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Abstract: This work presents a robotic application aimed at performing environmental monitoring in
data centers. Due to the high energy density managed in data centers, environmental monitoring is
crucial for controlling air temperature and humidity throughout the whole environment, in order to
improve power efficiency, avoid hardware failures and maximize the life cycle of IT devices. State of
the art solutions for data center monitoring are nowadays based on environmental sensor networks,
which continuously collect temperature and humidity data. These solutions are still expensive and
do not scale well in large environments. This paper presents an alternative to environmental sensor
networks that relies on autonomous mobile robots equipped with environmental sensors. The robots
are controlled by a centralized cloud robotics platform that enables autonomous navigation and
provides a remote client user interface for system management. From the user point of view, our
solution simulates an environmental sensor network. The system can easily be reconfigured in order
to adapt to management requirements and changes in the layout of the data center. For this reason,
it is called the virtual sensor network. This paper discusses the implementation choices with regards
to the particular requirements of the application and presents and discusses data collected during a
long-term experiment in a real scenario.

Keywords: cloud robotics; service robotics; environmental monitoring; data center; energy management

1. Introduction

This work concerns the development and testing of an environmental monitoring system for
data centers, which relies on autonomous mobile robots and is based on the cloud robotics paradigm.
The system is able to monitor environmental physical quantities (temperature and relative humidity)
and to safely interact with fixed obstacles, moving obstacles and people working in the area.

The envisioned scenario is of crucial interest: an automatic and precise mapping of the temperature
and humidity distributions in such environments is fundamental to take informed action to increase
power efficiency. The designed robotic system is provided with autonomous navigation capabilities to
autonomously move within the environment and collect environmental data.

The system is functionally equivalent to an Environmental Sensor Network (ESN), as it is able
to periodically capture and store localized environmental measurements. For this reason, in the
reminder of the paper, we refer to it as a Virtual Sensor Network (VSN), and we call localized sources
of measurements VSN nodes. Collected data are reported to the user via a web-based Graphical
User Interface (GUI), accessible from a web browser. With respect to an ESN, our system has the
advantage of being completely reconfigurable, since the user can simply add or remove VSN nodes
from a remote interface.
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The aim of this paper is two-fold: firstly, it aims at presenting and discussing data collected by the
system in a real case scenario, in order to demonstrate that the system is a valid alternative to state of
the art ESNs; secondly, it aims at summarizing the authors’ previous works on the problem of data
center monitoring [1,2] in order to provide a comprehensive and self-consistent vision on the problem
and the developed solution.

This paper is organized as follows: The rest of this Section introduces the problem of data center
energy management and reports the current state of the art solutions to data center monitoring, robot
navigation and cloud robotics. Section 2 introduces the proposed solution, focusing on the architecture
of the cloud robotic platform and the functional architecture of the robot service. Section 3 focuses
on the particular autonomous navigation choices dictated by the scenario. Section 4 deepens the
service application. Section 5 illustrates experiments and discusses collected data. Finally, Section 6
draws conclusions.

1.1. Energy Management in Data Centers

A data center is a facility housing servers, networking and storage hardware. It incorporates
redundant power, cooling, fire suppression and security systems, as well as network connectivity.

Management of data centers is very expensive, both in terms of reliability assurance and in terms
of energy consumption. Reliability assurance is related to the costs for planning, deploying and
managing the equipment in order to provide a near 100% uptime: this is mission critical, since hard
failures will reduce productivity. Energy consumption is related to the fact that data centers consume
huge amounts of energy.

An improvement of the energy efficiency will give important results both for the owners of the
data centers and for the whole community, since it would be in accordance with the energy saving goals
established by the European Council in the objective known as the 20-20-20 targets (20% increase in
energy efficiency, 20% reduction of CO2 emissions and 20% in the use of renewable energy by 2020) [3]. In fact,
data centers are the most intensive energy consumption buildings in the world [4–6]. For instance, [4]
reports that, in 2011, the total electricity used by data centers worldwide was between the 1.1% and
1.5% of the total electricity demand.

The Power Usage Effectiveness (PUE), defined as:

PUE =
Total Facility Input Power
Total IT Equipment Power

(1)

is a metric to measure the power efficiency of a data center. The average PUE rating in 2015 was 1.7 [6],
meaning that there is a 70% power consumption overhead in the average data center compared to the
power needed by the equipment.

Advances in microprocessor technology lead to both miniaturization of electronic components
and increase in clock rates, increasing the computing power of a single chip. This increases the heat
production in the rooms that must be expelled, since high temperature is the main cause of electronic
hardware failures [7]. Hence, the main overhead of data center consumption happens in the cooling
equipment [8].

The most common cooling solutions are the air cooled systems that distribute air with proper
cooling capacity in the server rooms. The so-called hot/cold aisle layout (see Figure 1) maximizes the
air cooling capacity. It consists of organizing racks in alternating rows with cold air intakes facing one
way and hot air exhausts facing the other. In this way, alternate hot and cold aisles are created between
the rows of racks. This layout avoids cold air mixing with hot exhausted air, improving efficiency, but
is still affected by some critical issues, represented by the so-called hot spots.

Hot spots are local areas of excess temperature caused by a local lack of cooling capacity or inability
to deliver the cooling where it is needed. They cause either an over-cooling of the environment
(for compensating a localized problem) or the damage of electronic equipments (if not detected).
According to [9], 84% of organizations experienced issues with data center power, space and cooling
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capacity, assets or uptime in the past few years. Various strategies to deal with hot spots can be
adopted. These strategies are based on a thorough evaluation and assessment of the data center (e.g.,
balancing the thermal load or changing the air distribution planning). However, identification of hot
spots still remains a problem only partially solved.

Hot
Aisle Hot

Aisle

Cold
Aisle

Cold
Aisle

Raised Floor

Return Air Plenum

Figure 1. Typical data center hot/cold aisles layout.

Data center monitoring groups all of the solutions aimed at measuring environmental quantities
in server rooms for diagnostic and controlling purposes. It is devoted to reducing the cooling and
management costs and the risks of hardware failures. Critical quantities are air temperature and
relative humidity, which must be maintained within the ranges 20–24 ◦C and 40–55 % to maximize the
hardware life cycle [10].

Classical approaches to data center monitoring rely on localized cooling and a distributed
metrology layer [11–17]. However, the dimensions of a typical data center room make it very difficult
to instrument the whole environment with a dense ESN. In fact, in practical applications, managers
adopt sensors to monitor only the perimeter of the room, while other parts are periodically inspected
by human operators. This increases costs and risks.

Recently, mobile robots have been adopted to solve this problem: [18] proposes a multi-robot
system where robots communicate with each other over a wireless network. Localization is based on
Near-Field Communication (NFC) tags placed on the floor. However, this solution requires physical
intervention on the environment and does not adapt to changes in layout. Moreover, it does not
provide obstacle avoidance to allow the robots to safely move when people are operating in the room.
A similar solution is proposed in [19], where a robot takes advantage of the standard square tiles on
the data center floor to navigate. The approach guarantees complete coverage, but lacks autonomy
and robustness.

1.2. Mobile and Cloud Robotics: An Overview

In recent years, autonomous robots and automated systems have been increasingly used in the
industrial field in general [20–22] and in environmental monitoring in particular [23,24]. With respect
to Automated Guided Vehicles (AGV) [25,26], mobile robots are able to navigate in non-instrumented
environments, since they rely only on onboard sensors to perform autonomous navigation.

Autonomous navigation groups all of the techniques and algorithms that are necessary for a
mobile robotic platform in order to accomplish three fundamental tasks: self-localization inside a
known environment; building a map of an unknown environment; obstacle avoidance and path
planning [27].

Localization is the problem for the robot to estimate its location relative to the environment.
Correct and reliable localization with respect to a known map is one of the most fundamental problems
in mobile robotics. Extended Kalman Filters (EKF) and Monte Carlo Localization (MCL) methods are
the most common filtering algorithms used for robot localization [27].
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The problem of map estimation in an unknown environment has been treated extensively in
robotics, and the corresponding framework is usually referred to as Simultaneous Localization and
Mapping (SLAM) [27]. Pose graph optimization has recently emerged as an effective solution for
SLAM. This solution models the problem as an optimization problem over a factor graph where
nodes represent poses assumed by a mobile robot at a certain time and edges represent sensor
measurements [28].

Given the map of the surrounding environment, the robot needs also to be able to plan a path
to reach a given point (global path planning) and to follow this path avoiding obstacles, like clutter
and occupied areas, as well as people and other robots (local path planning). Classical algorithms
performing global path planning are A? and the more recent Rapidly exploring Random Tree
(RRT?) [29].The most widely-used algorithms performing local panning are Vector Field Histograms
(VFH+) [30] and the Dynamic Window Approach (DWA) [31].

Cloud robotics is a new trend in robotics. It leverages Internet-based technologies in order to allow
an artificial agent to take advantage of the network resources to off-load computationally-intensive
tasks. This naturally leads to a paradigm shift in which robots become simple agents that belong
to a common cloud computing platform [32] and represents a further step in the direction of
the Internet of Things [33,34]. In [35], the authors present Rapyuta, an open source Platform as a
Service (PaaS) framework for robotics applications. Rapyuta is the engine underlying RoboEarth, a
cloud robotics infrastructure, which aims at creating a World-Wide-Web-style database for storing
knowledge generated by humans and robots in a machine-readable format. The potential of a cloud
infrastructure opens a new world of possibility for service robotics [32,36–40], but introduces new
research challenges [40].

Cloud robotics applications are becoming more and more popular thanks to the development
of the Robot Operating System (ROS). ROS [41] is an open-source, meta-operating system for
robotic software development. It provides a collection of packages and tools for the development
of distributed robotic application. ROS is nowadays the de facto standard for robotic software
development. The building blocks of ROS are the so-called nodes. A node is running a process
in a ROS environment. Nodes interact with each other resorting on topics and services, which are,
respectively, the ROS implementations of publish/subscribe and client/server communication patterns.
The ROS framework simplifies the development of modular and distributed applications and suites
well the cloud robotics paradigm.

2. The Proposed Solution

The proposed solution consists of a robotic platform equipped with environmental sensors, which
are a thermal camera and a temperature/humidity sensor. The robot is completely autonomous, and
after a simple configuration procedure, it is able to safety navigate in the data center environment.

The developed application is based on ROS and takes advantages of a cloud infrastructure that
abstracts the underlying services and exposes them as RESTful APIs [42]. It also monitors the state of
ROS nodes.

2.1. The Cloud Architecture

The proposed application is based on a cloud robotics platform developed by TIM S.p.A.
The platform is based on ROS and on the concepts of Platform-as-a-Service (PaaS), presented in
Rapyuta [43], and RObotics in CONcert(ROCON) [44]. The cloud robotics platform was first proposed
in [2] and is able to abstract the hardware and software layers. It is able to offload demanding
computational tasks and exposes simple RESTful APIs to the final user.

The cloud robotics platform guarantees robustness in long-term applications: it stores the state
of every ROS node in the application and is able to restart nodes that crash. The platform is also
devoted to distribute the computational load among remote locations, providing better computational
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performances than the robot’s onboard PC. The basic elements of the cloud platform are depicted in
Figure 2a and listed below.

• A Node (N) is a standard ROS node. It can be installed if it resides in an instance or started if it
resides in a service container. It is connected if it has internal or external endpoints.

• A Service Container (SC) groups a set of nodes into a service.
• An Internal Endpoint (IE) connects nodes in the current service container or connects a node to an

external endpoint.
• An External Endpoint (EE) connects nodes belonging to different service containers.
• The Instance is the object where the Platform Manager (PM) and the elements described before

reside. The instance can be: Normal (NI) when it contains an SC and installed or started nodes, or
Simple (SI) when it does not contain any SC, but only installed nodes.

(a) (b)

(c)

Figure 2. The cloud robotics platform developed by TIM. (a) The platform objects and their
relationships; (b) the platform manager logic architecture; (c) the APIs.

These objects are used as building blocks to develop a distributed robotic application. The platform
also provides RESTFul APIs to retrieve and change the application status. This is enabled by the
Platform Manager (PM), depicted in Figure 2b. The PM can send and receive commands through the
command manager. It can also listen to and create events through the event manager. Events and
commands are accessed through the platform API manager. The event engine has a set of controlled
counteractions triggered when previous configured classes of events occur. This has been conceived of
to make the platform service robust and resilient. The counteractions can be both service commands
(e.g., publish a message) and platform commands (e.g., create a service container).

The service API manager is a special node that needs to be started in the service container.
It exposes APIs to the external world for managing service commands and events. External API
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managers, such as robotic applications and the event manager, access different kinds of APIs (Figure 2c):
the platform API manager exposes APIs to manage the platform commands and events; the rule API
manager exposes APIs to manage the procedures for the event engine.

2.2. The Cloud Architecture

The functional architecture (Figure 3) runs in a service container of the cloud robotics platform.
It controls a single robot located in a server room in order to accomplish the monitoring task. It is
composed of three layers:

• The hardware layer (Section 5.1) groups sensors and actuators (together with drivers) of the
robotics platform: navigation sensors (e.g., laser range scanner, wheel encoders) are needed
by navigation; environmental sensors (e.g., temperature/humidity probes, thermal camera) are
required by the monitoring task.

• The navigation layer (Section 3) provides all of the capabilities related to autonomous navigation;
it controls the robot in order to reach specific places within the environment by performing
obstacle avoidance and adaptive path planning in order to deal with dynamic environments.

• The application layer (Section 4) controls the system in order to accomplish the given task.

Figure 3. Functional architecture of the proposed solution.

3. The Navigation Layer

According to Section 2.2, the navigation layer groups all of the capabilities that allow a completely
autonomous robot motion within the environment. The main capabilities are mapping, localization
and path planning (Section 3.1).

The navigation layer works as a middleware between the hardware layer (that is the robot
itself) and the application layer. It receives goal targets and controls the robot to reach each goal
autonomously and safely.

3.1. Mapping, Localization and Path Planning

To solve the navigation problems, we take advantage of the ROS community and several open
source packages available online.

The mapping procedures resorts on the gmapping ROS package [45]. gmapping is a state of the
art solution to perform mapping that relies on Rao–Blackwellized particle filters [46]. During mapping,
the robot is teleoperated from a simple web application. When the mapping procedure ends, the map
is stored in the application database (see Section 4.3).

Robot localization resorts on the well-known Adaptive Monte Carlo localization (AMCL)
algorithm first proposed in [47]. Monte Carlo localization approaches recursively estimate the posterior
about the robot’s pose using particle filters.
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The path planning module resorts on the move_base ROS package [48]. The package implements
a two-stage path-planning procedure, composed by a global planner and a local planner based on
state of the art solutions. Given the current robot pose, the map and a goal, the global planner finds a
suitable path to reach the goal. The computed path is then executed by the local planner, which controls
the robot in order to follow the path while performing obstacle avoidance. Local obstacles are detected
using the laser scanner. Then, at each step, a number of local trajectories are simulated, and the best
trajectory is chosen. At this point, the local planner converts the trajectory into velocity commands.

4. Application Layer

The application layer is devoted to the monitoring task. It is composed by three blocks:
the application manager, the user interface manager and the database manager. The application
manager controls the robot from a high-level point of view over the navigation capabilities, in order to
allow the robot to reach a goal and collect data. The GUI manager exposes the web user interface in
order to allow the user to interact with the system. The database manager manages the application
data storage.

4.1. Database Manager

The data collected by the service are stored in a database structured as depicted in Figure 4.
The database is composed of four main tables, namely room, goal, task and plan. The room table models
a server room. It groups general information (e.g., room manager information) and application-specific
information, which are the map, a list of goal entries and a list of plan entries. The goal table models a
2D pose with an associated a set of task entries. The plan table is a list of goals within the same map.
This table allows the service to perform different measurement campaigns in the same room. The task
table represents tasks that the application has to perform when the corresponding goal is reached.
Several actions have been implemented, such as collect data from the temperature/humidity sensor
or collect data from the thermal camera. The docking action, when executed, starts the auto-docking
procedure (see Section 5.4.4).

Figure 4. The database structure used in the proposed system. Rectangles represent tables, and ellipses
represent data associated with each table. 1:N and M:N represent respectively one-to-many and
many-to-many relationships.
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We call the Virtual Sensor Network (VSN) the set of goals associated with at least one measurement
task. Each measurement task is a source of localized environmental measurements, i.e., a VSN node.
A list of measurements entries storing the history of measurements is associated with each VSN node.

4.2. The Application Manager

The application manager is composed by the navigation manager, the task manager and the
sensor manager.

The navigation manager is built on top of the navigation layer. It is devoted to sending high
level goal positions to the navigation layer and managing the task to perform when a goal is reached.
The manager sends robot goal positions to the navigation layer. When the application starts, the first
plan is loaded in memory by the manager, and all goals belonging to the plan are sent one by one to
the navigation layer. When all goals in the actual plan have been executed, the docking goal will be
executed. After that, the process is repeated.

When the current goal is reached, the task manager is in charge of executing, one by one, all of
the tasks associated with the current goal. Data acquisition tasks are managed by the sensor manager,
which collects the data from sensors and stores them in the database. The docking task is managed by
the navigation manager.

4.3. User Interface Manager

We developed a web-based GUI (Figure 5), which provides an intuitive tool to access the data
collected by the robot, as well as to monitor the state of the robot and control its motion. The GUI
is connected with the underlying ROS nodes via RESTful APIs, which are exposed by the cloud
infrastructure described in [1]. The web server exposing the GUI has been developed using the Flask
Microframework [49], while the client has been developed over the Robot Web Tools [50].

Figure 5. The web GUI.

Within the GUI, the user has full remote access to the robot capabilities: after a login form required
for security, the user can monitor the robot state and position in the environment, access the acquired
data stored in the database and send commands to the robot from both a high-level and low-level
point of view. The user can send a goal to the navigation manager, pause the robot monitoring activity
add or remove goal entries and edit path entries. It can also teleoperate the robot itself.
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5. Experiments and Results

This section presents results coming from several experiments conducted to test both robot
navigation performances and the entire application in real case scenarios. Our tests have been
conducted in two data centers: the Rozzano 3 Data Center of TIM S.p.A. and the data center of
Politecnico di Torino. In both cases, we installed the cloud robotic platform on a server placed in the
same room in which the robot was located. In order to improve security, the robot platform and the
cloud platform were connected over a dedicated WiFi connection setup inside the room, while remote
access to the platform was enabled using a dedicated VPN.

Rozzano 3 is a large TIM S.p.A data center used for housing/hosting and internal services.
It is located near Milan, Italy. It is composed of about twenty large server rooms (average area of
700 m2 per room). We had access to two rooms of the data center (Room 1 and Room 2 from now on).
We tested the navigation part and the application for about one month of continuous operation.
The data collected by the robot cannot be published due to a non-disclosure agreement with TIM S.p.A.

The data center of Politecnico di Torino is a small data center storing the University IT
Infrastructure composed of three rooms of a small size (average area of 100 m2 per room). We had
access to one room and tested the application in a real case scenario. This room is organized in three
aisles with two rows of five racks, in order to have one isolated hot aisle and two cold aisles. The data
center relies on an inter-racks cooling technology, i.e., each couple of adjacent racks is separated by a
cooling module. The data center PUE has been computed as: PUE = 38.000 kW

24.710 kW = 1.5378.

5.1. Hardware Layer

To demonstrate the usefulness of the cloud robot platform in abstracting the hardware layer and
to be compatible with different robot platforms, we first tested our system on hardware from two
different vendors: a Coroware Corobot Classic 4WD rover endowed with a Hokuyo 04LX laser range
finder, an XSens MTi Inertial Measurement Unit (IMU) (Figure 6a) and a Turtlebot 2 robot platform
endowed with a Hokuyo 04LX laser range finder (Figure 6b). Please note that the Turtlebot 2 platform
is internally equipped with an IMU sensor. Both platforms were equipped with a PC running Ubuntu
Linux and ROS.

We tested the navigation performances of both platforms in the Rozzano Data Center
(see Section 5.4). The Turtlebot 2 robot was finally selected for the final prototype due to its robustness,
integration with ROS and the presence of a built-in docking system.

(a)

Temperature/humidity
Sensor

Thermal Camera

Laser Scanner

Laptop Running ROS

Turthebot 2 Base

(b)

Figure 6. The two hardware platform prototypes. (a) The Coware Corob Classic 4 WD platform;
(b) the Turtlebot 2 platform.
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The Turtlebot 2 robot platform was finally equipped with the environmental sensors: a thermal
camera Optris PI 230 and a temperature/humidity sensor DHT22 controlled by an Arduino Uno board
communicating with ROS using rosserial [51]. The thermal camera and the temperature/humidity
sensor were mounted over a custom structure prototyped using fast prototyping solutions. The thermal
camera has been positioned at a height of 0.8 m, while the temperature/humidity sensor at a height of
1 m.

5.2. Tuning Navigation Algorithms

The choice of the AMCL and move_base parameters is critical for achieving good performances
in a challenging scenario. Good localization is crucial for the subsequent path planning, while correct
planning greatly depends on the surrounding environment.

The most important parameter values that we use in our modified ROS implementation of
the AMCL algorithm are reported in Table 1a. The error in laser readings caused by the metal
grids (see Section 5.3) has been modeled in a trivial way by raising the laser_z_hit value of the
likelihood field sensor model. The higher laser_z_rand value accounts for the presence of glass-covered
racks. We experimentally found that a maximum particle size of 10,000 is enough for reliable global
localization, and a minimum of 500 is enough for estimating the robot pose during position tracking.

Regarding path planning and path following, a tradeoff is needed between the ability of the
robot to travel in narrow areas (such as narrow corridors between the racks) and the use of a safer
distance from the obstacles in order to avoid possible collisions. We found in our experiments that the
resolution of the rolling window has to be set higher than the default, and the inflation radius has to be
set near the minimum possible value in order to ensure the robot will pass also in narrower corridors.
The move_base package is also heavy on the computational side, so a tradeoff has to be made between
accuracy and CPU load if the package is run onboard the robot. The values for the most important
parameters that we use are shown in Table 1b.

Table 1. The parameters used for the AMCL and mobe_base ROS packages. (a) Parameters used for
AMCL ROS node; (b) parameters used for move_base node.

Parameter Value

(a)

max_particles 10,000
min_particles 500

laser_z_hit 0.5
laser_z_rand 0.5

update_min_d 0.1
update_min_a 0.25

resample_interval 1

(b)

resolution 0.05
inflation_radius 0.35

transform_tolerance 3
path_distance_bias 1.0

5.3. Laser Issues

Data center spaces introduce specific problems that must be tackled in order to assure safe and
reliable laser-based autonomous navigation. Metal grids covering racks introduce noise into laser
scanner measurements. The noise is due to the fact that laser beams sometimes go through the holes of
the grid. This phenomenon introduces errors in mapping and localization (see Section 5.4).

To understand the entity of this issue, we test in the same position a SICK LMS-200 laser scanner
(see Figure 7a) and the Hokuyo 04LX laser scanner (see Figure 7b) mounted on our robots. We found
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out that the SICK laser scanner was able to give more accurate distance measures, while the Hokuyo
04LX presents a significantly larger error in correspondence of the metal grids.

(a) (b)

Figure 7. Noise caused by the grids on the laser range readings. Due to better angular resolution, the
Hokuyo is affected by measurement noise due to metal grids covering the racks. (a) SICK LMS-200
laser scan; (b) Hokuyo 04LX laser scan.

5.4. Robot Navigation

Here, we demonstrate the ability of the developed system to perform long-term navigation in the
data center environment without issues. We conducted the navigation test campaign in Room 1 and
Room 2 of the Rozzano data center, which were more challenging due to their dimensions. Please note
that all of the navigation algorithms have been fully tested in different environments in the literature,
so the aim of this section is to test navigation performances in the particular environment of data
center rooms.

After a first set of experiments that were used to tune the parameters of the algorithms in order
to maximize performances (see Section 5.2), we tested mapping, localization, path planning, path
following, obstacles avoidance and docking.

5.4.1. Experiment 1: Mapping

The mapping step was executed in all of the data center rooms where we used the robot.
In Figure 8, we report the maps created in Room 1 and Room 2 of the Rozzano data center. Both maps
were created in approximately 30 min by manually tele-operating the robot. The resolution of the map
is 0.05 m/pixel. The effect of metal grids can be seen, as the surfaces of the racks are irregular in some
areas. Note that, due to the non-disclosure agreement with TIM, the maps shown in Figure 8 have
been partially edited in order not to reveal the real planimetry of the rooms.

(a) (b)

Figure 8. The two maps created with the mapping procedure. Due to the non-disclosure agreement,
the map shown in these pictures has been partially edited in order to not reveal the real planimetry of
the room. (a) Room 1; (b) Room 2.
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5.4.2. Experiment 2: Localization, Path Planning and Path Following

We evaluated the performances of localization, path planning and path following. A path
composed of a certain number of goals was created within the environment, and the robot was
controlled in order to reach each goal according to their order and then to re-execute the path.
Figure 9a shows the results of a typical experiment. It can be noticed that the robot correctly localized
itself and was able to follow the given path. Position localization errors are plotted in Figure 9b.

(a)

0 50 100 150 200 250 300 350 400
0

0.02

0.04

resampling episodes

σ
2
[ m

2
]

σ2
x

σ2
y

(b)

Figure 9. Localization and path planning performances. (a) Trajectory followed by the robot,
as estimated by localization, is shown in blue; (b) estimated position error plot.

5.4.3. Experiment 3: Obstacle Avoidance

We tested obstacle avoidance by performing Experiment 2 again in the presence of fixed and
moving obstacles. We checked that the system was 100% able to avoid obstacles and re-planning the
path if the current path is completely obstructed by obstacles.

5.4.4. Experiment 4: Docking

We tested the performance of the docking system of the Turtlebot 2 robot platform. We set a
navigation goal near the docking station and then controlled the robot in order to reach the goal
using the navigation layer and then start the docking procedures. We executed the docking procedure
50 times, by making the robot start from a random initial position within the environment. The docking
procedures failed three times and succeeded 47 times (94% success rate). Failures were caused by a
non-perfect mechanical alignment between the robot and the docking station.

We improved the algorithm in order to re-execute the entire procedure if that docking station is
not reached within a given time (e.g., 60 s). After that, we reached a 100% success rate.

5.4.5. Experiment 5: Long-Term Navigation

We finally tested the whole system running on the Turtlebot 2 robot platform within Room 1 of
the Rozzano data center. This final experiment was conducted during normal daily operations, with
workers moving along the corridors, as well as obstacles, which were not present in the original map
(open rack doors, carts, etc.). During this test, the robot was equipped with environmental sensors
and was able to collect environmental data; however, due to the non-disclosure agreement, we are not
allowed to publish the data collected.

We set a path of 80 goals and installed the docking station within Room 1 of the Rozzano Data
Center. The system was programmed to execute the path 12 times a day (every 2 h) and then return to
the docking station. Each mission lasted approximately 40 min. The experiment was run continuously
for one month without human intervention. The only incident encountered was due to a cart, which
was left for about one hour near the docking station. This cart prevented the robot from reaching the
station and made it continuously execute the docking procedure until the cart was removed.
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5.4.6. Discussion

These experiments demonstrate that the developed system is able to correctly navigate within a
data center environment. The errors introduced by the metal racks grids (see Section 5.3) propagate
over the reconstruction of the maps, which present some irregular areas within aisles (Figure 8,
Section 5.4.1) and over localization errors (Figure 9, Section 5.4.2), which are higher than the ones
reported in other industrial applications [52]. However, localization is still adequate for the subsequent
path planning.

Obstacle avoidance (Section 5.4.3), docking (Section 5.4.4) and long-term navigation (Section 5.4.4)
do not present critical issues. Experiments guarantee the correct working of the system in long-term
execution.

5.5. Monitoring Service

The entire monitoring service was tested in both the data center of TIM and that of Politecnico
di Torino. These final tests aimed at demonstrating that the developed system is able to collect
environmental data and to highlight some environmental management issues that the monitoring
system of the data center was not able to point out. Despite the big difference in dimensions between
the two data centers, both are similar in terms of layout and management. The small size does not
affect the completeness of the experiments in the data center of Politecnico di Torino, since the ability
of the robot to navigate in big environments has been already validated in Section 5.4.5.

In the Rozzano Data Center, the monitoring service was tested at the same time of Experiment 5
previously presented. As already said, the non-disclosure agreement prevents us from publishing the
data collected during this campaign. However, we can report that we found some issues in energy
management and layout of the data center, such as some hot spots.

Within the data center of Politecnico di Torino, we performed two intense data collection
campaigns: the first one, performed 2 May 2016, lasted 14-h; the second one, performed between
25 and 26 May 2016, lasted 28 h. In order to allow the robot to monitor the whole environment, the
isolation between the hot aisle and the rest of the room has been temporarily removed.

We set the monitoring system as depicted in Figure 10 according to the data center manager
instructions. We set three virtual temperature/humidity nodes per aisle (i.e., twelve nodes) and two
thermographic VSN nodes per rack line’s side (i.e., eight nodes). The application was run in order to
make the robot start a new test campaign after 10 min of recharging. The complete path is executed in
about 6 min, resulting in capturing data in each VSN node with a sampling time of about 16 min.

row of racks 

row of racks 

Hot Aisle

Cold Aisle

Cold Aisle

1

2 Thermographic node

Temperature/Humidity node

Docking Station

3

4

Figure 10. The data center layout and VSN nodes’ set-up. Triangles represent thermographic nodes,
oriented in order to capture a thermographic image of half of the rack line’s side; circles represent
temperature/humidity nodes, and rectangle represents the docking station.
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5.5.1. Collected Data

In Figure 11, we reported the temperature and humidity plots in time of two temperature/humidity
VPN nodes, the former (Node 1) in the center of the the top aisle, the latter (Node 2) in the center
of the hot aisle, as depicted in Figure 10. The plots of the other nodes are very similar. While the
first campaign was done during the day time, the second campaign ran also during night time.
We highlighted in Figure 11b the night period, from 8 p.m. of the first day to 8 a.m. of the second day.
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Figure 11. Temperature and relative humidity plots of data collected in the center VSN node in the hot
aisle and in the center VSN node in one of the cold aisles. The grey region of (b) is the night period.
(a) First campaign; (b) second campaign.

Figure 12 reports the relative humidity vs. temperature plots of the cold aisles collected in both
experiments. We also reported in grey the optimal ranges of temperature and humidity that maximize
the hardware life cycle, according to [10]. Note that optimal ranges are related to air that is used to
cool the system; hence, only the data collected in the cold aisles are reported.
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Figure 12. Relative humidity vs. temperature plots of cold air data. The grey zone represents
the optimal suggested values of temperature and humidity to maximize the hardware life cycle.
(a) First campaign; (b) second campaign.

Figure 13 reports thermographic images captured at different times during the second campaign
(i.e., 1 h, 10 h, 20 h and 27 h) from Node 3 and Node 4 (see Figure 10).
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HotSpots

(a)

Hot Air Leak

(b)

Figure 13. Thermographic analysis of two thermographic nodes at different times. Images have been
captured in the second data collection at times 1 h, 10 h, 20 h and 27 h. (a) Thermographic Node 3;
(b) Thermographic Node 4.

5.5.2. Discussion

Collected data reported in Figure 12 show that the humidity in the room is not well maintained.
During the first campaign, we measured a huge decrease in relative humidity that went under 30%
(see Figure 12a). In the second campaign, the humidity slowly increased (see Figure 12b). We compared
these data to the external humidity data given by the weather history, and we noticed a similar trend.
This may point to issues in the isolation of the data center room. On the other hand, temperature seems
to be well controlled in the environment: in fact, in both campaigns, we can see a stable trend in time.
However, data show a difference in temperature between the two campaigns. Node 1 presents an
average temperature of 22.8 ◦C during the first campaign and of 20.6 ◦C during the second campaign.
On the other hand, Node 2 average temperature increases from 24.4 ◦C to 24.9 ◦C This phenomenon is
probably due to a higher external temperature that requires a higher cooling capacity of the air: average
external temperature was 13 ◦C during the first campaign and 17 ◦C during the second campaign.
This confirms the fact that the data center is not well isolated from the external environment.

The reliability of the temperature control system is also verified by Figure 12, which compares
collected data about cold air with the optimal ranges that maximize the hardware life cycle [10].
Figure 12 points out that the temperature of cold air is always within the optimal range. On the other
hand, relative humidity values are strongly out of range in the first campaign (Figure 12a) and partially
within the optimal range in the second campaign (Figure 12b). This fact highlights the necessity to
improve the humidity control system.

Figure 13a shows the presence of some hotspots in the hot aisle; however, this is not a big issue
since, usually, the hot aisle is isolated from the rest of the environment. On the other hand, in Figure 13b,
we can notice a small hot air leak from the bottom of a rack. This leak is an issue in thermal efficiency,
since it causes hot air to recycle and, hence, an over-cooling phenomenon near the rack. We found out,
with the help of the data center manager, that the leak was caused by a network switcher not correctly
placed within the rack.

Finally, Figure 12b points out that there is no difference in terms of thermal load between day and
night. Since the data center is a university data center, we expected the computational load of the data
center to strongly decrease during the night. However, the data center is managed in order to perform
high computation background procedures during the night, such as backups, that cause an average
computational load that is very similar during day and night.

6. Conclusions

In this paper, we presented a service robotics application for solving the problem of environmental
monitoring of data centers. Our solution relies on a cloud robotics framework based on the Robot
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Operating System (ROS) and simulates an ESN. Instead of using several fixed sensors (nodes), a few
sensors mounted on an autonomous mobile base are sufficient to reach each point of the environment
and give localized measures. We called this system a Virtual Sensor Network (VSN).

We described the general architecture of the cloud robotics platform and how we applied this
technology in a real service robotics application. Then, we described the application itself and our
choices related to robot navigation and the monitoring application.

Finally, we showed the results from several experiments in order to validate the ability of
the proposed solution to autonomously navigate within the environment (using two different
robotic hardware platforms) and to test the application in real case scenarios. Data collection and
thermographic analysis performed inside the data center room of Politecnico di Torino highlighted
some issues regarding humidity control and isolation, which could be reported to the data center
management for action.

Supplementary Materials: A video of the proposed system while working is available online at https://www.
youtube.com/watch?v=HlUB0oHuXrc.
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The following abbreviations are used in this manuscript:

AGV Automated Guided Vehicles
(A)MCL (Adaptive) Monte Carlo Localization
API Dynamic Window Approach
EKF Extended Kalman Filters
ESN Environmental Sensor Network
GUI Graphical User Interface
IMU Inertial Measurement Unit
NFC Near Field Communication
PaaS Platform as a Service
PM Platform Manager
PUE Power Usage Effectiveness
REST REpresentational State Transfer
ROCON RObotics in CONcert
ROS Robot Operating System
RRT? Rapidly exploring Random Tree
SLAM Simultaneous Localization and Mapping
VFH+ Vector Field Histograms
VSN Virtual Sensor Network

References

1. Rosa, S.; Russo, L.O.; Airó Farulla, G.; Carlone, L.; Antonini, R.; Marco, G.; Bona, B. An application of
laser-based autonomous navigation for data-center monitoring. In Proceedings of the 13th International
Conference IAS-13, Padova, Italy, 15–19 July 2014.

2. Rosa, S.; Russo, L.O.; Bona, B. Towards a ROS-based autonomous cloud robotics platform for data center
monitoring. In Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA),
Barcelona, Spain, 16–19 September 2014; pp. 1–8.

3. The 2020 Climate and Energy Package, EU Climate Action. Available online: http://ec.europa.eu/clima/
policies/strategies/2020/index_en.htm (accessed on 4 July 2016).

4. Koomey, J. Growth in Data Center Electricity Use 2005 to 2010; Analytical Press: Oakland, CA, USA, 2011.

https://www.youtube.com/watch?v=HlUB0oHuXrc
https://www.youtube.com/watch?v=HlUB0oHuXrc
http://ec.europa.eu/clima/policies/strategies/2020/index_en.htm
http://ec.europa.eu/clima/policies/strategies/2020/index_en.htm


Sensors 2016, 16, 1255 17 of 18

5. Patterson, M.K. The effect of data center temperature on energy efficiency. In Proceedings of the 11th
Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Orlando, FL,
USA, 28–31 May 2008; pp. 1167–1174.

6. Brill, K.G. Data Center Energy Efficiency and Productivity; Technical Report; The Uptime Institute: Santa Fe, NM,
USA, 2007.

7. Anandan, S.S.; Ramalingam, V. Thermal management of electronics: A review of literature. Therm. Sci. 2008, 12, 5–26.
8. Capozzoli, A.; Primiceri, G. Cooling systems in data centers: State of art and emerging technologies.

Energy Procedia 2015, 83, 484–493.
9. Villars, R.L. The Datacenter’s Role in Delivering Business Innovation; Technical Report; CA Technologies:

Framingham, MA, USA, 2012.
10. Wang, L.; Khan, S.U. Review of performance metrics for green data centers: A taxonomy study. J. Supercomput.

2013, 63, 639–656.
11. Patel, C.D.; Bash, C.E.; Belady, C.; Stahl, L.; Sullivan, D. Computational fluid dynamics modeling of

high compute density data centers to assure system inlet air specifications. In Proceedings of the Pacific
Rim/ASME International Electronic Packaging Technical Conference and Exhibition, Kauai, HI, USA,
8–13 July 2001; Volume 1, pp. 8–13.

12. Patel, C.D.; Bash, C.E.; Sharma, R.; Beitelmal, M.; Friedrich, R. Smart cooling of data centers. In Proceedings
of the ASME 2003 International Electronic Packaging Technical Conference and Exhibition, Maui, HI, USA,
6–11 July 2003.

13. Ranganathan, P.; Leech, P.; Irwin, D.; Chase, J. Ensemble-level Power Management for Dense Blade Servers.
ACM SIGARCH Computer Architecture News. Available online: http://www.ecs.umass.edu/~irwin/hp.
pdf (accessed on 5 August 2016).

14. Bash, C.E.; Patel, C.D.; Sharma, R.K. Dynamic thermal management of air cooled data centers. In Proceedings
of the Tenth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronics Systems
(ITHERM’06), San Diego, CA, USA, 30 May–2 June 2006.

15. Nathuji, R.; Isci, C.; Gorbatov, E. Exploiting platform heterogeneity for power efficient data centers.
In Proceedings of the the Fourth International Conference on Autonomic Computing (ICAC’07), Jacksonville,
FL, USA, 11–15 June 2007.

16. Das, R.; Kephart, J.O.; Lefurgy, C.; Tesauro, G.; Levine, D.W.; Chan, H. Autonomic multi-agent management
of power and performance in data centers. In Proceedings of the 7th International Joint Conference on
Autonomous Agents and Multiagent Systems: Industrial Track, Estoril, Portugal, 12–16 May 2008.

17. Parolini, L.; Sinopoli, B.; Krogh, B.H. Reducing data center energy consumption via coordinated cooling and
load management. In Proceedings of the Proceedings of the 2008 Conference on Power Aware Computing
and Systems, San Diego, CA, USA, 7 December 2008.

18. Choi, W.; Park, K.-W.; Park, K.H. Scout: Data center monitoring system with multiple mobile robots.
In Proceedings of the 2011 7th International Conference on Networked Computing and Advanced
Information Management (NCM), Gyeongju, Korea, 21–23 June 2011; pp. 150–155.

19. Lenchner, J.; Isci, C.; Kephart, J.O.; Mansley, C.; Connell, J.; McIntosh, S. Towards data center self-diagnosis
using a mobile robot. In Proceedings of the 8th ACM International Conference on Autonomic Computing,
ICAC 2011, Karlsruhe, Germany, 14–18 June 2011; pp. 81–90.

20. Kiva Systems. Available online: http://www.kivasystems.com (accessed on 4 July 2016).
21. Bona, B.; Carlone, L.; Indri, M.; Rosa, S. Supervision and monitoring of logistic spaces by a cooperative robot

team: Methodologies, problems, and solutions. Intell. Serv. Robot. 2014, 7, 185–202.
22. Guizzo, E. Three engineers, hundreds of robots, one warehouse. IEEE Specturm 2008, 7, 27–34.
23. Hamann, H.F.; Schappert, M.; Iyengar, M.; van Kessel, T.; Claassen, A. Methods and techniques for

measuring and improving data center best practices. In Proceedings of the IEEE 11th Intersociety Conference
on Thermal and Thermomechanical Phenomena in Electronic Systems, ITHERM 2008, Orlando, FL, USA,
28–31 May 2008; pp. 1146–1152.

24. Hamann, H.F.; van Kessel, T.G.; Iyengar, M.; Chung, J.Y.; Hirt, W.; Schappert, M.A.; Claassen, A.; Cook, M.J.;
Min, W.; Amemiya, Y.; et al. Uncovering energy-efficiency opportunities in data centers. IBM J. Res. Dev.
2009, 53, 10–11.

25. Vis, I.F.A. Survey of research in the design and control of automated guided vehicle systems. Eur. J. Oper. Res.
2006, 170, 677–709.

http://www.ecs.umass.edu/~irwin/hp.pdf
http://www.ecs.umass.edu/~irwin/hp.pdf
http://www.kivasystems.com


Sensors 2016, 16, 1255 18 of 18

26. Kelly, A.; Nagy, B.; Stager, D.; Unnikrishnan, R. Field and service applications—An infrastructure-free
automated guided vehicle based on computer vision—An effort to make an industrial robot vehicle that can
operate without supporting infrastructure. IEEE Robot. Autom. Mag. 2007, 14, 24–34.

27. Thrun, S.; Burgard, W.; Fox, D. Probabilistic Robotics; MIT Press: Cambridge, MA, USA, 2005.
28. Lu, F.; Milios, E. Globally consistent range scan alignment for environment mapping. Auton. Robots 1997, 4, 333–349.
29. Lavalle, S.M. Rapidly-Exploring Random Trees: A New Tool for path planning; Technical Report; Iowa State

University: Ames, IA, USA.
30. Ulrich, I.; Borenstein, J. Vfh+: Reliable obstacle avoidance for fast mobile robots. In Proceedings of the 1998

IEEE International Conference on Robotics and Automation, Leuven, Belgium, 16–20 May 1998; Volume 2,
pp. 1572–1577.

31. Fox, D.; Burgard, W.; Thrun, S.; Fox, D.; Burgar, W. The dynamic window approach to collision avoidance.
IEEE Trans. Robot. Autom. 1997, 4, 23–33.

32. Waibel, M.; Beetz, M.; Civera, J.; d’Andrea, R.; Elfring, J.; Galvez-Lopez, D.; Haussermann, K.; Janssen, R.;
Montiel, J.M.M.; Perzylo, A.; et al. A world wide web for robots. IEEE Robot. Autom. Mag. 2011, 18, 69–82.

33. Iera, A.; Atzori, L.; Morabito, G. The internet of things: A survey. Comput. Netw. 2010, 54, 2787–2805.
34. Hagita, N.; Sanfeliu, A.; Saffiotti, A. Network robot systems. Robot. Auton. Syst. 2008, 56, 793–797.
35. Hunziker, D.; Gajamohan, M.; Waibel, M.; D’Andrea, R. Rapyuta: The roboearth cloud engine. In Proceedings

of the 2013 IEEE International Conference on Robotics and Automation (ICRA), Karlsruhe, Germany,
6–10 May 2013; pp. 438–444.

36. Du, Z.; Chen, Y.; García-Acosta, M. Robot as a service in cloud computing. In Proceedings of the 2010
Fifth IEEE International Symposium on Service Oriented System Engineering (SOSE), Nanjing, China,
4–5 June 2010; pp. 151–158.

37. Menezes, P.; Quintas, J.; Dias, J. Cloud robotics: Towards context aware robotic networks. In Proceedings of
the International Conference on Robotics, Shanghai, China, 9–13 May 2011; pp. 420–427.

38. Hagita, N.; Kamei, K.; Nishio, S.; Sato, M. Cloud networked robotics. IEEE Netw. 2012, 26, 28–34.
39. Chibani, A.; Amirat, Y.; Mohammed, S.; Matson, E.; Hagita, N.; Barreto, M. Ubiquitous robotics: Recent

challenges and future trends. Robot. Auton. Syst. 2013, 61, 1162–1172.
40. Kehoe, B.; Patil, S.; Abbeel, P.; Goldberg, K. A survey of research on cloud robotics and automation.

IEEE Trans. Autom. Sci. Eng. 2015, 12, 398–409.
41. Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An open-source

robot operating system. ICRA Workshop Open Source Softw. 2009, 3, 5.
42. Richardson, L.; Ruby, S. RESTful Web Services; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2008.
43. Mohanarajah, G.; Hunziker, D.; D’Andrea, R.; Waibel, M. Rapyuta: A cloud robotics platform. IEEE Trans.

Autom. Sci. Eng. 2015, 12, 481–493.
44. Robotics in Concert. Available online: http://www.robotconcert.org (accessed on 4 July 2016).
45. Gmapping ROS Package. Available online: http://wiki.ros.org/gmapping (accessed on 5 August 2016).
46. Grisetti, G.; Stachniss, C.; Burgard, W. Improved techniques for grid mapping with rao-blackwellized

particle filters. IEEE Trans. Robot. 2007, 23, 34–46.
47. Fox, D. Kld-sampling: Adaptive particle filters. In Advances in Neural Information Processing Systems 14;

MIT Press: Cambridge MA, USA, 2001.
48. Move_Base ROS Package. Available online: http://wiki.ros.org/move_base (accessed on 4 July 2016).
49. the Flask Microframework. Available online: http://flask.pocoo.org/ (accessed on 5 August 2016).
50. Robot Web Tools. Available online: http://robotwebtools.org/tools.html (accessed on 5 August 2016).
51. The Rosserial Package. Available online: http://wiki.ros.org/rosserial (accessed on 4 July 2016).
52. Rowekamper, J.; Sprunk, C.; Tipaldi, G.D.; Stachniss, C.; Pfaff, P.; Burgard, W. On the position accuracy

of mobile robot localization based on particle filters combined with scan matching. In Proceedings of the
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vilamoura, Portugal,
7–12 October 2012; pp. 3158–3164.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://www.robotconcert.org
http://wiki.ros.org/gmapping
http://wiki.ros.org/move_base
http://flask.pocoo.org/
http://robotwebtools.org/tools.html
http://wiki.ros.org/rosserial
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Energy Management in Data Centers
	Mobile and Cloud Robotics: An Overview

	The Proposed Solution
	The Cloud Architecture
	The Cloud Architecture

	The Navigation Layer
	Mapping, Localization and Path Planning

	Application Layer
	Database Manager
	The Application Manager
	User Interface Manager

	Experiments and Results
	Hardware Layer
	Tuning Navigation Algorithms
	Laser Issues
	Robot Navigation
	Experiment 1: Mapping
	Experiment 2: Localization, Path Planning and Path Following
	Experiment 3: Obstacle Avoidance
	Experiment 4: Docking
	Experiment 5: Long-Term Navigation
	Discussion

	Monitoring Service
	Collected Data
	Discussion


	Conclusions

