = δAB

(
− i b1 e

δφ /G + iκ1 /Φ
)

+ i d1 e
1
2
φ /FBA (B.15)

NB
A = δAB

(
− i b2 e

δφ /G + iκ2 /Φ
)

+ i d2 e
1
2
φ /FBA (B.16)

PBA = δAB

(
− i c1 e

δφ /G + i c3 /Φ
)

+ i c2 e
1
2
φ /FBA (B.17)

having defined

/G ≡ Gabc Γabc ; /FBA ≡ F
Λ
ab Γab σ

Λ|B
A ; /Φ ≡ Φa Γa (B.18)

The above paramerization involves the following set of 19 numerical coefficients:4

coeffLie = {a1, b1, b2, d1, d2, c1, c2, c3, κ1, κ2, g1, g2, g3, g4, λ1, λ2, µ1, µ2, δ} (B.19)

In addition to the above rheonomic parameterizations we introduce those of the higher-form

curvatures, namely:

G[3] ≡ Gabc V a ∧ V b ∧ V c− a2 e
− δ φ Ψ

A
Γab χA ∧ V a ∧ V b (B.20)

G[4] ≡ ν e(1−θ)φ εa1...a3b1...b4 Ga1a2a3 V b1 ∧ · · · ∧ V b4 − iw e− θ φ Ψ
A

Γabc χA ∧ V a ∧ V b ∧ V c

(B.21)

If we consider the FDA that comprises only the three-form curvature the total set of

numerical coefficients to be determined is given by:

coeffFDA3 = coeffLie

⋃
{a2, q}︸ ︷︷ ︸
coeffG3

(B.22)

If instead we consider the FDA that comprises only the four-form curvature, the total set

of numerical coefficients to be determined is given by:

coeffFDA4 = coeffLie

⋃
{w, ν, θ}︸ ︷︷ ︸
coeffG4

(B.23)

In the first case the total number of coefficients to be fixed is 21, while in the second is 22.

4Actually the last coefficient δ is already contained in the FDA comprising either the three-form or the

four-form curvature. However when we consider only the curvatures of the curvatures of degree p ≤ 2, then

p is some parameter appearing only in the rheonomic parameterizations.
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In order for the three-form and four-form curvatures to coexist we should be able to

determine consistently a set of 24 parameters:

coeffFDA3⊕4 = coeffLie

⋃
{a2, q, ν, w, θ}︸ ︷︷ ︸

coeffG3⊕G3

(B.24)

In appendix C we show that both solutions are available for the sets of 21 and 22 parameters,

respectively with a residual freedom of one parameter. The solution for the set of 24

parameters is also available and fixes all parameters in function of a residual one that we

choose to be θ. The result obtained in appendix C.2 is displayed in eq. (C.25)and it is

repeated here for the reader’s convenience:

a1 = −1
2 ; a2 = −1

2 ; b1 = −1
8

b2 = 2θ+1
24−16θ ; c1 = 1

3−2θ ; c2 = 1
3−2θ

c3 = 1
2 ; d1 = 1

4 ; d2 = 1−2θ
8θ−12

g1 = 1
64(14θ + 3) ; g2 = 1

128(2θ − 3) ; g3 = 1
64(1− 14θ)

g4 = 1
384(−2θ − 1) ; κ1 = 0 ; κ2 = 0

λ1 = 3
2 + 3

2θ−3 ; λ2 = 1
6−4θ ; µ1 = 1

3−2θ − 1

µ2 = 1
4θ−6 ; δ = 1 ; w = − θ

3

q = 1 ; ν = 1
12 ; θ = θ

As usual the solution is multiply checked since the constraints are many more than the

parameters that can be fixed.

As we announced before the last parameter can be fixed requiring that the term (A.31)

can appear in the Lagrangian without dilaton factor in front. For this to be possible it is

necessary that after substituting the rheonomic parameterization, the pure space time part

of the term (A.31) should be proportional to the kinetic term of the B[2]-form, namely:

e2φ Gabc Gabc V a1 ∧ · · · ∧ V a7 εa1...a7 (B.25)

This immediately fixes the value

θ = − 1 (B.26)

Inserting such a value into eq. (C.25) we obtain the following final values of the coefficients:

a1 = −1
2 ; a2 = −1

2 ; b1 = −1
8

b2 = − 1
40 ; c1 = 1

5 ; c2 = 1
5

c3 = 1
2 ; d1 = 1

4 ; d2 = − 3
20

g1 = −11
64 ; g2 = − 5

128 ; g3 = 15
64

g4 = 1
384 ; κ1 = 0 ; κ2 = 0

λ1 = 9
10 ; λ2 = 1

10 ; µ1 = −4
5

µ2 = − 1
10 ; δ = 1 ; w = 1

3

q = 1 ; ν = 1
12 ; θ = −1

(B.27)

It is extremely nice and reassuring that the condition (B.26) yields the same result as the

condition (C.19) which guarantees compatibility with the coefficients determined in [3] by
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means of the Noether coupling construction. This completely independent determination of

the supersymmetry transformation rules confirms therefore from a pure algebraic viewpoint

the Noether coupling calculations of both paper [3] and paper [1].

It is now a question of constructing the geometrical action consistent with this rheo-

nomic parameterization. This will be accomplished, up to four fermionic terms and for a

generic number of vector multiplets, elsewhere. For the purpose of the present work, it

suffices to define the precise dictionary between the fields and parameters on our rheonomic

formulation and those in [1].

B.3 Construction of the bosonic action of ungauged minimal D = 7 super-

gravity

Following the standard procedures of the rheonomic approach we consider an ansatz for

the action in terms of differential forms living in superspace:

Aungauged

D = 7 SUGRA =

∫
Lungauged

tot (B.28)

Lungauged
tot = Lungauged

Bkin + Lungauged
Fkin + Lungauged

Pauli + Lungauged
4fermi (B.29)

where Lungauged
Bkin is the bosonic Lagrangian containing the kinetic terms of the bosonic

fields and the Chern-Simons term, Lungauged
Fkin is the kinetic Lagrangian for the fermionic

fields while the last two terms describe the Pauli interactions and the quartic terms in the

fermion fields. For the scope of the present work, we shall be only interested in Lungauged
Bkin

which has the general form:

Lungauged
Bkin = f1R

a1a2 ∧ V a3 ∧ · · · ∧ V a7 εa1...a7

+f2Φa1

(
dφ−Ψ

A
χA

)
∧ V a2 ∧ · · · ∧ V a7 εa1...a7

+f3e
φFΛ|a1a2

(
FΛ−a1e

− 1
2
φσ

Λ|B
A Ψ

A
Γa χB ∧ V a

)
∧ V a3 ∧ · · · ∧ V a7 εa1...a7

+f4Gabc
(
G[4]+iw eφΨ

A
Γpqr χA ∧ V p ∧ V q ∧ V r

)
∧ V a ∧ V b ∧ V c

+f5

(
G[3]+a2 e

−φ Ψ
A

ΓabχA ∧ V a ∧ V b

)
∧
(
G[4] +

1

2
eφΨ

A ∧ ΓabΨA ∧ V a ∧ V b

)
+
(
−360f2Φa Φa − 120f3e

φFΛ|abFΛ
ab − 6f4e

2φ Gabc Gabc
)

Vol7

Vol7 ≡
1

7!
εa1...a7 V

a1 ∧ · · · ∧ V a7 (B.30)

The coefficients a1, a2, w appearing in the above action are those displayed in the rheo-

nomic parameterization of the curvatures and have already been determined through the

solution of the Bianchi identities. All the coefficients parametrizing Lungauged
tot , including

f1, . . . , f5 in the bosonic Lagrangian, have to be fixed by considering the field equations

from Aungauged

D = 7 SUGRA as differential form equations in superspace that should be satisfied

upon replacement of the previously determined Bianchi identities.

Some observations can be immediately made. First of all let us note that in a similar

way to the case of the rheonomic formulation of D = 11 supergravity [31] in the lagrangian
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we have both the curvature G[4] and the curvature G[3], yet the second appears only in the

topological term G[4] ∧G[3] ⊕more having coefficient f5. The coefficient f5 must be equal

to − f4: in this way when we vary the Lagrangian in δB[3] we obtain:

f4

(
d
[
GabcV a ∧ V b ∧ V c− a2 e

−φ Ψ
A

ΓabχA ∧ V a ∧ V b
]
− dG[3]

)
= 0 (B.31)

which is nothing else but the statement that the rheonomic parameterization (B.20) satisfies

the Bianchi identity (B.5) with the already determined coefficients (B.27). At the same

time the variation of the Lagrangian in δB[2] yields:

f5 d

[
G[4] +

1

2
eφΨ

A ∧ ΓabΨA ∧ V a ∧ V b

]
= 0 (B.32)

which upon the substitution of the rheonomic parameterizations is identically satisfied.

Indeed

G[4] +
1

2
eφΨ

A ∧ ΓabΨA ∧ V a ∧ V b = dB[3] ⇒ d2B[3] = 0 (B.33)

This means that B[3] enters the Lagrangian only through a total derivative term.

C Detailed derivation of the rheonomic solution of Bianchi identities

In this appendix we present the detailed derivation of the unique rheonomic solution of

Bianchi identities of the relevant Free Differential Algebra. The determination of the 24

coefficients mentioned in appendix B is the absolute core of the supergravity theory. These

numbers decide the explicit form of the supersymmetry transformation rules and implicitly

determine the field equations of supergravity, hence its classical dynamics. We already

stressed that the very existence of Arnold-Beltrami flux branes critically depends on the

precise numerical values of the lagrangian coefficients which on their turn depend, in a

one-to-one way, from the coefficients found in the solution of Bianchi identities. Similarly

the existence of Killing spinors for given solutions of supergravity, in particular the flux

branes studied in this paper, depends on the precise values of 24 coefficients discussed

here. Change one of them to a wrong value and the results change not quantitatively

but qualitatively. This is not surprising when you remind ourselves that we are talking

about the realization of an algebra of transformations. The fascination of supersymmetry

and supergravity is that, in this case, the algebra is not kinematics, rather it is the very

dynamics of the system.

It follows from these considerations that the calculations presented in this appendix

are not marginal rather they are of the utmost relevance. Yet they are extremely tedious.

The principle is simple and elegant. Its implementation is desperately tedious, although

essential. For this reason these important calculations are relegated to an appendix.

C.1 Rheonomic solution of the Bianchis for the curvatures of degree p ≤ 2

According to the logic presented appendix B we start by solving completely the Bianchi

identities of all the curvatures of degree two or one associated with the standard super-

algebra sector of the FDA. As we demonstrate below the set of 19 parameters coeffLie is

reduced, after imposing the constraints of these Bianchis to three free parameters, namely

c1, g1 and δ, all the others being fixed in terms of these latter. Let us see how.
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C.1.1 Equations from the 3Ψ sector of the torsion-Bianchi

At the level of 3Ψ the torsion-Bianchi equation (B.1) is very simple. It reads:

Ψ
A ∧ Γaρ

[ΨΨ]
A = 0 (C.1)

where we have named:

ρ
[ΨΨ]
A = g1 Γm χA Ψ

C ∧ ΓmΨC + g2 ΓmnχA Ψ
C ∧ Γmn ΨC

− g3 χB σ
Λ|B

A σ
Λ|D

C Ψ
C ∧ΨD − g4 ΓpqrχB σ

Λ|B
A σ

Λ|D
C Ψ

C ∧ ΓpqrΨD (C.2)

Comparing eqs. (C.1)–(C.2) with eqs. (A.10)–(A.11) we realize that eq. (C.1) is nothing

else but `b = 0 which is solved by eq. (A.12) expressing g3 and g4 in terms of g1,2. In this

way we have reduced the 19 parameters we are dealing with to seventeen. Let us also note

in advance that once eq. (C.1) is satisfied the contribution of ρ
[ΨΨ]
A to the Bianchi equation

of G[3] (see eq. (B.5)) vanishes a fortiori. This will we important in the sequel.

C.1.2 Equations from the 2Ψ-1V sector of the torsion-Bianchi

Inserting the rheonomic parameterizations (B.9)–(B.14) into the Bianchi identity (B.1) and

keeping only the terms proportional to 2Ψ-1V , we obtain the following equation:

0 = −RabΨΨ ∧ V b + Sab ∧ V b (C.3)

where:

RabΨΨ ≡ − iλ1 e
φ Gabc Ψ

A ∧ ΓcΨA− iλ2 e
φ Gpqr Ψ

A ∧ ΓabpqrΨA

− iµ1 e
1
2
φFΛ|ab σ

Λ|B
A Ψ

A ∧ΨB − iµ2 e
1
2
φFΛ

pq σ
Λ|B

A Ψ
A ∧ Γabpq ΨB (C.4)

Sab = Ψ
A ∧

(
ΓaMB

AΓb + ΓabNB
A

)
ΨB (C.5)

Equation (C.4) is solved by setting first the antisymmetric part of Sab to zero and then

by identifying the symmetric one with RabΨΨ. This yields the following equations on the

parameters:

0 = κ1

0 = κ2

0 = λ1 + 6 (b1 + b2)

0 = λ2 + (b1 − b2)

0 = µ1 + 2 (d1 − d2)

0 = µ2 + (d1 + d2)

(C.6)

In this way the seventeen parameters have been reduced to eleven.
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C.1.3 Equations from the gravitino Bianchi at 3Ψ-level

If we consider the gravitino Bianchi (B.3) and after insertion of the rheonomic parameter-

izations (B.9)–(B.14) we focus on the 3Ψ-sector we obtain the following equation:

0 = − 1

4
ΓabΨA ∧RabΨΨ +

1

2

(
MB

AΓb + ΓbNB
A

)
ΨB ∧Ψ

C ∧ ΓbΨC

− g1 Γm PDA ΨD Ψ
C ∧ ΓmΨC − g2 ΓmnPDA ΨD Ψ

C ∧ Γmn ΨC

+ g3 PEB ΨE σ
Λ|B

A σ
Λ|D

C Ψ
C ∧ΨD + g4 ΓpqrPEB ΨE σ

Λ|B
A σ

Λ|D
C Ψ

C ∧ ΓpqrΨD

(C.7)

Separate cancellation of the terms proportional to Gabc, FΛ
ab and Φa imposes on the param-

eters a set of conditions which together with those found in the previous two subsections

yields the following result:

b1 = 16 c1 g2

b2 =
4

3
c1 (g1 − 2 g2)

d1 = −32 c2 g2

d2 =
4

3
c2 (g1 + 10 g2)

g3 =
1

6
(−5 g1 − 14 g2)

g4 =
1

36
(2 g2 − g1)

κ1 = 0

κ2 = 0

λ1 = −8c1 (g1 + 10 g2)

λ2 =
4

3
c1 (g1 − 14 g2)

µ1 =
8

3
c2 (g1 + 34 g2)

µ2 = −4

3
c2 (g1 − 14 g2) (C.8)

In this way the set of free coefficients among the 19 comprised in coeffLie is reduced to

seven, namely:

{a1, c1, c2, c3, g1, g2, δ} (C.9)

C.1.4 Equation for c3 from the dilaton Bianchi

The coefficient c3 is easily and immediately determined from the dilaton Bianchi (B.7),

upon insertion of the rheonomic parameterization (B.13). We immediately obtain:

c3 =
1

2
(C.10)
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C.1.5 Equations from the 2Ψ-1V sector of the FΛ-Bianchi

Inserting the rheonomic parameterizations (B.9)–(B.14) into the Bianchi identity (B.4) and

keeping only the terms proportional to 2Ψ-1V , we obtain the following equation:

0 = −iFΛ
abΨ

A ∧ ΓaΨA ∧ V b + a1 e
− 1

2
φ σ

Λ|B
A Ψ

A ∧ ΓaPCBΨC ∧ V a

+ e−
1
2
φ σ

Λ|B
A Ψ

A (MC
B Γa + ΓaNC

B

)
ΨC ∧ V a + i

1

4
e−

1
2
φ σ

Λ|B
A Φa ∧Ψ

A ∧ ΨB ∧ V a

(C.11)

Imposing the cancellation of all structures we obtain the following equations on the

coefficients:

a1 = − 1

2

c2 =
7

24− 64 g1

g2 =
1

112
(8 g1 − 3) (C.12)

In this way the seven free parameters mentioned in eq. (C.9) are reduced to the three

mentioned at the beginning of this subsection

C.1.6 Equations from the 3Ψ-level of the FΛ curvature

At the 3Ψ-level the Bianchi identity of the FΛ curvature, namely eq. (B.4), reduces to the

following statement:

0 = i
1

4
e−

1
2
φ Ψ

C
χC ∧ Ψ

A ∧ σΛ|B
A ΨB + i e−

1
2
φ Ψ

A ∧ σΛ|B
A ρ

[ΨΨ]
B

+
i

2
a1 e

− 1
2
φ σ

Λ|B
A Ψ

A
Γa χB ∧ Ψ

C ∧ ΓaΨC (C.13)

which, surprisingly imposes no new constraint and it is identically satisfied by the set of

parameters satisfying all the previous constraints, namely:

a1 = −1
2 ; b1 = c1

7 (−3 + 8 g1) ; b2 = c1
7 (1 + 16 g1)

c1 = c1 ; c2 = 7
24−64 g1

; c3 = 1
2

d1 = 1
4 ; d2 = 5−32 g1

16(−3+8 g1) ; g1 = g1

g2 = 1
112(−3 + 8 g1) ; g3 = 1

16 − g1 ; g4 = − 1
672 (1 + 16 g1)

κ1 = 0 ; κ2 = 0 ; λ1 = − 3
7 c1 (−5 + 32 g1)

λ2 = c1
2 ; µ1 = 17−64 g1

8(−3+8 g1) ; µ2 = 7
16(−3+8 g1)

δ = δ ;

(C.14)

C.2 Solving the Bianchis for curvatures of degree p = 3, 4

Having completely solved the Bianchi identities for the curvatures of degree p ≤ 2 we have

been left with three parameters δ, c1 and g1 that parameterize all the others according to

eq. (C.14). In the background of such parameterized curvatures we consider the Bianchi

identities of the higher degree curvatures.

We begin with the Bianchi of the G[3] form corresponding to the formulation of [2]

and [3].
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C.2.1 Equations from the 2Ψ-2V sector of the G[3]-Bianchi

Inserting the rheonomic parameterizations (B.9)–(B.14) into the Bianchi identity (B.5) and

keeping only the terms proportional to 2Ψ-2V , we obtain the following equation:

0 = i
(
λ1q − 3

2

)
Gabc Ψ

A ∧ ΓaΨA ∧ V b ∧ V c + iλ2q Gpqr Ψ
A ∧ ΓpqrabΨA ∧ Va ∧ Vb

+ i (µ1q + 1) e−
1
2
φFΛ

ab σ
Λ|B

A Ψ
A ∧ΨB ∧ V a ∧ V b

+ iµ2q e
− 1

2
φFΛ

pq σ
Λ|B

A Ψ
A ∧ ΓpqabΨB ∧ Va ∧ Vb − i

2 e
−φ Φa Ψ

A ∧ ΓbΨA ∧ V a ∧ V b

(q − 1) e−φ Ψ
A ∧

(
ΓaMB

A Γb + ΓabNB
A

)
ΨB ∧ V a ∧ V b

− a2 e
−φ Ψ

A ∧ Γab PBAΨB ∧ V a ∧ V b

(C.15)

Imposing the identical cancellation of all type of terms and previously eliminating the

parameters λ1,2, µ1,2 via eqs. (C.6) we obtain the following equations on the remaining

parameters:

0 = −3 (4b1 + 4b2 + 4a2c1 + 1)

0 = −b1 + b2 + a2c1

0 = 4a2c3 + 1

0 = a2c2 − (q − 2) (d1 + d2)

0 = 2a2c2 − 2d1 + 2d2 + 1

(C.16)

Combining the above equations with those in eq. (C.14) we obtain the final solution for

the 21 parameters in eq. (B.22). Such a solution, which is displayed below, depends on a

free parameter that we have localized in g1. All values of g1 are permitted except 3
8 for

which the solution becomes singular:

a1 = −1
2 ; b1 = −1 ; 8 b2 = − 1

8 + 7
48−128 g1

c1 = 7
24−64 g1

; c2 = 7
24−64 g1

; c3 = 1
2

d1 = 1
4 ; d2 = − 1

4 + 7
48−128 g1

; g1 = g1

g2 = 1
112(−3 + 8 g1) ; g3 = 1

16 − g1 ; g4 = − 1
672 (1 + 16 g1)

κ1 = 0 ; κ2 = 0 ; λ1 = 3
8

(
4 + 7

−3+8 g1

)
λ2 = 7

48−128 g1
; µ1 = −1 + 7

24−64 g1
; µ2 = 7

16(−3+8 g1)

δ = 1 ; q = 1 ; a2 = −1
2

(C.17)

It is now very interesting to compare the solution (C.17) with the supersymmetry transfor-

mation rules derived by the authors of [3]. A comparison at the level of absolute values of

the coefficients is very laborius since it involves the normalization of the various fields, but

there is a simple and very significant test that is intrinsic and normalization independent.

We refer to the ratio of the coefficients b1/b2 and d1/d2 that appear in the gravitino cur-

vature and that dictate the form of the gravitino transformation rule. These ratios cannot

be deformed by changing the normalization of any field and hence are an intrinsic property

of the SUSY algebra, i.e. of the rheonomic parameterizations. Comparing with eq. (2.9)

of [3] we see that according to these authors the two ratios are predicted to be:

b1
b2

= 5 ;
d1

d2
= − 5

3
(C.18)
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It is non trivial and reassuring that the two above equations for the parameter g1 are

consistent and admit the common solution:

g1 = −11

64
(C.19)

In this way we have reconstructed the formulation by Bergshoeff et al. of minimal D = 7

supergravity, but we have also learned that it admits a non trivial deformation encoded in

the parameter g1. Obviously the parameter g1 could not be seen by the authors of [3] since

they did not consider quadratic fermion terms in the transformation rules of the fermions

and implicitly fixed a choice of g1 adopting a certain relative strength of the kinetic terms

in the lagrangian.

C.2.2 Equations from the 3Ψ sector of the G[4]-Bianchi

In the case we utilize the 3-form formulation we have to satisfy also the Bianchi identity of

the G[4]-curvature. This latter has a 3Ψ-sector that differently from the case of the 2-form

is not identically satisfied by the solution of torsion-Bianchi equation. This sector yields

the following equation:

0 = e−θφ
(

Ψ
A ∧ Γabρ

[ΨΨ]
A − 3

2
wΨ

A ∧ ΓabcχA ∧Ψ
B ∧ ΓcΨB

+
θ

2
Ψ
A ∧ χA ∧Ψ

B ∧ ΓabΨB

)
∧ V a ∧ V b (C.20)

which imposes the following two constraints on the coefficients:

6

7
− 12w − 128

7
g1 = 0

6

7
+ 12 θ − 128

7
g1 = 0 (C.21)

which are solved by the following conditions:

w = − θ
3

; g1 =
1

64
(3 + 14 θ) (C.22)

C.2.3 Equations from the 2Ψ sector of the G[4]-Bianchi

At this point we have still to consider the 2Ψ sector of the G[4]-Bianchi which yields the

following equation:

0 = −2 ν e(1−θ)φ εpqrabcd Gpqr Ψ
A ∧ ΓdΨA ∧ V a ∧ V b ∧ V c

−i e−θφ Ψ
A ∧

(
ΓabMB

A Γc + ΓabcNB
A

)
ΨB ∧ V a ∧ V b ∧ V c

− iw e−θφ Ψ
A ∧ Γabc PBAΨB ∧ V a ∧ V b ∧ V c + θ

2 e
−θφ Φc Ψ

A ∧ ΓabΨA ∧ V a ∧ V b ∧ V c

(C.23)

It is very much reassuring that all the other structures cancel identically in eq. (C.23) upon

the use of the coefficients that we have already determined and that those involving Gpqr

cancel also identically upon fixing the following value for the parameter ν:

ν =
1

12
(C.24)
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In this way we have completely solved in a rheonomic way the Bianchi identities involving

both the three-form and the four-form curvatures whose space-time field strengths are dual

to each other. Altogether we have found the following set of coefficients parameterized by

the single parameter theta:

a1 = −1
2 ; a2 = −1

2 ; b1 = −1
8

b2 = 2θ+1
24−16θ ; c1 = 1

3−2θ ; c2 = 1
3−2θ

c3 = 1
2 ; d1 = 1

4 ; d2 = 1−2θ
8θ−12

g1 = 1
64(14θ + 3) ; g2 = 1

128(2θ − 3) ; g3 = 1
64(1− 14θ)

g4 = 1
384(−2θ − 1) ; κ1 = 0 ; κ2 = 0

λ1 = 3
2 + 3

2θ−3 ; λ2 = 1
6−4θ ; µ1 = 1

3−2θ − 1

µ2 = 1
4θ−6 ; δ = 1 ; w = − θ

3

q = 1 ; ν = 1
12 ; θ = θ

The solution as usual is multiply checked since the constraints are many more than the

parameters that can be fixed.

D Constraints on the rheonomic action coefficients from comparison

with TPvN and the flux brane action

We have shown that the second order bosonic lagrangian of [1] is identical, after appropri-

ate rescalings to the flux-brane lagrangian (2.10). On the other hand the supersymmetry

transformations of [1] agree, after appropriate rescalings, with those issuing from the rheo-

nomic parameterization of the Bianchi identities presented in the previous sections. Ergo

the bosonic sector of the action of D = 7 supergravity streaming from the rheonomic ap-

proach must map, after the rescalings (4.13), into the flux-brane lagrangian (2.10). This

happens if certain relations on the coefficients fi of the bosonic action (B.30) are satisfied.

In the present section we derive these constraints postponing to a forthcoming publication

their verification within the full determination of all the coefficients of the full rheonomc

action.

Discarding the gravitino 1-forms and the dilatino χ the action Lungauged
Bkin reduces to:

Lungauged
Bose = f1 R

a1a2 ∧ V a3 ∧ · · · ∧ V a7 εa1...a7

+f2 Φa1 dφ ∧ V a2 ∧ · · · ∧ V a7 εa1...a7

+f3 e
φFΛ|a1a2 FΛ ∧ V a3 ∧ · · · ∧ V a7 εa1...a7

+f4 GabcG[4] ∧ V a ∧ V b ∧ V c + f5 G
[3] ∧G[4]

+
(
− 360f2 Φa Φa − 120 f3 e

φFΛ|abFΛ
ab − 6 f4 e

2φ Gabc Gabc
)

Vol7

Vol7 ≡
1

7!
εa1...a7 V

a1 ∧ · · · ∧ V a7 (D.1)

Eliminating the auxiliary fields that realize the first order formalism we can rewrite the

second order form of the above lagrangian which reads as follows:

Lungauged
Bose = detV

(
240 f1R[g] + 360 f2∂

µφ∂µφ + 6 f4e
−2φ Gλµνρ Gλµνρ

+ 120 f3 e
1
2
φFΛ|µν FΛ

µν

)
d7x + f5 G

[4] ∧G[3] (D.2)
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where Gλµνρ are the holonomic components of the field curvature G[4]:

G[4] ≡ dB[3] = Gλµνρ dxλ ∧ dxµ ∧ dxν ∧ dxρ (D.3)

The anholonomic components of the same tensor with flat indices is related to Gabc by the

already established relation:

Ga1a2a3a4 =
1

12
e2φ εa1a2a3a4pqr Gpqr (D.4)

An alternative way of writing the same lagrangian which is quite convenient while dealing

with the equation of motion is the following one:

Lungauged
Bose = detV (240 f1R[g] + 360 f2∂

µφ∂µφ ) d7x

+
1

4
f4e
−2φG[4] ∧ ?G[4] + f5 G

[4] ∧G[3] + 60 f3 e
φ FΛ ∧ ?FΛ (D.5)

Recalling that G[3] = dB[3] + FΛ ∧ AΛ the field equations for the one-forms AΛ and the

three form B[3] can be respectively written as follows:5

d ? FΛ =
f5

60 f3
FΛ ∧G[4] (D.6)

d ?
[
e−2φ ?G[4]

]
= 2FΛ ∧ FΛ (D.7)

while the equation for the dilaton takes the following form:

�φVol7 = − f4

1440 f2
e−2φG[4] ∧ ?G[4] +

f3

12 f2
eφ FΛ ∧ ?FΛ (D.8)

The Einstein equation for the metric can be finally written as follows:(
Ricµν −

1

2
gµν R

)
= T φµν + T Gµν

T φµν = − 3

2

f2

f1

(
∂µφ∂νφ −

1

2
gµν ∂

ρφ∂ρφ

)
(D.9)

T Gµν = − 1

10

f4

f1

(
Gµ... G ...

ν − 1

8
gµν G.... G....

)
(D.10)

where the dots denote saturated indices.

D.1 Embedding the 2-brane solution in supergravity

In order to embed the two brane solution discussed in section 2 into minimal D = 7

supergravity one has to bring, by means of field redefinitions, the lagrangian (D.5) to the

standard form of (2.1) or even (2.10) if we want to switch on Arnold-Beltrami fluxes. Let

us divide the task in two parts. First we show that we can always embed the brane solution

without fluxes, next we consider the embedding of the flux brane solution and we work

out the condition on the lagrangian coefficients that has to be satisfied in order for such

an embedding to be feasible.

5Here we use the a priori information that f5 = −f4.
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D.1.1 Matching with the pure brane action

The first thing to do in order to compare (D.5) with (2.1) is to truncate the gauge fields AΛ

by setting them to zero, which is a consistent operation in the field equations (D.6), (D.7)

and (D.8). Secondly we set the coefficient of the Einstein term to the following value:

f1 = − 1

5!2!
= − 1

240
(D.11)

This is always possible since the overall constant in front of the lagrangian is a free pa-

rameter and supersymmetry fixes all the other coefficients in terms of f1. In the sequel

the other coefficients f̂2, f̂3, f̂4 are meant to attain the value predicted by supersymmetry

when the Einstein term is canonically normalized as in equation (D.11):6

f̂2 =
f2

−240 f1
; f̂3 =

f3

−240 f1
; f̂4 =

f4

−240 f1
(D.12)

The second and third steps consists of a rescaling of the dilaton and of the G[4]-form. We

utilize the identifications provided by eq. (4.13), with the request that after rescaling the

kinetic terms become canonical namely:

6 f̂4 τ
2 =

1

24
f̂4 =

1

96
; 360 f̂2 λ

2 = 360 f̂2
2

5
= − 1

4
(D.13)

The consistency of the above equations implies that when f1 is negative, f2 < 0 should

also be negative and f4 > 0 should instead be positive. This requirement, although we

have not yet fixed the coefficients by supersymmetry, should be in any way respected, since

it corresponds to positivity of the energy in the mostly minus conventions for the metric

signature. In this way we find:

f̂4 =
1

4
(D.14)

f̂2 = − 1

576
(D.15)

D.2 Matching with the flux brane action

In order for the flux brane action (2.10) to match the bosonic action of supergravity further

conditions have to be satisfied by the action coefficients. We presently derive them. First

we consider the rescaling necessary to bring the kinetic term of the gauge fields Aµ to the

normalization used in eq. (2.10). Referring to eq. (4.13) we see that the necessary rescaling

is given by:

σ2 = − f1

4 f3
ω (D.16)

Then we can evaluate, in terms of f5 the value of the parameter κ appearing in the la-

grangian (2.10). We find the condition:

κ =
f5

240 f1
τ σ2 =

ω

384
(D.17)

6For the reader not familiar with the rheonomy approach: please remember that here the curvature

2-form is normalized to strength one so that the scalar curvature and the Ricci tensor that we utilize are

1/2 of those utilized in traditional tensor calculus and standard Relativity textbooks.
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Utilizing τ = 1
12 , the identification (D.16) and:

f5 = − f4 =
1

4
× (240 f1) (D.18)

we get:

f3 = 2 f1 ⇒ f̂3 = − 1

120
(D.19)

E Auxiliary items of the construction

In this paper we utilize two different basis of gamma matrices in D = 7. One basis,

the antisymmetric ones is the best suited to check identities in the general rheonomic

construction of the theory. The second basis, the split one, is instead well-adapted to

brane solutions and it is best-suited for the analysis of Killing spinor equations.

E.1 D = 7 gamma matrices in the antisymmetric basis

As mentioned in the main text the gamma matrices in D = 7 Minkowski signature with

mostly minus metric:

{Γa , Γb} = 2 ηab 18×8 ; ηab = diag {+,−,−,−,−,−,−} (E.1)

are all antisymmetric ΓTa = −Γa and admit C− = 18×8 as charge conjugation matrix. A
convenient explicit representation is the following one:

Γ0 =



0 0 0 0 0 0 i 0

0 0 i 0 0 0 0 0

0 −i 0 0 0 0 0 0

0 0 0 0 0 0 0 i

0 0 0 0 0 −i 0 0

0 0 0 0 i 0 0 0

−i 0 0 0 0 0 0 0

0 0 0 −i 0 0 0 0


; Γ1 =



0 1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 −1 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1

0 0 −1 0 0 0 0 0

0 0 0 0 0 −1 0 0



Γ2 =



0 0 0 0 0 0 0 −1

0 0 0 0 0 −1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 −1 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 −1 0 0 0 0

1 0 0 0 0 0 0 0


; Γ3 =



0 0 0 0 1 0 0 0

0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 1 0 0

0 0 −1 0 0 0 0 0



(E.2)

– 53 –



J
H
E
P
0
6
(
2
0
1
6
)
0
1
8

Γ4 =



0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

−1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 0 0 0 0 −1

0 0 0 0 0 0 1 0


; Γ5 =



0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 0 0 0 −1 0

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 −1 0 0 0 0 0 0



Γ6 =



0 0 −1 0 0 0 0 0

0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 −1 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 0 0 −1 0 0 0


;

(E.3)

E.1.1 Pauli matrices

We also spell out the explicit form of the three Pauli matrices that we use in our con-

struction:

σΛ=1,2,3 : σ1 =

(
0 1

1 0

)
; σ2 =

(
0 − i
i 0

)
; σ3 =

(
1 0

0 −1

)
(E.4)

E.2 D = 7 gamma matrices in the split basis

The gamma matrices in the split basis are devised to be well-adapted to the 2-brane

solutions. To this effect we split the seven-dimensional flat indices according to the following

notations:

a, b, c, . . . =

{
ā, b̄, c̄, . . . = 1̄, 2̄, 3̄ brane world volume directions

P,Q,R, . . . = 1, 2, 3, 4 directions transverse to the brane
(E.5)

Next we write the 7-dimensional 8 × 8 gamma matrices as the following tensor products

Γā = γā ⊗ τ5

ΓP = 12×2 ⊗ τP (E.6)

where

{γā, γb̄} = 2ηāb̄ ; η = diag (+,−,−)

{τP , τQ} = −2δPQ

{τ5, τQ} = 0 (E.7)

Explicitly, in terms of the Pauli matrices, we can set:

γ1̄ = σ2 ; γ2̄ = iσ1 ; γ3̄ = iσ3 (E.8)
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and

τ1 = iσ1 ⊗ 12×2

τ1+i = iσ1 ⊗ σi ; (i = 1, 2, 3)

τ5 = σ3 ⊗ 12×2 (E.9)

In this basis the charge conjugation matrix is not the identity matrix, rather it is the

following symmetric matrix:

C = iσ2 ⊗ C4 (E.10)

C4 = σ3 ⊗ iσ2 (E.11)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[29] P. Fré, Comments on the Six Index Photon in D = 11 Supergravity and the Gauging of Free

Differential Algebras, Class. Quant. Grav. 1 (1984) L81 [INSPIRE].

[30] C. Chevalley and S. Eilenberg, Cohomology Theory of Lie Groups and Lie Algebras,

Transactions of the American Mathematical Society Trans. Am. Math. Soc. 63 (1948) 85.
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