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ABSTRACT

3D face was recently investigated for various applications, including biometrics and diagnosis. Describing facial
surface, i.e. how it bends and which kinds of patches is composed by, is the aim of studies of Face Analysis,
whose ultimate goal is to identify which features could be extracted from three-dimensional faces depending on
the application.

In this study, we propose 105 novel geometrical descriptors for Face Analysis. They are generated by
composing primary geometrical descriptors such as mean, Gaussian, principal curvatures, shape index,
curvedness, and the coefficients of the fundamental forms, and by applying standard functions such as sine,
cosine, and logarithm to them. The new descriptors were mapped on 217 facial depth maps and analysed in
terms of descriptiveness of facial shape and exploitability for localizing landmark points. Automatic landmark
extraction stands as the final aim of this analysis.

Results showed that some newly generated descriptors were sounder than the primary ones, meaning that
their local behaviours in correspondence to a landmark position is thoroughly specific and can be registered
with high similarity on every face of our dataset.
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1 INTRODUCTION

Face Analysis has supported in these decades Face Recognition (FR), Face Expression Recognition (FER), and
various medical applications such as corrective surgery, diagnosis, prenatal ultrasound. While 2D Face Analysis
relies on what could be extrapolated from a facial image, such as colour or intensity [1], 3D Face Analysis
represents techniques for human face study relying on three-dimensional features, such as geometrical entities
like shape and curvature [2]. The third dimension was involved in the research to improve accurateness [3] and
avoid issues like illumination variations [4]. 3D face data, which is often given by a non-connected point cloud,
i.e. a depth map [5], allow the use of geometry and related geometrical entities in the description of facial
surface. The so-generated features make it possible to compare faces and generally extract information
relevant to the context of application.

Differential geometry seems to be promising for the study of facial shape and curvature behaviours, especially
for applications in Face Recognition. The previous work of our research group, such as [6] [7] [8] [9] [10] [11]
[12] [13] [14] [15] [16], and other contributions within the field of 3D Face Analysis, such as [17] [18] [19] [20]
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[21], provided different application frameworks of entities coming from Differential Geometry context for
analysing facial surfaces.

The descriptors investigated by our group have been applied to different contexts, such as recognition and
medical diagnosis, and have been proven to be key 3D features for human faces at different ages. These
descriptors, defined and fully explained in section 2 PRIMARY DESCRIPTORS, are: the six coefficients of the
fundamental form, mean and Gaussian curvatures, principal curvatures, and shape and curvedness indexes.
Some of them have been employed and mentioned in recent literature as well-performing facial features. Mean,
Gaussian, principal curvatures, shape index, and curvedness, evaluated with varying neighbourhood size and
bin size, were adopted as descriptors by Creusot et al. to support keypoints detection on 3D faces. LDA was
employed to define weights to combine matching score maps over a population of neighbouring and non-
neighbouring vertices, relative to the relevant landmark, and experiments were carried out on FRGC v2 [22]
and BFM database [23]. Histograms of shape index (HoS) with 8 bins, the shape index itself, and principal
curvatures were used to develop a mesh-based method for 3D facial expression recognition to be tested on
BU3D-FE [24] [25] [26] and Bosphorus [27] databases. Mean curvature, Gaussian-weighted curvature, and spin
image correlation were adopted as features by Li et al. [28] to detect 3D faces via graph models on IAIR-3DFace
and BU3D-FE databases. Shape index, calculated for each vertex on its 5x5 neighbourhood, was used by Zhang
et al. [29] for a face recognition method based on the adoption of six different scale invariant similarity
measures. The testing was performed on FRGC v2.0. An HK curvature-based approach was adopted by Bagchi et
al. [30], who developed a method for three-dimensional face detection to be applied on the FRAV3D database.
HK indicates both mean and Gaussian curvatures. Mean and Gaussian curvature, shape index and curvedness
were involved as features by Szeptycki et al. [31] for automatic nose tip localization on 3D faces with SVM
classifier. The tested database was FRGC v2. Lanz et al. used mean and Gaussian curvatures for landmark
detection in the context of therapeutic facial exercise recognition for patients suffering from dysfunction of
facial movements [32]. The Kinect was employed for acquiring 3D faces. The same descriptors were adopted by
Rabiu et al. for a 3D face HK segmentation method to be tested on UPM-3DFE and Gavab databases [33]. Zeng et
al. involved mean curvature in a framework for facial expression recognition via conformal maps in sparse
representation [34]. Tests were performed on BU-3DFER database. Abbas et al. tested geometrical features
such as mean, Gaussian, and principal curvatures in terms of descriptiveness of facial philtrum on the three-
dimensional ALSPAC database [35]. The purpose of this study was to investigate dysmorphisms around this
facial area. The shape index was embedded in a facial landmark localization algorithm tested on BU-3DFE, BU-
4DFE, BP4D-Spontaneous, FRGC 2.0, and Eurecom Kinect Face Dataset by Canavan et al. [36]. Different facial
areas were classified according to mean and Gaussian curvature values in a framework of 3D surface analysis
with no previous reconstruction (“one shot” technique) by Di Martino et al. [37]. The shape index was used as
3D local shape descriptor by Perakis et al. to be embedded in a feature fusion-based facial landmark detection
algorithm for biometric applications [38].

Facial maps of geometrical descriptors, such as the previous 12 descriptors and the following novel ones here
proposed, are alternatives to standard facial features like Gabor wavelets and Local Binary Patterns (LBPs).
But, while Gabor features and LBPs have been thought and modelled for the context of image Face Analysis, i.e.
working with 2D data [39], geometry-based features are strictly connected to the three-dimensional shape of
surface, thus result highly suitable to the 3D context. Even if both Gabor and LBPs have been adapted to 3D data
[40] [41], they are said to be lacking shape information, thus they can not carry information related to surface
deformation occurring on faces in the real 3D world; this aspect significantly affects their efficient applicability
to subfields for which facial deformation is a core element, such as Face Expression Recognition [39]. In
particular, depth Gabor images, namely the Gabor wavelets applied to 3D data, when used alone, are said to be
less descriptive of facial features than their bidimensional representatives, i.e. intensity Gabor images, as "the
value of the pixels in the depth image changes less than does the value in the intensity images" [40]. In terms of
inner definition, LBPs in their original meaning are histograms [42] [43], thus they are not point-by-point
representations of a face; on the contrary, Gabor wavelets give two point-by-point image representations, one
with the magnitude and one with the real part [44]. Nonetheless, these facial maps do not provide prompt
information about facial shape. In other words, it is unrealistic to describe facial traits of a person by looking
only at his/her Gabor facial image representation. Instead, this is what our primary descriptors and the novel
ones try to do. Descriptors based on geometry give immediate information about position, curvature, and shape
of eyes, mouth, nose, and global visage traits. These qualitative information could also be quantitatively
formalized in order to give these descriptors the sound status of facial features. This is what we address in this
work.



This work proposes 105 novel geometrical descriptors for 3D Face Analysis. This research partially tries to
respond to the "urgent need for a robust and efficient feature representation for 3D facial shapes" [45], in
particular by proposing alternative features for analysing facial surface. The idea behind the creation of these
novel descriptors is rigorous in procedure, as the theoretical background of the novel descriptors lays on sound
Differential Geometry principles. Also, the formulas of the newly generated descriptors rely on allowed
operations for these entities, and the point-by-point properties of the original descriptors are kept.
Experimentation has brought to define an hefty set of descriptors and their landmark-based specifications to be
adopted for branches of Face Analysis where point-by-point facial map features, i.e. alternative facial image
representations, are relevant. The final aim is also to aggregate facial information and, similarly to LBPs and
Gabor jets, to create summary features which could be easily processed by the algorithms and which result to
be more complete and reliable than their predecessors.

The work is structured as follows. Section 2 PRIMARY DESCRIPTORS presents the 12 geometrical primary
descriptors previously used by our research group. Section 3 NEW DESCRIPTORS introduces 3.1 DERIVED
DESCRIPTORS and 3.2 COMPOSED DESCRIPTORS with formulas and maps. Section 4 FEATURES highlights the
features of the newly generated descriptors, with a focused analysis of their descriptiveness of landmark
points. In particular, a quantification of their landmark descriptiveness is provided and discussed in section 5
DISCUSSION.

2 PRIMARY DESCRIPTORS

Classical differential geometry is the study of local properties of curves and surfaces. A patch or local surface is
a differentiable mapping x: U —» R", where U is an open subset of R2. Given that a patch can be written as an n-
tuple of functions

x(w,v) = (x;(w,v), ..., x, (U, v)), (D

the partial derivative of x with respect to u can be defined by
= (% %
v = (L, 2) @)

The first and second fundamental forms provide the first six descriptors of the set. Their definitions rely on the
possibility of measuring distances on surfaces. In Euclidean space R", if p = (py, ..., pn) and q = (q4, ..., ) are

points in R", then the distance s from p to q is given by

s? = (pr—q? + -+ (Pn — @0)*. 3

Given that a general surface is curved, the distance on it is not the same as in Euclidean space; in particular, the
form above is in general false however the coordinates are interpreted. To describe how to measure distance
on a surface, the concept of “infinitesimal” is required. The infinitesimal version of that for n = 2 for a surface is

ds? = Edu® + 2Fdudv + Gdv?, (4)

called first fundamental form, or Riemann metric. This is the classical notation for a metric on a surface. E, F, G
are functions U — R such that:

E = |lx,|I%, (5)
F = (xy,xp), (6)
G = llx,I%, (7)

and are called coefficients of the first fundamental form. These coefficients are given by inner products of the
partial derivatives of the surface. Therefore, the first fundamental form is merely the expression of how the
surface inherits the natural inner product of R3. Geometrically, the first fundamental form allows to make
measurements on the surface (lengths of curves, angles of tangent vectors, areas of regions) without referring
back to the ambient space R3 where the surface lies [46].
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To introduce the second fundamental form, the definitions of Gauss map must be given. For an injective patch x:
U — R™ the unit normal vector field or surface normal N is defined by

Xy XXy

N(u,v) = I (u,v) (8)

Xy XXy |

at those points (u,v) € U at which x, X x,, does not vanish [47]. The map that assigns to each point p on a
surface the point on the unit sphere S?(1) ¢ R3 that is parallel to the unit normal N(p), or N,, is called the
Gauss Map.

Let x: U —» R™ be a regular patch. Then

e = _<Nu:xu) = (leuu>r (9)
f = —(Np,xy) = (N,xy) = (N,xp) = —(Ny,xp), (10)
g = —(Np,xy) = (N, xp,) (11)

are called the coefficients of the second fundamental form of x, and edu? + 2fdudv + gdv? is the second
fundamental form of the patch x.

Very often a surface is given as the graph of a differentiable function z = h(x, y), where (x, y) belong to an open
set U - R?. It is, therefore, convenient to be provided by formulas for the relevant concepts in this case. To
obtain such formulas let us parameterize the surface by

x(u,v) = (u, v, h(u, v)), (u,v) € U, (12)

where u = x, v =y. A simple computation shows that

x, = (1,0, hy), (13)
x, = (0,1, hy,), (14)
Xyu = (0,0, hyy), (15)
Xup = (0,0, huv): (16)
Xpy = (0,0, hvv)- (17)
Thus,

(_th_h ,1)
N(x,y) = —=2=
/1+h§+h§,

is a unit normal field on the surface, and the coefficients of the second fundamental form in this orientation are
given by

(18)

o= (19)

)
1+hi+h3

folto (20)

)
1+h,zc+h32,

i

(21)

1+hi+h3

KH;‘
<
<

From the above expressions, any needed formula can be easily computed. For instance, the Coefficients of the
first fundamental form are obtained [8]:

E=1+h2 (22)
F = hehy, (23)
G=1+h. (24)



Beyond the six coefficients of the fundamental forms, Gaussian, mean, and principal curvatures are other four
primary descriptors coming from Differential Geometry, dealt with measuring the curvature of a surface.
Curvatures are used to measure how a regular surface x bends in R3. One way to do this is to estimate how the
tangent plane changes from point to point.

The two-dimensional vector subspace Dx(q) c R3, where D is the differential and q is a point of U, coincides
with the set of tangent vectors to x at x(gq). By the above proposition, the plane Dx(q), which passes through
x(q) = p, does not depend on the parameterization. This plane will be called the tangent plane to x at p and will
be denoted by T, (x). For each p there exists an orthonormal basis {e;, e,} of T}, (x) such that DN,,(e;) = —k,ey,
DN, (e;) = —k;e,. Moreover, k; and k, (k; = k;) are the maximum and minimum of the second fundamental
form restricted to the unit circle of T,(x). The maximum curvature k; and the minimum curvature k,
introduced above are called the principal curvatures at p; the corresponding directions, that is, the directions
given by the eigenvectors e, e, are called principal directions at p. For instance, in the plane all directions at all
points are principal directions. The same happens with a sphere. In both cases, this comes from the fact that the
second fundamental form at each point is constant.

The determinant of DN is the product (—k,)(—k,) = kyk, of the principal curvatures, and the trace of DN is the
negative —(k; + k,) of the sum of principal curvatures. If the orientation of the surface is changed, the
determinant does not change (the fact that the dimension is even is essential here); the trace, however, changes
sign. Particularly, in point p, the determinant of DN, is the Gaussian curvature K of x at p. The negative of half of
the trace of DN is called the mean curvature H of x at p [46]. In terms of the principal curvatures, they can be
written as

K = kik,, (25)

H="2 (26)

At an elliptic point the Gaussian curvature is positive. Both principal curvatures have the same sign, and
therefore all curves passing through this point have their normal vectors pointing toward the same side of the
tangent plane. The points of a sphere are elliptic points. At a hyperbolic point, the Gaussian curvature is
negative. The principal curvatures have opposite signs, and therefore there are curves through p whose normal
vectors at p point toward any of the sides of the tangent plane at p. At a parabolic point, the Gaussian Curvature
is zero, but one of the principal curvatures is not zero. The points of a cylinder are parabolic points. Finally, at a
planar point, all principal curvatures are zero. The points of a plane trivially satisfy this condition. The Gaussian
curvature and the mean curvature of x are given by the formulas

_ eg—f?

=T )
__eG— +g

T 2(EG-F?)’ (28)

where E, F, G, ¢, f, g are the coefficients of the fundamental forms. Using the parameterization such that
z = h(x,y), an alternative form for K and H are obtained:

_ haxhyy—h%, (29)
- 2
(1+h%+n3) ’
o= (1+h,zc)hyy—Zh,;hyf:xJ;-/l-Z(1+h32,)hxx. (30)
(1+h3+h3)

The principal curvatures are the roots of the quadratic equation x?> — 2Hx + K = 0. Thus, k; and k, can be
chosen so that

k, = H+VH? — K, (31)
k, = H—VH? — K. (32)

The last two primary geometrical descriptors are the shape index and curvedness proposed by Koenderink and
van Doorn [48]. The formal definition of shape index can be given as follows:



S= _%arctan :1+:2' Se[-11], ki =k, (33)

1—"2

It describes the shape of the surface. Koenderink and van Doorn proposed a partition of the range [-1,1] in nine
categories, which correspond to nine different surfaces, ranging from cup to dome/cap, but other
representations exist [49] [8].

Nonetheless, the shape index does not give an indication of the scale of curvature present in the shapes. For this
reason, an additional feature is introduced, the curvedness index of a surface:

2 2
¢= 4 (34)

It is a measure of how highly or gently curved a point is and is defined as the distance from the origin in the
(kll kz)‘plane.

3 NEW DESCRIPTORS

The 12 geometrical entities introduced in the previous section, which will be from now on named primary
descriptors, have been used as theoretical basis for designing the upcoming derived and composed geometrical
entities presented in the following. We have called derived those entities which are built from the application of
a single standard function such as sine, cosine, logarithm. This classic function is directly applied to the primary
descriptor to generate the derived one. Composed descriptors are created by combining primary descriptors.
These combinations are linear combinations, fractions, products, special products of primary descriptors. They
also include forms similar to those of primary descriptors.

3.1 DERIVED DESCRIPTORS

Mean, median, natural logarithm, sine, cosine, tangent, arcsine, arccosine, arctangent have been applied to the
12 primary descriptors, obtaining a set of 108 derived descriptors. Mean and median were calculated in
squared neighbourhoods of side 5 around each point of the facial depth maps.

The information provided by cosine was equivalent to sine in terms of quality and quantity of descriptiveness.
Facial maps of arcsine gave complex values (€ C), while tangents gave a behaviour similar to the respective
original primary descriptors. For these reasons, images referred to cosines, arcsines, and tangents have not
been graphically reported here, and the set of final derived descriptors taken into consideration is thus reduced
to 51 items. Concerning the other derived descriptors, their "individual” point-by-point mappings onto a facial
depth map are shown in Table 1. The images in this table regard only one person (female, aged 25, serious
pose), whose depth map was obtained via Minolta Vivid 910 laser scanner.

Table 1. Primary (first and second columns) and derived descriptors mapped on a serious face.

primary
descriptor

median i arctan




In general terms, the behaviour of the original descriptor is kept when a standard function is applied to it.
Nonetheless, some of the so-generated derived descriptors better highlight local behaviours or enhance the
contrast. Also, facial traits defining eyes, nose, and mouth are immediately recognizable for most of the newly-
created mapped descriptors. This is a simple but crucial point in terms of descriptor usability, as a good facial
descriptor allows identification of one or more facial components. Sections FEATURES and DISCUSSION will
draw attention to their respective peculiarities.

3.2 COMPOSED DESCRIPTORS

Primary descriptors were also combined to generate composed descriptors, which were thought, built, and
experimented by adopting standard mathematical operations such as combinations, fractions, products, special
products of primary descriptors to gain novel facial representations. The new descriptors and their mappings
on a face are reported in Table 2 and commented in the subsequent text. The images concern one person, the
same adopted for the images of Table 1.



Table 2. Formulas (first column) and maps (second column) of composed descriptors.

Composed descriptor(s)

ellipsoid, = E? + F? + G*

ellipsoid, = e + f? + g>

F G

E\? [(F\* [G\*

elli soid--z( ) +<—) +<—)
p 124 f g
_e _f -9
eE—E fF—F gG—G
E F G
Ee—; Ff—; Gg—;

E F G

Eden - Fden - Gden -
/1+h§+h§, /1+h§+h}, /1+h§+h},

E _E P _F G
den2 — 1+h2+h2 den2 — 1+h%+h3 den2 — 1+h2+h3

EeFfGg=E-e+F-f+G g EgFfGe=E-g+F-f+G-e

/1+h§+h§, /1+h;2v+h§'

E-e+F-f+G- E-g+F-f+G-
EeFfGluenz =117 g EIFfGeaens = s
efg=e-f-g
EFG=E-F-G

E-F-G
EFG4op = ————
/1 +h} + h

EFC _ E-F- G
427 1 + h2 + hZ

R,
B
R R

second = hy, - hy, - h,, il

e EEE!Eé

U L SR
SSep————




hyy “hyy - hy, - )
e TR
‘/1 +hi + R L
hyx “hyy - hy,
secondgeny = ——5——5—
en 1+ h%+h3
hx hy
X =— = —
hxx y h}’y
= ﬁ;ﬁé‘“@%‘%ﬁ%ﬂﬁi‘i%
E%%' E%EEEEEEEEEEWEEE
xx=hyhy, yy=hyh,y, L
s 9

cl= h% + h + h%, + h}, + h3,

pnbAA_,_ = h_%x + 2- hxy + hf,y

pnby,_ = hJer

— 2-hy, + h3,

pnby, =hi+ 2-h,, + h}

pnb,_ = h% —

2-hy + h3

panB+ = h,zcx + 2- hxx ' hyy + hf,y panB— = h,zcx -2 hxx ' hyy + hf,y

pnbp, =h%+ 2-h,-h,+ h? pnbg_=h%— 2 h,-h,+ h?

pndp, = hi —h3 pndp,, = hi, — h3,

2 K+H +H
news; = ——arctanﬁ news; = ——arctanﬂ
= Z
K? + H?
newC = |———
2
E+F+G etf+g
Sfond, = ——arctanEH; - Sfond, = ——arctan rpwr-

2 2 2 2, fF2 2
Cfondl = # Cfondz = ;BH-TW

, K-H
newGaussian = K-H newMean = -

ki +k,+K+H
4

thecurvature =

The way in which the formulas of these descriptors were thought and built relies on the nature of the original
formula structure of primary descriptors. Here below, the features of their concept are listed and explained.
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1. The denominator in Edenr Fdenr Gden: EdenZ: Fdean GdenZ: EeFngden: EgFfGeden: EeFngdenz:
EgFfGegens, EFGaen, EFGgena, Secondg,,, and second,,,, is adopted in the same form of primary
descriptors (19), (20), and (21). In other words, the idea of using this denominator is taken from the
formulas of e, f, and g.

2. The structure of formulas of ellipsoid, ellipsoid,, ellipsoid;, ellipsoid;;, EeFfGg, EgFfGe, EeFfGggen,

EgFfGegen, EeFfGggena, and EgF fGegen, is based on the standard equation of the ellipsoid

2 2 2
ye z
; + b—z + C_2 =1.

3. The concept of descriptors pnbyay, pnbsa—, pnbyy, pnby_, pnbgg,, pnbgg_, pnbg,, and pnbg_ is based

on the special product

(x +y)? =x% 4+ 2xy + y2

4. The concept of descriptors pndp, and pndp,4 is based on the special product
(x=yx+y) = x> -y

5. The structure of formulas of newS,;, newS,;, Sfond,, and Sfond, relies on the form (33) of the shape
index S. Similarly, newC, Cfond,, and Cfond, are based on the curvedness index (34). Descriptors
newGaussian and newMean rely respectively on Gaussian (25) and mean (26) curvatures forms.

The following section will highlight the specific features of derived and composed descriptors by drawing
attention to their interesting behaviours in terms of facial descriptiveness.

4 FEATURES

The purpose of this study was to provide 3D Face Analysis research with new descriptors to be adopted as
features for automatic landmarking techniques, with the possible subsequent aim to be embedded in Face
Recognition and Face Expression Recognition algorithms. Also, compact forms (histograms, regional average
values,...) of these novel descriptors could be directly adopted as comparison elements between faces in Face
(Expression) Recognition methodologies. This section stresses the attention to the features that these new
descriptors point out and is organized in subsections, each dedicated to a feature.

Derived and composed descriptors have been point-by-point mapped on 217 frontal-view facial depth maps of
different people aged 19-32 performing 7 expressions scanned via Minolta Vivid 910 laser scanner. The
scanner uses a single camera and laser stripe, and acquires 3D data using triangulation [50]. Acquisitions were
single view and were made indoor in electric light conditions. The subjects were made to sit at a distance of
about 1.5 meters away from the device. The laser is eye safe, so the subjects could keep their eyes open during
the scanning. The scan takes approximately 2.5 seconds and the subject is asked to remain static during that
time. The scanned images were then managed and useless parts such as neck and hair have been cut via
reverse engineering techniques [51]. The so-generated images were then imported in Matlab® and the
triangular mesh was converted into a 120x120 non-connected squared grid via function gridtrimesh, i.e. a
depth map. The whole features analysis and subsequent graphs of Figures 6 and 7 rely on the study of the
descriptors mapped on the 217 faces.

Highlighted facial lines Some new descriptors highlight facial lines. In particular, these lines are contours of
facial parts such as nose, mouth, eyes, and eyebrows. Among the two sets of derived and composed descriptors,
these are the ones that show visible facial parts contours: arctan F, Faenz, Sfond;, arctan G, Sfond;, cos S. Table 3
(above) shows them.

In particular, we stress the attention on those new descriptors which emphasize the nose shape. They are:

mean E, median E, Egen, Gaen, mean G, median G, Cfond;, cl, pndpa, EeFfGg, EeFfGgaden, EgFfGe, EgFfGeqen, ellipsoid;.
These descriptors are reported in the second part of Table 3. An in-depth explanation of how one of these
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descriptors support the identification of facial lines is reported in Figure 1. The images concern one person, the
same adopted for the images of Table 1.

Table 3. The third column describes how the descriptor (first column) highlights facial lines. The first six rows of the table refer to
descriptors with general highlighted facial lines; the other rows present descriptors which emphasize nose shape.

Descriptor Description
arctan F These three descriptors allow the immediate
identification of eye, eyebrow, nose, cheek, and
mouth parts thanks to a clear-cut division of facial
Fienz zones. The descriptor changes sign (- to + or + to -),
meaning is approximately equal to zero, in
correspondence to the dividing line between two
Sfond; zones. This behaviour is described in Figure 1.
This descriptor assigns low (blue) values to contours
and high (red) values to flat/smooth parts
arctan G . o .
corresponding to specific facial zones such as nose
and cheeks.
Sfond;
High (red) picks are associated to contours,
especially in the nose and eye areas.
cosS

mean E  median E

E den Gden

mean G median G

Cfond;
Nose shape emphasized through high or low values
of the descriptor.
cl
pndp,

EeFfGg EgFfGe

EeFngden EgFfGeden

11



ellipsoid;

F den2

Faenz= 0

critical points (hx= 0 and h, = 0)

Figure 1. Above. Descriptor F,.,, with arrows pointing to areas approximately equal to zero. Middle. Red parts show the areas of F.,, where
the descriptor is =0, i.e. the red points belong to a narrow neighbourhood of zero values for descriptor F,.,,,. As can be seen, the red areas
form lines which correspond to dividing lines between facial zones such as nose, eyes, and mouth. Below. Reddish/yellowish points are the
critical points of the original facial surface, i.e. points of the original facial depth map where derivatives with respect to x (horizontal) and y
(vertical) axes are approximately equal to zero. This final image is reported to show its similarity to the middle image, as the dividing lines
between facial zones conceptually correspond to critical points of the human face.
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Features similar to other descriptors All derived descriptors can be associated by view to the respective
original ones, with the exception of all natural logarithms, sin E, sin F, sin G. So, it is trivial to analyze how
derived descriptors are similar to their respective primary descriptors. Nonetheless, it is interesting and useful
to find similarities between composed descriptors and primary, or between composed and derived ones. Table
4 and Figure 2 draw attention to these similarities. The images concern one person, the same adopted for the
images of Table 1.

Table 4. Each row of the table presents a set of similar-by-view descriptors. Column 3 qualitatively contextualizes the similarity.

_ Description

Descriptors Maps

E  Egen Highlighted lateral nose contours.

An odd symmetry describes nose

F F,
den shape, eye zones, and mouth.

An odd symmetry with strong
contrast describes nose shape, eye
zones, and mouth.

arctan F  Fgenz  Sfond;

The low part of nasal zone (subnasale

G Gaen point area) is highlighted.
Slightly ~ different  versions  of
curvedness enhance facial points with
¢ Gond; newC - . higher curvature values. Their
similarity is examined in Figure 2.
thecurvature i - Quality and quantity of
i descriptiveness  similar to the

EeFfGgaenz  EgFfGeden: curvedness but with opposite values.

Figure 2. An example of similarity between descriptors. From left to right: C, Cfond,, newC. The white rectangles show some local maxima in
correspondence to specific points of the face such as pupils, eyebrows, nose tip (pronasale), subnasale, and the point laying on the centre
of the mouth, between lips, called stomion. These are the most evident features that the three descriptors have in common.

These similarities could be extremely useful when a descriptor is chosen instead of another in the phase of
algorithm design and construction. Although these descriptors are similar, one could better fit the issue under
exam. Table 4 immediately shows similar features and differences.

Global description Many new descriptors offer a comprehensive description of the face, highlighting nose,
mouth, eye areas, eyebrows in detail. Drawing attention to the 'globality’ of description emphasizes the holistic
nature of these new descriptors, or of at least a part of them. Differently from local features such as LBP, Gabor
jets, and Scale Invariant Feature Transform (SIFT) [52], all the newly generated descriptors are holistic, or
global [53]. Holistic descriptors have shown to have some advantages compared to local ones, especially in
presence of different expressions, occlusions and pose variations [53].
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These descriptors are reported in Table 5; one of them is studied in Figure 3. The images concern one person,
the same adopted for the images of Table 1.

Table 5. List (with maps) of new descriptors presenting a global descriptive behaviour.

Descriptor Map \ Descriptor Map Descriptor Descriptor lI.VIap
median g arctan g
mean H
mean k; median k; sin kq arctan k;
mean k; median k; sin k; arctan k;
mean S median S sin S arctan S
mean C median C sin C arctan C
Cfond; newC Sfond; thecule'vatur
Eden Faen Eden: Faenz

EeFfGgden EgFfGegen EeFfGgdenz EgFfGeenz

EgFfGe
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Figure 3. Descriptor EeFfGgg,.,, With highlighted facial areas. The 'globality' of the description is given by the holistic behaviour of the
descriptor in correspondence to every facial part; the descriptor is able to visibly identify them all. Blue lines circumscribe the facial
components described by negative values of the descriptor (blue points); they are: lips, nose, eyebrows, and pupils/iris. Red lines contain
the facial components represented by positive values (reddish/yellowish points); they are: lateral mouth extremes, philtrum, lateral nose
parts, and eye contour. The descriptor allows a global description of the face.

The global descriptors could be core in the algorithms involving 3D Face Analysis, as the search for an
alternative comprehensive map of the face is continuously carried on during research. Face Recognition and
Expression Recognition techniques could benefit of new maps which highlight all facial components. In
particular, compact features such as histograms, means, medians, regional or point behaviours could be
extrapolated and evaluated from these global descriptors and used as comparison elements between different
faces. In other words, the compact features extracted from these geometrical descriptors could constitute the
core features which allow to maximize intra- or inter-person variability depending on whether the application
is, respectively, Face Expression Recognition or Face Recognition. It is out of the scope of this paper to treatise
how compact features could be extracted from these and other descriptors but various research contributions
[7] [12] [54] exist for supporting the reader in extracting relevant information from general facial features.

Highlighted facial landmarks Many new descriptors showed local maximum or minimum behaviour on the
locus of a landmark. Alternatively, some descriptors presented a typical negative or positive trend. The
behaviour of each descriptor in correspondence to a landmark point has been examined on the 217 faces and
then reported in Table 6; each row is dedicated to a descriptor and shows its trend among each landmark. The
landmarks of Figure 4 are taken into consideration for this analysis.
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AL alare

CH chelion

EN endocanthion
EX exocanthion

Ll fabiale inferius
LS labiale superius
N nasion

P pupil

[ PRI pronasale

SN subnasale

Figure 4. Soft-tissue landmarks in frontal view face adopted in this study [55].
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Table 6. The name of the descriptors is reported in the first column. The second column shows the related map on the same face used for
Table 1. Each cell shows the behaviour of the descriptor on the locus of the landmark. Orange cells indicate a weak hint about the trend,
meaning that slightly different behaviours are shown on different faces. Green cells indicate a strong hint, i.e. it is common to all faces and
so it could be actually useful to extract the landmark. White boxes are neutral in terms of descriptiveness of the landmark.

Descriptor and map AL CH EN EX I\ PUPILS | PRN SN
meanE | WEEANEP | MAX | MAX | <0 | MAX | <0 | <0 <0 <0 <0
median E MAX MAX <0 MAX <0 <0 <0 <0 <0
InE MAX MAX <0 MAX <0 <0 MAX <0 <0
sin E nd nd nd nd >0 >0 min >0 >0
arctan E MAX >0 <0 MAX <0 <0 MAX <0 <0
MAX
SX
mean F =0 ) =0 =0 =0 =0 =0 =0 =0
min
dx
MAX
median F =0 S).( =0 =0 =0 =0 =0 =0 =0
min
dx
sin F nd nd nd nd nd nd nd nd nd
arctan F >0 sx =0 =0 =0 =0 =0 =0 =0 =0
<0 dx
mean G <0 <0 <0 <0 <0 <0 <0 =0 MAX
median G <0 <0 <0 <0 <0 <0 <0 =0 MAX
InG =0 =0 <0 <0 >0 <0 <0 <0 MAX
sin G nd nd nd nd nd nd nd nd nd
arctan G >0 =0 <0 <0 >0 <0 MAX <0 MAX
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median K

sin K

arctan K

mean k;

=
<

median k;

sin k;

arctan k;

mean k;

median k:

sin kz

arctan k;

mean S

median S

sin S

arctan S

mean C

median C




InC >0 >0 >0 >0 MAX | MAX MAX MAX | MAX
sin C =0 >0 >0 <0 MAX | MAX MAX MAX | MAX
arctan C =0 >0 >0 <0 MAX | MAX MAX MAX MAX
ellipsoid, =0 <0 <0 <0 <0 <0 <0 <0 <0
ellipsoid, <0 <0 <0 <0 <0 <0 <0 <0 <0
ellipsoid; <0 <0 <0 <0 <0 <0 <0 <0 <0
ellipsoid;; <0 <0 <0 <0 <0 <0 <0 <0 <0
eE =0 =0 MAX =0 <0 min min min =0
fF >0 >0 >0 >0 >0 >0 >0 >0 >0
9G <0 =0 =0 =0 min =0 min min MAX
Ee >0 >0 >0 >0 >0 >0 >0 >0 >0
Ff >0 >0 >0 >0 >0 >0 >0 >0 >0
Gg >0 >0 >0 >0 >0 >0 >0 >0 >0
Ejen MAX <0 <0 MAX <0 <0 <0 <0 <0
MAX
SX
Fgen =0 min =0 =0 =0 =0 =0 =0 =0
dx
Gaen =0 >0 <0 <0 <0 <0 <0 <0 MAX
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E den2

F den2

GdenZ

EeFfGg

EgFfGe

EeFngden

EgFfGeden

EeF f ngenz

EgFfGedenZ

efg

EFG

EFG4e,

EF Gdenz

second

second g,

second ey
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b'¢ <0 <0 <0 <0 <0 <0 <0 <0 <0
y =0 =0 =0 =0 =0 =0 =0 =0 =0
MAX
XX S).( =0 =0 =0 =0 =0 =0 =0 =0
min
dx
yy ~0 ~0 ~0 ~0 ~0 ~0 ~0 min MAX
cl =0 MAX <0 <0 <0 <0 <0 <0 <0
pnby,, MAX >0 <0 <0 <0 <0 <0 <0 <0
pnb,,_ MAX >0 <0 <0 <0 <0 <0 <0 <0
pnb,, >0 MAX <0 <0 <0 <0 <0 <0 <0
pnb,_ >0 MAX <0 <0 <0 <0 <0 <0 <0
pnbgg. MAX MAX <0 <0 <0 <0 <0 <0 <0
pnbgp_ MAX MAX <0 <0 <0 <0 <0 <0 <0
MAX
pnbg, =0 SX <0 <0 <0 <0 <0 <0 <0
=0 dx
=0 sx
pnbg_ =0 MAX <0 <0 <0 <0 <0 <0 <0
dx
pndp, MAX MAX =0 =0 =0 =0 =0 =0 =0
pndpa, MAX min =0 =0 =0 =0 =0 =0 =0
news; >0 >0 MAX >0 >0 MAX min min MAX
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newsy <0 <0 min <0 <0 min MAX MAX min
newC >0 >0 MAX <0 MAX <0 MAX MAX <0
Sfond, <0 sx =0 =0 =0 ~0 ~0 ~0 ~0 ~0
>0 dx
Sfond, >0 <0 >0 >0 <0 =0 <0 <0 <0
Cfond, MAX MAX <0 <0 <0 <0 <0 <0 <0
Cfond, MAX >0 MAX <0 MAX <0 MAX MAX MAX
newGaussian >0 >0 MAX >0 min >0 min min min
newMean =0 =0 MAX >0 min min min min min
thecurvature MAX MAX MAX =0 min <0 min min min

The analysis performed and presented in this table has the main aim of supporting automatic landmarking

methods based on geometry [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16].

The cells of Table 6 have been coloured relying on the reliability of the descriptor in terms of its behaviour on
different faces. Figure 5 shows highlighted local behaviours of a highly consistent descriptor, thecurvature, on
the locus of each landmark. Similar considerations could be deduced from all other descriptors. Table 7 shows
the same descriptor mapped on 49 faces belonging to 7 people with 7 emotions.
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S0 MAX  min

MAX

MAX min

Figure 5. Descriptor thecurvature applied to the reference face. White squares and arrows highlight the detailed behaviour of the descriptor
on the locus of each landmark, thus explaining the row referring to thecurvature descriptor of Table 6.

Table 7. Descriptor thecurvature applied to 49 faces belonging to 7 people (each row is dedicated to a person) and performing 7 expressions
each (each column represents an emotion).

serious surprise sadness

# disgust joy fear
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5 DISCUSSION

The qualitative data presented in Table 6 have been quantified to determine which descriptors could be
considered more suitable for landmark extraction algorithms. Value 2 has been assigned to the green boxes,
representing commonality among faces and actual usability to extract the landmark; value 0 was assigned to
white boxes, which are neutral in terms of descriptiveness of the landmark; value -1 was assigned to orange
boxes, meaning that different behaviours are shown for these descriptors on different faces for the landmark
under investigation. Thus, the criteria of evaluation is based on the soundness and reliability of the descriptor
among all faces of our dataset. If a descriptor keeps the same behaviour on the locus of a landmark, the table
corresponding to that descriptor and that landmark will be green and its numerical value will be assigned as 2.
As said in the previous section, this quantitative study was undertaken by examining the whole set of 217 faces.

By assigning these numerical values, 'horizontal' and 'vertical' sums are calculated to state which descriptors
are quantitatively more descriptive and, also, which landmarks are better described. This last landmark-based
evaluation is secondary in this study, but was carried out to provide the reader with a further information
about how landmarks are described with these new descriptors. Figures 6 and 7 show the global marks given
by horizontal and vertical sums, respectively.

Figure 6. Global quantitative values assigned to each descriptor relying on the soundness of descriptors among different faces.

Global marks for each landmark

100

80 ’ 79
60
$s 50
2 v & v
20 ? 22 ? 24
0 ’ 2 4 1
by W & S J N 2 & & B3
Q 28 ¥ ®

-40

Figure 7. Global quantitative values assigned to each landmark relying on the soundness of descriptors among different faces.

The soundest and most reliable descriptors resulted sin e, arctan e, mean g, median g, sin g, arctan g, median H,
which reached value 14, followed by In E, arctan G, mean e, median e, mean H, sin H, arctan H, mean K, mean k;y,
median ki, median k;, sin k;, arctan k;, mean C, thecurvature, with values in the range [10; 13]. The least reliable
ones are sin F, sin G, ellipsoid,, ellipsoid;, fF, Ee, Ff, Gg, EFG, EFGden, EFGdenz, X, y, with value -9.

These results show that derived descriptors are, generally speaking, sounder than composed ones. The only

composed descriptor obtaining a high mark (10) was thecurvature. Also, among the set of descriptors with the
worst global mark, the high majority (11 up to 13) are composed descriptors.
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Concerning landmarks, the landmark which reached the highest soundness in terms of descriptiveness is the
pronasale (PRN) with a global mark equal to 79. It is followed by other well-described landmarks such as labial
ones (mark 55), pupils (50), and subnasale (47). The worst reliability was obtained by the exocanthion, with
global mark -28.

6 CONCLUSION

105 novel derived and composed geometrical descriptors for 3D face are here presented and analysed. Facial
descriptiveness is taken as the core objective of descriptors’ usability and innovativeness. In particular,
completeness of description all over the face and particular behaviour (maximum or minimum) in
correspondence to landmark points are searched for and looked as key indicators of descriptors’ soundness.

The application of the new descriptors onto 217 facial depth maps acquired via laser scanner by our research
group has revealed that some of them, such as those given by sine, arctangent, mean, and median of primary
descriptors, are not only suitable to 3D face description and landmark localization processes, but even more
accurate and clearer than their traditional predecessors. Thus, these descriptors can be considered as

holistic/global features for facial surface analysis; their accessibility and legibility make them suitable for visual
interpretation and appropriate for being processed by Computer Vision algorithms.
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