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Efficient Statistical Simulation of Microwave
Devices Via Stochastic Testing-Based Circuit

Equivalents of Nonlinear Components
Paolo Manfredi, and Flavio G. Canavero

Abstract—This paper delivers a considerable improvement in
the framework of the statistical simulation of highly nonlinear de-
vices via polynomial chaos-based circuit equivalents. Specifically,
a far more efficient and “black-box” approach is proposed that re-
duces the model complexity for nonlinear components. Based on
recent literature, the “stochastic testing” method is used in place of
a Galerkin approach to find the pertinent circuit equivalents. The
technique is demonstrated via the statistical analysis of a low-noise
power amplifier and its features in terms of accuracy and efficiency
are highlighted.
Index Terms—Circuit simulation, microwave circuits, nonlinear

circuits, polynomial chaos (PC), power amplifiers, SPICE, statis-
tical analysis, tolerance analysis, uncertainty.

I. INTRODUCTION

I N RECENT years, strong attention has been drawn to the
availability of techniques for the efficient inclusion of in-

herent parameter variability in the early-stage simulation of
microwave and millimeter-wave electronic circuits [1]–[6]. As
the technology is pushing towards further miniaturization, the
impact of manufacturing process tolerances on high-frequency
designs is becoming increasingly critical. However, the com-
putational time for an accurate Monte Carlo (MC) analysis
[7]–[9], available in virtually all circuit simulators, is often
prohibitive due to the complex nature of the structures under
investigation.
Although the methodologies in [1]–[6] aimed at lowering the

computational burden associated to MC-like approaches, alter-
native modeling strategies that rely on the robust framework of
polynomial chaos (PC) [10] were also proposed for microwave
structures [11]–[15]. According to PC, stochastic responses are
expanded in series of orthogonal polynomials that depend on
the probability distribution of the random system parameters
[16]. Although some tradeoff exists, for a moderate number of

random parameters, the determination of the polynomial chaos
expansion (PCE) coefficients is much faster than running a large
number of MC simulations, and allows to efficiently obtain ac-
curate statistical information on the system response.
The calculation of the PCE coefficients is typically carried out

via the solution of an augmented set of deterministic equations,
built based on the random circuit properties via a stochastic
Galerkin method (SGM) [17]. The authors of this paper suc-
cessfully applied the SGM to stochastic linear transmission-line
problems [18]–[20]. As to circuit-level simulations, this opera-
tion is relatively straightforward when dealing with linear cir-
cuits [21], whereas it required approximate relations to handle
nonlinearities [22], since the presence of nonlinear functions im-
pedes the use of orthogonality properties.
Some works recently extended the framework to general

nonlinear circuits [23]–[25]. However, these approaches require
the availability of a closed-form expression for the nonlinearity
and their implementations are intrusive. In fact, a customized
solver with ad-hoc device models needs to be developed. Such
methods can hardly compete with commercial simulators,
which offer hundreds of sophisticated device models whose
internal description is often unavailable to the end user. More-
over, realistic designs sometimes include behavioral and/or
encrypted models, which cannot be handled by the approaches
in [23]–[25].
To partially overcome this issue, a different modeling

strategy was proposed in [26]. SPICE-compatible deterministic
circuit models are created for each stochastic electrical element,
connected in accordance with the original circuit topology, and
simulated in a standard circuit simulator to obtain the sought-for
PCE coefficients. This nonintrusive approach allows to rely
on the well-established solution algorithms and device models
available in commercial software, and was applied, for ex-
ample, to the simulation of power converters [27]. Nonetheless,
as far as nonlinear elements are concerned, the implementation
is based on the discretization of Galerkin projection integrals
by means of Gaussian quadrature rules. Unfortunately, albeit
rigorous and accurate, this technique does not scale favorably
with the number of random variables (RVs) included, which
limits the PC to the analysis of circuits with one or two random
parameters only, while hindering the simulation of complex
and realistic designs that include nonlinear components.
This paper improves the modeling methodology of nonlinear

devices in [26]. The idea of stochastic testing (ST), introduced
in [24], is accommodated in the state-of-the-art framework to
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mitigate the modeling complexity, thus leading to more efficient
SPICE-compatible circuit equivalents that can be simulated
without the need of a customized software. The preliminary
assessment carried out in [28] is here complemented by means
of comprehensive and in-depth mathematical derivations,
comparisons against the state-of-the-art tools, as well as dis-
cussions on the convergence and accuracy. Furthermore, it is
shown how the generation of the models is independent of the
physical description of the device, which makes the approach
“black-box” and applicable to arbitrary multiport subcircuits.
This circuit-based approach is fully compatible with any solver
type, including transient and harmonic balance (HB). Finally,
it is also detailed how worst case (WC) responses can be
conveniently estimated using the PC technique.
The paper is organized as follows. Section II summa-

rizes the rationale of PC-based simulations and introduces
the new proposed equivalent circuit models for nonlinear
devices. In Section III, it is detailed how to estimate WC
responses from the PCEs. The proposed modeling is validated
in Section IV through the statistical simulation of a low-noise
amplifier (LNA); a discussion on the efficiency is also provided.
Finally, conclusions are drawn in Section V.

II. CIRCUIT SIMULATION VIA PC
This section briefly recalls the state-of-the-art approach for

the nonintrusive PC simulation via circuit equivalents [26] and
outlines the proposed improved modeling for nonlinear devices.

A. PC Expansion
The underlying idea of the PC-based simulation is to repre-

sent stochastic circuit voltages and currents as PCEs, e.g.,

(1)

where denotes a generic voltage within the circuit and are
the pertinent coefficients to be determined. According to the
classical framework of PC [16], the series is truncated to a total
number of

(2)

terms. In the above equation, is the total number of RVs
affecting the circuit, encompassed in the -variate variable ,
whereas is the maximum polynomial degree, which can be
tuned to achieve better accuracy. As shown, for example, in
[26], and further demonstrated in this paper, choosing
generally provides reasonable modeling accuracy.
The functions in (1) are a -variate polynomial basis,

which is orthonormal with respect to the inner product

(3)

where is the joint probability density function (PDF) of the
RVs [16]. For a detailed discussion on how to construct these
multivariate bases, the reader is referred to [16] and [17].
Thanks to the orthogonality of the polynomials, the first PCE

coefficient, e.g., , is the average response, whilst the sum

Fig. 1. Illustrative amplifier circuit including a BJT with random forward cur-
rent gain .

of the squares of the remaining coefficients, e.g., ,
provides an estimation of its variance. Other statistical informa-
tion, like higher order moments, distribution functions or quan-
tiles, are readily extracted by randomly sampling (1) instead of
running repeated and time-consuming circuit simulations.

B. Deterministic Equivalent Augmented Network
This section outlines the simulation procedure to calculate the

PCE coefficients for circuit voltages and currents. The technique
is illustrated based on the amplifier circuit in Fig. 1, which in-
cludes a bipolar junction transistor (BJT) and where the bias
network is deliberately omitted to limit the network size. It is
also assumed that the circuit is affected by one random param-
eter only, i.e., the forward current gain of the BJT, which has
a Gaussian distribution with a nominal value of 145 and a rela-
tive standard deviation of 10%. In this paper, which focuses on
the more critical modeling of nonlinear devices, linear elements
are considered as deterministic.
According to the PC framework, and for the sake of conve-

nience and generality, the parameter is expressed in terms of
a standardized RV,

where is a Gaussian variable with zero mean and unit variance.
Following the simulation strategy in [26], each stochastic node
voltage and branch current is represented as a PCE like (1). As-
suming for simplicity a two-term expansion leads, for
example, to

(4)
and

(5)

where and are the first two Hermite polynomials
[16]. Analogous representations hold for the other node voltages
and branch currents.
A new node is then associated to each voltage coefficient, and

these nodes are connected with suitable multi-terminal equiva-
lent-circuit models for each electrical element, as illustrated in
Fig. 2 by means of the dashed shapes. These equivalent models
must enforce a proper relationship between the terminal volt-
ages and currents so that the (deterministic) node voltages and
branch currents in the equivalent network coincide with the PCE
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Fig. 2. Deterministic equivalent augmented counterpart of the circuit in Fig. 1.
The node voltages and the branch currents correspond to the PCE coefficients
of the stochastic voltages and currents in the original circuit.

Fig. 3. Generic stochastic subcircuit describing a nonlinear device like the BJT
in Fig. 1 with the pertinent terminal voltages and currents.

coefficients of the (stochastic) voltages and currents in the orig-
inal network. However, the linear elements being in this case
deterministic, their equivalent models reduce to a mere replica-
tion of the element itself. (The proper models to be used in the
dashed boxes when the linear elements are also stochastic are
discussed in [26] and are not repeated in this paper.)
With the proper deterministic equivalents, the augmented cir-

cuit in Fig. 2 is simulated once to retrieve the PCE coefficients
that provide pertinent statistical information without the need to
perform many repeated MC simulations of the original circuit.
A novel and more efficient approach to suitably model a non-
linear element like the BJT in Fig. 1 is discussed in Section II-C.

C. ST-Based Models for Nonlinear Devices

Consider Fig. 3, where the BJT symbol is replaced by the
gray shape to emphasize that the transistor may be described by
a generic subcircuit whose inner description is not necessarily
available. The terminal voltages and currents are represented by
their PCEs, where the dependence of the basis functions on has
been dropped for notational convenience.
In order to find a suitable deterministic equivalent for the non-

linear transistor, the following two-step procedure is adopted.
Step #1: Take instances of the stochastic ele-
ment with distinct samples of its random parameter ,
corresponding, for example, to the standardized samples

and , as
shown in Fig. 4. For consistency, the terminal voltages and
currents are also sampled in the corresponding value of ,
and the notation

(6)

Fig. 4. Deterministic instances of the nonlinear device with sampled random
parameters.

Fig. 5. Complete deterministic augmented equivalent of the BJT for a PCE
with terms.

(with ) has been introduced, leading to
and . It is important to point

out that the two instances in Fig. 4 are deterministic since
the random parameter has been sampled at a specific value,
and thus are the terminal voltages and currents.
Step #2: Express the currents at terminals B and C as

(7a)
(7b)

, and retrieve the current PCE coefficients as

(8a)
(8b)

where

(9)

It should be noted that, according to the Kirchhoff current law
(KCL), the PCE coefficients of the current at the third terminal
are given by

(10a)
(10b)

Equations (8) and (10) provide a relation between the current
and voltage PCE coefficients through the instances in Fig. 4. The
corresponding circuit equivalent implementing such equations
is shown in Fig. 5 and is used in the circuit of Fig. 2 as the
deterministic augmented model for the transistor.
It is important to remark that the equivalent model of Fig. 5 is

implemented by means of standard circuit elements only, i.e.,
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Fig. 6. Model complexity of nonlinear components for the state-of-the-art [26]
(solid line) and novel (dashed line) implementations with .

dependent sources and instances of the original stochastic el-
ement. Moreover, no particular assumption has been made on
the internal description of the nonlinear device, which is in-
deed treated as a “black-box” component. By way of example,
the HSPICE netlist for the augmented circuit of Fig. 2 with the
equivalent model in Fig. 5 is provided in Appendix A.
The outlined procedure is readily generalized to an arbitrary

number of terms in the PCEs, by considering deterministic
instances of the stochastic element, and to arbitrary multi-ter-
minal devices. In general, a clever and effective set of sam-
pling points for the random element parameters is generated by
means of the ST algorithm proposed in [24] and summarized in
Appendix B. The sampling points are always given in terms of
standardized RVs, like in the discussed tutorial example. A

matrix with entries , as in (6), is constructed that col-
lects the weights for the dependent voltages sources, and then
inverted to obtain the corresponding weights for the depen-
dent current sources. The example section shows how this new
ST-based implementation turns out to be accurate, yet much
more efficient, than the previous SGM-based one.

D. Comparison With the Galerkin-Based Modeling

The proposed modeling approach requires instances of the
original stochastic element, where coincides with the number
of unknowns (2) in each PCE. The state-of-the-art modeling
of nonlinear devices [26] is instead based on an SGM and on
the discretization of projection integrals by means of a tensor
product Gaussian quadrature rule. This solution is accurate and
rigorous, but also inefficient. In fact, contrary to the models for
linear elements, it requires the inclusion of

instances of the original nonlinear element, thus rendering
the model complexity hardly tractable when . Although
better quadrature schemes could in principle be adopted, their
implementation is cumbersome. Hence, this methodology can
hardly deal with multiple RVs.
Fig. 6 compares the model complexity of nonlinear devices

for the novel and state-of-the-art approaches when and
the number of RVs is increased. For , ;
however, when , the complexity of the previous imple-
mentation scales exponentially and is therefore outperformed by
the new one. It should be noted that the model complexity for
linear elements is already in [26]. Hence, although the novel

method is in principle applicable to linear elements as well, it
does not provide any relevant advantage.

III. WC RESPONSE
Sometimes the designer is interested in estimating WC

responses, i.e., in computing the upper and lower bounds of
the output response. A brute-force, but inefficient approach
for WC analysis is to use a large number of MC samples,
considering a bounded uniform distribution for the random
parameters. Smarter techniques make use, for example, of
genetic algorithms [29]. However, it should be pointed out that
a WC analysis is likely to provide unrealistic error margins
because the output responses are considered at their extremes,
disregarding their low probability to occur.
Nevertheless, since the PCE (1) turns out to be in fact an an-

alytical function of the RVs , it is possible to use it to estimate
WC responses. The problem reduces to calculating the upper
and lower bounds of the PCE and is carried out exactly when
dealing with second-order expansions , as shown in the
following. The result is therefore exact within the approxima-
tion provided by the PCE. Although this implies an improper use
of PC, because probability distributions are not taken into ac-
count, results consistent with MC simulations can be obtained,
as shown in Section IV.
The calculation is carried out in a recursive manner. First, it is

considered that a second-order polynomial may only have either
one maximum or one minimum inside a bounded domain. The
candidate point for the maximum or minimum is the point
that nullifies the components of the gradient, i.e.,

(11)

where is intended as the PCE in (1). It should be noted that the
derivatives in (11) always produce a first-order -dimensional
polynomial (i.e., a linear equation) in the multivariate variable
. Hence, the solution of (11) is written in matrix form as

(12)

where and collect the pertinent coefficients arising from
the gradient derivatives.
Besides this possible maximum or minimum, the PCE also

has a minimum and/or maximum on the boundary. Hence, the
-dimensional boundaries are iteratively explored by evalu-
ating the PCE at the extremes of . Each evaluation produces a
second-order -dimensional polynomial. Therefore, the
new candidate points are again calculated via (11) and (12). The
outlined procedure is applied recursively until the trivial case

(parabola) is reached. At every iteration, it is checked
whether the PCE values at the new candidate points are greater
or smaller than the previously computed solutions.

IV. APPLICATIONS AND NUMERICAL RESULTS
This section validates the proposed modeling methodology

through the simulation of the 2-GHz LNA in Fig. 7 [30], which
uses an NXP BFG425W wideband BJT. The amplifier is sup-
plied with a voltage of 4.5 V. Table I collects all the data con-
cerning the circuit components. The transmission lines are mi-
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Fig. 7. 2-GHz BJT LNA for the application example.

TABLE I
COMPONENT DATA FOR THE 2-GHz LNA

crostrip traces with a thickness of 2 m on a substrate with a rel-
ative permittivity of 4.6 and a thickness of 0.5 mm. The BJT is
modeled using a SPICE library available by the vendor, which,
in turn, relies on a level-1 (Gummel-Poon) build-in HSPICE
model. All the simulations are carried out using HSPICE on an
ASUS U30S laptop with an Intel Core i3-2330M, CPU running
at 2.20 GHz, and 4 GB of RAM.

A. Transient Analysis
A large-signal transient analysis is performed first. For this

simulation, up to RVs are considered, namely, the forward
current gain and the substrate capacitance of the BJT. These
parameters are assumed to be independent and Gaussian dis-
tributed, with average values of and
fF, respectively. With respect to the discussion in Section II, a
second standardized Gaussian RV is introduced so that the sto-
chastic gain and capacitance are in general expressed as

and fF, where denotes the
relative standard deviation. The input signal is a sinusoid with
a 10-dBm power and a frequency of 2 GHz.
To calculate statistical information via the proposed

PC-based methodology, a single simulation of a -augmented
deterministic network is carried out. This equivalent circuit is
automatically generated in MATLAB following the procedure
outlined in Section II and analyzed in HSPICE. Being the linear

Fig. 8. Standard deviation of the steady-state time-domain output power for a
sinusoidal input power of 10 dBm. Markers: reference results from MC anal-
ysis by considering one RV with a relative standard deviation of 10% or
20% , or two RVs with the same independent variations ( and , re-
spectively); lines: results from the PC-based simulation with order 1 (dotted), 2
(dashed), and 3 (solid line).

TABLE II
NRMSE AND NME BETWEEN MC ANALYSIS AND PC

RESULTS WITH DIFFERENT EXPANSION ORDERS

elements nonstochastic, they are merely replicated times in
the augmented circuit. The stochastic BJT is modeled using the
proposed ST-based approach instead. It is worth mentioning
that the available library model for the BFG425W is used
transparently in the proposed simulation approach.
Fig. 8 shows one period of the standard deviation of the output

power at the steady state. In particular, four scenarios are ana-
lyzed, by considering variations on one random parameter only,
i.e., , or both and , as well as relative standard devi-
ations of either 10% or 20% for each parameter. The markers
indicate the results obtained with a standard MC analysis with
10 000 samples, whereas the solid line is the result from the
PC-based simulation with order . The PCE coefficients
for the power are retrieved from the voltage and current coeffi-
cients, as described in [28]. As shown by the figure, the magni-
tude of the standard deviation is of course larger when the vari-
ations are greater % . Reasonably, it further increases
when two RVs are considered instead of one.
To better appreciate the convergence and accuracy of the

PC-based simulation, a zoom-in is displayed, where the MC
result is further compared with PC simulations of orders

(dotted line) and (dashed line), in addition to the
third-order expansion. This comparison shows that the results
obtained with second- and third-order expansions are hardly
distinguishable, even when %, whereas the first-order
expansion is not always accurate. To further assess the con-
vergence, Table II reports the normalized root-mean-square
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TABLE III
SAMPLING POINTS AND WEIGHTS OF THE DEPENDENT VOLTAGE SOURCES FOR THE MODELING OF THE BJT

error (NRMSE) and the normalized maximum error (NME)
between the PC and MC results (the normalization factor is
the maximum swing). It is shown that using a second-order
expansion already suffices to obtain a NRMSE below 1% and
a NME below 2%, except for the case and %.
This can be explained by the fact that with , just
terms are considered for the PCEs, and the standard deviation
is estimated out of terms only.
Table III summarizes, for all the models used to generate

the results in Fig. 8, the polynomial basis functions , the
standardized sampling points for the random component pa-
rameters, and the corresponding weights for the dependent
voltage sources . When , the bi-
variate RV is defined as . For the sake of convenience,
the weights are given as the entries of a matrix . The
weights for the dependent current sources are obtained as
the entries of .
At this point, it is relevant to remark that the sampling points

and the weights solely depend on the expansion order , the
number of RVs , as well as on their distribution type. They
are therefore problem independent. The sampling points and the
matrices and for a wide variety of problems can be pre-
computed and stored into lookup tables.

B. DC Analysis
Secondly, a WC analysis on the dc response of the BJT is

carried out. For this purpose, only variations on are con-
sidered (uniform within ), as of course the capaci-
tance does not affect the dc behavior. For the analysis, the col-
lector–emitter voltage is swept from 0 to 3 V, while three

Fig. 9. BJT collector current in dc. Light area: superposition of MC samples
providing the spread due to the variability of the forward current gain; thick
lines: WC bounds estimated with PC.

values are considered for the base current , i.e., 2, 5, and
10 mA. Owing to the uniform variability, orthonormal Legendre
polynomials [31] are used for the PCEs, the first three being

. The corre-
sponding standardized sampling points generated by the ST al-
gorithm for a second-order PCE are , , and

.
The light area in Fig. 9 is a superposition of MC samples of

the collector currents calculated with the given bias configu-
rations. The thick lines show theWC bounds estimated from the
PCEs of the collector currents in each configuration and match
very well with the spread predicted via the MC analysis.
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Fig. 10. Statistical assessment of the PAE for the LNA in Fig. 7. Thin lines:
samples of the random response; thick lines: limits (dashed) and 0.135%–99.
865% quantiles (solid) obtained withMC;markers: estimations provided by PC.

C. HB Analysis

As a third test case, four RVs are considered. In addition to
and , the base–emitter and base–collector junction ca-

pacitances are assumed to be also random with average values
of fF and fF, respectively. All the
random parameters have a relative standard deviation of 10%.
AnHB analysis with ten harmonics and a fundamental tone of

2 GHz is performedwith the HSPICE-RF tool. Fig. 10 shows the
power-added efficiency (PAE) as a function of the input power.
The thin curves are a superposition of 1000 random responses
from the MC analysis and provide a qualitative assessment of
the response spread due to the variability. The dashed lines (the
crosses) are the responses lying three times the standard devi-
ation from the average response, while the solid thick lines
(the stars) are the responses corresponding to the 0.135% and
99.865% quantiles, all estimated with 10 000 MC samples (with
PC). A large number of samples is necessary to accurately cap-
ture the quantiles, thus rendering the MC simulation extremely
inefficient. For the PC simulation, has been used. The two
quantiles bound the 99.73% of the responses and coincide with

limits when the distribution on the response is Gaussian.
The comparison between these curves indicates that for input
powers above 2 dBm, i.e., where the curves start to signif-
icantly differ, the PAE no longer has a Gaussian distribution.
Therefore, average and standard deviation are not sufficient to
fully characterize the strongly non-Gaussian response.
For instance, Fig. 11 displays the PDF of the PAE for an input

power of 2 dBm, obtained with both MC (bars) and PC (line).
From this plot, it is possible to conclude that it is very unlikely
that the amplifier exhibits an efficiency lower than 30% or larger
than 38% for such an input power. From the above comparisons,
the excellent accuracy provided by PC in reproducing the MC
results is established.
In order to compare the accuracy achieved with the ST-based

implementation as opposed to the SGM-based modeling,
Table IV collects the NMSE and NME between the two ap-
proaches and MC for both the limits and the quantiles of
Fig. 10. The results show that ST allows to obtain similar or
even superior accuracy with respect to the SGM.

Fig. 11. PDF of the PAE for an input power of 2 dBm. Bars: MC result; line:
PC estimation.

TABLE IV
ACCURACY ON THE PAE OBTAINED WITH BOTH THE

SGM- AND ST-BASED MODELS

Fig. 12. Time-domain output power for an input power of 10 dBm. Thin
curves: samples of the random response; thick lines: WC bounds from the PCE
of the output power.

As a further example, Fig. 12 reports a WC analysis
of the time-domain output power for an input power of
10 dBm. Once again, the thin curves are MC samples indi-

cating the spread of the response due to the variations in the
BJT parameters. The strongly nonsinusoidal behavior of the
output power reveals that for such a large input the amplifier
is highly nonlinear. The thick lines are the WC responses
extracted from the PCE of the output power and match well the
fluctuation bounds given by MC. For this WC simulation, the
random parameters were ascribed a uniform distribution in the
range .

D. Small-Signal Frequency-Domain Analysis

Finally, a small-signal frequency-domain (ac) analysis is car-
ried out. In this simulation, three additional RVs are included,
i.e., the base, collector, and emitter inductances with averages
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Fig. 13. Stochastic analysis of . Thin lines: samples from MC analysis;
dashed and solid thick lines: 95% and 99% quantiles, respectively, obtained
from the MC samples; markers: same quantiles estimated via the PC-based cir-
cuit simulation.

TABLE V
SIMULATION TIMES FOR THE CONSIDERED TEST CASES

nH and nH, once again with a 10%
Gaussian variation.
Fig. 13 displays the magnitude of . The thin lines (from

the MC analysis) show the very large fluctuation resulting from
the variations of the seven random BJT parameters. In addition,
the quantiles bounding the 95% and 99% of the responses, com-
puted using bothMC (dashed and solid thick lines, respectively)
and PC with (crosses and stars), are shown. The accuracy
of the PC result is again very good for this test case.

E. Efficiency Assessment

Table V provides the main figures concerning the per-
formance of the PC technique in conjunction with the new
ST-based circuit equivalents for the nonlinear elements. The
simulation times are compared against a MC analysis with
10 000 samples. Of course, the efficiency depends on the
number of RVs included in the analysis and the order of the
PCEs. However, for , a speed up of two orders of magni-
tude is achieved even when seven RVs are considered.
To assess the efficiency improvement with respect to the

state-of-the-art Galerkin-based models instead, Table VI col-
lects the information about the complexity and simulation time
of the two modeling approaches. The speed up achieved with
the novel implementation is consistent with the different com-
plexity scale. The efficiency improvement becomes dramatic

TABLE VI
EFFICIENCY COMPARISON BETWEEN SGM- AND ST-BASED MODELING

when is increased. With four RVs, the ST-based model is al-
ready more than one order of magnitude faster. No comparison
is provided for the test case with seven RVs, as the complexity
of the SGM-based model becomes intractable.

V. CONCLUSION
This paper improves the framework of the PC-based statis-

tical simulation of highly nonlinear circuits with a specific em-
phasis on microwave devices. The simulation strategy relies
on the analysis of an equivalent and deterministic, though aug-
mented, counterpart of the original circuit with stochastic com-
ponents. The equivalent models for nonlinear elements are con-
structed based on the ST technique in place of the previously
used SGM. They consist of several deterministic instances of
the stochastic component with sampled random parameters. The
proposed modeling approach is far more efficient as the com-
plexity scales better with the number of RVs. Furthermore, it is
purely “black-box,” thus being applicable to arbitrary multiport
nonlinear subcircuits, even when the internal description is un-
available.
The simulation methodology is compatible with standard

commercial SPICE-type simulators and any solver type. It
allows to obtain accurate statistical information like mo-
ments, distribution functions, and quantiles, with relevant
speed ups compared to both the classical MC method and the
state-of-the-art SGM-based modeling. In this paper, it is also
detailed how WC responses can additionally be estimated with
PC. Thorough validations in terms of accuracy and efficiency
are provided via the statistical assessment of a low-noise power
amplifier.
This paper represents a step forward towards the simulation

of complex nonlinear designs with a large number of random
parameters. Inclusion of even larger numbers of RVs in PC sim-
ulations is, however, still an open issue and currently represents
an active research field.

APPENDIX A
SPICE NETLIST EXAMPLE

The HSPICE netlist for the augmented circuit of Fig. 2 with
the equivalent BJT model in Fig. 5 is provided as follows.

$ voltage source

V0 A0 0 <waveform>

V1 A1 0 DC 0
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$ inductor

L0 A0 B0 <value>

L1 A1 B1 <value>

$ BJT model

X1 C0 C1 B0 B1 E0 E1 BJT_model

$ capacitor

C0 C0 0 <value>

C1 C1 0 <value>

$ resistor

R0 E0 0 <value>

R1 E1 0 <value>

.SUBCKT BJT_model C0 C1 B0 B1 E0 E1

E0C Y0C 0 POLY(2) C0 E0 C1 E1 0 1

E0B Y0B 0 POLY(2) B0 E0 B1 E1 0 1

V0C Y0C Z0C DC 0 $ jC0

V0B Y0B Z0B DC 0 $ jB0

X0 Z0C Z0B 0 BJT BF 130.5

E1C Y1C 0 POLY(2) C0 E0 C1 E1 0 1 1

E1B Y1B 0 POLY(2) B0 E0 B1 E1 0 1 1

V1C Y1C Z1C DC 0 $ jC1

V1B Y1B Z1B DC 0 $ jB1

X1 Z1C Z1B 0 BJT BF 159.5

FC0 C0 E0 POLY(2) V0C V1C 0 0.5 0.5

FC1 C1 E1 POLY(2) V0C V1C 0 0.5 0.5

FB0 B0 E0 POLY(2) V0B V1B 0 0.5 0.5

FB1 B1 E1 POLY(2) V0B V1B 0 0.5 0.5

.ENDS BJT_model

It is worth noting that dependent sources with multiple con-
trolling variables are used for the weighted sums of voltages and
currents.

APPENDIX B
GENERATION OF THE SAMPLING POINTS

The set of sampling points for the stochastic
component parameters is selected based on the ST algorithm
[24]. It is a subset of the points for a -di-
mensional tensor product Gaussian quadrature rule [32]. The
quadrature points are first sorted with decreasing order of the
corresponding quadrature weights . The first quadra-
ture point is then selected to be the first sampling point, i.e.,

. A corresponding matrix is constructed as

(B.1)

where .
Afterwards, an iterative procedure is carried out, in which a

quadrature point is selected as an additional sampling point

if the following inequality holds:

(B.2)

where

(B.3)

while is a threshold coefficient (in this paper, is
used).
When a new sampling point is added, the matrix is updated

to include the normalized vector

(B.4)

as a new column. The iteration is terminated when sampling
points have been selected.
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