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ABSTRACT. The thermal transport in a solid can be determined by means of the Boltzmann equations regarding its 

distributions of phonons and electrons, when the solid is subjected to a thermal gradient. After solving the coupled 

equations, the related thermal conductivities can be obtained. Here we show how to determine the coupled equations for 

phonons and electrons. 

 

Introduction. In some previous papers we have considered the thermal transport in a solid when 

just phonons are present [1-6]. Phonons are the quantization of the vibrations of the ions in crystals. 

They are the quanta which are carrying the thermal energy in the dielectric solids. Since the 

phonons are interacting among them and with the crystal defects and boundaries, a finite thermal 

conductivity is observed. Here, we will consider the presence in the solid of both phonons and 

electrons, subjected to a thermal gradient. The electrons we consider are those which can freely 

move in the crystal. In fact, these electrons can give rise to several phenomena connected to charge 

transport: these phenomena will be the subject of a future paper. Here we concentrate just on the 

effect of a thermal gradient and on the interaction of electrons with phonons and how it can be 

described by the Boltzmann equation, aiming to introduce the subject to students of engineering 

colleges. 

As shown in [7-9], the interaction among phonons, in three phonons scattering processes for 

instance, is coming from the Lagrangian of the lattice. In the case that in the solid there are 

electrons which can support an energy/charge conductivity, these particles, when moving in the 

solid, are interacting with the ions of the lattice. The use of a pseudopotential [10] allows us to 

consider the conducing electrons as electrons described by means of a plane waves basis. In this 

manner we can analyse the transport with an approach based on a perturbative interaction with 

phonons, neglecting electron-electron interaction and the scattering of electrons with lattice defects. 

As we have seen for phonons, we can solve the Boltzmann equation for these electrons and 

determine their contribution to the thermal conductivity. However, the electron-phonon interaction 

is also influencing the phonon transport, and therefore the phonon thermal conductivity is changed 

too. 

The Boltzmann equation for phonons in a thermal gradient. A thermal gradient in a solid is 

exciting electrons and phonons which are present in the crystal; they are gaining energy which are 

transferring, that is conducting, from one end of the solid to the other, moving from the hotter to the 

coldest side. In metals, both electrons and phonons are playing a relevant role in the thermal 

conduction, whereas in dielectrics, only phonons are involved. To find the thermal resistance and 

then the thermal conductivity of the solid, we need to describe several interactions among phonons, 

electrons, those of phonons with electrons and of phonons and electrons with defects and impurities 

of the crystals. Moreover the scattering with the boundaries of the crystal have to be considered too.  
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The problem of evaluating the thermal conductivity in solids is therefore quite complex. It can be 

solved, from a microscopic point of view [11], using the relaxation time approximation [5,6,11-18], 

using some variational [19-21] or iterative methods [1-4], or the Green functions [22,23]. The 

methods based on relaxation time approximations and on variational and iterative methods are 

based on the Boltzmann equation, whereas the approach with the Green functions is based on 

quantum statistics. Here we consider the approach based on the Boltzmann equation. 

Let us start from phonons. To derive the Boltzmann equation we need that a distribution function 

),( tn p rq  exists concerning the phonon state ),( pq  about position r, at time t. The state is described 

by the wave vector q  and by its polarization p . If a thermal gradient T exists, which is changing 

the temperature T = T (r) in the sample, we will have a diffusion process in the distribution. In this 

case we can write:  
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In (1), )(qv p  is the group velocity of phonon (q, p). Let us observe that the phonon distribution 

pnq  is depending on space through the temperature T = T (r). 

The scattering processes will give a change of the phonon distribution. In the case of a stationary 

condition, we must have:  
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This is the general form of the Boltzmann equation [9, 24]. It is an integral-differential equation. A 

way to solve this equation is in its linearization, considering only the deviation from equilibrium 
0
pp nn qq  , being 0

pnq  the equilibrium distribution. 

The simplest case of scattering we can discuss is that of an elastic scattering. The phonon process is 

),(),( pp  qq , conserving the energy. In this process, we have a transition from the phonon state 

),( pq  to the state ),( pq . The relative probability of a transition in the unit of time is:  
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In (3), p
pZ

q
q  is the intrinsic probability, that is the probability not depending on the occupation of 

phonon states ),( pq  and ),( pq . Therefore, the probability of the transition from ),( pq  to ),( pq  

is: 
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Because the variation of the phonon distribution is equal to the probability of having a scattering per 

unit of time, we have:  
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After simplifying and linearizing we find:  
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In (7), 00
pp nn  qq , because 0

pnq is depending just on energy and that in an elastic process:  

 

 ),( ),( pp  qq     (8) 

 

The linearized Boltzmann equation turns out to be:  
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In (9), to evaluate Tn p  /q  we used only the equilibrium distribution 0
pnq . 

In the general case, to obtain the linearized Boltzmann equation we use the deviation from 

equilibrium pq in the following manner:  
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Let us assume Tkx Bpq , where Bk  is the Boltzmann constant. From (10’) we have:  
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Therefore: 
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For the elastic scattering:  
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That is:  
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With this formalism, in the case that we have three-phonon processes, the linearized Boltzmann 

equation is:  
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In the linearized Boltzmann equation, we have the additions on phonons q  and q  of the Brillouin 

Zone. However, sums can be converted into integrals:  
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In (15), NV  is the volume of the crystal, made of N lattice cells each with volume V. H and M 

are the functions describing the boundary of the Brillouin Zone, and 1h  is the nearest neighbor site 

distance [1].  
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Once obtained the deviation of the distribution function, the Boltzmann equation is solved and the 

thermal current U can be calculated as:  
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In a Cartesian frame of reference having unit vectors ui, current U is represented by:  
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In (17) ij is a term of the thermal conductivity tensor, which is diagonal (xx = yy = zz = ). 

Besides the phonon-phonon interaction, a phonon can be subjected to a scattering coming from the 

lattice defects and from electrons [1-6]. 

 

The Boltzmann Equation for electrons Let us use symbol Q when considering a phonon having 

wave-vector q , polarization p and frequency pq . And also use simply k for an electron having 

wave-vector k, and energy  k  and spin  . Supposing a thermal gradient disturbing the distribution 

of electrons from equilibrium 
0
kf  to a distribution kf , let us assume, as we did for phonons: 
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The equilibrium distribution 
0
kf  is that of Fermi-Dirac, where each energy level is occupied by an 

electron. In it, we have the Fermi energy F. This threshold is obtained by the distribution 
0
kf  

which becomes a step function of energy when the Kelvin temperature is null. For non-null 

temperature:  
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Let us have free electrons described by k . At null temperature, the energy levels would be 

occupied till the radius kF so that:  
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In (20), em  is the mass of the electron. For a non-null temperature, some electrons have Fk|| k  

and then they can be above the Fermi energy.  

In (18), the deviation from equilibrium 0
kk ff  , coming from the presence of a thermal gradient, is 

considered with the same approach we followed to solve the Boltzmann equation for phonons (see 

Eqs. (10’)-(10’’’).  

Let q
q

k
k

k
k


 ,  be the intrinsic probability of an electron-phonon scattering of an electron k  

interacting with a phonon q  as shown in the following scheme (Figure 1). After the scattering, the 

electron has momentum 'k , because it had gained a phonon or lost it [9]. 

 

 

 

Figure 1: An electron changes its momentum after it has gained or lost a phonon.  

 

Of course, as in the case of phonons, we can have processes involving the g vectors of the 

reciprocal lattice. The electron-phonon scatterings are adding new contributions in the scattering 

term of the Boltzmann equation for phonons. For instance, if we consider the case when just three-

phonon scattering processes are present, to them we have to add the scattering from electrons:  
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Then, the linearized Boltzmann equation is: 
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Symbol   is indicating electronic spin. Delta    is considering the conservation of electronic 

spin. Probabilities are given by the following expressions:  
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In metals, electrons too are contributing to the thermal transport. In the Boltzmann equation for 

electrons, we find the scattering with phonons [9]:  
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Then, the linearize Boltzmann equation for electrons is: 
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From the theory of electron-phonon scattering [9], the probability k
k


QP  turns out to be: 
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In (25) and (26) we find the polarization vectors e of phonons. The interaction between electron and 

lattice is described by the function (k). It can be described by means of a pseudopotential for 

instance. 

Let us note that we have to consider the conservation of energy and of the generalized conservation 

of momentum given by the following expression: 

 

gkqk   ; gkqk   

 

The coupled Boltzmann linearized equations for phonons and electrons can be solved in an iterative 

approach for instance. Another question we have to discuss before solving the equation is the 

description of interaction. This will be shortly analysed in the next section. 
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Scattering electron-phonon Let us consider the following scheme (Figure 2): 

 

 

Figure 2: A scattering electron-phonon 

 

In this process we have a phonon having momentum q  and polarization p  added to the population 

Qn  so that population becomes 1Qn . Then, the initial quantum state is given by Qk ni   and 

the final quantum state is 1 Qk nj  . If we use a pseudopotential approach [24], the electron 

can be described by plane waves [25-27], so that: 
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Let us remember that a pseudopotential is an effective potential used as an approximation for the 

simplified description of complex systems. It is an attempt to consider the effects of the motion of 

the core, that is of the non-valence electrons of an atom and of the nucleus with an effective 

potential, so that the Schrödinger equation contains such effective potential instead of the Coulomb 

terms for the core electrons. In this manner the valence electrons are described by pseudo-wave 

functions, in which a plane-wave basis is used.  

We can write the scattering as the passage from the initial state | i  to the final state | f  through 

pseudopotential W [25,26]: 
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Moreover, we can write [25-27]:  
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In (29), w is the pseudopotential generated by a single ion which is acting on the electron. N is the 

number of lattice sites. We find also in (29) the static dielectric constant ε, which can be written as 

the following function [25-27] (e is the electron charge):  
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Moreover (l is giving the lattice site described by the position vector l): 
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As usual, the phononic function of the displacement of the lattice site given by the position vector l 

is [9,10]:  
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In (31), m –is the mass of ions. In this manner we can write the matrix:  
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Then, we can obtain:  
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Of the matrix, just the element having 

Qa , which is creating phonon p,q  survives, and then: 
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Since gqkk
lqkk

,
)i(e 
  N

l

 and 11  
QQpQ nnan q  , we have:  
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Of course, we have the generalized conservation of momentum   k k q g . Therefore, the 

probability for the unit of time is: 
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The conservation of energy is represented by )( if EE  . Eq.36 is the intrinsic probability that an 

electron can move from k  to k . This probability is conditioned by the fact that k  state is occupied 

and k  is empty, due to the Pauli exclusion principle. The true probability is then (36) multiplied by 

)1( kk ff  . Therefore we have:  
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This is in agreement to (25) if we have:  
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In the Boltzmann equation we have also to consider the other scattering mechanism shown in the 

Figure 3. In this case we have to consider QQQ nan 1  and generalized conservation 

k q k g   . In this manner, it is straightforward to obtain k
kQP


. 

 

  

Figure 3: The other scattering electron-phonon process. 
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Thermal conductivity As given in [28], the thermal current of electrons is the following: 
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In (39), we find the velocity and energy of electrons. We have also the chemical potential, that we 

will consider as F . We can follow the same approach used for the phonons so that: 
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In the approach we have shown here, the equilibrium distribution of electrons 0f  is a spherical 

symmetric function. Then, for the evaluation of the thermal electronic conductivity we can use 

spherical coordinates k, , . The electronic thermal conductivity is given by [9,28]: 
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In (41), a reduced momentum k  and the dimensionless deviation function   had been used so that 

the dimensional factor turns out to be [29]:  
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In (42), parameter oU  is linked to the potential used for calculating the lattice thermal conductivity 

[1, 2]. 

In a future paper we will explain how to solve iteratively the coupled equations (21’’) and (24’’). 

Once the deviation functions of phononic and electronic distributions have been obtained the 

thermal phononic and the electronic thermal conductivities can be calculated from (16) and (41). 
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