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Abstract 

The dynamical regimes and performance optimization of quantum dot monolithic passively mode-locked lasers with 

extremely low repetition rate are investigated using the numerical method. A modified multisection delayed 

differential equation model is proposed to accomplish simulations of both two-section and three-section passively 

mode-locked lasers with long cavity. According to the numerical simulations, it is shown that fundamental and 

harmonic mode-locking regimes can be multistable over a wide current range. These dynamic regimes are studied 

and the reasons for their existence are explained. In addition, we demonstrate that fundamental pulses with higher 

peak power can be achieved when the laser is designed to work in a region with smaller differential gain.  

Keyword: Mode locked lasers; Quantum dot; Delay differential equation; Bifurcation; Semiconductor device 

modeling 

Background 

Quantum dot (QD) semiconductor material for ML laser is an intrinsically suitable active region material for short 

and high power pulses generation, due to its unique properties such as fast gain dynamics, easy gain/absorption 

saturation and small linewidth enhancement factor [1]. It has already been experimentally demonstrated that short 

periodic pulse sequence can be obtained by passive mode-locking (ML) using two-section Fabry-Perot (FP) cavity 

lasers [2]. Generally, high repetition frequency QD ML lasers (from tens of GHz to hundreds of GHz) and the 

performance improvement of them are the focus of many papers (see review paper [1] and references there). However, 

only few papers study the monolithic QD ML lasers with relatively low repetition frequency and, especially, their 

dynamical regimes [3, 4]. Indeed, in some applications, such as micro-machining and two-photon microscopy, 

periodic high power pulse sequences with much lower repetition rate are more desirable.  

In this work, the dynamic working regimes of a 2 cm monolithic QD ML laser with repetition frequency of about 2.4 

GHz have been studied utilizing a modified delay differential equation (DDE) model. Fundamental and harmonic ML 

regimes have been observed when changing the injection current, and the multistable regime sustains over a large 

current range. We found that the launch of the harmonic ML at high current should be mainly attributed to the 

relatively long repetition period of the device and the changes in the gain/absorption dynamics with the current. 

Based on numerical simulations, we demonstrated a way to push the starting point of the multistable regime to higher 

current value, in order to obtain higher output peak power in stable fundamental ML mode. 

Methods 
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Unless otherwise specified, in this paper, we considered a monolithic two-section QD ML laser (as shown in Figure 

1a) with active region consisting of 5-fold stack of self-assembled InAs QD layers, and with saturable absorber (SA) 

length LSA of 2mm, gain section length Lg of 18mm (the corresponding fundamental repetition frequency is 2.4 GHz), 

ridge width W of 6um, high-reflection coating at the SA side facet with reflectivity R0 = 95%, and the cleaved output 

facet with reflectivity RL = 33%. Indeed, this monolithic laser, used in our numerical simulation, has the same 

waveguide structure parameters of that used in the experimental studies in [3]. 

 

Figure 1 Schematic diagram of the considered two-section (a) and three-section (b) passively ML FP lasers in 

this paper. 

In previous publications [5 - 6], we have proposed a multisection DDE model, fully accounting for the ultra-fast 

carrier dynamics in the active region and the phase locking of the longitudinal modes in the waveguide of the QD ML 

lasers (for detailed descriptions of this model please refer to [5]). However, to perform the investigation of low 

repetition rate lasers, previous model has been modified.  

Firstly, modal gain description has been changed. In the old DDE model, we assumes that the hole occupation 

probability in the valence band ρh equals exactly to the electron occupation probability in corresponding states in the 

conduction band ρe, which is the so called excitonic model. While, in this paper, a quasi-exitonic DDE model is 

exploited, where we consider independent hole occupation probability in the gain section. ρh is assumed to have a 

fixed value in the gain section, to take into account the fact that, at moderate current density, the quasi-Fermi levels in 

the valence band are always clamped, due to the small separations between each sub-bands in the valance band [7]. 

Therefore, in this quasi-exitonic DDE model, the modal gain gi in the gain section is calculated following the 

equation: 

)1(_0 −+ΓΓ= h
i

e
iiyxi gg ρρ , (i = GS, ES)      (1) 

where g0 is the material gain coefficient, Γx = 0.65 and Γy = 0.0675 are the confinement factors in the lateral and 

vertical directions respectively. We assume that ρ
h

i have constant values of 0.4 and 0.2 for the ground state (GS) and 

the excited state (ES) respectively [8], and the material gain coefficients of the GS and ES transitions are 585 cm-1 

and 972 cm-1, respectively. On the contrary, in the SA, where no current injection is applied and electrons and holes 

are generated by the photon absorption, ρ
h should equal to ρe, so the modal absorption аSA_i in the SA can be written 

in the form: 

)21(_0_
e
iiyxiSA g ρα −ΓΓ= , (i = GS, ES)        (2) 

According to equations (1) and (2), we can easily derive that, since ρ
h is fixed to relatively low value (comparing with 

the high ρe, which is always larger than 0.8), the maximum modal gain (when ρ
e = 1) is usually smaller than ΓxΓyg0, 

i.e., the maximum modal gain is always smaller than the unsaturated absorption аSA_0 (when ρe = 0). These choices for 

the gain representation are in good agreement with the experimental observations (see Figure 3 in [1]), proving the 

validity of the quasi-exitonic assumption. 

Secondly, the gain spectral bandwidth 2γћ has been reduced. We have referred to the value used in Vladimirov’s 
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paper (see Figure 2 in [9]), so 2γћ = 3.4 meV, which is 10 times smaller than the value we used in [6]. Other 

simulation related parameters are the same as those in [6]. 

Thirdly, we have developed modified multisection DDE model for the simulations of the three-section QD ML laser. 

In the last part of this work, a three-section QD ML laser has been studied, in which the additional passive section 

(see Figure 1b) has the same active region with the gain/SA sections but is biased with an appropriate level of current 

to achieve optical transparency, i.e., there is no active region induced optical amplification or absorption. The 

simulations of this device have been performed by means of a modified DDE model, in which the passive section has 

been considered as an additional section that is optical transparent but has the same refractive index and intrinsic 

waveguide losses as that in other two sections. This absorber-gain-passive design was previously proposed in [10]. 

Results and discussion 

Dynamic regimes of the monolithic two-section ML laser 
In this subsection we analyze the dynamic regimes for the previously described 2 cm long two-section passively ML 

laser. In Figure 2, the bifurcation diagrams of the achieved peak power, the pulse width and the average power are 

reported. 

 

Figure 2 Bifurcation diagrams illustrating different operation regimes of the 2cm long two-section ML laser. (a) 

Peak power, (b) pulse width and (c) average power at the fixed reverse-bias voltage V= -2 V and as a function of the 

injection current for this device are shown. The fundamental ML branch (red cross), the second (black circle), the 

third (green cross), and the forth (blue plus) harmonic ML branches are illustrated. Arrows in (a) identify the working 

point which will be discussed later in Figure 3. 

 

Particularly, in Figure 2a, at each current point, local maxima of the output optical power time trace over the last 20 

round trips are gathered and plotted, so showing the pulse peak power stability/fluctuation in such time interval. This 

diagram is obtained by fixing the reverse voltage at -2 V and sweeping the injection current in a range from 380 mA 

(the threshold current) to 620 mA back and forth with a decreasing/increasing step of 2 mA for the harmonic 

ML/fundamental ML branches respectively. Considering the second harmonic branch as an example, at the initial 

current point (620 mA), the device is seeded with a well defined initial excitation trace, which has 1 mW peak power, 

1 ps pulse width and has 2 equal-spaced Gaussian-shape pulses within one round trip time; for the following current 

steps, the device is excited using the result of the last simulation with 2 mA higher current. Other branches are 

obtained similarly but with different corresponding initial excitations. 

The bifurcation diagram shown in Figure 2a is in good qualitative agreement with the results in [11]. For current just 
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above the threshold, the stable fundamental ML is achieved and can hold when increasing current until I = 510 mA, 

from then on, a unstable ML regime with gradual shrinking of the pulse peak power is observed, which finally 

transits to a harmonic ML regime with approximately twice higher repetition rate. On the contrary, when decreasing 

the current from I = 620 mA, the second harmonic ML is established first, but limited in the left by an abrupt jump to 

the fundamental branch at I = 425 mA, indicating that the state with a pair of equal-spaced pulses propagating in the 

cavity is no longer a solution for this ML system at such low current. Similar transitions, at I = 460 mA in the third 

harmonic ML branch and at I = 425 mA and I = 510 mA in the fourth harmonic ML branch, are observed. This 

diagram is a simple way to identify different ML regimes and their robustness by noticing to which current this 

regime is still sustained. It is interesting to notice that higher order harmonic ML always tends to relax to the closest 

and integral half-lower-order ML state, for example, the forth harmonic ML jumps to the second harmonic branch 

first and then to the fundamental branch, omitting the third harmonic branch. 

The numerical results here are quantitative consistent with the experimental results in [3] in the terms of the average 

power (see Figure 2c), for example, the average power is about 11 mW when I – Ith = 150 mA. In addition, for higher 

gain currents, both QD ML lasers show multiple co-existing pulses during one cavity round trip time. However, the 

discrepancies in the peak power and pulse width values are mainly caused by the difference in the gain spectrum 

bandwidth (see Figure 2b in [3]), which leads to higher peak power and shorter pulses in this work. Besides, in Figure 

2, we can see that the threshold current (380 mA) is two times higher than that in [3], this is due to the unidirectional 

propagation assumption in the DDE model which results to two times longer device length, so consequently, for 

similar threshold current density, the threshold current is doubled in this work.  

 

 
Figure 3 The net gain window for the GS pulses at different current values indicated in Figure 2a. (a) I = 386 

mA, (b) I = 420 mA, (c) I = 500 mA in the fundamental ML branch and (d) I = 500 mA in the third harmonic ML 

branch. In the net gain window, the overall losses (brown line) and overall amplification (black line) experienced by 

the pulse during a complete round trip in the cavity are shown with the corresponding pulse envelope (blue dashed 

line). The pulse envelope in this figure corresponds to the optical intensity of the pulse propagating inside the device 

cavity, which relates with but not equals to the output optical power. 

 

The possibility of the existence of multi-pulse in the laser cavity can be attributed mainly to the relatively long round 

trip time of this long monolithic laser. The integrated losses A(τ) and gains G(τ) experienced by the pulse over a 

complete round trip within the cavity are presented in Figure 3, which shows the so called net gain window (for 

detailed explanation of this kind of figures please refer to [12]). We can see that, the high intensity of the optical pulse 

leads to gain/absorption depletion in the gain/SA section when the pulse comes, and then the gain/absorption would 
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take a certain time to recover to the unsaturated initial value when the pulse gone. Typically, the recovery time for the 

absorption is much faster, i.e., few tens of picoseconds, and can be significantly shortened by the applied reverse 

voltage down to 1 ps or less. Contrary to the absorption, the gain full recovery is found to occur in few nanoseconds, 

what makes it even more special is that increasing the injection current only makes the gain recovery curve sharper 

but does not lead to noticeable reduction in the full recovery time (see Figure 3 in [12]). 

For the device studied in this paper, the fundamental ML has a repetition period of about 460 ps. Therefore, at current 

just above the lasing threshold (Figure 3a), fundamental ML is the only solution that satisfies the gain and absorption 

dynamics. We can see that the gain recovery rate is relatively slow now, so the gain is still smaller than the 

unsaturated losses before the following pulse comes, which helps to inhibit the back ground noise in the output. With 

the increase of the injection current, faster gain recovery and higher unsaturated gain are achieved; due to the long 

round trip period, even if it still can not fully recover, the gain overcomes the unsaturated losses and establishes a 

positive net gain range before the arrival of subsequent pulse (Figure 3b). Under this condition, fundamental ML can 

still be hold to certain extend. With further increase of the injection current, the positive net gain range will become 

even larger (Figure 3c), and finally results in the appearance of an additional pulse between each pair of original 

pulses by amplifying the background optical noise gradually, so the second harmonic ML appears. Since the 

absorption recovery time remains constant when increasing the current, the larger the current is, the earlier the gain 

exceeds the losses, and this condition makes the higher order harmonic ML becoming possible solution of this ML 

system at even higher current (Figure 3d).  

In our simulation, the spontaneous emission noise is highly reduced, leading to high inhibition of the spontaneous 

start-up of the harmonic ML. Therefore, the fundamental solution sustains up to a very high current level during the 

forward current sweeping. In the contrary, for the backward current sweepings, initial excitations with multiple pulses 

co-existing in the cavity are exploited, so the harmonic ML appears from the very beginning of the sweeping and 

holds until a current level where it is no longer a solution for the considered device. While in real experiments, due to 

the unavoidable spontaneous emission, automatic jump to harmonic ML at the onset current of the multistable regime 

should be expected when forward sweeps the injection current. In this study, we tried also the backward sweeping 

using initial excitations with 5 or even more co-existing pulses in one round trip time. In these kinds of situations, fast 

relaxation to the fourth harmonic ML is observed when numerical convergence was achieved. This fact indicates that, 

within the investigated current range, the relative relationship between the round trip time and the recovery times of 

gain and absorption could support, to the largest, four pulses co-existing in the laser cavity. 

 

Peak power improvement of the monolithic long-cavity ML laser 
Now we focus to the fundamental ML regime. In some applications such as the two photon microscopy, a pulse train 

with high pulse power and very low repetition rate is required. However, as demonstrated above, the maximum 

achievable peak power at the fundamental ML state is strictly limited by the early onset of the harmonic ML for lasers 

with repetition frequency from hundreds of MHz to few GHz. If this onset current is pushed to higher value above the 

threshold current, obviously, higher peak power will be obtained.  
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Figure 4 QD material gain as a function of the injection current density for the GS (blue line) and the ES (red 

line) of the considered device. The inserted first two markers indicate the threshold gain positions of the lasers 

without passive section (circle marker) and with a 4 mm long passive section (cross marker). The last square marker 

corresponds to a threshold gain position which will be discussed later. 

 

The GS and ES material gains gi/Γxy (Γxy = Γx*Γy) as a function of the injection current of the previously described 

device are shown in Figure 4. Based on above discussions, the onset of the harmonic ML at high current could be 

partially attributed to the increase of the unsaturated gain which makes the gain overcomes the losses easier. Since 

low repetition rate is our main target, so the round trip time cannot be reduced, therefore, the only way to sustain the 

fundamental ML over larger current span is to operate the laser in a condition of reduced differential gain (see Figure 

4). Thanks to the reduced density of states, QD medium always achieves early gain saturation at smaller current 

density comparing with its bulk and quantum well counterparts, which means that the differential gain of this medium 

decreases rapidly when increasing the injection current, as shown in Figure 4. To achieve these operation conditions 

we should increase the required threshold current of the laser, so that it would work at a current range with smaller 

differential gain. Different approaches have been attempted to obtain these favorable operation conditions as will be 

shown in the following. 

GS threshold gain of the considered devices has been estimated using the following approximate resonance equation 

at threshold: 

)
1

ln(
1

0

0_

L

iSAyx
SA

thyx
g

RRLL

L
g

L

L
++ΓΓ=ΓΓ αα    (3) 

where L = 2 cm is the device total length, аSA_0 = 585 cm-1 is the QD unsaturated absorption at the GS transition and 

аi = 2 cm-1 is the intrinsic waveguide losses. The last term on the right hand side of above equation represents the 

mirror losses аm of the laser cavity. The calculated threshold gain of the previously analyzed device is gth = 123 cm-1, 

while gth = 158 cm-1 for the four devices whose results are discussed below (see Figure 4). 

Four new 2 cm devices have been considered. For each of them, we changed only one structural parameter to push 

the threshold gain to 158 cm-1. The considered changes are: forming a 4 mm passive section (Lg = 14 mm), reducing 

the ridge width so Γx = 0.405, applying anti-reflection coating so RL = 0.13%, or increasing the SA length so LSA = 

2.85 mm (Lg = 17.15 mm). The peak power and pulse width bifurcation diagrams of these four devices are reported in 

Figure 5.  
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Figure 5 Bifurcation diagrams of the peak power (a) and the pulse width (b) for the four modified devices. 

These four devices are Lp = 4 mm (black), Γx = 0.405 (violet), RL = 0.13% (red) and LSA = 2.85 mm (yellow). For the 

sake of simplification, only the fundamental ML and the second harmonic ML branches are shown. 

The original device could achieve maximum peak power of about 650 mW before the onset current Ionset of the 

multistable regime (Figure 2a). According to the numerical results in Figure 5, these four modified devices all obtain 

higher output peak power before Ionset, which verifies our theoretical prediction for improving the maximum 

achievable fundamental ML peak power. However, comparing the four devices, it is obvious that reducing the 

reflectivity at the output facet is the most efficient method, which results in the highest peak power and practically 

similar pulse width. Unlike other approaches, increasing mirror losses (RL = 0.13%) not only moves device working 

point to low differential gain region, but also preserves as much as possible the generated optical power and transfers 

it into the output. Whereas, other approaches obtain higher threshold gain by introducing real optical attenuations or 

limiting the effective gain, so sacrificing the optical power generated in the laser cavity.  

We tried also to increase gth up until 221 cm-1 where the gain is almost totally saturated (see Figure 4) and differential 

gain is significantly reduced. However, at that condition, the threshold current is too high and overlaps with the 

harmonic ML onset current. Therefore, for achieving high peak power in fundamental pulse mode, the gth is not 

always the higher the better; we should keep it away from the total saturation region in the gain curve. 

 

Conclusions 

A modified multisection DDE model has been developed for the simulation of two-section or three-section ultra-long 

monolithic QD ML lasers. The multistable dynamical regimes of a 2 cm long monolithic passively ML laser was 

studied. When changing the injection current, stable fundamental ML and harmonic ML up to the fourth order have 

been observed. According to our analysis, the possibility to appear multistable ML regime should be attributed to the 

relatively shorter gain recovery time at high current comparing with the repetition period and the fast increase of the 

gain when increasing the injection current. Therefore, in order to obtain higher fundamental ML peak power, four 

modified lasers with higher threshold gains were considered. The numerical results validated our theoretic analysis 

that device working at regime with smaller differential gain could push the onset of harmonic ML to higher current 

level. In addition, we have also observed that reducing the output reflectivity is the most efficient way to reach higher 

fundamental ML peak power, since this method increases the cavity losses of the optical power by transferring them 

into the output power. 
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