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Arbitrarily Oriented Perfectly Conducting Wedge
over a Dielectric Half-Space: Diffraction and

Total Far Field
Vito Daniele, and Guido Lombardi, Senior Member, IEEE

Abstract—Complex scattering targets are often made by struc-
tures constituted by wedges and penetrable substrates which may
interact at near field. In this paper we describe a complete proce-
dure to study this problem with possible developments in radar
technologies (like GPR), antenna development or electromagnetic
compatibility (tips near substrates). The diffraction of an incident
plane wave by a perfectly conducting wedge over a dielectric
half-space is studied using generalized Wiener-Hopf equations,
and the solution is obtained using analytical and numerical-
analytical approaches that reduce the Wiener-Hopf factorization
to integral equations. The mathematical aspects are described in
a unified and consistent theory for angular and layered region
problems. The proposed procedure is valid for the general case
and the paper focuses on E-polarization at normal incidence. The
solutions are given in terms of GTD/UTD diffraction coefficients
and total far fields for engineering applications. The paper
presents several numerical test cases that show the validity of
the proposed methods.

Index Terms—Wedges, Isotropic media, Dielectric substrate,
Wiener-Hopf method, Integral equations, Analytical-numerical
methods, Geometrical optics, Electromagnetic diffraction, Geo-
metrical and Uniform theory of diffraction, Near-field interac-
tions, Radar applications, Electromagnetic Compatibility.

I. INTRODUCTION

ACCURATE and efficient solutions to diffraction problems
are of great interest in electromagnetic engineering com-

munities, in particular when studying complex structures made
of composite materials with near-field interactions. For exam-
ple, in radar technologies (like GPR), antenna development
or electromagnetic compatibility, complex structures may be
constituted by wedges near penetrable substrates.

This paper considers the problem constituted by the eval-
uation of the electromagnetic field scattered by an arbitrarily
oriented perfectly conducting (PEC) wedge over a dielectric
half-space at a distance d, Fig.1. Cartesian coordinates (x, y)
as well as polar coordinates (ρ, ϕ) will be used to describe
the problem. The wedge structure is delimited by the PEC
face a at ϕ = Φa and the PEC face b at ϕ = −π − Φb,
and it is illuminated by a plane wave. The domain of the
problem is subdivided into three regions: the angular region
1 (0 ≤ ϕ < Φa), the layered region 2 (y ≤ 0), the
angular region 3 (−π − Φb < ϕ ≤ −π). Regions 1 and 3
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Fig. 1. The arbitrarily oriented PEC wedge over a dielectric half-space.

are filled with a low-dense lossless isotropic homogeneous
dielectric medium, which, without loss of completeness, can be
considered free space with permittivity εo, permeability µo and
propagation constant k = ω

√
µo εo. Region 2 is constituted by

a finite layer (−d < y ≤ 0) and a high-dense lossless isotropic
homogeneous dielectric half-space (y < −d). The finite layer
is homogenous to regions 1 and 3, while the infinite dielectric
medium is characterized by a real relative permittivity εr and
without loss of generality by a relative permeability µr = 1
(k1 = ω

√
µoεrεo) and it is at a distance d from the edge

of the wedge that can even be zero (contact between edge
and dielectric). For the sake of simplicity, the incident plane
wave will be assumed Ez-polarized with direction ϕ = ϕo
(0 ≤ ϕo < Φa). The general skew incidence case does not
introduce conceptual difficulties but doubles the number of
equations to be solved.

To our knowledge, the scientific literature does not contain
solutions for the proposed problem in the spectral domain.
However, the problem considered in this paper is close to
several topics of great interest that have been studied by
many authors. A related topic is diffraction by a buried body.
Particular cases of a wedge immersed in a lossy medium were
studied in [1],[2] by using the Uniform Theory of Diffraction
(UTD) with limitation when the wedge is near the interface
between the two media. Solutions for the scattering by a
conducting strip over a lossy half-space are reported in [3],[4].
The physical optics expression for the RCS of a PEC flat plate
over a dielectric half-space is described in [5]. Moreover, a lot
of effort has been made in the field of integral equations (IEs)
methodology by computing the Green function for layered
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media, for instance see [6], [7]. Stemming from these works,
a lot of literature has focused on scattering by buried PEC
structures with IEs formulation in the spatial domain, see
[8]-[10] and references therein. We recall that the use of
finite methods should be combined with suitable singular basis
functions capable of modeling the singularity of the physical
quantities [11],[12].

Recently, the authors of this paper have shown that the Gen-
eralized Wiener-Hopf (GWH) method is a novel and effective
technique to solve electromagnetic problems involving isolated
impenetrable and penetrable wedges [13]-[23], in particular
with the solution of the GWH problem via the approximate
solution of Fredholm integral equations (FIEs) [15], [24]-[26].
In the authors’ opinion, the GWH technique completes the
spectral techniques developed in the past to study angular
regions such as the Sommerfeld-Malyuzhinets technique (see
[28]-[31] and reference therein) and the methods based on the
Kontorovich-Lebedev transform (see [32]-[34] and reference
therein).

The aim of this paper is to successfully apply the GWH
method to numerically solve the problem considered in Fig.
1, by using a unique entire model that takes into account the
true near-field interaction of the PEC wedge with the dielectric
half-space to obtain precise field estimation. In particular the
Wiener-Hopf (WH) technique is extended to simultaneously
deal with problems where angular regions and rectangular
regions coexist. In preliminary works [35]-[36] a simplified
version of the problem when face b is parallel to the interface
(Φb = 0) and the angular region 1 is obtuse (Φa > ϕo > π/2)
has been analyzed in terms of free space GTD coefficients.
The extension to the general case of the arbitrary orientation of
faces a and b is not trivial [37]-[38] and it requires some effort,
particularly in the presence of acute angular regions. Moreover,
a deep study of the field inside the dielectric region requires the
correct evaluation of the spectra of the electromagnetic fields
near the branch points originated by the spectral propagation
constants due to the presence of different media. In this paper,
uniform formulas are given in order to calculate the field
strength and phase for any direction in each region.

The GWH formulation of the problem is described in
Sections II.A and II.B, respectively, for the angular regions, see
(5)-(6), and the layered dielectric region, see (12)-(13), where
we define the WH unknowns in terms of Laplace/Fourier
transformations of the field components. Sections III.A and
III.B present valid FIEs in each region in the spectral domain
and in the angular complex plane w (typically used in Som-
merfeld integrals for GTD computation). Finally a consistent
and solvable system of FIEs is given in Section III.C (52)-
(53). Since the numerical solution of the system provides
approximate representations of an analytical element of the
WH unknowns in the angular complex plane w, Appendix A
is devoted to how to analytically extend the solution via dif-
ference equations. Section IV deals with the evaluation of the
electromagnetic far field in the whole spatial domain for Ez-
polarization in terms of Geometrical Optics (GO) components
and uniform diffracted components (UTD). Finally, numerous
significant test cases are presented in Section V to validate our
technique and practical discussions are included with physical

interpretation. The results show the convergence, the efficiency
and the efficacy of the proposed method by calculating the
approximated spectra of the field components. A comparison
with the exact solution is only possible in the free space limit
(εr = 1). The approximated spectra allow, in particular, to
compute diffraction diagrams and total far field.

For the sake of clarity, we summarize the mathematical
procedure by the following steps:

• Generalized Wiener-Hopf equations (Sec. II)
• Fredholm integral equations in w plane and their dis-

cretization (Sec. III)
• Analytical extension (Appendix A)
• Asymptotic solution and Total Far Field (Sec. IV)

II. THE GENERALIZED WIENER-HOPF FORMULATION

With reference to Fig. 1, Section I describes the geometry
and the material properties of the problem, which is studied
by considering time harmonic electromagnetic fields with
a time dependence specified by the factor ejω t which is
omitted. In order to facilitate the extrapolation of the equations
and mathematical properties from region 1 to region 3, we
introduce the supplementary angular coordinate defined by
(ϕ = −π − ϕ). Thus, the angular region 3 is also defined
by (0 ≤ ϕ̄ < Φb). The source is an incident Ez-polarized
plane wave having the following longitudinal component:

Eiz = Eoe
jk ρ cos(ϕ−ϕo) (1)

where ϕo is the azimuthal angle which defines the direction of
the plane wave and k = ω

√
µo εo is the propagation constant

of region 1. Without loss of generality, we suppose that the
remote source originates from region 1, thus 0 < ϕo < Φa. To
derive the formulation of the problem in the spectral domain
we define the following Laplace/Fourier transforms:{

V+(α,ϕ) =
∫∞

0
Ez(ρ, ϕ)ejα ρdρ

I+(α,ϕ) =
∫∞

0
Hρ(ρ, ϕ)ejα ρdρ

, (y ≥ 0) (2)

{
v(η, y) =

∫∞
−∞Ez(x, y)ejη xdx

i(η, y) =
∫∞
−∞Hx(x, y)ejη xdx

, (y ≤ 0) (3)

To determine the GWHEs we will make extensive reference
to the following quantities labeled axial spectral unknowns:

V+(η) = V+(α = η, 0), I+(η) = I+(α = η, 0),
Vπ+(η) = V+(α = η,−π), Iπ+(η) = I+(α = η,−π),
V−(η) = Vπ+(−η), I−(η) = −Iπ+(−η).

(4)

These quantities are labeled with ± subscripts: + indicates
plus functions in the complex plane η, i.e. functions that con-
verge in an upper half-plane (Im[η] > Im[ηup]); conversely −
indicates minus functions that converge in a lower half-plane
(Im[η] < Im[ηlo]). The + (−) functions are considered non-
conventional if Im[ηup] > 0 (Im[ηlo] < 0). The axial spectral
unknowns are Laplace transforms evaluated in ϕ = 0,±π
directions. Without loss of generality, to avoid the presence of
singularities on the real axis of the η plane, the propagation
constants k and k1 are assumed with a negative (vanishing)
imaginary part also in the presence of lossless media.
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A. Angular regions

According to the theory presented in [14]-[17], the GWHEs
for the angular regions 1 and 3 are respectively

Yc(η)V+(η)− I+(η) = −Ia+(−ma(η)) (5)

Yc(η)Vπ+(η) + Iπ+(η) = Ib+(−mb(η)) (6)

where

Ia+(−ma) =

∫ ∞
0

Hρ(ρ,Φa)e−jmaρdρ (7)

Ib+(−mb) =

∫ ∞
0

Hρ(ρ,−π − Φb)e
−jmbρdρ (8)

are unknowns respectively defined on face a and b in terms
of spectral variables ma,b(η) = −η cos Φa,b + ξ(η) sin Φa,b ,
free-space spectral admittance Yc(η) = 1

Zc(η) = ξ(η)
kZo

, free-
space spectral propagation constant ξ(η) =

√
k2 − η2 (with

ξ(0) = k) and free space impedance Zo = 1/Yo.

B. Layered region

According to the theory of layered regions, which use
transmission line modeling, see for example [26] and [27],
the following spectral impedance relation holds for region 2:

Y (η)v(η, 0) = −i(η, 0) (9)

The admittance Y (η) = 1/Z(η) is the one seen at y = 0

Y (η) =
Yd(η) cos(ξ(η)d) + jYc(η) sin(ξ(η)d)

Yc(η) cos(ξ(η)d) + jYd(η) sin(ξ(η)d)
Yc(η) (10)

where Yd(η) = 1
Zd(η) = − i(η,−d)

v(η,−d) = ξd(η)
k Zo

is the spectral
admittance of the dielectric region and ξd(η) =

√
εrk2 − η2

is the spectral propagation constant. From (2), (3) and (4)

v(η, 0) = Vπ+(−η) + V+(η),
i(η, 0) = −Iπ+(−η) + I+(η),

(11)

thus we obtain the following Wiener-Hopf equation (WHE)

Y (η)(Vπ+(−η) + V+(η))− Iπ+(−η) + I+(η) = 0 (12)

Substituting η → −η in (12) we obtain an independent WHE

Y (−η)(Vπ+(η) + V+(−η))− Iπ+(η) + I+(−η) = 0 (13)

Moreover, according to the transmission line theory we have

v(η, y) =
Zd cos (ξ (d+ y)) + jZc sin (ξ (d+ y))

Zd cos(ξ d) + jZc sin(ξ d)
vη(0), −d ≤ y ≤ 0

(14)
with Zd, Zc and ξ functions of η; and for y < −d

v(η, y) = vη(η,−d)ejξd(y+d), y < −d (15)

with ξd = ξd(η). The reflection coefficients for the incident
wave respectively at y = −d and y = 0 are

ΓRD =
Yc(ηo)− Yd(ηo)
Yc(ηo) + Yd(ηo)

, Γo =
Yc(ηo)− Y (ηo)

Yc(ηo) + Y (ηo)
(16)

The system of GWHEs (5), (6), (12), (13) can be exactly
solved in closed form only when the dielectric half-space is not
present, i.e. when the PEC wedge is immersed in free space.
Since exact solutions for the general case are not available,
we resort to approximate numerical-analytical methods based
on Fredholm integral equations (FIEs) to obtain approximate
factorizations [15], [24]-[26].

III. FREDHOLM INTEGRAL EQUATIONS FOR
FACTORIZATION IN w-PLANE

The system of four GWHEs (5), (6), (12), (13) are defined
into four complex planes (η,−η,ma,mb) with six unknowns
V+(·), I+(·), Vπ+(·), Iπ+(·), Ia+(·), Ib+(·). In order to obtain
an approximate solution, we resort to approximate factoriza-
tion by reducing (5), (6), (12), (13) to FIEs where the un-
knowns Ia+(−ma(η)), Ib+(−mb(η)), Iπ+(−η), I+(−η) do
not appear [36], since they are eliminated through decompo-
sition. Since (5), (6) for regions 1 and 3 are cumbersome to
be decomposed in η-plane especially for acute aperture angles
(0<Φa,b<π/2 ), we introduce the angular complex plane w

η = −k cos(w) (17)

already successfully applied in angular region problems [14],
[16], [18], [22], [23], see Section III.A. The mapping between
η and w has been studied extensively in [14], Appendix I of
[18] and [26] and, it presents several important properties. In
particular we recall that, by using the notation F (−k cosw) =
F̂ (w), the plus functions in η are even functions of w [14].

In order to make a consistent system of equations also (12),
(13) of region 2 will be formulate in terms of FIEs in the
angular complex plane w, see Section III.B.

In Section III.C the resulting system of four FIEs with un-
knowns V̂+(w), Î+(w), V̂π+(w), Îπ+(w), i.e. the axial spectra
in the angular complex plane w, is reduced to two coupled
FIEs (52)-(53) with unknowns V̂+(w), V̂π+(w) that is numer-
ically solved.

A. FIEs for Angular regions

In [36] FIEs are obtained with a lot of mathematical effort
in η-plane for obtuse angles. To deal with the general case we
resort to the angular complex plane w.

Let’s first consider the angular region 1. Taking into account
that ma = +k cos(w + Φa), in the w-plane (5) becomes

−YoV̂d(w)− Î+(w) = −Îa+(w + Φa) (18)

or equivalently

YoV̂d(w − Φa) + Î+(w − Φa) = Îa+(w) (19)

where V̂d(w) = sinwV̂+(w), Ŷc(w) = −Yo sin(w) (ξ(w) =
−k sin(w)), thus Ŷc(w)V̂+(w) = −YoV̂d(w). Substituting
w → −w and using Îa+(w) = Îa+(−w) we obtain

Î+(w+Φa)−Î+(w−Φa) = Yo
[
V̂d(w + Φa) + V̂d(w − Φa)

]
(20)

that is a difference equation in the w-plane that relates Î+(w)
to V̂d(w). In order to obtain Î+(w) as a function of V̂d(w)
(Norton representation) we apply the Malyuzhinets-Fourier
(M-F) transform1 [39]. According to the Malyuzhinets theory
(see also [39]) the scattered field (the total field minus the
incident field) is regular in the strip −Φa ≤ Re[w] ≤ Φa, thus
V̂d(w) and Î+(w) are regular in −Φa ≤ Re[w] ≤ Φa except

1The Malyuzhinets-Fourier (M-F) transform

F̄ [t] = MF{F̂ (w)} = −j
∫ j∞
−j∞ F̂ (w)e+jtwdw,Re[t] = 0

F̂ [w] = MF−1{F̄ (t)} = − j
2π

∫ j∞
−j∞ F̄ (t)e−jtwdt,Re[w] = 0
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for the poles ±ϕo due to the incident field. With this consid-
eration, by using the transport theorem and the convolution
theorem in M-F in (20), we obtain a pure algebraic equation
in M-F domain (t plane), whose M-F inverse transformation
gives the following generalized Norton representation (21) in
terms of Î+(w) and V̂d(w) for Re[w] = 0 which is a singular
integral representation [35]:

Î+(w) = j
Yo

2Φa
P.V.

j∞∫
−j∞

cot(
π

2Φa
(w − w′))V̂d(w′)dw′ + ÎN (w)

(21)

where ÎN (w) = j πYokΦa

2 sin( π
Φa
ϕo)

cos( π
Φa
w)−cos( π

Φa
ϕo) and P.V. denotes

the principal value.
The singular integral representation (21) is equivalent to

Î+(w)=−YoV̂d(w) +
jYo
2Φa

∫
M

cot

(
π

2Φa
(w − w′)

)
V̂d(w

′)dw′+ÎN (w)

(22)
for Re[w] < 0 where the integration line is the imaginary axis
M (Re[w′] = 0). In order to obtain good numerical conver-
gence in the angular complex plane w, we have successfully
experienced the application of the contour deformation that
warps M into M1 (Re[w′] = −π/2). However in (22) we
need to take into account the structural poles of the kernel
w′ = ±(w+2nΦa), n ∈ Z, that arise from the poles of cot(·)
in the integral kernel. In wedge problems treated with GWHEs
we have successfully applied the mapping

wa =
π

Φa
w (23)

which allows good properties of convergence by warping Ma

(Re[w′a] = 0) into Ma1 (Re[w′a] = −π/2, i.e. Re[w′] =
−Φa/2). This deformation avoids the interaction with struc-
tural poles also for acute angular regions (this property is not
true in the w plane and in the η plane). This result justifies
the validity of [23] where the concave wedge with anisotropic
surface impedance is studied in wa plane.

Using symmetry of trigonometric functions and (23) in (22)

π

Φa

j∞∫
−j∞

cot

(
π

2Φa
(w − w′)

)
V̂d(w

′)dw′=

∫
Ma

sinwa
′

coswa′ − coswa
Ṽd(wa

′)dwa

(24)
for Re[wa] < 0 where Ṽd(wa) = V̂d(

Φa
π w). Taking into

account the properties of regularity of the integral kernel and
of Ṽd(wa), the warping of Ma into Ma1 may capture only
the pole singularity wao = − π

Φa
ϕo due to the incident field if

0 < ϕo < Φa/2 (we recall that Ṽd(wa) − Ṽ id (wa) is regular
in the strip −π < Re[wa

′] < π). Since

Res[Ṽ id (wa)]
∣∣∣
wa=wao

=
π

Φa

j

k
Eo (25)

we obtain that (24) is equivalent to∫
Ma1

sinwa
′

coswa′ − coswa
Ṽd(wa

′)dwa+
2π2Eo
Φak

sin π
Φa
ϕou( Φa

2
− ϕo)

cos π
Φa
ϕo − coswa

(26)

where u(δ) is the unit step function. By using (24) with
(26) in (22), we obtain a new form of the singular integral

representation with integration line Ma1 that is valid for
Re[wa] < −π/2 since its integral kernel

K(wa, w
′
a) =

sinwa
′

cosw′a − coswa
(27)

is singular. In order to obtain a non singular kernel
Km(wa, w

′
a) we modify K(wa, w

′
a) by adding

K1(wa, w
′
a) = −Φa

π

sin Φa
π wa

cos Φa
π w

′
a − cos Φa

π wa
(28)

to K(wa, w
′
a) with the following properties:

1) Res[(K(wa, w
′
a) +K1(wa, w

′
a))Ṽd(w

′
a)]
∣∣∣
wa=w′a

= 0

2)
∫
Ma

K1(wa, w
′
a)Ṽd(wa

′)dwa = 0 =

=
∫
Ma1

K1(wa, w
′
a)Ṽd(wa

′)dwa − 2πEo
k

(sinw)u( Φa
2 −ϕo)

cosϕo−cosw

While property 1) makes the new kernel (29) not singular
and compact, property 2) shows how K1(wa, w

′
a) does not

change the mathematical property of the integral equation. The
second property shows also how the integral changes when the
warping of Ma into Ma1 is applied taking into account the
possibility of capturing the pole singularity wao = − π

Φa
ϕo via

(25). It yields

Km(wa, w
′
a) = (K(wa, w

′
a) +K1(wa, w

′
a)) (29)

As a final result we obtain (30), i.e. the FIE for region 1,
whose kernel is compact, thus the constraint Re[wa] < −π/2
is not necessary anymore:

Î+(w) = −YoV̂d(w) +
jYo
2π

∫
Ma1

Km(wa, wa
′)Ṽd(wa

′)dwa
′ + ÎNC(w)

(30)
where

ÎNC(w) = + jπYoEo
kΦa

2 sin( π
Φa
ϕo)

cos(wa)−cos( π
Φa
ϕo)+

− jπYoEokΦa

sin( π
Φa
ϕo)u( Φa

2 −ϕo)

cos(wa)−cos( π
Φa
ϕo) − j

YoEo
k

(sinw) u( Φa
2 −ϕo)

cosw−cosϕo

(31)
Using the same reasoning, in region 3, from (6) we obtain

in the w-plane (mb = +k cos(w + Φb))

−YoV̂πd(w−Φb)+Îπ+(w−Φb) = −YoV̂πd(w+Φb)−Îπ+(w+Φb)
(32)

where V̂πd(w) = sinwV̂π+(w). It yields the following FIE

Îπ+(w) = YoV̂πd(w)+

− jYo2π

∫
Mb1

[ sinwb
′

cosw′b−coswb
−

Φb
π sin

Φb
π wb

cos
Φb
π w
′
b−cosw

] Ṽπd(w
′
b)dw

′
b

(33)

where Ṽd(wb) = V̂d(
Φb
π w) with wb = π

Φb
w.

Eqs. (30) and (33) are FIEs that hold respectively in region
1 and in region 3. The main difference between the two
equations is that (33) does not have source term. This is due to
the fact that no plane wave with infinite support is present in
region 3, in particular along negative x axis. On the contrary
in region 1 the incident field is taken into account since its
support is infinite along positive x axis.

An important property of (30) and (33) is that their integral
parts do not present the pole singularities of the unknowns
thus their contributions are correction terms to the GO field.
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B. FIEs for the layered region
While the WH equations contain plus and minus un-

knowns, their integral representations presents just one kind
of unknowns (plus or minus). In general, the reduction of
the WH equations to integral representations is obtained by
decomposition through Cauchy integration and it requires the
evaluation of the not conventional part of the unknowns with
extraction of offending singularities. The non conventional
part of a plus (minus) function is defined by the part that
presents singularities in the standard regularity half plane
Im[η] ≥ 0 (Im[η] ≤ 0). Generally the non conventional
singularities are poles arising from geometrical optics (GO)
contributions that diverge on the line of integration of the
transformation of the unknowns. Taking into account (1)-
(4), the GO contributions yield the pole ηo = −k cosϕo in
the spectra of the axial unknowns V+(η) and I+(η). This
pole is not conventional for plus functions if ϕo < π/2.
Consequently the non conventional parts of V+(η) and I+(η)
are respectively:

Sv+(η) =
Rv

η − ηo
u(
π

2
− ϕo), Si+(η) =

Ri
η − ηo

u(
π

2
− ϕo) (34)

where Rv and Ri are related to the GO field composed of
the incident plane wave and the plane wave reflected by the
dielectric half-space resulting at y = 0:

Rv = j(1 + Γo)Eo, Ri = −j(1− Γo)
Eo
Zo

sin(ϕo) (35)

where Γo is defined in (16).
Concerning the unknowns Vπ+(η) and Iπ+(η), simple ray

tracing considerations show that the GO contribution is present
only on a finite segment of the negative x axis. Thus, since
Vπ+(η) and Iπ+(η) are Laplace transforms of functions,
it yields that Vπ+(η) and Iπ+(η) do not show poles and
consequently are always conventional.

The procedure to deduce integral representations of the
GWHEs (12) and (13) is based on the elimination of the minus
unknowns Îπ+(−η) and Î+(−η) through Cauchy integrals
(36) that decompose a given function as a sum of conventional
minus F−(η) and plus functions F+(η) [15],[25],[26]:

F+(η) =
1

2πj

∫
γ1η

F (η′)

η′ − η
dη′, F−(η) = − 1

2πj

∫
γ2η

F (η′)

η′ − η
dη′ (36)

where the two integration paths γ1η and γ2η are called
respectively the smile real axis and the frown real axis, see
[25], [26]. These integration paths are the deformed real axis
that pass respectively below and above the pole η′ = η.

The procedure starts by using (12) in the form

−Iπ+(−η) = −Y (η)(Vπ+(−η) + V+(η))− I+(η) (37)

To get the FIE related to (37) we use several intermediate
steps based on contour integration of the unknowns. Since
I−(η) = −Iπ+(−η) is a conventional function we obtain that
its contour integration along γ1η is null, 1

2πj

∫
γ1η

I−(η′)
η′−η dη

′ = 0,
thus from (37) it yields

1

2πj

∫
γ1η

−Y (η′)(Vπ+(−η′) + V+(η′))− I+(η′)

η′ − η
dη′ = 0 (38)

Since 1
2πj

∫
γ1η

Vπ+(−η′)
η′−η dη′ = 0 it yields

1
2πj

∫
γ1η

Y (η′)Vπ+(−η′)
η′−η dη′ = 1

2πj

∫
γ1η

(Y (η′)−Y (η))Vπ+(−η′)
η′−η dη′=

= −1
2πj

∞∫
−∞

(Y (−η′)−Y (η))Vπ+(η′)
η′+η dη′

(39)

Moreover from the knowledge of the non conventional part of
V+(η), I+(η) (34) we obtain

1

2πj

∫
γ2η

Y (η)V+(η′) + I+(η′)

η′ − η dη′ = −[Y (η)Sv+(η)+Si+(η)] (40)

The Cauchy integration in (38) and (40) yields

1
2πj

∫
γ1η

Y (η′)V+(η′)+I+(η′)
η′−η dη′ = 1

2 [Y (η)V+(η) + I+(η)]+

+ 1
2πjP.V.

∫∞
−∞

Y (η′)V+(η′)+I+(η′)
η′−η dη′

(41)
1

2πj

∫
γ2η

Y (η)V+(η′)+I+(η′)
η′−η dη′ = − 1

2 [Y (η)V+(η) + I+(η)]+

+ 1
2πjP.V.

∫∞
−∞

Y (η)V+(η′)+I+(η′)
η′−η dη′

(42)
where P.V. denotes the principal value.

The final integral equation (43) (see the equation on top of
next page) is obtained starting from (38)

1) substituting (39) into (38),
2) subtracting (40) into the resultant of step 1,
3) substituting (41) and (42) into the resultant of step 2,
4) deforming the integral path from the real axis of η

(Im[η] = 0) to the imaginary axis of η (Re[η] = 0)
since no source poles and branch points are in the 1st
and the 3rd quadrants of the η plane,

5) applying the mapping (17) to the resultant integral
equation (see Appendix I of [18] for corresponding
contours in w) and by warping the imaginary axis of
η into M1 (Re[w] = −π/2).

Starting from (13) we repeat the same reasoning by elim-
inating I+(−η), yielding the integral representation (44) (see
the equation on top of next page). An important property of
(43) and (44) is that their integral parts do not present the
pole singularities of the unknowns thus their contribution is
a correction term to the GO fields. We recall that the use
of w plane is necessary since for the angular regions 1 and
3 the Fredholm factorization in the η-plane is cumbersome
especially to track the structural singularities. In (43) and (44)
we have used the unknowns V̂+(w), V̂π+(w) together with
V̂d(w), V̂πd(w), which differ for a factor sinw, to make more
compact the equations.

C. The system of FIEs

The system of FIEs is obtained from the two couples
of equations (30),(33) and (43),(44). We note that while in
(30) and (33) the integration contour path is respectively
Ma1 (Re[w] = −Φa/2, i.e. Re[wa] = −π/2) and Mb1

(Re[w] = −Φb/2, i.e. Re[wb] = −π/2), in (43) and (44)
the contour is M1 (Re[w] = −π/2).

In order to obtain a consistent system of FIEs, we need
to formulate the equations with the same integration paths
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Ŷ (w)V̂+(w)+ Î+(w)+
1

2πj

∫
M1

Ŷ (w′) − Ŷ (w)

cosw′ − cosw
V̂d(w′)dw′−

1

2πj

∫
M1

Ŷ (w′) − Ŷ (w)

cosw′ + cosw
V̂πd(w′)dw′ =

Ri u(π
2
− ϕo)

−k cosw + k cosϕo
+
Ŷ (w)Rv u(π

2
− ϕo)

−k cosw + k cosϕo
(43)

Ŷ (w)V̂π+(w)−Îπ+(w)+
1

2πj

∫
M1

Ŷ (w′) − Ŷ (w)

cosw′ − cosw
V̂πd(w′)dw′−

1

2πj

∫
M1

Ŷ (w′) − Ŷ (w)

cosw′ + cosw
V̂d(w′)dw′ =

−Ri u(π
2
− ϕo)

k cosw + k cosϕo
−
Ŷ (w)Rv u(π

2
− ϕo)

k cosw + k cosϕo
(44)

and unknowns. For this reason in (43) and (44) we use wa
plane and we warp contour M1 into Ma1 if the integrand is
V̂d(w), while we use wb plane and we warp M1 into Mb1 if
the integrand is V̂πd(w). Using (23) the contour M1 is mapped
into the contour M (wa)

1 i.e. Re[wa] = − π2

2Φa
, while by using

using wb = π
Φb
w it is mapped into M (wb)

1 i.e. Re[wb] = − π2

2Φb
.

Starting from the first case, the contour deformation from
M

(wa)
1 into Ma1 may capture GO poles of V̂d(w): according

to the Malyuzhinets theory the strip delimited by M
(wa)
1

into Ma1 may contain only the incident wave pole, i.e.
wao = − π

Φa
ϕo, that is captured in the contour deformation

when − π2

2Φa
< wao < −π2 , that is for Φa

2 < ϕo <
π
2 . Other

capturable singularities are the ones derived from the kernels
(structural singularities) which are related to the admittance
Ŷ (w) defined by the geometrical/material parameters of the
problem. In dielectric half-spaces Ŷ (w) has branch points and
structural poles.

The branch point derives from Ŷd(w) = Yd(−k cos(w)) =√
εrk2 − (−k cos(w))2/(kZo), that is

wbranch = − arccos(±
√
εr) (45)

thus in the wa plane wa,branch = π
Φa

(wbranch + 2nπ)
for integer n. Following the inverse mapping described in
Appendix I of [18] (also reported at (72)), if the argument of
the arccos in (45) is a real positive greater than 1, wa,branch
is on Re[wa] = − π2

Φa
, if negative less than −1, wa,branch is

on Re[wa] = 0, i.e. on Ma. The structural poles are the zeros
of the denominator of Ŷ (w), i.e. w = 0,−π. However both
the branch point and the structural poles are not in the strip
− π2

2Φa
< Re[wa

′] < −π2 thus they do not give any contribution
in the contour deformation from M

(wa)
1 to Ma1.

According to the above considerations we state that

∫
M1

[Ŷ (w′)−Ŷ (w) ]V̂d(w′)
cosw′−cosw

dw′=Φa
π

∫
M

(wa)
1

[Ỹ (wa
′)−Ŷ (w) ]Ṽd(wa

′)

cos( Φa
π
wa′)−cosw

dwa′ =

= Φa
π

∫
Ma1

[Ỹ (wa
′)−Ŷ (w) ]Ṽd(wa

′)

cos( Φa
π
wa′)−cosw

dwa′ +
2πEo
k

[Ŷ (−ϕo)−Ŷ (w)]ua(ϕo)

cosϕo−cosw

(46)
where ua(ϕo) = u(ϕo − Φa/2) − u(ϕo − π/2), Ṽd(wa) =
V̂d(

Φa
π w), Ỹ (wa) = Ŷ (Φa

π w).
Similarly, the use of wb plane and the contour deformation

from M
(wb)
1 into Mb1 yields∫

M1

[Ŷ (w′)−Ŷ (w) ]V̂πd(w′)
cosw′+cosw

dw′=Φb
π

∫
M

(wb)
1

[Ỹ (wb
′)−Ŷ (w)] Ṽπd(wb

′)

cos(
Φb
π
wb
′)+cosw

dwb
′ =

= Φb
π

∫
Mb1

[Ỹ (wb
′)−Ŷ (w)] Ṽπd(wb

′)

cos(
Φb
π
wb
′)+cosw

dwb
′

(47)
where Ṽπd(wb) = V̂πd(

Φb
π w), Ỹ (wb) = Ŷ (Φb

π w). We recall
that no GO pole is present in the spectrum of V̂πd(w).

By applying (46) and (47) to (43) and (44) we obtain the
FIEs (48) and (49) for the layered region 2 that, together
with the FIEs (30) and (33) for the angular regions 1 and

3, constitute a consistent and solvable system of integral
equations.

The source terms of the FIEs (48) and (49) are Ŝtot+(w) and
Ŝtotπ+(w) and they are reported in explicit form respectively
in (50) and (51), while the source term of (30) is −ÎNC(w)
that is reported in (31). Note that (33) is an homogenous
equation.

Ŝtot+(w) =
Ri u(π2−ϕo)

−k cosw+k cosϕo
+

+
Ŷ (w)Rv u(π2−ϕo)

−k cosw+k cosϕo
+ jEo

[Ŷ (−ϕo)−Ŷ (w)]ua(ϕo)

−k cosw+k cosϕo

(50)

Ŝtotπ+(w) =
−Ri u(π2−ϕo)

k cosw+k cosϕo
+

− Ŷ (w)Rv u(π2−ϕo)

k cosw+k cosϕo
− jEo

[Ŷ (−ϕo)−Ŷ (w)]ua(ϕo)

k cosw+k cosϕo

(51)

We recall that ua(ϕo) = u(ϕo − Φa/2) − u(ϕo − π/2). The
source terms of the FIEs (48),(49),(30),(33) are only composed
of some of the terms in (50), (51), (31) depending on the value
of ϕo and Φa when the incident wave impinges from region
1. The steps functions select some of the terms. We highlight
three possible cases: 0 < ϕo < Φa/2, π/2 < ϕo < Φa and
Φa/2<ϕo<π/2.

The system of equations (48),(49),(30),(33) can be reduced
to two coupled integral equations (52), (53) in terms of V̂+(w)
and V̂π+(w) by eliminating Î+(w) and Îπ+(w), where

Ĝ(w) = Ŷc(w) + Ŷ (w)

Ĥ11(wa, wa
′) = Φa

π
Ỹ (wa

′)−Ŷ (w)

cos( Φa
π wa′)−cosw

+

− Yo sinwa
′

cosw′a−coswa
+ Φa

π

Yo sin Φa
π wa

cos Φa
π w′a−cosw

Ĥ12(wb, wb
′) = −Φb

π
Ỹ (wb

′)−Ŷ (w)

cos(
Φb
π wb

′)+cosw

Ĥ21(wa, wa
′) = −Φa

π
Ỹ (wa

′)−Ŷ (w)

cos( Φa
π wa′)+cosw

Ĥ22(wb, wb
′) = Φb

π
Ỹ (wb

′)−Ŷ (w)

cos(
Φb
π wb

′)−cosw
+

−Yo sinwb
′

cosw′b−coswb
+ Yo

Φb
π sin

Φb
π wb

cos
Φb
π w
′
b−cosw

Assuming w on the line Ma1 in (52) and w on the line Mb1

in (53), we get two FIEs in Ṽ+(wa) and Ṽπ+(wb). We recall
that the couple of unknowns V̂+(w), V̂π+(w) are different
from the couple V̂d(w), V̂πd(w) by a factor sinw.

Efficient approximate methods for the solution of FIEs
of second kind are widely available in literature, see for
example [40]. Since the kernels of (52) and (53) present
well suited behavior, we use a simple sample and hold
quadrature scheme to obtain accurate and stable numerical
solutions. We apply uniform sampling f(h i) with i = −Ah ..

A
h

and modified left-rectangle numerical integration formula
∞∫
−∞

f(u)du ≈ h
A/h∑

i=−A/h
f(h i) where A and h are respectively the

truncation parameter and the step parameter for the integrals in
u. This rule has been successfully applied in wedge problems
[18],[22],[23]. The total number of samples is N = 2A/h+1.
We observe that as A → +∞ and h → 0, the numerical
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Ŷ (w) V̂+(w) + Î+(w) +
Φa

2π2j

∫
Ma1

[
Ỹ (wa′) − Ŷ (w)

]
Ṽd+(wa′)

cos( Φa
π
wa′)− cosw

dwa
′ −

Φb

2π2j

∫
Mb1

[
Ỹ (wb

′)− Ŷ (w)
]
Ṽπd(wb

′)

cos( Φb
π
wb′) + cosw

dwb
′ = Ŝtot+(w)

Ŷ (w) V̂π+(w)− Îπ+(w) +
Φb

2π2j

∫
Mb1

[
Ỹ (wb

′)− Ŷ (w)
]
Ṽπd(wb

′)

cos( Φb
π
wb′)− cosw

dwb
′ −

Φa

2π2j

∫
Ma1

[
Ỹ (wa′) − Ŷ (w)

]
Ṽd(wa′)

cos( Φa
π
wa′) + cosw

dwb
′ = Ŝtotπ+(w)

(48)

(49)

Ĝ(w) V̂+(w) +
1

2πj

∫
Ma1

Ĥ11(wa, wa
′)Ṽd(wa

′)dwa
′ +

1

2πj

∫
Mb1

Ĥ12(wb, wb
′)Ṽπd(wb

′)dwb
′ = Ŝtot+(w)− ÎNC(w)

Ĝ(w) V̂π+(w) +
1

2πj

∫
Ma1

Ĥ21(wa, wa
′)Ṽd(wa

′)dwa
′ +

1

2πj

∫
Mb1

Ĥ22(wb, wb
′)Ṽπd(wb

′)dwb
′ = Ŝtotπ+(w)

(52)

(53)

solution of the FIE converges to the exact solution [40];
consequently h has to be chosen as small as possible and A has
to be chosen as large as possible. In the present problem we
have two integrals for each integral equations, whose kernels
behave in different ways, thus two discretization schemes are
needed. We set parameters Aa, ha for integrals in wa along
line Ma1 and parameters Ab, hb for integrals in wb along Mb1.
According to our experience the integral in wx related to small
Φx needs more samples to converge: for example if Φa > Φb,
the integrals along the line Ma1 is less critical then the one
along along Mb1 thus Aa < Ab and ha > hb.

The numerical approximation of (52) and (53) yields sam-
ples of Ṽ+(wa), Ṽπ+(wb) respectively for Re[wa]=−π/2 and
Re[wb]=−π/2. The approximate solution Ṽ+(wa) (Ṽπ+(wb))
reconstructed from the samples via (52)-(53) is valid for a
strip of regularity that is at most −3π/2 < Re[wa] < 0
(−3π/2 < Re[wb] < 0), because the discretization of kernel
in (52) ((53)) yields spurious poles in Re[wa] = −3π/2
(Re[wb] = −3π/2). In order to evaluate asymptotically the
electromagnetic field (Section IV) we need to extend the an-
alytical solution obtained by this discretization, see Appendix
A. For details on the practical values of integration parameters
see Section V. While discretizing (52) and (53) in wa and wb
planes we need to pay particular attention to the definition of
the polydrome function ξ and the integration paths. Looking
at this property in the η domain we note that the integration
paths M1, Ma1 and Mb1 are as reported in Fig. 2 together with
the curves Im[ξ] = 0, Re[ξ] = 0 and the canonical vertical
branch lines of ξ. Although the w plane avoids the presence
of the branch line/multi-sheets of ξ by expanding the domain
with respect to the η plane (i.e. the multi-sheets of ξ in η are
reported in a unique w plane), in order to correctly evaluate
(52) and (53) via numerical discretization the integration paths
must not cross branch lines of ξ. This is effected by selecting
as branch lines the unconventional Re[ξ] = 0 as automatically
done in c©Wolfram Mathematica.

IV. FAR FIELD

A. Angular regions

The estimation of axial spectral unknowns V̂d(w), Î+(w)
and V̂πd(w), Îπ+(w) provide the Laplace transforms in the
w plane of the electromagnetic field on the real axis y = 0
respectively for ϕ = 0 and ϕ = −π. Given the axial spectra
we can obtain the spectra in every direction of the space.

For angular regions, the spectra for any direction ϕ is
obtained through the following expressions [20], [22]. In

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Re[η]

Im
[η
]

 

 

+k

−k

Im[ξ(η)] = 0
Re[ξ(η)] = 0
M1
Ma1
Mb1
vert.branch -k
vert.branch +k

Fig. 2. Possible branch lines of ξ and integration paths M1, Ma1 and Mb1

in the η plane for Φa = 0.65πrad, Φb = 0.3πrad, k = 1− 0.1j.

region 1 we have{
V̂d(w,ϕ) = Zo(Î+(w−ϕ)−Î+(w+ϕ))+V̂d(w−ϕ)+V̂d(w+ϕ)

2

I+(w,ϕ) = Zo(Î+(w−ϕ)+Î+(w+ϕ))+V̂d(w−ϕ)−V̂d(w+ϕ)
2

(54)
for 0 ≤ ϕ ≤ Φa, where V̂d(w,ϕ) = sinwV̂+(w,ϕ) =
sinwV+(−k cosw,ϕ) and Î+(w,ϕ) = I+(−k cosw,ϕ) and,
according to (2), (4) and Section III, they are respectively an
odd function and an even function of w. Similarly we get{

V̂πd(w, ϕ̄) = Zo(Îπ+(w+ϕ̄)−Îπ+(w−ϕ̄))+V̂πd(w+ϕ̄)+V̂πd(w−ϕ̄)
2

Îπ+(w, ϕ̄) = Zo(Îπ+(w+ϕ̄)+Îπ+(w−ϕ̄))+V̂πd(w+ϕ̄)−V̂πd(w−ϕ̄)
2

(55)
in region 3 for 0 ≤ ϕ̄ ≤ Φb (ϕ̄ = −π − ϕ) and where
V̂πd(w, ϕ̄) = sinwV̂π+(w, ϕ̄) = sinwVπ+(−k cosw, ϕ̄) and
Îπ+(w, ϕ̄) = Iπ+(−k cosw, ϕ̄) are respectively an odd func-
tion and an even function of w.

Starting from region 1, the exact total field is given by the
following inverse Laplace-w transforms:

Ez(ρ, ϕ) = k
2π

∫
λ(Br)

V̂+(w,ϕ)ejkρ cosw sinwdw

Hρ(ρ, ϕ) = k
2π

∫
λ(Br)

Î+(w,ϕ)ejkρ cosw sinwdw
(56)

where λ(Br) is the mapping of the Bromwich Br contour of
the η-plane into the w-plane, see [20], [22] for details.

By applying the steepest descent path (SDP) method to
equations (56), the total field is composed as in (57):

Ez(ρ, ϕ) = Egz (ρ, ϕ) + Edz (ρ, ϕ) + Esz(ρ, ϕ) + Elz(ρ, ϕ) (57)

In (57) the contributions of poles give GO components
Egz (ρ, ϕ) (58) (non-structural singularities) and possible sur-
face waves Esz(ρ, ϕ) (structural singularities), whereas the
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branch points are related to lateral waves Elz(ρ, ϕ) (structural
singularities), and the integral along the SDP (59) is the
diffracted component Edz (ρ, ϕ).

In this paper we focus our attention on the estimation of GO
components and uniform diffracted components (UTD), since
in this problem surface waves are not present and for regions
with sources in the less dense medium the branch lines give
weak contributions Elz(ρ, ϕ). Therefore we concentrate our
studies and numerical results on (58) and (59):

Egz (ρ, ϕ) = −jk
∑
i

Res[V̂d(w, ϕ)]wi(ϕ) e+jkρ cos wi(ϕ) (58)

Edz (ρ, ϕ) = −ke
−jkρ

2π

∫
SDP

V̂d(w,ϕ)ekρh(w)dw (59)

where h(w) = kρ(cosw + 1), wi(ϕ) = woi ± ϕ and woi are
the poles of the axial spectrum V̂d(w).

As an alternative, classical GO considerations can be used
to obtain the GO components. For regions 1 and 3 we
need to consider that the polar reference system is centered
in (x, y) = (0, 0), thus for each ray (incident, reflected,
double reflected...) we need to take into account the different
propagation paths with delay and attenuation corrections with
respect to the incident field (1) (see test case 2.1).

The SDP integral in (59) represents the diffracted field Edz .
Since on the SDP h(w) is a continuous real function, which
rapidly goes to −∞ toward the end points of the path, as kρ→
∞, the main contribution in (59) is located near the saddle
point −π, thus the diffracted component can be approximated
with the GTD component. For region 1

Egtdz (ρ, ϕ) = Eo
e−j(kρ+

π
4 )

√
2πkρ

D1(ϕ,ϕo) (60)

D1(ϕ,ϕo) =
−kV̂d(−π, ϕ)

jEo
(61)

where V̂d(−π, ϕ) is defined in (54). This expression makes the
importance of the recursive equations in Appendix A clear. In
fact, to estimate V̂d(−π, ϕ) in 0 < ϕ < Φa, we need the axial
spectra defined in the range −π − Φa < w < −π + Φa.

Uniform expressions of the total far field Etotz = Egz +
Eutdz are obtained through the Uniform Theory of Diffraction
(UTD), which removes the caustics of GTD [41]:

Eutdz (ρ, ϕ) = Eo
e
−j(kρ+π

4 )
√

2πkρ
C1(ϕ,ϕo) (62)

C1(ϕ,ϕo) = D1(ϕ,ϕo)+
∑
q

Γq
1− F

(
2kρ cos2 ϕ−ϕq−π

2

)
cos

ϕ−ϕq−π
2

(63)

where Γq are the coefficients of the GO components of
direction ϕq and the function F (z) is the Kouyoumjian-Pathak
transition function defined in [41] and its application in the
framework of WH formulations is reported in (63) of [18].

Concerning region 3, as already discussed in Section III.B,
the axial spectra (V̂π+(w), Îπ+(w)) do not contain any non-
structural GO poles. This yields the result that the main
contribution of the inverse Laplace-w transform of the π
spectra is the diffracted field that arises from the integration
along the SDP:

Edz (ρ, ϕ) = −ke
−jkρ

2π

∫
SDP

V̂πd(w,−π − ϕ)ekρh(w)dw (64)

for −π−Φb < ϕ < −π. Since there are no poles in the spectra,
no shadow regions are present, thus uniform theory (UTD) is
not necessary for this region and Edz represents the total field.
As kρ→∞, the main contribution in (64) is located near the
saddle point −π, yielding the GTD component:

Egtdz (ρ, ϕ) = Eo
e−j(kρ+

π
4 )

√
2πkρ

D3(ϕ,ϕo) (65)

D3(ϕ,ϕo) =
−kV̂πd(−π,−π − ϕ)

jEo
(66)

with V̂πd(−π, ϕ) defined in (55).

B. Layered region

With reference to Fig. 1, the Fourier transform along x of
the total electric field Ez for y < 0 is reported in (14) and (15).
From these expressions it is possible to evaluate the total field
in any point of region 2 by using the inverse Fourier transform

Ez(x, y) =
1

2π

∫ ∞
−∞

v(η, y)e−jη xdη (67)

that can be re-written in terms of inverse Laplace transforms

Ez(x, y) = 1
2π

∫
B+

v+(η, y)e−jη xdη, (x > 0, y < 0)

Ez(x, y) = 1
2π

∫
B−

v−(η, y)e−jη xdη, (x < 0, y < 0)
(68)

where B+ (B−) is a horizontal line located above (under)
the singularities of v+(η, y) (v−(η, y)) and where v(η, y) is
decomposed into v(η, y) = v−(η, y) + v+(η, y) [26] .

The estimation of far field is obtained for y < −d through
the inverse transform of (15), where

v(η,−d) =
Yc(η) [V+(η) + Vπ+(−η)]

Yc(η) cos(ξd) + jYd(η) sin(ξd)
(69)

with ξ = ξ(η), v+(η, 0) = V+(η) and v−(η, 0) = Vπ+(−η).
Using asymptotic estimation of (68) with the SDP method, the
total far field in the homogeneous dielectric half-space is con-
stituted by the GO component and the diffracted component:

Edz (ρ′, ϕ′) = Eo

√
1

2πkdρ
e−j(kdρ+π/4)D2(ϕ′, ϕo) (70)

The GO component can be obtained via the residue theorem
or via classical GO considerations. For region 2 we need
to consider that the polar reference system is centered in
(x, y) = (0,−d), thus for each ray (directly transmitted,
reflected and transmitted ...) we need to take into account
the different propagation paths with phase and attenuation
corrections with respect to the incident field(see test case 2.1).

In (70) the polar reference system (ρ′, ϕ′) is centered in the
cartesian coordinate (0,−d) with −π < ϕ′ < 0 (see Fig. 1).
The GTD diffraction coefficient is given by

D2(ϕ′, ϕo) =
kdv(kd cosϕ′,−d) sinϕ′

jEo
(71)
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Fig. 3. Locus of saddle points kd cosϕ′, possible branch lines of ξ and SDP
curves as a function of ϕ′ for k = 1− 0.1j and εr = 2.

where ηs = kd cosϕ′ is the saddle point. We note that
the GTD diffraction coefficient depends on the spectra of
V+(η), Vπ+(−η) that are computed through V̂+(w), V̂π+(w)
using the inverse mapping between w and η planes (Appendix
I of [18]):

w(η) =

{
−j log

(
η+jξ
k

)
− π, Arg

[
η+jξ
k

]
> −π

2

−j log
(
η+jξ
k

)
+ π, Arg

[
η+jξ
k

]
≤ −π

2

(72)

In (71) we need to compute V+(kd cosϕ′)
and Vπ+(−kd cosϕ′) for −π < ϕ′ < 0. For
ϕ′ > − arccos(1/

√
εr) and ϕ′ < − arccos(−1/

√
εr)

we obtain corresponding non-real values of w (for a deeper
discussion see test case 2.1 of Section V and in particular
Fig. 12). Another important implementation aspect in (71)
is that, in order to correctly evaluate v(η,−d) in the
saddle point ηs, the approximated axial spectra must be
reconstructed numerically via (52) and (53) by selecting a
suitable determination of polydrome function ξ. In this case,
during the reconstruction of the spectral unknowns, we need
to select as branch lines the vertical lines starting from ±k
to avoid crossing of branch lines by SDP paths, see Fig. 3
for these curves. Note that this selection is different from
the one made in the numerical integration of (52) and (53)
in Section III (see at the end of the section). This choice
avoids cumbersome computation with saddle points ηs in
the improper sheet of ξ in the η plane. The mapping (72)
together with the choice of vertical branch lines for ξ is of
fundamental importance to correctly compute D2(ϕ′, ϕo) by
linking it to the axial spectra V̂+(w), V̂π+(w).

V. VALIDATION AND NUMERICAL RESULTS

The efficiency, the convergence and the validation of the
proposed approximate solution is illustrated through several
test problems. The quantities used in this section are explicitly
defined in the previous sections.

All the test cases make reference to Fig. 1 for the geometry.
In particular, the wedge is illuminated by a plane wave (1)
impinging from a direction ϕo with 0 < ϕo < Φa (leaving
the wedge with direction ϕI = −π + ϕo).

−5π/4 −π −3π/4 −π/2 −π/4 0
−10

−5

0
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10

w

Im[kV̂d(w)]

 

 

exact spectrum
starting spectrum

−π/2 −3π/8 −π/4 −π/8 0

0

0.2

0.4

w

Im[kV̂πd(w)]

 

 

exact spectrum
starting spectrum

Fig. 4. Test case 1.1: imaginary parts of the exact spectra compared with the
approximated starting spectra: on top kV̂d(w) in −2Φa ≤ w ≤ 0 , on bottom
kV̂πd(w) in −2Φb ≤ w ≤ 0 . Note the loss of convergence respectively at
w = −3Φa/2 and w = −3Φb/2.

A comparison with the exact solution is only possible in
the free space limit (εr = 1). This problem is the first test
case, where a deep study on the convergence is taken into
account in terms of spectra, GTD coefficient, total far field
as a function of integration parameters (Aa, ha, Ab, hb) in the
numerical implementation of (52) and (53).

The following test cases (see Table I) examine in details the
arbitrarily oriented PEC wedge over a dielectric half-space for
different
• directions of incident plane wave,
• aperture angles Φa and Φb (acute and obtuse),
• values of the distance d (with limit case d = 0)
• values of rel. permittivity εr (with limit case εr=1).
Solutions are reported in terms of spectra, GTD coefficient,

UTD field, total far field.
Self-convergence is studied in detail in test case 2, the

overall test cases show the effectiveness of the proposed
method for arbitrary values of εr, d, Φa, Φb, ϕo.

In this paper we denote the azimuthal direction of the GO
waves with ϕlab where the subscripts lab are in upper case
(lower case) if referring to a wave that leaves (approaches)
the wedge: for instance, the face a reflected wave propagates
as ejkρ cos(ϕ−ϕra) = e−jkρ cos(ϕ−ϕRA) with ϕra = 2Φa − ϕo
and ϕRA = ϕra − π. In the examples we assume small loss,
thus the free-space propagation constant is k = kr − jki with
ki = 0.01kr. In the following, we consider all the angles in
radiants by omitting rad and |Ei| = 1V/m.

TABLE I
TEST CASES

n. εr d Φa Φb ϕo

1.1 1 any 0.65πrad 0.3πrad 0.1πrad
1.2 1 any 0.65πrad 0.3πrad 0.55πrad
1.3 1 any 0.65πrad 0.3πrad 0.4πrad
2.1 4 λ/4 0.65πrad 0.3πrad 0.55πrad
2.X 4 [0, 4λ/5] 0.65πrad 0.3πrad 0.55πrad
3 [1, 10] λ/5 0.45πrad 0.4πrad 0.25πrad
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V̂ free
+ (w,ϕ) =

jπ csc(w) sin
(
π(Φa−ϕo)
Φa+Φb+π

)(
cos
(
π(−Φa+ϕ+w)

Φa+Φb+π

)
− cos

(
π(Φa−ϕ+w)
Φa+Φb+π

))
k(Φa + Φb + π)

(
cos
(
π(Φa−ϕo)
Φa+Φb+π

)
− cos

(
π(Φa−ϕ+w)
Φa+Φb+π

))(
cos
(
π(−Φa+ϕ+w)

Φa+Φb+π

)
− cos

(
π(Φa−ϕo)
Φa+Φb+π

))
Î free
+ (w,ϕ) = −

jπ sin
(
π(Φa−ϕo)
Φa+Φb+π

)
kZo(Φa + Φb + π)

 1

cos
(
π(−ϕ+w+Φa)

Φa+Φb+π

)
− cos

(
π(Φa−ϕo)
Φa+Φb+π

) +
1

cos
(
π(ϕ+w−Φa)
Φa+Φb+π

)
− cos

(
π(Φa−ϕo)
Φa+Φb+π

)


(73)

(74)

A. Test case 1
The first test case analyzes the arbitrarily oriented PEC wedge
in free space, where the closed-form exact solution is available
(73)-(74). All the properties of our solution are given in terms
of spectral quantities, diffraction coefficients, total far fields.
With reference to Fig. 1 the physical parameters of the problem
in test case 1.1 are: Φa = 0.65π, Φb = 0.3π, εr = 1, ϕo =
0.1π, |Ei| = 1V/m and k = kr − jki with ki = 0.01kr.
According to GO, the E-polarized incident plane wave im-
pinges on the wedge and generates shadow boundaries due to
the incident wave (ϕI = −π+ϕo = −0.9π) and the reflected
wave from face a (ϕRA = −π + 2Φa − ϕo = 0.2π). We
note that the directions of the waves identify also the shadow
boundaries. The total far field is reported on top of Fig.7.

The full convergence of the solution of the problem is prac-
tically obtained applying the discretization method reported in
Section III.C to (52) and (53) where the quadrature parameters
are chosen to be Aa = 40, ha = 0.5, Ab = 80, hb = 0.5 (see
below for a discussion on this selection).

With the physical parameters reported above, we note that
the source in the system of FIEs (52) and (53) is only com-
posed of some of the terms in (50), (51), (31) depending on the
step functions. In this case, and in general for 0 < ϕo < Φa/2,
all the terms are present except the one related to ua(ϕo).

Fig.4 shows the behavior of the numerical solution in terms
of the imaginary part of the spectral unknowns kV̂d(w) in
−2Φa ≤ w ≤ 0 and kV̂πd(w) in −2Φb ≤ w ≤ 0 as they are
obtained by direct numerical implementation of the system of
FIEs (52) and (53). These approximations are called starting
spectra and in the figure they are compared with the exact axial
spectra. The exact spectra for any ϕ is reported in (73)-(74)
for the free-space case and it is purely imaginary if k ∈ R.

The approximate starting axial spectra of Fig.4 show spu-
rious poles at Re[w] = −3Φa/2 and Re[w] = −3Φb/2
respectively for V̂d(w) and V̂πd(w) (see Section III.C). In
order to analytically extend the solution we resort to recursive
equations as described in Appendix A. For the use of the
recursive formulas (80)-(83) we have selected (86) γ = 1.25
since π

Φa+Φb
' 1.053 and π

Φa−Φb
' 2.857. The trade off on γ

is that the lower bound is fine for precision since the spectra
is far way from the spurious poles, however this choice is less
efficient in terms of recursions.

Fig. 5 shows the behavior of the extended numerical solu-
tion in terms of the absolute value of the spectral unknowns
V̂d(w) and V̂πd(w) in −2π ≤ w ≤ 0. Relative errors are
reported in log10 scale by considering as reference solution
the closed-form exact solution. For the numerical solution
we have chosen different values of the integration parameter
[Aa, ha, Ab, hb] in order to confirm the convergence of our
technique. However, an excessive value of Aa (Ab) and/or
small value of ha (hb) yields ill-conditioned matrices in the
discretization process. The selection of quadrature parameters
[Aa, ha, Ab, hb] comes from the study of the bands of the
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Fig. 5. Test case 1.1: on top absolute values of the approximated spectra
V̂d(w) in black, V̂πd(w) in grey for −2π ≤ w ≤ 0 and, on bottom relative
errors in log10 scale. The relative errors are computed with respect to the
exact solution.
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Fig. 6. Test case 1.1: on top the absolute value of GTD diffraction coefficient
is reported in dB, on bottom the relative error on the computation of GTD
diffraction coefficient in log10 scale for different integration parameters with
respect to the exact solution.

kernels in w plane and in particular from the validation of
the integral equations (48)-(49), (30), (33) and (52)-(53) by
replacing inside the integrals the spectra with the known
closed-form exact spectra (73)-(74) for the free-space case.

In Fig. 5 V̂d(w) shows peaks for the incident wave and for
the face a reflected wave: wI = −ϕo = −0.1π and wRA =
−ϕra = −2Φa + ϕo = −1.2π. The location of the poles
agrees with the standard GO theory: the axial spectra show
singularities for ±wX (where wX = −π − ϕX with X =
I,RA... ) due to symmetry of plus functions in w plane.

According to the GTD diffraction coefficient (61), (66) and
(71), we obtain that ϕI = −wI − π = −0.9π and ϕRA =
−wRA−π = 0.2π. We note that in this particular case of free
space we could use (61) as GTD diffraction coefficient in the
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homogenous angular region defined by −π −Φb < ϕo < Φa.
The GO components can be obtained by using standard

techniques or by applying (58) for homogenous angular re-
gions. Notice that the study of the axial spectra is fundamental.
In fact, for example in region 1, if woi is a singularity of
V̂+(w) (Î+(w)), the spectrum of V̂+(w,ϕ) (Î+(w,ϕ)) presents
the singularities wi(ϕ) = woi±ϕ that can be captured by the
integration contour deformation from Br to SDP, see Sec. IV.

The approximate total GTD diffraction coefficients are
estimated substituting the approximations of the spectral un-
knowns in (61), (66) and (71). On the top of Fig. 6 the absolute
value of the total GTD diffraction coefficient is reported in dB
for each observation angle ϕ. The peaks of the GTD diffraction
coefficients occur for the GO angles: face a reflected wave
ϕRA = 0.2π and incident wave ϕI = −0.9π. On the bottom
of Fig. 6 the convergence is shown for different integration
parameters through the evaluation of the relative error in log10

scale with respect to the exact solution. This scale measures
the precision in term of digits for each observation angle ϕ.

The complete solution is reported in terms of the total
far field, GO field component, UTD field component at the
distance krρ = 10 on top of Fig. 7. The relative error of
|Etot| in log10 scale for [Aa, ha, Ab, hb]=[40, 0.5, 80, 0.5] with
respect to the exact solution is reported on the bottom of Fig.7.

The change of the incident wave angle ϕo conditions the
source terms in the system of FIEs (52) and (53), see Section
III.C. If π/2 < ϕo < Φa, all the terms in (50), (51), (31) are
null except the one that does not depend on the step functions.
The complete solution of test case 1.2 is reported on top of
Fig. 8 in black in terms of the total field, GO field component,
UTD field component for ϕo = 0.55π at the distance krρ = 10
for [Aa, ha, Ab, hb] = [40, 0.5, 80, 0.5] and γ = 1.25.

The last case 1.3 is when Φa/2 < ϕo < π/2: all the
terms in (50), (51), (31) are present except the ones depending
on u(Φa/2 − ϕo). The complete solution of test case 1.3 is
reported on top of Fig.8 in grey in terms of the total field, GO
field component, UTD field component for ϕo = 0.4π at the
distance krρ = 10. On the bottom of Fig.8 the relative error
of |Etot| in log10 scale is reported with respect to the exact
solution for test cases 1.2 and 1.3.

B. Test case 2

With reference to Fig. 1 the physical parameters of the problem
test case 2.1 are: εr = 4, d = λ/4, Φa = 0.65π, Φb = 0.3π,
ϕo = 0.55π, |Ei| = 1V/m and k = kr−jki with ki = 0.01kr.

For this problem no exact solution is available, thus we
have studied self-convergence. The solution is given in terms
of approximate spectra, diffraction coefficients and total fields.

According to GO, the E-polarized incident plane wave
impinges on the wedge and thus on the dielectric half-space,
by generating two reflected waves and two transmitted waves.

In region 1 the GO field is composed of the incident
wave, the face a reflected wave with direction ϕRA =
−π + ϕra = −π + 2Φa − ϕo = −π/4, the directly
reflected wave from the dielectric half-space with direction
ϕRD = π − ϕo = 0.45π and the double reflected wave
(first from the face a and then from the dielectric half-
space) with direction ϕRDRA = π − ϕra = 0.25π (where
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Fig. 7. Test case 1.1 with ϕo = 0.1π: on top the GO field, the UTD com-
ponent and, the total far-field pattern at krρ = 10, on the bottom the relative
error of |Etot| in log10 scale for [Aa, ha, Ab, hb] = [40, 0.5, 80, 0.5] with
respect to the exact solution.
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Fig. 8. Test case 1.2 with ϕo = 0.55π in black, test case 1.3 with ϕo = 0.4π
in grey: on top the GO field, the UTD component and, the total far-field
pattern at krρ = 10, on bottom the relative error of |Etot| in log10 scale
for [Aa, ha, Ab, hb] = [40, 0.5, 80, 0.5] with respect to the exact solution.

ϕra = 2Φa−ϕo). In region 2 the GO field is composed of the
directly transmitted wave through the dielectric half-space with
direction ϕTD = − arccos(− 1√

εr
cos(ϕo)) ' −0.475π and

the transmitted wave from the reflected wave of face a with
direction ϕTDRA = − arccos(− 1√

εr
cos(ϕra)) ' 0.385π.

We note that the direction of the waves also identifies the
shadow boundaries. Moreover, while making classical GO
considerations, we need to take into account the different paths
of the rays and the local reference system. For regions 1 and 3
the polar reference system is centered in (x, y) = (0, 0), while
for region 2 it is centered in (x, y) = (0,−d). To correctly
compute the GO field, each ray (incident (I), reflected from
face a (RA), reflected from dielectric (RD), double reflected
from face a and dielectric (RDRA), transmitted through the
dielectric (TD), reflected from face a and transmitted through
dielectric (TDRA)) must be computed with phase and attenua-
tion corrections with respect to the phase center of the incident
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field (1) which is (x, y) = (0, 0), see (75).
The convergence of the solution of the problem is obtained

by applying the discretization method reported in Section III.C
to (52) and (53), where the quadrature parameters are chosen
to be [Aa, ha, Ab, hb] = [10, 0.2, 40, 0.1]. This selection comes
from the study of the bands of the kernels in w plane and in
particular from our experience in the convergence of the free-
space case (test case 1).


ERA
z = ΓRAe

jkρ cos(ϕ−ϕra)

ERD
z = ΓRDe

jkρ cos(ϕ−ϕrd)ejk2d sin(ϕo)

ERDRA
z = ΓRDRAe

jkρ cos(ϕ−ϕrdra)ejk2d sin(ϕra)

ETD
z = TTDe

jkρ cos(ϕ−ϕtd)ejk(−d sin(ϕo))

ETDRA
z = TTDRAe

jkρ cos(ϕ−ϕtdra)ejk(−d sin(ϕra))

(75)

With the physical parameters reported above, we note that
the source in the system of FIEs (52) and (53) is only com-
posed of some of the terms in (50), (51), (31) depending on the
step functions. In this case, and in general for π/2 < ϕo < Φa,
all the terms in (50), (51), (31) are null except the one that
does not depend on the step functions.
Since Φa and Φb are not changed from test case 1 we choose
the same value of γ = 1.25 for the recursive formulas (80)-
(83).

Fig. 9 shows the behavior of the numerical solution in terms
of the absolute value of the axial spectral unknowns V̂d(w),
V̂πd(w) in −2π ≤ w ≤ 0 compared with the ones obtained
without dielectric half-space (free space). In particular V̂d(w)
show peaks for the directly reflected wave from the dielectric
half-space wRD = −ϕo = −0.55π and for double reflected
wave (first from the face a and then from the dielectric half-
space) wRDRA = −2Φa + ϕo = −0.75π. The location of the
poles agrees with the standard GO theory: the axial spectra
show singularities for ±wX (where wX = −π−ϕX with X =
I,RA,RD,RARD... ) due to symmetry of plus functions
in w plane. As expected no peaks occurs in the spectrum of
V̂πd(w) in −2π ≤ w ≤ 0 (Sec. IV.A and III.B).

The GTD diffraction coefficient is derived from (61), (66)
and (71), and reported in dB on top of Fig. 10 for each
observation angle ϕ. The layered region 2 is highlighted in
grey to make clear the reference system in use for the GTD
coefficient which is centered in O′ = (x, y) = (0,−d) in
region 2 and in O = (x, y) = (0, 0) in regions 1 and 3 (see
Fig. 1). As expected peaks are shown for ϕ = ϕRD, ϕRDRA
in region 1 and for ϕ = ϕTD, ϕTDRA in region 2, no GO
peaks in region 3. On the bottom of Fig. 10 the study of
self-convergence is reported based on the computation of
relative errors. Relative errors are reported in linear scale
by considering as reference solution the one obtained for
[Aa, ha, Ab, hb] = [10, 0.2, 40, 0.1]. We have selected different
values of the integration parameter [Aa, ha, Ab, hb] in order
to confirm the convergence of our technique. However, an
excessive value of Aa (Ab) and/or small value of ha (hb)
yields ill-conditioned matrices in the discretization process.

Fig. 11 reports the numerical estimations of the GO field,
the UTD component and the total far field at the distance
krρ = 10 from the edge of the wedge. The layered region 2
is highlighted in grey to make clear the reference system in
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Fig. 9. Test case 2.1: the absolute value of the approximated spectra V̂d(w)
and V̂πd(w) are reported for −2π ≤ w ≤ 0 respectively on top and on
bottom of the figure.
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Fig. 10. Test case 2.1: on top the absolute value of the GTD diffrac-
tion coefficient, on bottom the relative error on the computation of the
GTD diffraction coefficient in linear scale for different integration param-
eters [Aa, ha, Ab, hb] with respect to the reference solution obtained for
[Aa, ha, Ab, hb] = [10, 0.2, 40, 0.1].

use for the total far field, which is centered in O′ = (x, y) =
(0,−d) in region 2 and in O = (x, y) = (0, 0) in regions 1
and 3 (see Fig. 1). Fig. 11 also highlights the UTD component
with a probable loss of precision in two points (black arrows)

ϕ+k,−k = − arccos(±1/
√
εr) = −π/3,−2π/3 (76)

due to the evaluation of the GTD coefficient in region 2
(71). The computation of (71) requires the estimation of
v(kd cosϕ′,−d) which is directly related to the axial spectra
V̂+(w) and V̂π+(w) through (69). For ϕ > ϕ+k and ϕ < ϕ−k
V̂+(w) and V̂π+(w) are computed in complex values of the
plane w and in particular the mapping

kd cos(ϕ) = ±η = ∓k cosw (77)

based on (72) show kinks at ϕ±k. Fig. 12 illustrates the
mapping between ϕ and w that relates the GTD coefficient
in region 2 (71) and V̂+(w). The same figure can be read in
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Fig. 11. Test case 2.1: the GO field, the UTD component and, the total
far-field pattern at krρ = 10.
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Fig. 12. Test case 2.1: mapping between ϕ of the GTD coefficient in region
2 (71) and w of V̂+(w).

opposite sense to illustrate the mapping between ϕ and w that
relates (71) and V̂π+(w) interchanging π with 0 and ϕ+k with
ϕ−k. As shown in Fig. 12 uniform sampling in ϕ corresponds
to non-uniform sampling in w and this property conditions the
numerical properties of the solution especially near the kinks.

Fig. 13 reports the numerical estimations for test case 2.X
of the total far field at the distance krρ = 10 from the edge of
the wedge for different values of d from d = 0 to d = 0.8λ
which is almost far distance since krd > 5. As already noted
in Fig. 11, Fig. 13 shows a loss in precision for ϕ+k,−k (76)
especially for increasing values of d. However the scope of our
paper is to model the near-field interaction of a wedge and a
dielectric half-space. For values of d > 0.8λ the wedge and the
dielectric half-space interact in far zone thus our formulation
that involves a unique entire model of the problem is not
needed in this case. However we think that the loss of precision
for d > 0.8λ is due to the high dynamics of the admittance
Ŷd(w) = Y (−k cos(w) (10) in the w plane (see Fig. 14 for
the real part of Ŷd(w)) that requires a local estimation of the
samples of the axial spectra for values of w different from
what is obtained in the numerical solution of FIEs (52) and
(53) where the samples of V̂d(w) and V̂πd(w) are respectively
localized at Ma1 and Mb1. As discussed in Section III FIE
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d = 0.5λ
d = 0.8λ

Fig. 13. Test case 2.X: the total far-field pattern at krρ = 10 for different
values of d. The figure shows a loss in precision for ϕ+k,−k (76) especially
for increasing values of d, highlighted thorough arrows.
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Fig. 14. Test case 2.X: real part of Ŷd(w) as a function of the distance d.
Similar dynamics is obtained for the imaginary part.

formulations can be obtained for any integration vertical line
of the w plane, taking care of structural and non structural
singularities. However for near-field interaction (d < 0.8λ)
we recall that the use of recursive equations (80)-(83) yields
high precision results in terms of approximate spectra in the
entire w plane.

C. Test case 3

With reference to Fig. 1 the physical parameters of test case
3 are: d = λ/5, Φa = 0.45π, Φb = 0.4π, ϕo = 0.25π,
|Ei| = 1V/m and k = kr − jki with ki = 0.01kr. Note that
both angular regions 1 and 3 are acute.

The solution is given in terms of approximate diffraction
coefficients and total fields for different values of dielectric
constants εr: from low contrast (εr = 1.001) to high contrast
(εr = 10).

According to GO, the Ez-polarized incident plane wave
impinges on the wedge twice: directly and after reflection from
the dielectric half-space thus generating two double reflected
waves in region 1 and two transmitted waves in region 2. In
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the following the formulas are for a general value of relative
dielectric constant εr, while the values refers to εr = 2.

In region 1 the GO field is composed of the incident field,
the reflected waves from face a and the dielectric half-space to-
gether with the double reflected wave (first from the face a and
then from the dielectric half-space) with direction ϕRDRA =
π − ϕra = 0.35π (where ϕra = 2Φa − ϕo) and the double
reflected wave (first from the dielectric half-space and then
from the face a) with direction ϕRARD = 2Φa−ϕrd = 0.15π
(where ϕrd = π−ϕo). In region 2 the GO field is composed of
the directly transmitted wave through the dielectric half-space
with direction ϕTD = − arccos(− 1√

εr
cos(ϕo)) = −2π/3

and the transmitted wave from the reflected wave of face
a with direction ϕTDRA = − arccos(− 1√

εr
cos(ϕra)) '

−0.395π. As stated in test case 2, while making classical GO
considerations, we need to take into account the different paths
of the rays and the local reference system.

The convergence of the solution is obtained for
[Aa, ha, Ab, hb] = [10, 0.2, 40, 0.1] (see Section III.C).
This selection comes from the study of the bands of the
kernels in w plane and in particular from our experience in
the convergence as done in test case 2.

According to the physical parameters of the problem, we
note that the source in the system of FIEs (52) and (53) is
only composed of the terms in (50), (51), (31) that contains
ua(ϕo) and that does not contains other step functions.

Since Φa and Φb are acute we need to pay particular
attention to the value of γ for the recursive formulas (80)-
(83). In this case, we select γ = 1.35 since π

Φa+Φb
' 1.1765

and π
Φa−Φb

' 20, see Appendix A for details.
Fig. 15 reports the numerical estimations of the GTD

coefficient for different values of εr from εr = 1 to εr = 10
(from low dielectric contrast to high dielectric contrast). Note
that as expected the GTD coefficient is in region 2 with peaks
that converges to −π/2 for ingreasing values of εr. In region
3 we note an interesting and at first sight unexpected behavior
of the GTD coefficient: first, for decreasing values of εr down
to εr ' 1.85 the GTD decreases since the dominant field in
region 3 is a component derived from the reflected field from
the dielectric half-space; second, for decreasing values of εr
from 1.85 to 1 (no layer) we have an increasing values of
the GTD field since the dominant field in region 3 is now
a component derived from the diffraction by the wedge. As
already noted in Fig. 11, Fig. 15 shows a loss of precision for
ϕ+k,−k (76). Moreover we note that the GTD coefficient for
εr = 1.001 is pretty similar to the one exactly obtained for
free space case εr = 1, except locally at ϕ+k,−k that in this
case correspond to the dielectric interface.

Fig. 16 reports the numerical estimations of the total far
field at the distance krρ = 10 from the edge of the wedge for
different values of εr from εr = 1 to εr = 10.

VI. CONCLUSION

In this paper we present a new method to study the diffrac-
tion by PEC wedge over a dielectric half-space at a distance d
in the spectral domain. The problem is formulated in a unique
entire model based on GWHEs that takes into consideration
the true near-field interaction of the wedge with the dielectric
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Fig. 15. Test case 3: the absolute value of the GTD diffraction coefficient
versus εr .
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Fig. 16. Test case 3: the total far-field pattern at krρ = 10 versus εr .

half-space to obtain precise field estimation. In particular
the Wiener-Hopf technique is extended to simultaneously
deal with problems where angular regions and rectangular
regions coexist. The solution is presented in terms of GTD
diffraction coefficients, UTD field components and total far
fields, with possible applications in radar technologies, antenna
development or electromagnetic compatibility.

APPENDIX A
ANALYTICAL EXTENSION

Since the numerical approximation of (52) and (53) yields
approximate representations of the axial spectra that are valid
in limited strips of the w-plane, we resort to difference
equations (recursive equations) to analytically extend the ap-
proximate solution. Starting from the system of GWHEs (5),
(6), (12), (13), we apply the mapping (17) yielding (20), (32)
from (5), (6) and for (12), (13) we obtain

Ŷ (w)V̂d(w)

sinw
+
Ŷ (w)V̂d+(w + π)

sin(w + π)
+ Î+(w)− Îπ+(w + π) = 0 (78)

Ŷ (−w − π)V̂d(w + π)

sin(w + π)
+
Ŷ (−w − π)V̂πd(w)

sinw
+Î+(w+π)−Îπ+(w) = 0

(79)
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V̂d(w) = −
ZoÎ+(2Φa + w)− ZoÎπ+(w + π)− V̂d(2Φa + w)− ZoV̂πd(w + π)Ŷ (w) csc(w)

ZoŶ (w) csc(w)− 1

Î+(w) = −
ZoŶ (w)Î+(2Φa + w) + Îπ+(w + π) sin(w) + Ŷ (w)V̂d(2Φa + w) + V̂πd(w + π)Ŷ (w)

ZoŶ (w)− sin(w)

V̂πd(w) = −
ZoÎ+(w + π)− ZoÎπ+(2Φb + w)− ZoV̂d(w + π)Ŷ (−w − π) csc(w)− V̂πd(2Φb + w)

ZoŶ (−w − π) csc(w)− 1

Îπ+(w) = −
Î+(w + π) sin(w)− ZoŶ (−w − π)Îπ+(2Φb + w)− V̂d(w + π)Ŷ (−w − π)− Ŷ (−w − π)V̂πd(2Φb + w)

ZoŶ (−w − π)− sin(w)

(80)

(81)

(82)

(83)

We recall that (20), (32), (78) and (79) are obtained by
using the symmetry of functions in w plane. This system
of difference equations constitute a different formulation of
the problem that can be used to obtain a solution. However
difference equations with w-variable coefficients are very
cumbersome to treat.

In order to analytically extend the approximate axial spectra,
(20), (32), (78) and (79) can be written in the normal form
(80)-(83) using mathematical manipulations.

Analytical extensions of V̂d(w) and Î+(w) are obtained via:

V̂d(w) =

V̂
(num)
d (w) −γ Φa ≤ Re[w] ≤ 0

−V̂d(−w) Re[w] > 0
eq.(80) Re[w] < −γ Φa

(84)

Î+(w) =

Î
(num)
+ (w) −γ Φa ≤ Re[w] ≤ 0

Î+(−w) Re[w] > 0
eq.(82) Re[w] < −γ Φa

(85)

where
π

Φa + Φb
< γ < Min

[
π

Φa − Φb
,

3

2

]
(86)

with Φa > Φb. Similar expressions hold for V̂πd(w) and
Îπ+(w) replacing Φa with Φb, (80) with (82) in (84) and,
(81) with (83) in (85). The parameter γ is related to:
• the discretization process yields spurious poles at
Re[wa], Re[wb] = − 3π

2 , respectively for V̂d(w), Î+(w)

and V̂πd(w), Îπ+(w) (see Section III.C),
• the recursive equations (80)-(83) must point to approxi-

mate spectra in −γΦa < w < −γΦa for V̂d(w),Î+(w)
and in −γΦb < w < −γΦb for V̂πd(w) and Îπ+(w).

The selection of γ is a trade off: taking the lower bound we
obtain good precision since the spectra is far way from the
spurious poles, however this choice is less efficient in terms
of recursions.

REFERENCES

[1] F. Bertoncini, R. G. Kouyoumjian, G. Manara, and P. Nepa, “High
frequency scattering by objects buried in a lossy media,” IEEE Trans.
Antennas Propag., vol. 49, no. 12, pp. 16491656, Dec. 2001.

[2] F. Bertoncini, G. Manara, P. Nepa and R.G. Kouyoumjian, “EM scatter-
ing by a wedge buried in a lossy medium: a UTD solution for the field in
the lossy half-space,” in Proceedings of the 2004 URSI Electromagnetic
Theory Symposium, Pisa, May 23-27, 2004, vol. 2, pp. 1035-1037.

[3] B.A. Baertlein, J.R. Wait, and D.G. Dudley, “Scattering by a conducting
strip over a lossy half-space,” Radio Sci., vol. 24, no. 4, pp. 485-497,
July-Aug. 1989.

[4] A. Imran, Q.A. Naqvi, K. Hongo, “Diffraction of electromagnetic plane
wave by an infinitely long conducting strip on dielectric slab,” Opt
Comm, vol. 282, pp. 443-450, 2009

[5] H. Anastassiu, “A closed form physical optics expression for the radar
cross section of a perfectly conducting plate over a dielectric halfspace,”
Radio Sci., vol. 38, no. 2, 1027, pp. 1-13, Apr. 2003.

[6] C.M. Butler, X. Xiao-Bang, and A. Glisson, “Current induced on
a conducting cylinder located near the planar interface between two
semiinfinite half spaces,” IEEE Trans. Antennas Propag., vol. AP-33,
no. 6, pp. 616-624, Jun. 1985.

[7] K. A. Michalski and J. R. Mosig, “Multilayered media Greens functions
in integral equation formulations,” IEEE Trans. Antennas Propagat., vol.
45, pp. 508-519, Mar. 1997

[8] T. J. Cui and W. C. Chew, “Fast evaluation of Sommerfeld integrals for
EM scattering and radiation by three-dimensional buried objects,” IEEE
Trans. Geosci. Remote Sens., vol. 37, no. 2, pp. 887-900, Mar. 1999

[9] N. Geng, A. Sullivan, and L. Carin, “Multilevel fast-multipole algorithm
for scattering from conducting targets above or embedded in a lossy half
space,” IEEE Trans. Geosci. Remote Sens., vol. 38, no. 4, pp. 1551-1560,
Jul. 2000.

[10] P. Pawliuk, M. Yedlin, “Multiple Scattering Between Cylinders in Two
Dielectric Half-Spaces,”IEEE Trans. Antennas Propag., vol.61, no.8, pp.
4220-4228, Aug. 2013.

[11] R. D. Graglia and G. Lombardi, “Singular higher order complete vector
bases for finite methods,” IEEE Trans. Antennas Propag., vol. 52, no.
7, pp. 1672-1685, Jul. 2004.

[12] R. D. Graglia and G. Lombardi, “Singular higher order divergencecon-
forming bases of additive kind and moments method applications to 3D
sharp-wedge structures,” IEEE Trans. Antennas Propag., vol. 56, no. 12,
pp. 3768-3788, Dec. 2008.

[13] V.G. Daniele, “New analytical Methods for wedge problems,” in Pro-
ceedings of 2001 International Conference on Electromagnetics in
Advanced Applications (ICEAA01), Torino, Italy, Sept. 2001, pp. 385-
393.

[14] V. Daniele, “The Wiener-Hopf technique for impenetrable wedges
having arbitrary aperture angle,” SIAM Journal of Applied Mathematics,
vol.63, n.4, pp.1442-1460, 2003.

[15] V. Daniele, An introduction to the Wiener-Hopf Technique for the
solution of electromagnetic problems, Internal Report ELT-2004-
1, Dipartimento di Elettronica, Politecnico di Torino, Sep. 2004,
http://personal.delen.polito.it/vito.daniele/.

[16] V. Daniele, The Wiener-Hopf technique for wedge problems
Dipartimento di Elettronica, Internal Report ELT-2004-2,
Dipartimento di Elettronica, Politecnico di Torino, Oct. 2004,
http://personal.delen.polito.it/vito.daniele/.

[17] V.G. Daniele and G. Lombardi, “The Wiener-Hopf technique for im-
penetrable wedge problems,” in Proc. of Days on Diffraction Internat.
Conf., invited paper, pp. 50-61, Saint Petersburg, Russia, June 2005, doi:
10.1109/DD.2005.204879.

[18] V. Daniele, and G. Lombardi, “Wiener-Hopf Solution for Impenetrable
Wedges at Skew Incidence,” IEEE Trans. Antennas Propagat., vol. 54,
n. 9, pp. 2472-2485, Sept. 2006.

[19] V. Daniele, “The Wiener-Hopf formulation of the dielectric wedge
problem: Part I,” Electromagnetics, vol. 30, n. 8, pp. 625-643, 2010.

[20] V. Daniele, “The Wiener-Hopf formulation of the dielectric wedge
problem: Part II,” Electromagnetics, vol. 31, n. 1, pp. 1-17, 2011.

[21] V. Daniele, “The Wiener-Hopf formulation of the dielectric wedge
problem. Part III: The skew incidence case,” Electromagnetics, vol. 31,
n. 8, pp. 550-570, 2011.

[22] V. Daniele, and G. Lombardi, “The Wiener-Hopf Solution of the
Isotropic Penetrable Wedge Problem: Diffraction and Total Field,” IEEE
Trans. Antennas Propagat., vol. 59, n. 10, pp. 3797-3818, Oct. 2011.

[23] G. Lombardi, “Skew Incidence on Concave Wedge With Anisotropic
Surface Impedance,” IEEE Antennas and Wireless Propagation Letters,
vol. 11, pp. 1141-1145, 2012

[24] V.G. Daniele, and G. Lombardi, “Fredholm Factorization for Wedge
Problems,” Antennas and Propagation Society International Symposium
2006, IEEE, pp. 2478-2481, 9-14 July 2006, Albuquerque, NM, USA,
doi: 10.1109/APS.2006.1711100

[25] V.G. Daniele, and G. Lombardi, “Fredholm Factorization of Wiener-
Hopf scalar and matrix kernels,” Radio Science, vol. 42: RS6S01, 2007,
doi:10.1029/2007RS003673.



16

[26] V. Daniele, R. Zich, The Wiener-Hopf method in electromagnetics, Mario
Boella series on electromagnetism in information and communication
series, Raleigh, NC: SciTech Publishing, 2014

[27] L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves,
Englewood Cliffs, NJ: Prentice-Hall, 1973.

[28] B. Budaev, Diffraction by wedges, London, UK: Longman Scient., 1995.
[29] T.B.A. Senior, and J.L. Volakis, Approximate boundary conditions in

electromagnetics, London, UK: IEE, 1995.
[30] J. M. L. Bernard, “Diffraction at skew incidence by an anisotropic

impedance wedge in electromagnetism theory: A new class of canonical
cases,” J. Physics A: Math. Gen., vol. 31, no. 2, pp. 595-613, 1998.

[31] V.M. Babich, M.A. Lyalinov, and V.E. Grikurov, Sommerfeld-
Malyuzhinets Technique in Diffraction Theory, Oxford, UK: Alpha
Science, 2007.

[32] A.V. Osipov, “On the method of Kontorovich-Lebedev integrals in prob-
lems of wave diffraction in sectorial media,” in Problems of diffraction
and propagation of waves, Vol. 25, pp. 173-219, St Petersburg University
Publications, 1993.

[33] A.D. Rawlins, “Diffraction by, or diffusion into, a penetrable wedge,”
Proc. Royal Society Math., Phys. Engrng. Sci., 455, pp.2655-2686, 1999.

[34] M.A. Salem, A. Kamel, and A.V. Osipov, “Electromagnetic fields in the
presence of an infinite dielectric wedge,” Proc. Royal Society Math.,
Phys. Engrng. Sci., vol. 462, pp. 2503-2522, 2006.

[35] V.G. Daniele, Electromagnetic fields for PEC wedge over stratified
media, Internal Report ELT-2013-1, DET, Politecnico di Torino, 2013,
http://personal.delen.polito.it/vito.daniele/.

[36] V.G. Daniele, “Electromagnetic fields for PEC wedge over stratified
media. Part I,” Electromagnetics, vol. 33, pp. 179-200, 2013.

[37] V.G. Daniele, and G. Lombardi, “Wiener-Hopf Formulation of an
Unaligned PEC Wedge over a Stratification,” Proc. 2015 IEEE Antennas
and Propagation Society Int. Symp., pp.185-186.

[38] V.G. Daniele, and G. Lombardi, “Wiener-Hopf Solution for an Un-
aligned PEC Wedge over a Dielectric Substrate,” Proc. 2015 Inter-
national Conference on Electromagnetics in Advanced Applications
(ICEAA15), Torino, Italy, pp.1530-1533, 7-11 Sept. 2015

[39] V.G. Daniele, “Rotating Waves in the Laplace Domain for Angular
Regions,” Electromagnetics,, vol. 23, n. 3, pp. 223-236, 2003.

[40] L.V. Kantorovich and V.I. Krylov, Approximate methods of higher
analysis, Groningen, The Netherlands: Noordhoff, 1964.

[41] R. G. Kouyoumjian and P. H. Pathak, “A uniform geometrical theory of
diffraction for an edge in a perfectly conducting surface,” Proc. IEEE,
vol. 62, pp. 1448-1461, Nov. 1974.

Vito Daniele was born in Catanzaro, Italy, on March
20, 1942. He received the degree in electronic engi-
neering from Polytechnic of Turin, Italy, in 1966. In
1980, he was appointed Full Professor in Electrical
Engineering at the University of Catania.

From 1981 to 2012 he was Professor of Elec-
trical Engineering at the Polytechnic of Turin and
since 2015 he is Emeritus Professor at the same
Polytechnic. He has served also as a Consultant to
various industries in Italy. He has published more
than 150 papers in refereed journals and conference

proceedings and several textbook chapters.
His research interests are mainly in analytical and approximate techniques

for the evaluation of electromagnetic fields both in high and in low frequency.
In particular his studies on the Wiener Hopf technique have produced the
recent book ”The Wiener-Hopf Method in Electromagnetics”. Prof. Daniele
was the Guest Editor of a special issue on Electromagnetic Coupling to Trans-
mission Lines for Electromagnetics in 1988, Chairman and Invited Speaker for
several international symposia, and reviewer for many international journals.

Since 2013 he is corresponding Member of the Academy of Sciences of
Torino.

Guido Lombardi (S’02-M’03-SM’11-) was born
in Florence, Italy, on December 8, 1974. He re-
ceived the Laurea degree (summa cum laude) in
telecommunications engineering from the University
of Florence, Italy, in 1999 and the Ph.D. degree in
electronics engineering at the Polytechnic of Turin,
Italy, in jan. 2004. In 2000-01, he was officer of
the Italian Air Force. In 2004 he was an Associate
Researcher with the Department of Electronics of
Polytechnic of Turin and in 2005 he joined the same
Department as an Assistant Professor with tenure

and where he is currently an Associate Professor. He was the recipient of
the Raj Mittra Travel Grant award for junior researcher at 2003 IEEE AP-
S International Symposium and USNC/CNC/URSI National Radio Science
Meeting, Columbus, OH, USA. In the same year he was Visiting Researcher
at the Department of Electrical and Computer Engineering, University of
Houston, Houston, TX, USA.

His research interests comprise analytical and numerical methods for
electromagnetics, Wiener-Hopf method, diffraction, theoretical and compu-
tational aspects of FEM and MoM, numerical integration, electromagnetic
singularities, waveguide problems, microwave passive components, project of
orthomode transducers (OMT), metamaterials.

He is an associate editor of the IEEE ACCESS journal an IEEE APS AdCom
member for the triennium (2016-18). He served as member of the Organizing
Committee in the International Conference on Electromagnetics in Advanced
Applications (ICEAA) since the 2001 edition and in the IEEE-APS Topical
Conference on Antennas and Propagation in Wireless Communications (IEEE-
APWC) since the 2011 edition. He was Publication Chair of ICEAA and
IEEE-APWC in 2011, 2013-2014 editions. He served the 2012 IEEE AP-
S International Symposium and USNC/CNC/URSI National Radio Science
Meeting, Chicago, IL, USA as co-organizer of the Special Session entitled
“Challenging Canonical Scattering Problems and New EM Problems involving
Special Materials”.

He regularly serves as a reviewer of several international journals on
physics, electrical engineering and electromagnetics, among which IEEE, IET,
Wiley, Elsevier, PLoS, ACES Journals and Transactions.


