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We implement a pseudolikelihood approach with l1 and l2 regularizations as well as the recently introduced
pseudolikelihood with decimation procedure to the inverse problem in continuous spin models on arbitrary
networks, with arbitrarily disordered couplings. Performances of the approaches are tested against data produced
by Monte Carlo numerical simulations and compared also to previously studied fully connected mean-field-based
inference techniques. The results clearly show that the best network reconstruction is obtained through the
decimation scheme, which also allows us to make the inference down to lower temperature regimes. Possible
applications to phasor models for light propagation in random media are proposed and discussed.
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I. INTRODUCTION

Given a data set and a model with some unknown parame-
ters, the inverse problem aims to find the values of the model
parameters that best fit the data. In this work, in which we
focus on systems of interacting elements, the inverse problem
concerns the statistical inference of the underlying interaction
network and of its coupling coefficients from observed data on
the dynamics of the system.

Inverse problems have relevant applications in physics
[1–6], biology [7–12], neuroscience (e.g., [13–16]), ethol-
ogy [17–19], and social sciences and finance (e.g., [20,21]),
just to cite a few examples, and are becoming more and more
important due to the increase in the number of data available
from these fields.

A standard approach used in statistical inference is to
predict the interaction couplings by maximizing the likelihood
function. This technique, however, requires the evaluation
of the partition function that, in the most general case,
concerns a number of computations scaling exponentially
with the system size. Boltzmann machine learning uses
Monte Carlo sampling to compute the gradients of the log-
likelihood looking for stationary points [22] but this method
is computationally manageable only for small systems. A
series of faster approximations, such as naive mean-field,
independent-pair approximation [14,23], inversion of TAP
equations [24,25], small correlations expansion [26], adaptive
TAP [27], adaptive cluster expansion [5], or Bethe approxi-
mations [3,4], have, then, been developed. These techniques
take as input means and correlations of observed variables and
most of them assume a fully connected graph as underlying
connectivity network, or expand around it by perturbative
dilution. In most cases, network reconstruction turns out to
be not accurate for small data sizes and/or when couplings
are strong or, else, if the original interaction network is
sparse.

A further method, substantially improving performances
for small data, is the so-called pseudolikelihood method
(PLM) [28]. In Ref. [2] Aurell and Ekeberg performed a

comparison between PLM and some of the just mentioned
mean-field-based algorithms on the pairwise interacting Ising-
spin (σ = ±1) model, showing how PLM performs sensitively
better, especially on sparse graphs and in the high-coupling
limit, i.e., for low temperature.

In this work, we aim at performing statistical inference on
a model whose interacting variables are continuous XY spins,
i.e., σ ≡ (cos φ, sin φ) with φ ∈ [0,2π ). The developed tools
can, actually, be also straightforwardly applied to the p-clock
model [29], where the phase φ takes discretely equispaced p

values in the 2π interval, φa = a2π/p, with a = 0,1, . . . ,p −
1. The p-clock model, else called the vector Potts model, gives
a hierarchy of discretization of the XY model as p increases.
For p = 2, one recovers the Ising model, for p = 4 the Ashkin-
Teller model [30], for p = 6 the ice-type model [31,32],
and the eight-vertex model [33–35] for p = 8. It turns out
to be very useful also for numerical implementations of the
continuous XY model. Recent analysis on the multibody XY

model has shown that for a limited number of discrete phase
values (p ∼ 16,32) the thermodynamic critical properties of
the p → ∞ XY limit are promptly recovered [36,37]. Our
main motivation to study statistical inference is that this
kind of model has recently turned out to be rather useful in
describing the behavior of optical systems, including standard
mode-locking lasers [36,38–40] and random lasers [37,41–44].
In particular, the inverse problem on the pairwise XY model
analyzed here might be of help in recovering images from light
propagated through random media.

This paper is organized as follows: In Sec. II we introduce
the general model. In Sec. III we introduce the PLM with l1 and
l2 regularizations, variants of the PLM respectively introduced
in Refs. [45] and [2] for the inverse Ising problem, and the
PLM with decimation [46]. Here, we analyze these techniques
for continuous XY spins and we test them on thermalized data
generated by exchange Monte Carlo numerical simulations
of the original model dynamics. In Sec. IV and in Sec. V
we present the results related to the PLM-l1 and PLM-l2,
respectively. In Sec. VI the results related to the PLM with
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decimation are reported and its performances are compared
to the PLM-l1, to the PLM-l2, and to a variational mean-field
method analyzed in Ref. [47]. In Sec. VII we discuss the model
derivation in the framework of light transmission through
random scattering media: we show how light propagation
through random media can be mapped onto an XY model and
that the inverse problem can, thus, be exploited to improve
performances in imaging and focusing. In Sec. VIII, we outline
conclusive remarks and perspectives.

II. THE LEADING x y MODEL

The leading model we are considering is defined, for a
system of N angular XY variables, by the Hamiltonian

H = −
1,N∑
ik

Jik cos (φi − φk). (1)

The XY model is well known in statistical mechanics, display-
ing important physical insights, starting from the Berezinskii-
Kosterlitz-Thouless transition in two dimensions [48,49] and
moving to, e.g., the transition of liquid helium to its superfluid
state [50], the roughening transition of the interface of a
crystal in equilibrium with its vapor [51]. In the presence of
disorder and frustration [52,53] the model has been adopted
to describe synchronization problems such as the Kuramoto
model [54] and in the theoretical modeling of Josephson
junction arrays [55,56] and arrays of coupled lasers [57].
Besides several derivations and implementations of the model
in quantum and classical physics, equilibrium or out of
equilibrium, ordered or fully frustrated systems, Eq. (1),
in its generic form, has found applications also in other
fields, a rather fascinating example being the behavior of
starling flocks [58–62]. Our interest in the XY model resides,
though, in optics. Phasor and phase models with pairwise and
multibody interaction terms can, indeed, describe the behavior
of electromagnetic modes in both linear and nonlinear optical
systems in the analysis of problems such as light propagation
and lasing [38,63,64]. As couplings are strongly frustrated,
these models turn out to be especially useful to the study
of optical properties in random media [43,44], as in the
noticeable case of random lasers [65–67], and they might as
well be applied to linear scattering problems, e.g., propagation
of waves in opaque systems or disordered fibers, as will be
discussed in Sec. VII.

III. PSEUDOLIKELIHOOD MAXIMIZATION

The inverse problem consists of the reconstruction of the
parameters Jik of the Hamiltonian, Eq. (1). Given a set of
M data configurations of N spins σ = {cos φ

(μ)
i , sin φ

(μ)
i },

i = 1, . . . ,N and μ = 1, . . . ,M , we want to infer the
couplings:

σ → J.

With this purpose in mind, in the rest of this section
we implement the working equations for the techniques
used. In order to test our methods, we generate the input
data, i.e., the configurations, by Monte Carlo simulations
of the model. The joint probability distribution of the N

variables φ ≡ {φ1, . . . ,φN } follows the Gibbs-Boltzmann
distribution:

P (φ) = 1

Z
e−βH(φ) where Z =

∫ N∏
k=1

dφke
−βH(φ) (2)

and where we also introduced the inverse temperature param-
eter, which is an externally tuneable parameter. For instance,
in Sec. VII, we will see that β = (2�2)

−1
, where � is the

mean-squared displacement of the noise in the exact resolution
of light transmission equations. In order to stick to the usual
statistical inference notation, in the following we will rescale
the couplings by a factor β/2: βJij /2 → Jij .

Maximizing Eq. (2), or its logarithm, called likelihood, with
respect to the couplings would yield the most representative
set of interaction values. However, in Eq. (2) one has to
evaluate the partition function Z; i.e., one has to perform
the integral over all possible configuration of N continuous
variables. Let us, for a moment, reduce the range of values
of the phases from infinite to 2 (φ = 0,π ). Even in this case,
i.e., the simplest—Ising—case, one should compute the Z

function over 2N possible configurations at each step of the
maximization procedure. It becomes readily intractable as N

increases for any statistical mechanical problem that has no
simple exact solution because the number of configurations
grows exponentially with N . Increasing, furthermore, the
number of values each φ can take, 2 → p → ∞, the problem
becomes intractable at lower and lower N . One has, therefore,
to resort to an approximate procedure that takes into account
only a fraction of all possible configurations and that is proved
to be exact as the number of configurations tends to the total
number of configurations. This is termed the pseudolikelihood
method (PLM).

The main idea of the PLM is to work with the conditional
probability distribution of one variable φi given all other
variables, φ\i :

P (φi |φ\i) = 1

Zi

exp
{
Hx

i (φ\i) cos φi + H
y

i (φ\i) sin φi

}

= eHi (φ\i ) cos [φi−αi (φ\i )]

2πI0(Hi)
, (3)

where Hx
i and H

y

i are defined as

Hx
i (φ\i) =

∑
j (�=i)

JR
ij cos φj −

∑
j (�=i)

J I
ij sin φj , (4)

H
y

i (φ\i) =
∑
j (�=i)

JR
ij sin φj +

∑
j (�=i)

J I
ij cos φj ; (5)

Hi =
√

(Hx
i )2 + (Hy

i )2, αi = arctan H
y

i /Hx
i , and we intro-

duced the modified Bessel function of the first kind:

Ik(x) = 1

2π

∫ 2π

0
dφex cos φ cos kφ.

Given M observation samples φ(μ) = {φμ

1 , . . . ,φ
μ

N }, μ =
1, . . . ,M , the pseudo-log-likelihood for the variable i is given
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by the logarithm of Eq. (3),

Li = 1

M

M∑
μ=1

ln P
(
φ

(μ)
i

∣∣φ(μ)
\i
)

= 1

M

M∑
μ=1

[
H

(μ)
i cos

(
φ

(μ)
i − α

(μ)
i

)− ln 2πI0
(
H

(μ)
i

)]
. (6)

The underlying idea of PLM is that an approximation of
the true parameters of the model is obtained for values that
maximize the functions Li . The specific maximization scheme
differentiates the different techniques.

A. PLM with l1,2 regularization

In order to prevent that some parameters grow indefinitely
in the iterative inference procedure without converging, it is
useful to add a regularizer, which prevents the maximization
routine to move towards high values of Jij and hi . We will
adopt an l1 and l2 regularization so that the pseudolikelihood
function (PLF) at site i reads

Li = Li − λp(||JR||p + ||J I ||p), (7)

where

||J ||p ≡
⎛
⎝∑

i �=j

|Jij |p
⎞
⎠

1/p

is the p norm of the coupling matrix J , and λp > 0. In the
following we will only deal with p = 1,2. Note that the values
of λ have to be chosen arbitrarily, but not too large, in order
not to overcome Li . Indeed, λp must tend to zero as M → ∞.

All lp norms with p � 1 avoid arbitrarily large parameter
values. However, the l1 norm is peculiar, in the sense that
it forces small parameters to become exactly zero, still
preserving the convexity of the inference problem. From this
point of view, if we consider a finite number of configurations
M , the l2 norm always infers a fully connected model even if
data are generated by a sparse one, while the l1 norm allows
for the inference of sparse topologies. lp regularizations are
particularly important in the case of undersampling (small M),
where the likelihood, albeit globally concave, might develop
flat directions which induces some parameters to become large
due to bad sampling of relatively rare events.

The standard implementation of the PLM consists of
maximizing each Li , for i = 1 . . . N , separately. The expected
values of the couplings are then

{J ∗
ij }j∈∂i := arg max{Jij }[Li]. (8)

In this way, we obtain two estimates for the coupling Jij , one
from maximization of Li , J

(i)
ij , and another one from Lj , say

J
(j )
ji . Since the original Hamiltonian of the XY model is Her-

mitian, we know that the real part of the couplings is symmetric
while the imaginary part is skew-symmetric. The final estimate
for Jij can, then, be obtained averaging the two results:

J inferred
ij = J

(i)
ij + J̄

(j )
ji

2
, (9)

where with J̄ we indicate the complex conjugate. It is worth
noting that the pseudolikelihood Li , Eq. (6), is characterized by

the following properties: (i) the normalization term of Eq. (3)
can be computed analytically at odds with the full likelihood
case that in general requires a computational time which scales
exponentially with the size of the systems; (ii) the l-regularized
pseudolikelihoods defined in Eq. (7) are strictly concave (i.e.,
they have a single maximizer) [28]; (iii) it is consistent; i.e., if
M samples are generated by a model P (φ|J∗) the maximizer
tends to J∗ for M → ∞ [68]. Note also that (iii) guarantees
that |J (i)

ij − J
(j )
ij | → 0 for M → ∞. In Secs. IV, V, and VI we

report the results obtained and we analyze the performances
of the PLM having taken the configurations from Monte Carlo
simulations of models whose details are known.

B. PLM with decimation

Even though the PLM with l1,2 regularization allows to
make the inference towards the low-temperature region and
in the low-sampling case with better performances than
mean-field methods, in some situations some couplings are
overestimated and not at all symmetric. Moreover, in the
technique there is the bias of the l regularizer. Trying
to overcome these problems, Decelle and Ricci-Tersenghi
introduced a new method [46], known as PLM+decimation:
the algorithm maximizes the sum of the Li ,

L ≡ 1

N

N∑
i=1

Li, (10)

and, then, it recursively sets to zero couplings which are
estimated very small. We expect that as long as we are setting to
zero couplings that are unnecessary to fit the data, there should
be not much changing on L. Keeping on with decimation, a
point is reached where L decreases abruptly indicating that
relevant couplings are being decimated and underfitting is
taking place. Let us define by x the fraction of nondecimated
couplings. To have a quantitative measure for the halt criterion
of the decimation process, a tilted L is defined as

Lt ≡ L − xLmax − (1 − x)Lmin, (11)

where
(1) Lmin is the pseudolikelihood of a model with indepen-

dent variables. In the XY case: Lmin = − ln 2π .
(2) Lmax is the pseudolikelihood in the fully connected

model and it is maximized over all the N (N − 1)/2 possible
couplings.

At the first step, when x = 1, L takes value Lmax and
Lt = 0. On the last step, for a noninteracting graph, i.e.,
x = 0, L takes the value Lmin and, hence, again Lt = 0. In
the intermediate steps, during the decimation procedure, as x

is decreasing from 1 to 0, one observes first that Lt increases
linearly and, then, it displays an abrupt decrease indicating that
from this point on relevant couplings are being decimated [46].
In Fig. 1 we give an instance of this behavior for the 2D
short-range XY model with ordered couplings. We notice that
the maximum point of Lt coincides with the minimum point
of the reconstruction error, the latter defined as

errJ ≡

√√√√∑i<j

(
J inferred

ij − J true
ij

)2
N (N − 1)/2

. (12)
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FIG. 1. The tilted likelihoodLt curve and the reconstruction error
vs the number of decimated couplings for an ordered, real-valued J
on the 2D XY model with N = 64 spins. The peak of Lt coincides
with the dip of the error.

We stress that the Lt maximum is obtained ignoring the
underlying graph, while the errJ minimum can be evaluated
once the true graph has been reconstructed.

In the next sections we will show the results obtained on
the XY model analyzing the performances of the regularization
and of the decimation methods and comparing them also with
a mean-field method [47].

IV. INFERRED COUPLINGS WITH PLM-l1

In order to obtain the vector of couplings, J inferred
ij , the

function −Li is minimized through the vector of derivatives
∂Li/∂Jij . The process is repeated for all the couplings with
an l1 regularization obtaining then a fully connected adjacency
matrix. The results here presented are obtained with λ1 = 0.02
that turns out to be the optimal value to obtain a minimal
reconstruction error and the best positive predictive value
curve in a sensitive interval of temperature around the critical
temperature also for a small number of data samples M .
For the minimization we have used the MATLAB routine
minFunc_2012 [69].

To produce the data by means of numerical Monte Carlo
simulations a system with N = 64 spin variables is considered
on a deterministic 2D lattice with periodic boundary condi-
tions. Each spin has then connectivity 4; i.e., we expect to
infer an adjacency matrix with Nc = 256 couplings different
from zero. The dynamics of the simulated model is based on
the Metropolis algorithm and parallel tempering [70] is used to
speed up the thermalization of the system. The thermalization
is tested looking at the average energy over logarithmic time
windows and the acquisition of independent configurations
starts only after the system is well thermalized.

For the values of the couplings we considered two cases:
an ordered case, indicated in the figure as J ordered (e.g., left
column of Fig. 2), where the couplings can take values Jij =
0,J (with J = 1), and a quenched disordered case, indicated
in the figures as J disordered (e.g., right column of Fig. 2),
where the couplings can also take negative values, i.e., Jij =
0,J,−J , with a certain probability. The results here presented
were obtained with bimodal distributed J ’s: P (Jij = J ) =
P (Jij = −J ) = 1/2. The performances of the PLM appear
not to depend on P (J ). We recall that in Sec. III we used the
temperature-rescaled notation; i.e., Jij stands for Jij /T /2.

To analyze the performances of the PLM with l1 regulariza-
tion, in Fig. 2 the inferred couplings, JR

inf , are shown on top of
the original couplings, JR

true. The top panels show the JR
inf (red
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FIG. 2. Top panels: Instances of single-site-coupling reconstruc-
tion for the case of N = 64 XY spins on a 2D lattice with ordered
J (left column) and bimodal distributed J (right column) for the
PLM with l1 and l2 regularizations, with regularizers λ1 = 0.02 and
λ2 = 0.08, respectively. Bottom panels: Sorted couplings.

dashed) and the JR
true (green) for a given spin at temperature

T/J = 0.7 and number of samples M = 1024. We display
in the left column an instance for the ferromagnetic model
and, in the right column, an instance of the bimodal frustrated
couplings. In both cases PLM appears to reconstruct the
correct couplings, though zero true couplings are sometimes
given a small inferred nonzero value. In the bottom panels
of Fig. 2, both the JR

inf and the JR
true are sorted in decreasing

order and plotted on top of each other. We can clearly see
that JR

inf reproduces the expected step function. Even though
the behavior above the step is not constant and the behavior
below the step is not zero, the difference between inferred
couplings corresponding to the set of nonzero couplings and
inferred couplings corresponding to the set of zero couplings
can be clearly distinguished and the number of existing
couplings correctly inferred. In the bimodal distribution model,
in particular, we note that the algorithm infers half positive and
half negative couplings, as expected.

In order to analyze the effects of the number of samples
and of the temperature regimes on the quality of the network
reconstruction, we plot in Fig. 3 the reconstruction error,
Eq. (12), as a function of temperature and data sample sizes.
In the left panel we can appreciate that, as the data size is

 0.01
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 0.5  1  1.5  2  2.5  3

er
r J

T

λ1=λ2=0.02

l1-M128
l2-M128
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l2-M512
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l1-T0.7
l2-T0.7
l1-T1.0

l2-T1.0
l1-T2.8
l2-T2.8

FIG. 3. Reconstruction error errJ, cf. Eq. (12), plotted as a
function of temperature (left) for three values of the number of
samples M and as a function M (right) for three values of temperature
in the ordered system, i.e., Jij = 0,1, for l1 and l2 regularizations with
λ1 = 0.02 and λ2 = 0.08. The system size is N = 64.
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FIG. 4. Positive predictive value curves obtained with the four
techniques: PLM with decimation, blue dotted line; PLM with
l1 regularization, magenta dashed line, λ1 = 0.02; PLM with l2
regularization, green dashed line, λ2 = 0.08; and mean field, red
full line. These results refer to real-valued ordered couplings with
N = 64 spins on a 2D lattice. The temperature is here T = 0.7 while
the four graphs refer to different sample sizes: M = 64,128,256,512,
increasing clockwise.

large enough (M ∼ 512), the error is seen to sharply rise at
low temperature, up to one order of magnitude. Incidentally,
in the ordered case, this increase occurs for T < Tc 	 0.893,
which is the Kosterlitz-Thouless transition temperature of the
2XY model [71]. On the other hand, we can see that if only
M = 128 samples are considered, errJ remains large almost
independently from the working temperature. In the right
plot of Fig. 3, errJ is plotted as a function of M for three
different temperatures T/J = 0.7,1.0, and 2.8. As we expect,
errJ decreases as M increases, with approximately a 1/

√
M

law [4] at T = 1.0. This decrease with M was observed also
with mean-field inference techniques on the same model [47].
However, when T is too low, the reconstruction error decrease
with M is very slow and for too high T, errJ stays larger than
0.1 even for M = 4096.

To better understand the performances of the algorithms,
in Fig. 4 we show several positive predictive value (PPV)
curves obtained for various values of M at T = 0.7. The
positive predictive value curve displays how many times the
inference method finds a true link of the original network as
a function of the index of the vector of sorted absolute value
of reconstructed couplings J inf

ij . The index n(ij ) represents the
related spin couples (ij ). The PPV curve is obtained as follows:
first the values |J inf

ij | are sorted in descending order and the
spin pairs (ij ) are ordered according to the sorting position of
|J inf

ij |. Then, a cycle over the ordered set of pairs (ij ), indexed
by n(ij ), is performed, comparing with the original network
coupling J true

ij and verifying whether it is zero or not. The
positive predictive value is computed as

PPV[n(ij )] =
PPV[n(ij ) − 1](nij − 1) + 1 − δJ true

ij ,0

n(ij )
. (13)

As far as J true
ij �= 0, PPV = 1. As soon as the true coupling of

a given (ij ) couple in the sorted list is zero, the PPV curve

departs from 1. In our case, where the connectivity per spin of
the original system is c = 4 and there are N = 64 spins, we
know that we will have 256 nonzero couplings. If the inverse
problem is successful, hence, we expect a steep decrease of
the PPV curve when nij = 256 is overcome. As M is large
and/or temperature is not too far from the critical one, we
are able to reconstruct correctly all the couplings present in
the system (see bottom plots of Fig. 4). The quality of the
positive predictive value for any M and T , though, depends on
the technique employed. The results obtained with the PLM-l1
is plotted in dashed magenta lines. As M � 256 the right
network of n = 64 × 4 = 256 couplings is recovered with this
technique.

V. INFERRED COUPLINGS WITH PLM-l2

A. XY model with real-valued couplings

We also carried out the l2 regularization and compared its
performances to the l1. Even though the l1 regularization is
known to be better suited in the case of sparse graphs in
the present study we have observed that minimization with
l2 regularization turns out to converge faster. As done for
the previous case, in order to obtain the vector of couplings,
J inferred

ij , the function −Li is minimized through the vector of
derivatives ∂Li/∂Jij . The results here presented are obtained
with λ2 = 0.08, which turns out to be optimal for what
concerns PPV and errJ, with respect to other values of λ2.
In Fig. 2, together with the results for l1 regularization we
show the inferred couplings obtained with the l2 regularization
and compare them to the couplings of the original network
JR

true. The top panels show the JR
inf (thin black) and the JR

true
(green) for a given spin at temperature T/J = 0.7 and number
of samples M = 1024. As in the case with the l1, also the
PLM with l2 regularization appears to reconstruct the correct
couplings, though zero couplings are always given an inferred
nonzero value larger than in the l1 case. In the bottom panels
of Fig. 2, both the JR

inf and the JR
true are sorted in decreasing

order and plotted on top of each other, and it can be observed
that JR

inf reproduces, in a smeared way, the expected step
function and that it is not extremely worse that the l1-inferred
curve. Similarly, the plots in the right column of Fig. 2 show
the results obtained for the case with bimodal disordered
couplings, for the same working temperature and number of
samples.

In Fig. 3 the reconstruction error, Eq. (12), is plotted as a
function of T and M . For both l1 and l2 cases, the error presents
a minimum at T 	 1.0 if M is not too small.

Comparing the two methods, the reconstruction error with
the l1 regularization turns out to be smaller than l2 at all M

when working around the critical-like temperature T ∼ 0.9.
In both regularizations, the larger the M , the smaller the error.
However, errJ with l1 regularization decreases more. For the
other temperature regimes, the behaviors are qualitatively the
same, including the fact that if only M = 128 samples are
considered, errJ remains large independently of the working
temperature; at T = 2.8 errJ tends asymptotically to a strictly
nonzero (and comparably large) value in M; at lower T =
0.7 errJ also increases at any M , with respect to its minimal
value.
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FIG. 5. Results related to the ordered complex XY model with
N = 64 spins on a 2D lattice obtained with PLM and l2 regularization.
Top: Instances of single-site reconstruction for the real, JR (left
column), and the imaginary, JI (right column), part of Jij . Bottom:
Sorted values of JR (left) and JI (right).

In Fig. 4 we show the PPV curves obtained for various
values of M and T . As M is large (M � 256) we are able to
reconstruct correctly all the couplings present in the system
(see bottom plots), yielding a PPV equal to 1 up to the
first Nc = 256 couplings. Results are plotted at T = 0.7,
with increasing number of samples M = 64,128,256, and 512
(clockwise). The PPV score improves as M and results with
the two regularizations being very similar.

B. XY model with complex-valued couplings

For the complex XY we have to contemporarily infer two
apart coupling matrices, JR

ij and J I
ij . As before, a system of

N = 64 spins is considered on a 2D lattice. For the couplings
we have considered both ordered and bimodal disordered
cases and the results shown are obtained with PLM with l2
regularization. In Fig. 5, a single row of the matrix J (top)
and the whole sorted couplings (bottom) are displayed for the
ordered model (same legend as in Fig. 2) for the real, JR (left
column), and the imaginary part, J I .

VI. PLM WITH DECIMATION

For the ordered real-valued XY model we show in Fig. 6,
top panel, the outcome on the tilted pseudolikelihood, Lt

Eq. (11), of the progressive decimation: from a fully connected
lattice down to a noninteracting lattice. The figure shows the
behavior of Lt for three different data sizes M . A clear data
size dependence of the maximum point of Lt , signaling the
most likely value for decimation, is shown. For small M

the most likely number of couplings is overestimated and for
increasing M it tends to the true value, as displayed in Fig. 7.
In the bottom panel of Fig. 6 we display instead different Lt

curves obtained for three different values of T . Even though the
values of Lt decrease with increasing temperature, the value
of the most likely number of decimated couplings appears to
be quite independent of T with M = 2048 number of samples.
In Fig. 8 we eventually display the tilted pseudolikelihood for
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FIG. 6. Tilted pseudolikelihood, Lt , plotted as a function of
decimated couplings. Top: Different Lt curves obtained for different
values of M plotted on top of each other. Here T = 1.3. The
black line indicates the expected number of decimated couplings,
x∗ = [N (N − 1) − Nc]/2 = 1888. As we can see, as M increases,
the maximum point of Lt approaches x∗. Bottom: Different Lt curves
obtained for different values of T with M = 2048. We can see that,
with this value of M , no differences can be appreciated on the
maximum points of the different Lt curves.

a 2D network with complex-valued ordered couplings, where
the decimation of the real and imaginary coupling matrices
proceeds in parallel, that is, when a real coupling is small
enough to be decimated its imaginary part is also decimated,
and vice versa. One can see that though the apart errors for the
real and imaginary parts are different in absolute values, they
display the same dip, to be compared with the maximum point
of Lt .

Once the most likely network has been identified through
the decimation procedure, we perform the same analysis
displayed in Fig. 9 for ordered and then quenched disordered
real-valued couplings, and in Fig. 10 for complex-valued
ordered couplings. In comparison to the results shown in
Secs. IV and V, the PLM with decimation leads to rather
cleaner results. In Figs. 4 and 11 we compare the performances

1000
1100
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100 500 1000 2000 4000

L t
pe

ak

M

T-1.3

FIG. 7. Number of most likely decimated couplings, estimated
by the maximum point of Lt , as a function of the number of samples
M . We can clearly see that the maximum point of Lt tends toward
x∗ = 1888, which is the correct expected number of zero couplings
in the system.
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FIG. 8. Tilted pseudolikelihood, Lt , plotted with the reconstruc-
tion errors for the XY model with N = 64 spins on a 2D lattice. These
results refer to the case of ordered and complex-valued couplings.
The full (red) line indicates Lt . The dashed (green) and the dotted
(blue) lines show the reconstruction errors [Eq. (12)] obtained for the
real and the imaginary couplings, respectively. We can see that both
errJR and errJI have a minimum at x∗ = 1888.

of the PLM with decimation with respect to the ones of
the PLM with l1 and l2 regularization. These techniques are
compared to a mean-field technique previously implemented
on the same XY systems [47].

For what concerns the network of connecting links, in
Fig. 4 we compare the PPV curves. The results refer to
the case of ordered and real-valued couplings, but similar
behaviors were obtained for the other cases analyzed. The four
graphs are related to different sample sizes, with M increasing
clockwise. When M is high enough (M = 8N = 512), all
techniques reproduce the true network. For lower values of
M , instead, the performances of the various methods differ
substantially. At any M and temperature, the PPV curves
produced by PLM with l1 and l2 regularization and with
decimation drastically overcome those yielded by means
of the mean-field technique. When M = N = 64, however,
the network is neatly reconstructed only through the PLM
with decimation while the PLM with regularizations and the
mean-field method fails to exactly reconstruct the network.
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FIG. 9. XY model on a 2D lattice with N = 64 sites and real-
valued couplings. The graphs show the inferred (dashed black
lines) and true couplings (full green lines) plotted on top of each
other. The left and right columns refer to the cases of ordered
and bimodal disordered couplings, respectively. Top panels: Single-
site reconstruction, i.e., one row of the matrix J . Bottom panels:
Couplings are plotted sorted in descending order.
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FIG. 10. XY model on a 2D lattice with N = 64 sites and ordered
complex-valued couplings. The inferred and true couplings are
plotted on top of each other. The left and right columns show the
real and imaginary parts, respectively, of the couplings. Top panels
refer to a single-site reconstruction, i.e., one row of the matrix J .
Bottom panels report the couplings sorted in descending order.

Among the latter, the performances of l1 and l2 regularizations
are comparable, and both of them are sensitively better than
the mean-field PPV curve. For M = 2N = 128, the PLM with
l1 and l2 regularization is almost optimal, almost equal to the
PPV provided by decimation, yet better than mean-field PPV.
For M = 4N = 256, the PLM with both regularizations and
with decimation provides optimal PPV curves, as opposed
to the mean-field approach. We further stress that the PLM
method with decimation is able to clearly infer the network
of interaction even when M ∼ N signaling that it could be
considered a valid tool also in the undersampling regime.
In Fig. 11 we compare the behavior of the reconstruction
error. It can be observed that for all temperatures close to and
above the critical-line temperature, T ∼ 0.9, independently of
the sample sizes, the reconstruction error, errJ (plotted here
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FIG. 11. Variation of reconstruction error, errJ, with respect to
temperature as obtained with the four different techniques, see
Fig. 4, for four different sample sizes: clockwise from top M =
256,512,1024,2048.
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in log scale), obtained with the PLM+decimation is always
smaller than that one obtained with the other techniques.
The temperature behavior of errJ agrees with the one already
observed for Ising spins in [72] and for XY spins in [47] with a
mean-field approach: errJ displays a minimum around T 	 0.9
and then it increases for lower T . However, the error obtained
with the PLM with decimation is sensitively smaller than the
error estimated by the other methods. Indeed, the only regime
in which PLM+regularization methods work better is for the
lowest temperatures, where, though, errJ turns out to be always
larger than 0.1, i.e., one order of magnitude larger than the
reconstruction error provided by the decimation in the critical
region.

VII. A PROPAGATING WAVE MODEL

We briefly mention a derivation of the model as a proxy
for the propagation of light through random linear media.
This allows us to cast problems such as image reconstruction
and focusing into inverse problems in statistical mechanics.
Indeed, such problems necessarily require an estimate of the
transmission matrix of the light through the medium and
such a matrix turns out to play the role of an interaction
matrix between modes in the statistical mechanical mapping,
as will be clarified hereafter. Scattering of light is held
responsible for obstructing our view and making objects
opaque. Light rays, once that they enter the material, only
exit after getting scattered multiple times within the material.
In such a disordered medium, both the direction and the
phase of the propagating waves are random. Transmitted light
yields a disordered interference pattern typically having low
intensity, random phase, and almost no resolution, called a
speckle. Nevertheless, in recent years it has been realized
that disorder is rather a blessing in disguise [73–75]. Several
experiments have made it possible to control the behavior
of light and other optical processes in a given random
disordered medium, by exploiting, e.g., the tools developed for
wave-front shaping to control the propagation of light and to
engineer the confinement of light [76,77]. Applying the inverse
problem techniques to a faithful statistical mechanical repre-
sentation of light propagating through random media would
contribute to increase the quality of image reconstruction and
focusing. Indeed, in optical problems, many data acquisition
techniques are easily available and effective techniques are
continuously developed to reconstruct images from the output
light pattern across a random medium once the transmission
matrix is known. The bottleneck is, though, the reconstruc-
tion of the effective transmission matrix of the random
medium [78–81].

In a linear dielectric medium, light propagation can be de-
scribed through a part of the scattering matrix, the transmission
matrixT, linking the outgoing to the incoming fields. Consider
the case in which there are NI incoming channels and NO

outgoing ones; we can indicate with E
in,out
k the input/output

electromagnetic field phasors of channel k. In the most general
case, i.e., without making any particular assumptions on
the field polarizations, each light mode and its polarization
state can be represented by means of the 4-dimensional
Stokes vector. Each tki element of T, thus, is a 4 × 4 Müller
matrix. If, on the other hand, we know that the source is

polarized and the observation is made on the same polarization,
one can use a scalar model and adopt the Jones calculus
[78,79,82]:

Eout
k =

NI∑
i=1

tkiE
in
i , ∀k = 1, . . . ,NO. (14)

We recall that the elements of the transmission matrix are
random complex coefficients [78]. For the case of completely
unpolarized modes, we can also use a scalar model similar
to Eq. (14), but whose variables are the intensities I

in,out
k =

|Ein,out
k |2 of the outgoing/incoming fields, rather than the fields

themselves.
In the following, for simplicity, we will consider Eq. (14)

as our starting point, where Eout
k , Ein

i , and tki are all complex
scalars. If Eq. (14) holds for any k, we can write

∫ NO∏
k=1

dEout
k

NO∏
k=1

δ

⎛
⎝Eout

k −
NI∑
j=1

tkjE
in
j

⎞
⎠ = 1. (15)

Observed data are a noisy representation of the true
values of the fields. Therefore, in inference problems it is
statistically more meaningful to take that noise into account in
a probabilistic way, rather than looking at the precise solutions
of the exact equations (whose parameters are unknown). To
this aim we can introduce Gaussian distributions whose limits
for zero variance are the Dirac deltas in Eq. (15). Moreover,
we move to consider the ensemble of all possible solutions
of Eq. (14) at given T, looking at all configurations of input
fields. We, thus, define the function

Z ≡
∫
Sin

NI∏
j=1

dEin
j

∫
Sout

NO∏
k=1

dEout
k

×
NO∏
k=1

1√
2π�2

exp

⎧⎪⎨
⎪⎩− 1

2�2

∣∣∣∣∣∣E
out
k −

NI∑
j=1

tkjE
in
j

∣∣∣∣∣∣
2
⎫⎪⎬
⎪⎭.

(16)

We stress that the integral of Eq. (16) is not exactly a Gaussian
integral. Indeed, starting from Eq. (15), two constraints
on the electromagnetic field intensities must be taken into
account.

The space of solutions is delimited by the total power P re-
ceived by system, i.e., Sin : {Ein|∑k I in

k = P}, also implying
a constraint on the total amount of energy that is transmitted
through the medium, i.e., Sout : {Eout|∑k I out

k = cP}, where
the attenuation factor c < 1 accounts for total losses. As we
will see more in details in the following, being interested in
inferring the transmission matrix through the PLM, we can
omit to explicitly include these terms since they do not depend
on T not adding any information on the gradients with respect
to the elements of T.

Taking the same number of incoming and outgoing chan-
nels, NI = NO = N/2, and ordering the input fields in the first
N/2 mode indices and the output fields in the last N/2 indices,
we can drop the “in” and “out” superscripts and formally write
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Z as a partition function

Z =
∫
S

N∏
j=1

dEj

(
1√

2π�2

)N/2

exp

{
−H[{E};T]

2�2

}
, (17)

H[{E};T] = −
N/2∑
k=1

N∑
j=N/2+1

[E∗
j tjkEk + Ej t

∗
kjE

∗
k ]

+
N∑

j=N/2+1

|Ej |2 +
1,N/2∑

k,l

EkUklE
∗
l

= −
1,N∑
nm

EnJnmE∗
m, (18)

where H is a real-valued function by construction, we have
introduced the effective input-input coupling matrix

Ukl ≡
N∑

j=N/2+1

t∗lj tjk, (19)

and the whole interaction matrix reads (T ≡ {tjk})

J ≡

⎛
⎜⎜⎜⎜⎜⎝

−U T

T† −I

⎞
⎟⎟⎟⎟⎟⎠

. (20)

Determining the electromagnetic complex amplitude con-
figurations that minimize the cost function H, Eq. (18),
means to maximize the overall distribution peaked around
the solutions of the transmission Eq. (14). As the variance
�2 → 0, eventually, the initial set of Eq. (14) are recovered.
The H function, thus, plays the role of a Hamiltonian and
�2 the role of a noise-inducing temperature. The exact
numerical problem corresponds to the zero-temperature limit
of the statistical mechanical problem. Working with real data,
though, which are noisy, with a finite statistical uncertainty, a
finite “temperature” allows for a better representation of the
ensemble of solutions to the sets of equations of continuous
variables.

Now, we can express every phasor in Eq. (17) as Ek =
Ake

ıφk . As a working hypothesis we will consider the intensi-
ties A2

k as either homogeneous or as quenched with respect
to phases. The first condition occurs, for instance, to the
input intensities |Ein

k |2 produced by a phase-only spatial light
modulator (SLM) with homogeneous illumination [80]. With
quenched here we mean, instead, that the intensity of each
mode is the same for every solution of Eq. (14) at fixed T. We
stress that including intensities in the model does not preclude
the inference analysis but it is out of the focus of the present
work and will be considered elsewhere.

If all intensities are uniform in input and in output, this
amounts to a constant rescaling for each one of the four sectors
of matrix J in Eq. (20) that will not change the properties of
the matrices. For instance, if the original transmission matrix
is unitary, it will be the rescaled one and the matrix U will be
diagonal. Otherwise, if intensities are quenched, i.e., they can
be considered as constants in Eq. (14), they are inhomogeneous

with respect to phases. The generic Hamiltonian element will,
therefore, rescale as

E∗
nJnmEm = JnmAnAmeı(φn−φm) → Jnmeı(φn−φm)

and the properties of the original Jnm components are not
conserved in the rescaled one. In particular, we have no
argument, anymore, to possibly set the rescaled Unm ∝ δnm in
any case. Eventually, we end up with the complex couplings
XY model, whose real-valued Hamiltonian is written as

H = −1

2

∑
nm

Jnme−ı(φn−φm) + c.c.

= −1

2

∑
nm

[
JR

nm cos(φn − φm) + J I
nm sin(φn − φm)

]
,

(21)

where JR
nm and J I

nm are the real and imaginary parts of Jnm. J
being Hermitian, JR

nm = JR
mn is symmetric and J I

nm = −J I
mn is

skew-symmetric. Using data on phase configurations, such as
those produced by spatial light modulators, or on any vectorial
Potts representation of intensity pixels, such as those recorded
on standard CCD cameras on output [73,74,78–81], one can
thus apply the techniques presented in this work to infer the
values of the effective transmission matrix elements.

VIII. CONCLUSIONS

Different statistical inference methods have been applied
to the inverse problem of the XY model. After a short
review of techniques based on pseudolikelihood and their
formal generalization to the model we have tested their
performances against data generated by means of Monte Carlo
numerical simulations of known instances with diluted, sparse
interactions.

The main outcome is that the best performances are
obtained by means of the pseudolikelihood method combined
with decimation. Putting to zero (i.e., decimating) very
weak bonds, this technique turns out to be very precise
for problems whose real underlying interaction network is
sparse; i.e., the number of couplings per variable does not
scale with number of variables. The PLM+decimation method
is compared to the PLM+regularization method, with both
l1 and l2 regularization, and to a mean-field-based method.
The behavior of the quality of the network reconstruction is
analyzed by looking at the overall sorted couplings, at the
single-site couplings, comparing them with the real network,
at the positive predictive value curves, and at the reconstruction
errors in all approaches. In the PLM+decimation method,
moreover, the identification of the number of decimated bonds
at which the tilted pseudolikelihood is maximum allows for
a precise estimate of the total number of bonds. Concerning
this technique, it is also shown that the network with the most
likely number of bonds is also the one of least reconstruction
error, where not only the prediction of the presence of a bond
is taken into account but also its value.

The behavior of the inference quality in temperature and
in the size of data samples is also investigated, basically
confirming the low-T behavior hinted at by Nguyen and
Berg [72] for the Ising model. In temperature, in particular,
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the reconstruction error curve displays a minimum at a
low temperature, close to the critical point in those cases
in which a critical behavior occurs, and a sharp increase
as temperature goes to zero. The decimation method, once
again, appears to enhance this minimum of the reconstruction
error of almost an order of magnitude with respect to other
methods.

The techniques displayed and the results obtained in this
work can be of use in any of the many systems whose
theoretical representation is given by Eq. (1) or Eq. (21),
some of which are recalled in Sec. II. In particular, a
possible application can be the field of light wave propagation

through random media and the corresponding problem of the
reconstruction of an object seen through an opaque medium
or a disordered optical fiber [73–80].
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