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ABSTRACT 
	
3D	face	was	recently	investigated	for	various	applications,	including	biometrics	and	diagnosis.	Describing	facial	
surface,	 i.e.	 how	 it	bends	and	which	kinds	of	patches	 is	 composed	by,	 is	 the	aim	of	 studies	of	Face	Analysis,	
whose	ultimate	goal	is	to	identify	which	features	could	be	extracted	from	three‐dimensional	faces	depending	on	
the	application.	
	
In	 this	 study,	 we	 propose	 105	 novel	 geometrical	 descriptors	 for	 Face	 Analysis.	 They	 are	 generated	 by	
composing	 primary	 geometrical	 descriptors	 such	 as	 mean,	 Gaussian,	 principal	 curvatures,	 shape	 index,	
curvedness,	 and	 the	 coefficients	 of	 the	 fundamental	 forms,	 and	by	 applying	 standard	 functions	 such	 as	 sine,	
cosine,	and	 logarithm	to	 them.	The	new	descriptors	were	mapped	on	217	 facial	depth	maps	and	analysed	 in	
terms	of	descriptiveness	of	facial	shape	and	exploitability	for	localizing	landmark	points.	Automatic	landmark	
extraction	stands	as	the	final	aim	of	this	analysis.	
	
Results	 showed	 that	 some	 newly	 generated	 descriptors	were	 sounder	 than	 the	 primary	 ones,	meaning	 that	
their	 local	behaviours	 in	correspondence	to	a	 landmark	position	 is	 thoroughly	specific	and	can	be	registered	
with	high	similarity	on	every	face	of	our	dataset.	
 
KEYWORDS 
	
3D	Face;	Face	Analysis;	landmarks;	geometry;	Face	Recognition;	Face	Expression	Recognition.	
	
 
1 INTRODUCTION 
 
Face	Analysis	has	supported	in	these	decades	Face	Recognition	(FR),	Face	Expression	Recognition	(FER),	and	
various	medical	applications	such	as	corrective	surgery,	diagnosis,	prenatal	ultrasound.	While	2D	Face	Analysis	
relies	 on	what	 could	 be	 extrapolated	 from	 a	 facial	 image,	 such	 as	 colour	 or	 intensity	 [1],	 3D	 Face	 Analysis	
represents	techniques	for	human	face	study	relying	on	three‐dimensional	features,	such	as	geometrical	entities	
like	shape	and	curvature	[2].	The	third	dimension	was	involved	in	the	research	to	improve	accurateness	[3]	and	
avoid	issues	like	illumination	variations	[4].	3D	face	data,	which	is	often	given	by	a	non‐connected	point	cloud,	
i.e.	 a	 depth	map	 [5],	 allow	 the	 use	 of	 geometry	 and	 related	 geometrical	 entities	 in	 the	 description	 of	 facial	
surface.	 The	 so‐generated	 features	 make	 it	 possible	 to	 compare	 faces	 and	 generally	 extract	 information	
relevant	to	the	context	of	application.	
	
Differential	geometry	seems	to	be	promising	for	the	study	of	facial	shape	and	curvature	behaviours,	especially	
for	applications	in	Face	Recognition.	The	previous	work	of	our	research	group,	such	as	[6]	[7]	[8]	[9]	[10]	[11]	
[12]	[13]	[14]	[15]	[16],	and	other	contributions	within	the	field	of	3D	Face	Analysis,	such	as	[17]	[18]	[19]	[20]	
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[21],	 provided	 different	 application	 frameworks	 of	 entities	 coming	 from	 Differential	 Geometry	 context	 for	
analysing	facial	surfaces.		
	
The	 descriptors	 investigated	 by	 our	 group	 have	 been	 applied	 to	 different	 contexts,	 such	 as	 recognition	 and	
medical	 diagnosis,	 and	 have	 been	 proven	 to	 be	 key	 3D	 features	 for	 human	 faces	 at	 different	 ages.	 These	
descriptors,	 defined	 and	 fully	 explained	 in	 section	2	PRIMARY	DESCRIPTORS,	 are:	 the	 six	 coefficients	 of	 the	
fundamental	 form,	mean	 and	 Gaussian	 curvatures,	 principal	 curvatures,	 and	 shape	 and	 curvedness	 indexes.	
Some	of	them	have	been	employed	and	mentioned	in	recent	literature	as	well‐performing	facial	features.	Mean,	
Gaussian,	principal	curvatures,	 shape	 index,	and	curvedness,	evaluated	with	varying	neighbourhood	size	and	
bin	 size,	were	adopted	as	descriptors	by	Creusot	et	al.	 to	 support	keypoints	detection	on	3D	 faces.	LDA	was	
employed	 to	 define	 weights	 to	 combine	 matching	 score	 maps	 over	 a	 population	 of	 neighbouring	 and	 non‐
neighbouring	vertices,	 relative	 to	 the	relevant	 landmark,	and	experiments	were	carried	out	on	FRGC	v2	 [22]	
and	 BFM	 database	 [23].	 Histograms	 of	 shape	 index	 (HoS)	 with	 8	 bins,	 the	 shape	 index	 itself,	 and	 principal	
curvatures	were	used	 to	 develop	 a	mesh‐based	method	 for	 3D	 facial	 expression	 recognition	 to	 be	 tested	 on	
BU3D‐FE	[24]	[25]	[26]	and	Bosphorus	[27]	databases.	Mean	curvature,	Gaussian‐weighted	curvature,	and	spin	
image	correlation	were	adopted	as	features	by	Li	et	al.	[28]	to	detect	3D	faces	via	graph	models	on	IAIR‐3DFace	
and	BU3D‐FE	databases.	Shape	index,	calculated	for	each	vertex	on	its	5x5	neighbourhood,	was	used	by	Zhang	
et	 al.	 [29]	 for	 a	 face	 recognition	 method	 based	 on	 the	 adoption	 of	 six	 different	 scale	 invariant	 similarity	
measures.	The	testing	was	performed	on	FRGC	v2.0.	An	HK	curvature‐based	approach	was	adopted	by	Bagchi	et	
al.	[30],	who	developed	a	method	for	three‐dimensional	face	detection	to	be	applied	on	the	FRAV3D	database.	
HK	 indicates	both	mean	and	Gaussian	curvatures.	Mean	and	Gaussian	curvature,	shape	index	and	curvedness	
were	 involved	 as	 features	 by	 Szeptycki	 et	al.	 [31]	 for	 automatic	 nose	 tip	 localization	 on	 3D	 faces	with	 SVM	
classifier.	 The	 tested	 database	 was	 FRGC	 v2.	 Lanz	 et	 al.	 used	 mean	 and	 Gaussian	 curvatures	 for	 landmark	
detection	 in	 the	 context	 of	 therapeutic	 facial	 exercise	 recognition	 for	 patients	 suffering	 from	 dysfunction	 of	
facial	movements	[32].	The	Kinect	was	employed	for	acquiring	3D	faces.	The	same	descriptors	were	adopted	by	
Rabiu	et	al.	for	a	3D	face	HK	segmentation	method	to	be	tested	on	UPM‐3DFE	and	Gavab	databases	[33].	Zeng	et	
al.	 involved	mean	 curvature	 in	 a	 framework	 for	 facial	 expression	 recognition	 via	 conformal	maps	 in	 sparse	
representation	 [34].	 Tests	were	 performed	 on	 BU‐3DFER	 database.	 Abbas	 et	al.	 tested	 geometrical	 features	
such	as	mean,	Gaussian,	and	principal	curvatures	 in	 terms	of	descriptiveness	of	 facial	philtrum	on	 the	three‐
dimensional	ALSPAC	database	 [35].	 The	purpose	of	 this	 study	was	 to	 investigate	dysmorphisms	 around	 this	
facial	area.	The	shape	index	was	embedded	in	a	facial	landmark	localization	algorithm	tested	on	BU‐3DFE,	BU‐
4DFE,	BP4D‐Spontaneous,	FRGC	2.0,	and	Eurecom	Kinect	Face	Dataset	by	Canavan	et	al.	 [36].	Different	 facial	
areas	were	classified	according	to	mean	and	Gaussian	curvature	values	in	a	framework	of	3D	surface	analysis	
with	no	previous	reconstruction	(“one	shot”	technique)	by	Di	Martino	et	al.	[37].	The	shape	index	was	used	as	
3D	local	shape	descriptor	by	Perakis	et	al.	to	be	embedded	in	a	feature	fusion‐based	facial	landmark	detection	
algorithm	for	biometric	applications	[38].	
	
Facial	maps	of	geometrical	descriptors,	such	as	the	previous	12	descriptors	and	the	following	novel	ones	here	
proposed,	 are	 alternatives	 to	 standard	 facial	 features	 like	Gabor	wavelets	 and	Local	 Binary	Patterns	 (LBPs).	
But,	while	Gabor	features	and	LBPs	have	been	thought	and	modelled	for	the	context	of	image	Face	Analysis,	i.e.	
working	with	2D	data	[39],	geometry‐based	features	are	strictly	connected	to	the	three‐dimensional	shape	of	
surface,	thus	result	highly	suitable	to	the	3D	context.	Even	if	both	Gabor	and	LBPs	have	been	adapted	to	3D	data	
[40]	[41],	they	are	said	to	be	lacking	shape	information,	thus	they	can	not	carry	information	related	to	surface	
deformation	occurring	on	faces	in	the	real	3D	world;	this	aspect	significantly	affects	their	efficient	applicability	
to	 subfields	 for	 which	 facial	 deformation	 is	 a	 core	 element,	 such	 as	 Face	 Expression	 Recognition	 [39].	 In	
particular,	depth	Gabor	images,	namely	the	Gabor	wavelets	applied	to	3D	data,	when	used	alone,	are	said	to	be	
less	descriptive	of	facial	features	than	their	bidimensional	representatives,	i.e.	intensity	Gabor	images,	as	"the	
value	of	the	pixels	in	the	depth	image	changes	less	than	does	the	value	in	the	intensity	images"	[40].	In	terms	of	
inner	 definition,	 LBPs	 in	 their	 original	 meaning	 are	 histograms	 [42]	 [43],	 thus	 they	 are	 not	 point‐by‐point	
representations	of	a	face;	on	the	contrary,	Gabor	wavelets	give	two	point‐by‐point	image	representations,	one	
with	 the	magnitude	 and	 one	with	 the	 real	 part	 [44].	 Nonetheless,	 these	 facial	maps	 do	 not	 provide	 prompt	
information	about	facial	shape.	In	other	words,	it	is	unrealistic	to	describe	facial	traits	of	a	person	by	looking	
only	at	his/her	Gabor	facial	image	representation.	Instead,	this	is	what	our	primary	descriptors	and	the	novel	
ones	try	to	do.	Descriptors	based	on	geometry	give	immediate	information	about	position,	curvature,	and	shape	
of	 eyes,	 mouth,	 nose,	 and	 global	 visage	 traits.	 These	 qualitative	 information	 could	 also	 be	 quantitatively	
formalized	in	order	to	give	these	descriptors	the	sound	status	of	facial	features.	This	is	what	we	address	in	this	
work.	
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This	work	 proposes	 105	 novel	 geometrical	 descriptors	 for	 3D	 Face	 Analysis.	 This	 research	 partially	 tries	 to	
respond	 to	 the	 "urgent	 need	 for	 a	 robust	 and	 efficient	 feature	 representation	 for	 3D	 facial	 shapes"	 [45],	 in	
particular	by	proposing	alternative	features	for	analysing	facial	surface.	The	idea	behind	the	creation	of	these	
novel	descriptors	is	rigorous	in	procedure,	as	the	theoretical	background	of	the	novel	descriptors	lays	on	sound	
Differential	 Geometry	 principles.	 Also,	 the	 formulas	 of	 the	 newly	 generated	 descriptors	 rely	 on	 allowed	
operations	 for	 these	 entities,	 and	 the	 point‐by‐point	 properties	 of	 the	 original	 descriptors	 are	 kept.	
Experimentation	has	brought	to	define	an	hefty	set	of	descriptors	and	their	landmark‐based	specifications	to	be	
adopted	 for	 branches	 of	 Face	Analysis	where	 point‐by‐point	 facial	map	 features,	 i.e.	 alternative	 facial	 image	
representations,	are	relevant.	The	 final	aim	 is	also	 to	aggregate	 facial	 information	and,	similarly	 to	LBPs	and	
Gabor	jets,	to	create	summary	features	which	could	be	easily	processed	by	the	algorithms	and	which	result	to	
be	more	complete	and	reliable	than	their	predecessors.	
	
The	 work	 is	 structured	 as	 follows.	 Section	 2	 PRIMARY	 DESCRIPTORS	 presents	 the	 12	 geometrical	 primary	
descriptors	 previously	 used	 by	 our	 research	 group.	 Section	 3	 NEW	 DESCRIPTORS	 introduces	 3.1	 DERIVED	
DESCRIPTORS	and	3.2	COMPOSED	DESCRIPTORS	with	formulas	and	maps.	Section	4	FEATURES	highlights	the	
features	 of	 the	 newly	 generated	 descriptors,	 with	 a	 focused	 analysis	 of	 their	 descriptiveness	 of	 landmark	
points.	In	particular,	a	quantification	of	their	landmark	descriptiveness	is	provided	and	discussed	in	section	5	
DISCUSSION.	
	
2 PRIMARY DESCRIPTORS	
	
Classical	differential	geometry	is	the	study	of	local	properties	of	curves	and	surfaces.	A	patch	or	local	surface	is	
a	differentiable	mapping	x:	U	→	 ,	where	U	is	an	open	subset	of	 .	Given	that	a	patch	can	be	written	as	an	n‐
tuple	of	functions	
	

, , , … , , ,	 	 	 	 	 	 	 	 	 	 (1)	
	
the	partial	derivative	of	x	with	respect	to	u	can	be	defined	by	
	

, … , .	 	 	 	 	 	 	 	 	 	 	 	 (2)	

	
The	first	and	second	fundamental	forms	provide	the	first	six	descriptors	of	the	set.	Their	definitions	rely	on	the	
possibility	of	measuring	distances	on	surfaces.	In	Euclidean	space	 ,	if	 , … , 	and	 , … , 	are	
points	in	 ,	then	the	distance	s	from	 	to	 	is	given	by	
	

⋯ .		 	 	 	 	 	 	 	 	 	 (3)	
	
Given	that	a	general	surface	is	curved,	the	distance	on	it	is	not	the	same	as	in	Euclidean	space;	in	particular,	the	
form	above	is	in	general	false	however	the	coordinates	are	interpreted.	To	describe	how	to	measure	distance	
on	a	surface,	the	concept	of	“infinitesimal”	is	required.	The	infinitesimal	version	of	that	for	n	=	2	for	a	surface	is	
	

2 ,	 	 	 	 	 	 	 	 	 	 (4)	
	
called	first	fundamental	form,	or	Riemann	metric.	This	is	the	classical	notation	for	a	metric	on	a	surface.	E,	F,	G	
are	functions	U	→	 	such	that:	
	

‖ ‖ ,	 	 	 	 	 	 	 	 	 	 	 	 	 (5)	
〈 , 〉,	 	 	 	 	 	 	 	 	 	 	 	 	 (6)	
‖ ‖ ,	 	 	 	 	 	 	 	 	 	 	 	 	 (7)	

	
and	are	called	coefficients	of	the	 first	 fundamental	 form.	These	coefficients	are	given	by	 inner	products	of	 the	
partial	derivatives	 of	 the	 surface.	Therefore,	 the	 first	 fundamental	 form	 is	merely	 the	expression	of	how	 the	
surface	 inherits	 the	 natural	 inner	 product	 of	 .	 Geometrically,	 the	 first	 fundamental	 form	 allows	 to	make	
measurements	on	the	surface	(lengths	of	curves,	angles	of	tangent	vectors,	areas	of	regions)	without	referring	
back	to	the	ambient	space	 	where	the	surface	lies	[46].	
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To	introduce	the	second	fundamental	form,	the	definitions	of	Gauss	map	must	be	given.	For	an	injective	patch	x:	
U	→	 	the	unit	normal	vector	field	or	surface	normal	N	is	defined	by	
	

,
| |

, 		 	 	 	 	 	 	 	 	 	 	 (8)	

	
at	 those	points	 , ∈ 	 at	which	 	 does	not	 vanish	 [47].	 The	map	 that	 assigns	 to	 each	point	p	 on	 a	
surface	 the	point	on	 the	unit	 sphere	 1 ⊂ 	 that	 is	parallel	 to	 the	unit	normal	 ,	 or	 ,	 is	 called	 the	
Gauss	Map.	
	
Let	x:	U	→	 	be	a	regular	patch.	Then	
	

〈 , 〉 〈 , 〉,	 	 	 	 	 	 	 	 	 	 	 (9)	
〈 , 〉 〈 , 〉 〈 , 〉 〈 , 〉,	 	 	 	 	 	 	 	 (10)	
〈 , 〉 〈 , 〉		 	 	 	 	 	 	 	 	 	 	 (11)	

	 	
are	 called	 the	 coefficients	 of	 the	 second	 fundamental	 form	 of	 x,	 and	 2 	 is	 the	 second	
fundamental	form	of	the	patch	x.	
	
Very	often	a	surface	is	given	as	the	graph	of	a	differentiable	function	 , ,	where	 , 	belong	to	an	open	
set	U	→	 .	 It	 is,	 therefore,	 convenient	 to	be	provided	by	 formulas	 for	 the	relevant	concepts	 in	 this	 case.	To	
obtain	such	formulas	let	us	parameterize	the	surface	by	
	

, , , , ,												 , ∈ ,	 	 	 	 	 	 	 	 	 (12)	
	
where	u	=	x,	v	=	y.	A	simple	computation	shows	that	
	

1,0, ,		 	 	 	 	 	 	 	 	 	 	 	 (13)	
0,1, ,	 	 	 	 	 	 	 	 	 	 	 	 	 (14)	
0,0, ,	 	 	 	 	 	 	 	 	 	 	 	 (15)	
0,0, ,	 	 	 	 	 	 	 	 	 	 	 	 (16)	
0,0, .	 	 	 	 	 	 	 	 	 	 	 	 (17)	

	
Thus,	
	

,
, ,

	 	 	 	 	 	 	 	 	 	 	 	 (18)	

	
is	a	unit	normal	field	on	the	surface,	and	the	coefficients	of	the	second	fundamental	form	in	this	orientation	are	
given	by	
	

,	 	 	 	 	 	 	 	 	 	 	 	 	 (19)	

,	 	 	 	 	 	 	 	 	 	 	 	 	 (20)	

.	 	 	 	 	 	 	 	 	 	 	 	 	 (21)	

	 	
From	the	above	expressions,	any	needed	formula	can	be	easily	computed.	For	instance,	the	Coefficients	of	the	
first	fundamental	form	are	obtained	[8]:	
	

1 ,	 	 	 	 	 	 	 	 	 	 	 	 	 (22)	
,	 	 	 	 	 	 	 	 	 	 	 	 	 (23)	

1 .	 	 	 	 	 	 	 	 	 	 	 	 	 (24)	
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Beyond	the	six	coefficients	of	the	fundamental	forms,	Gaussian,	mean,	and	principal	curvatures	are	other	four	
primary	 descriptors	 coming	 from	 Differential	 Geometry,	 dealt	 with	 measuring	 the	 curvature	 of	 a	 surface.	
Curvatures	are	used	to	measure	how	a	regular	surface	x	bends	in	 .	One	way	to	do	this	is	to	estimate	how	the	
tangent	plane	changes	from	point	to	point.	
	
The	two‐dimensional	vector	subspace	 ⊂ ,	where	D	 is	the	differential	and	q	 is	a	point	of	U,	coincides	
with	the	set	of	tangent	vectors	to	x	at	 .	By	the	above	proposition,	the	plane	 ,	which	passes	through	
x(q)	=	p,	does	not	depend	on	the	parameterization.	This	plane	will	be	called	the	tangent	plane	to	x	at	p	and	will	
be	denoted	by	 .	For	each	p	there	exists	an	orthonormal	basis	 , 	of	 	such	that	 ,	

.	Moreover,	 	and	 	 	are	the	maximum	and	minimum	of	the	second	fundamental	
form	 restricted	 to	 the	 unit	 circle	 of

	
.	 The	 maximum	 curvature	 	 and	 the	 minimum	 curvature	 	

introduced	above	are	called	the	principal	curvatures	at	p;	 the	corresponding	directions,	that	 is,	 the	directions	
given	by	the	eigenvectors	 , 	are	called	principal	directions	at	p.	For	instance,	in	the	plane	all	directions	at	all	
points	are	principal	directions.	The	same	happens	with	a	sphere.	In	both	cases,	this	comes	from	the	fact	that	the	
second	fundamental	form	at	each	point	is	constant.		
	
The	determinant	of	DN	is	the	product	 	of	the	principal	curvatures,	and	the	trace	of	DN	is	the	
negative	 	 of	 the	 sum	 of	 principal	 curvatures.	 If	 the	 orientation	 of	 the	 surface	 is	 changed,	 the	
determinant	does	not	change	(the	fact	that	the	dimension	is	even	is	essential	here);	the	trace,	however,	changes	
sign.	Particularly,	in	point	p,	the	determinant	of		 	is	the	Gaussian	curvature	K	of	x	at	p.	The	negative	of	half	of	
the	trace	of	DN	 is	called	the	mean	curvature	H	of	x	at	p	[46].	In	terms	of	the	principal	curvatures,	they	can	be	
written	as	
	

,	 	 	 	 	 	 	 	 	 	 	 	 	 (25)	
.	 	 	 	 	 	 	 	 	 	 	 	 	 (26)	

	
At	 an	 elliptic	 point	 the	 Gaussian	 curvature	 is	 positive.	 Both	 principal	 curvatures	 have	 the	 same	 sign,	 and	
therefore	all	curves	passing	through	this	point	have	their	normal	vectors	pointing	toward	the	same	side	of	the	
tangent	 plane.	 The	 points	 of	 a	 sphere	 are	 elliptic	 points.	 At	 a	 hyperbolic	 point,	 the	 Gaussian	 curvature	 is	
negative.	The	principal	curvatures	have	opposite	signs,	and	therefore	there	are	curves	through	p	whose	normal	
vectors	at	p	point	toward	any	of	the	sides	of	the	tangent	plane	at	p.	At	a	parabolic	point,	the	Gaussian	Curvature	
is	zero,	but	one	of	the	principal	curvatures	is	not	zero.	The	points	of	a	cylinder	are	parabolic	points.	Finally,	at	a	
planar	point,	all	principal	curvatures	are	zero.	The	points	of	a	plane	trivially	satisfy	this	condition.	The	Gaussian	
curvature	and	the	mean	curvature	of	x	are	given	by	the	formulas	
	

,	 	 	 	 	 	 	 	 	 	 	 	 	 (27)	

,	 	 	 	 	 	 	 	 	 	 	 	 (28)	

	
where	 E,	 F,	 G,	 e,	 f,	 g	 are	 the	 coefficients	 of	 the	 fundamental	 forms.	 Using	 the	 parameterization	 such	 that	

, ,	an	alternative	form	for	K	and	H	are	obtained:	
	

,	 	 	 	 	 	 	 	 	 	 	 	 (29)	

/ .	 	 	 	 	 	 	 	 	 	 (30)	

	 	 	
The	 principal	 curvatures	 are	 the	 roots	 of	 the	 quadratic	 equation	 2 0.	 Thus,	 	 and	 	 can	 be	
chosen	so	that	
	

√ ,	 	 	 	 	 	 	 	 	 	 	 	 (31)	
√ .	 	 	 	 	 	 	 	 	 	 	 	 (32)	

	
The	last	two	primary	geometrical	descriptors	are	the	shape	index	and	curvedness	proposed	by	Koenderink	and	
van	Doorn	[48].	The	formal	definition	of	shape	index	can	be	given	as	follows:	
	



6 
 

,						 ∈ 1,1 ,						 ,	 	 	 	 	 	 	 	 (33)	

	
It	describes	the	shape	of	the	surface.	Koenderink	and	van	Doorn	proposed	a	partition	of	the	range	[‐1,1]	in	nine	
categories,	 which	 correspond	 to	 nine	 different	 surfaces,	 ranging	 from	 cup	 to	 dome/cap,	 but	 other	
representations	exist	[49]	[8].	
	
Nonetheless,	the	shape	index	does	not	give	an	indication	of	the	scale	of	curvature	present	in	the	shapes.	For	this	
reason,	an	additional	feature	is	introduced,	the	curvedness	index	of	a	surface:	
	

.	 	 	 	 	 	 	 	 	 	 	 	 	 (34)	

	 	
It	 is	a	measure	of	how	highly	or	gently	curved	a	point	is	and	is	defined	as	the	distance	from	the	origin	in	the	

, ‐plane.	
	

3 NEW DESCRIPTORS 
 
The	 12	 geometrical	 entities	 introduced	 in	 the	 previous	 section,	which	will	 be	 from	 now	 on	 named	 primary	
descriptors,	have	been	used	as	theoretical	basis	for	designing	the	upcoming	derived	and	composed	geometrical	
entities	presented	in	the	following.	We	have	called	derived	those	entities	which	are	built	from	the	application	of	
a	single	standard	function	such	as	sine,	cosine,	logarithm.	This	classic	function	is	directly	applied	to	the	primary	
descriptor	 to	generate	 the	derived	one.	Composed	descriptors	are	created	by	combining	primary	descriptors.	
These	combinations	are	linear	combinations,	fractions,	products,	special	products	of	primary	descriptors.	They	
also	include	forms	similar	to	those	of	primary	descriptors.	
	
 
3.1 DERIVED DESCRIPTORS 
 
Mean,	median,	natural	logarithm,	sine,	cosine,	tangent,	arcsine,	arccosine,	arctangent	have	been	applied	to	the	
12	 primary	 descriptors,	 obtaining	 a	 set	 of	 108	 derived	 descriptors.	 Mean	 and	 median	 were	 calculated	 in	
squared	neighbourhoods	of	side	5	around	each	point	of	the	facial	depth	maps.	
	
The	information	provided	by	cosine	was	equivalent	to	sine	in	terms	of	quality	and	quantity	of	descriptiveness.	
Facial	maps	of	 arcsine	gave	complex	values	 ∈ ,	while	 tangents	 gave	a	behaviour	 similar	 to	 the	 respective	
original	 primary	 descriptors.	 For	 these	 reasons,	 images	 referred	 to	 cosines,	 arcsines,	 and	 tangents	 have	 not	
been	graphically	reported	here,	and	the	set	of	final	derived	descriptors	taken	into	consideration	is	thus	reduced	
to	51	items.	Concerning	the	other	derived	descriptors,	their	"individual"	point‐by‐point	mappings	onto	a	facial	
depth	map	are	 shown	 in	Table	 1.	The	 images	 in	 this	 table	 regard	only	one	person	 (female,	 aged	25,	 serious	
pose),	whose	depth	map	was	obtained	via	Minolta	Vivid	910	laser	scanner.	
	
Table 1. Primary (first and second columns) and derived descriptors mapped on a serious face. 

	

	
	

primary	
descriptor	 mean	 median	 ln	 sin	 arctan	

E	

	

F	

	

∈ 	
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G	

	 	

e	

	

∈ 	

	

f	

	

∈ 	

	

g	

	

∈ 	

	

H	

	

∈ 	

	

K	 ∈ 	

	

	 ∈ 	

	

	

	

∈ 	

	

S	

	

∈ 	

	

C	

	 	
	

In	 general	 terms,	 the	 behaviour	 of	 the	 original	 descriptor	 is	 kept	when	 a	 standard	 function	 is	 applied	 to	 it.	
Nonetheless,	 some	 of	 the	 so‐generated	 derived	 descriptors	 better	 highlight	 local	 behaviours	 or	 enhance	 the	
contrast.	Also,	facial	traits	defining	eyes,	nose,	and	mouth	are	immediately	recognizable	for	most	of	the	newly‐
created	mapped	descriptors.	This	is	a	simple	but	crucial	point	in	terms	of	descriptor	usability,	as	a	good	facial	
descriptor	 allows	 identification	of	 one	or	more	 facial	 components.	 Sections	FEATURES	and	DISCUSSION	will	
draw	attention	to	their	respective	peculiarities.	

	

3.2 COMPOSED DESCRIPTORS 
 
Primary	 descriptors	were	 also	 combined	 to	 generate	 composed	 descriptors,	 which	were	 thought,	 built,	 and	
experimented	by	adopting	standard	mathematical	operations	such	as	combinations,	fractions,	products,	special	
products	of	primary	descriptors	to	gain	novel	facial	representations.	The	new	descriptors	and	their	mappings	
on	a	face	are	reported	in	Table	2	and	commented	in	the	subsequent	text.	The	images	concern	one	person,	the	
same	adopted	for	the	images	of	Table	1.	
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Table 2. Formulas (first column) and maps (second column) of composed descriptors. 

Composed	descriptor(s)	 Map(s)	

	 	

	

	

	

	
	

	
	

						 						 	

 

						 						 	

 

							 						 	

					 					 	

∙ ∙ ∙ 					 ∙ ∙ ∙ 	

∙ ∙ ∙
								

∙ ∙ ∙
	

∙ ∙ ∙
					

∙ ∙ ∙
	

∙ ∙ 	

	

∙ ∙ 	

	
∙ ∙

	

	

	
∙ ∙

	

	

	 	 ∙ ∙ 	
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	 ∙ ∙
	

	

	 ∙ ∙
	

	

					 	

	 					 	 	

	 	 	 	 	 	 	 	

	

	 ∙ 	 					 ∙ 	

	 ∙ 	 						 ∙ 	

	 ∙ ∙ 	 	 ∙ ∙ 	

	 ∙ ∙ 	 					 ∙ ∙ 	

					 	 	

	 					 	 	

	

	

	

	 					 	 	

	

						 	

	

∙ 					
∙
	

 

	

	
	
The	way	in	which	the	formulas	of	these	descriptors	were	thought	and	built	relies	on	the	nature	of	the	original	
formula	structure	of	primary	descriptors.	Here	below,	the	features	of	their	concept	are	listed	and	explained.	
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1. The	 denominator	 in	 ,	 ,	 ,	 ,	 ,	 ,	 ,	 ,	 ,	

,	 ,	 ,	 ,	 and	 	 is	 adopted	 in	 the	 same	 form	 of	 primary	
descriptors	(19),	(20),	and	(21).	 In	other	words,	 the	 idea	of	using	this	denominator	 is	 taken	 from	the	
formulas	of	e,	f,	and	g.	
	

2. The	structure	of	formulas	of	 ,	 ,	 ,	 ,	 ,	 ,	 ,	
,	 ,	and	 	is	based	on	the	standard	equation	of	the	ellipsoid	

1.	

	
3. The	concept	of	descriptors	 ,	 ,	 ,	 ,	 ,	 ,	 ,	and	 	is	based	

on	the	special	product	
2 .	

	
4. 	The	concept	of	descriptors	 	and	 	is	based	on	the	special	product	

	 .	
	

5. The	 structure	 of	 formulas	 of	 ,	 ,	 ,	 and	 	 relies	 on	 the	 form	 (33)	 of	 the	 shape	
index	 S.	 Similarly,	 ,	 ,	 and	 	 are	 based	 on	 the	 curvedness	 index	 (34).	 Descriptors	
newGaussian	and	newMean	rely	respectively	on	Gaussian	(25)	and	mean	(26)	curvatures	forms.	

	
The	 following	 section	 will	 highlight	 the	 specific	 features	 of	 derived	 and	 composed	 descriptors	 by	 drawing	
attention	to	their	interesting	behaviours	in	terms	of	facial	descriptiveness.	
 
 
4 FEATURES 
 
The	purpose	of	 this	 study	was	 to	provide	3D	Face	Analysis	 research	with	new	descriptors	 to	be	 adopted	 as	
features	 for	 automatic	 landmarking	 techniques,	 with	 the	 possible	 subsequent	 aim	 to	 be	 embedded	 in	 Face	
Recognition	and	Face	Expression	Recognition	algorithms.	Also,	 compact	 forms	 (histograms,	 regional	 average	
values,...)	of	these	novel	descriptors	could	be	directly	adopted	as	comparison	elements	between	faces	in	Face	
(Expression)	 Recognition	 methodologies.	 This	 section	 stresses	 the	 attention	 to	 the	 features	 that	 these	 new	
descriptors	point	out	and	is	organized	in	subsections,	each	dedicated	to	a	feature.	
	
Derived	and	composed	descriptors	have	been	point‐by‐point	mapped	on	217	frontal‐view	facial	depth	maps	of	
different	 people	 aged	 19‐32	 performing	 7	 expressions	 scanned	 via	 Minolta	 Vivid	 910	 laser	 scanner.	 The	
scanner	uses	a	single	camera	and	laser	stripe,	and	acquires	3D	data	using	triangulation	[50].	Acquisitions	were	
single	view	and	were	made	 indoor	 in	electric	 light	conditions.	The	subjects	were	made	 to	sit	at	a	distance	of	
about	1.5	meters	away	from	the	device.	The	laser	is	eye	safe,	so	the	subjects	could	keep	their	eyes	open	during	
the	scanning.	The	scan	takes	approximately	2.5	seconds	and	the	subject	 is	asked	to	remain	static	during	that	
time.	 The	 scanned	 images	 were	 then	 managed	 and	 useless	 parts	 such	 as	 neck	 and	 hair	 have	 been	 cut	 via	
reverse	 engineering	 techniques	 [51].	 The	 so‐generated	 images	 were	 then	 imported	 in	 Matlab®	 and	 the	
triangular	mesh	was	converted	into	a	120x120	non‐connected	squared	grid	via	function	gridtrimesh,	i.e.	a	
depth	map.	 The	whole	 features	 analysis	 and	 subsequent	 graphs	 of	 Figures	 6	 and	 7	 rely	 on	 the	 study	 of	 the	
descriptors	mapped	on	the	217	faces.	
	
Highlighted	facial	lines	Some	new	descriptors	highlight	facial	 lines.	In	particular,	these	lines	are	contours	of	
facial	parts	such	as	nose,	mouth,	eyes,	and	eyebrows.	Among	the	two	sets	of	derived	and	composed	descriptors,	
these	are	the	ones	that	show	visible	facial	parts	contours:	arctan	F,	Fden2,	Sfond1,	arctan	G,	Sfond2,	cos	S.	Table	3	
(above)	shows	them.	
	
In	 particular,	we	 stress	 the	 attention	 on	 those	 new	descriptors	which	 emphasize	 the	nose	 shape.	 They	 are:	
mean	E,	median	E,	Eden,	Gden,	mean	G,	median	G,	Cfond1,	cl,	pndpA,	EeFfGg,	EeFfGgden,	EgFfGe,	EgFfGeden,	ellipsoid1.	
These	 descriptors	 are	 reported	 in	 the	 second	 part	 of	 Table	 3.	 An	 in‐depth	 explanation	 of	 how	 one	 of	 these	
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descriptors	support	the	identification	of	facial	lines	is	reported	in	Figure	1.	The	images	concern	one	person,	the	
same	adopted	for	the	images	of	Table	1.	
	
	
Table  3.  The  third  column  describes  how  the  descriptor  (first  column)  highlights  facial  lines.  The  first  six  rows  of  the  table  refer  to 
descriptors with general highlighted facial lines; the other rows present descriptors which emphasize nose shape.  

Descriptor	 Map	 Description	

arctan	F	 These	 three	 descriptors	 allow	 the	 immediate	
identification	 of	 eye,	 eyebrow,	 nose,	 cheek,	 and	
mouth	 parts	 thanks	 to	 a	 clear‐cut	 division	 of	 facial	
zones.	The	descriptor	changes	sign	(‐	 to	+	or	+	to	‐),	
meaning	 is	 approximately	 equal	 to	 zero,	 in	
correspondence	 to	 the	 dividing	 line	 between	 two	
zones.	This	behaviour	is	described	in	Figure	1.	

Fden2	

Sfond1	

arctan	G	

	

This	descriptor assigns	low	(blue)	values	to	contours	
and	 high	 (red)	 values	 to	 flat/smooth	 parts	
corresponding	 to	 specific	 facial	 zones	 such	 as	 nose	
and	cheeks.	

Sfond2	
High	 (red)	 picks	 are	 associated	 to	 contours,	
especially	in	the	nose	and	eye	areas.	

cos	S	

mean	E					median	E	

Nose	 shape	 emphasized	 through	 high	 or	 low	 values	
of	the	descriptor.	

Eden							Gden	

	

mean	G					median	G	

	

Cfond1	

cl	

pndpA	

EeFfGg					EgFfGe	

	

EeFfGgden								EgFfGeden	
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These	descriptors	are	reported	in	Table	5;	one	of	them	is	studied	in	Figure	3.	The	images	concern	one	person,	
the	same	adopted	for	the	images	of	Table	1.	
	
Table 5. List (with maps) of new descriptors presenting a global descriptive behaviour. 

Descriptor	 Map	 Descriptor	 Map Descriptor Map Descriptor Map

mean	g	 median	g	 sin	g	

	

arctan	g	

mean	H	 median	H	 sin	H	

	

arctan	H	

mean	k1	 median	k1	 sin	k1	

	

arctan	k1	

mean	k2	 median	k2	 sin	k2	

	

arctan	k2	

mean	S	 median	S	 sin	S	

	

arctan	S	

mean	C	 median	C	 sin	C	

	

arctan	C	

Cfond2	 newC	 Sfond1	

	

thecurvatur
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Eden	 Fden	 Eden2	
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Table 6. The name of the descriptors is reported in the first column. The second column shows the related map on the same face used for 
Table 1. Each cell shows the behaviour of the descriptor on the locus of the landmark. Orange cells indicate a weak hint about the trend, 
meaning that slightly different behaviours are shown on different faces. Green cells indicate a strong hint, i.e. it is common to all faces and 
so it could be actually useful to extract the landmark. White boxes are neutral in terms of descriptiveness of the landmark. 

Descriptor	and	map	 AL	 CH	 EN	 EX	
LI	/	
LS	 N	 PUPILS	 PRN	 SN	

mean	E	 MAX	 MAX	 <0	 MAX	 <0	 <0	 <0	 <0	 <0	

median	E	

	

MAX	 MAX	 <0	 MAX	 <0	 <0	 <0	 <0	 <0	

ln	E	 MAX	 MAX	 <0	 MAX	 <0	 <0	 MAX	 <0	 <0	

sin	E	 nd	 nd	 nd	 nd	 >0	 >0	 min	 >0	 >0	

arctan	E	 MAX	 >0	 <0	 MAX	 <0	 <0	 MAX	 <0	 <0	

mean	F	

	

≈0	

MAX	
sx	
min	
dx	

≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	

median	F	

	

≈0	

MAX
sx	
min	
dx	

≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	

sin	F	 nd	 nd	 nd	 nd	 nd	 nd	 nd	 nd	 nd	

arctan	F	
>0	sx	
<0	dx	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	

mean	G	 <0	 <0	 <0	 <0	 <0	 <0	 <0	 ≈0	 MAX	

median	G	 <0	 <0	 <0	 <0	 <0	 <0	 <0	 ≈0	 MAX	

ln	G	 ≈0	 ≈0	 <0	 <0	 >0	 <0	 <0	 <0	 MAX	

sin	G	 nd	 nd	 nd	 nd	 nd	 nd	 nd	 nd	 nd	

arctan	G	 >0	 ≈0	 <0	 <0	 >0	 <0	 MAX	 <0	 MAX	
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mean	e	

	

MAX	 MAX	 MAX	 ≈0	 ≈0	 min	 min	 min	 ≈0	

median	e	 MAX	 MAX	 MAX	 MAX	 <0	 min	 min	 <0	 ≈0	

sin	e	 MAX	 MAX	 MAX	 MAX	 ≈0	 min	 min	 min	 ≈0	

arctan	e	 MAX	 MAX	 MAX	 MAX	 ≈0	 min	 min	 min	 ≈0	

mean	f	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	

median	f	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	

sin	f	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	

arctan	f	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	

mean	g	 >0	 MAX	 MAX	 >0	 min	 MAX	 min	 min	 MAX	

median	g	 >0	 MAX	 MAX	 >0	 min	 MAX	 min	 min	 MAX	

sin	g	 >0	 MAX	 MAX	 >0	 min	 MAX	 min	 min	 MAX	

arctan	g	 >0	 MAX	 MAX	 >0	 min	 MAX	 min	 min	 MAX	

mean	H	 >0	 MAX	 MAX	 >0	 min	 ≈0	 min	 min	 MAX	

median	H	 MAX	 MAX	 MAX	 >0	 min	 min	 min	 min	 ≈0	

sin	H	 >0	 >0	 MAX	 >0	 min	 ≈0	 min	 min	 MAX	

arctan	H	 >0	 >0	 MAX	 >0	 min	 ≈0	 min	 min	 MAX	

mean	K	 ≈0	 ≈0	 MAX	 ≈0	 min	 min	 MAX	 MAX	 min	
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median	K	 ≈0	 ≈0	 ≈0	 ≈0	 min	 min	 MAX	 MAX	 min	

sin	K	 ≈0	 ≈0	 ≈0	 ≈0	 min	 ≈0	 MAX	 MAX	 min	

arctan	K	 ≈0	 ≈0	 ≈0	 ≈0	 min	 ≈0	 MAX	 MAX	 min	

mean	k1	 MAX	 MAX	 MAX	 >0	 min	 MAX	 min	 min	 MAX	

median	k1	 MAX	 MAX	 MAX	 >0	 min	 MAX	 min	 min	 >0	

sin	k1	 MAX	 >0	 MAX	 >0	 min	 ≈0	 min	 min	 MAX	

arctan	k1	 MAX	 >0	 MAX	 >0	 min	 ≈0	 min	 min	 MAX	

mean	k2	 ≈0	 >0	 MAX	 >0	 min	 min	 min	 min	 ≈0	

median	k2	 ≈0	 >0	 MAX	 >0	 min	 min	 min	 min	 ≈0	

sin	k2	 ≈0	 MAX	 MAX	 >0	 min	 min	 min	 min	 ≈0	

arctan	k2	 ≈0	 MAX	 MAX	 >0	 min	 min	 min	 min	 ≈0	

mean	S	 ≈0	 <0	 <0	 ≈0	 MAX	 =0	 MAX	 MAX	 ≈0	

median	S	 ≈0	 <0	 <0	 ≈0	 MAX	 =0	 MAX	 MAX	 ≈0	

sin	S	 ≈0	 <0	 <0	 ≈0	 MAX	 =0	 MAX	 MAX	 ≈0	

arctan	S	 ≈0	 <0	 <0	 ≈0	 MAX	 =0	 MAX	 MAX	 ≈0	

mean	C	 ≈0	 >0	 >0	 <0	 MAX	 MAX	 MAX	 MAX	 MAX	

median	C	 ≈0	 >0	 >0	 <0	 MAX	 MAX	 MAX	 MAX	 MAX	
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ln	C	 >0	 >0	 >0	 >0	 MAX	 MAX	 MAX	 MAX	 MAX	

sin	C	 ≈0	 >0	 >0	 <0	 MAX	 MAX	 MAX	 MAX	 MAX	

arctan	C	 ≈0	 >0	 >0	 <0	 MAX	 MAX	 MAX	 MAX	 MAX	

	 ≈0	 <0	 <0	 <0	 <0	 <0	 <0	 <0	 <0	

	 <0	 <0	 <0	 <0	 <0	 <0	 <0	 <0	 <0	

	 <0	 <0	 <0	 <0	 <0	 <0	 <0	 <0	 <0	

	 <0	 <0	 <0	 <0	 <0	 <0	 <0	 <0	 <0	

eE	 ≈0	 ≈0	 MAX	 ≈0	 <0	 min	 min	 min	 ≈0	

fF	 >0	 >0	 >0	 >0	 >0	 >0	 >0	 >0	 >0	

gG	 <0	 ≈0	 ≈0	 ≈0	 min	 ≈0	 min	 min	 MAX	

Ee	 >0	 >0	 >0	 >0	 >0	 >0	 >0	 >0	 >0	

Ff	 >0	 >0	 >0	 >0	 >0	 >0	 >0	 >0	 >0	

Gg	 >0	 >0	 >0	 >0	 >0	 >0	 >0	 >0	 >0	

	 MAX	 <0	 <0	 MAX	 <0	 <0	 <0	 <0	 <0	

	

	

≈0	

MAX	
sx	
min	
dx	

≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	

	 ≈0	 >0	 <0	 <0	 <0	 <0	 <0	 <0	 MAX	
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	 ≈0	 <0	 >0	 >0	 <0	 MAX	 >0	 <0	 <0	

	
>0	sx	
<0	dx	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	

	 ≈0	 >0	 <0	 <0	 >0	 >0	 min	 >0	 >0	

	 MAX	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 min	 MAX	

	 ≈0	 MAX	 MAX	 >0	 ≈0	 ≈0	 ≈0	 min	 ≈0	

	 MAX	 MAX	 MAX	 >0	 <0	 ≈0	 ≈0	 min	 MAX	

	 ≈0	 MAX	 MAX	 >0	 <0	 ≈0	 ≈0	 ≈0	 ≈0	

	 >0	 MAX	 MAX	 ≈0	 min	 ≈0	 ≈0	 min	 MAX	

	 >0	 MAX	 MAX	 ≈0	 min	 ≈0	 ≈0	 min	 MAX	

efg	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	

EFG	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	

	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	

	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	

second	

	

MAX	
sx	
min	
dx	

≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	

	

	

MAX	
sx	
min	
dx	

≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	

	

	

MAX	
sx	
min	
dx	

≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	
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x	 <0	 <0	 <0	 <0	 <0	 <0	 <0	 <0	 <0	

y	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	

xx	

	

MAX	
sx	
min	
dx	

≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	

yy	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 min	 MAX	

cl	 ≈0	 MAX	 <0	 <0	 <0	 <0	 <0	 <0	 <0	

	 MAX	 >0	 <0	 <0	 <0	 <0	 <0	 <0	 <0	

	 MAX	 >0	 <0	 <0	 <0	 <0	 <0	 <0	 <0	

	 >0	 MAX	 <0	 <0	 <0	 <0	 <0	 <0	 <0	

	 >0	 MAX	 <0	 <0	 <0	 <0	 <0	 <0	 <0	

	 MAX	 MAX	 <0	 <0	 <0	 <0	 <0	 <0	 <0	

	 MAX	 MAX	 <0	 <0	 <0	 <0	 <0	 <0	 <0	

	 ≈0	
MAX	
sx	

≈0	dx	
<0	 <0	 <0	 <0	 <0	 <0	 <0	

	 ≈0	
≈0	sx	
MAX	
dx	

<0	 <0	 <0	 <0	 <0	 <0	 <0	

	 MAX	 MAX	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	

	 MAX	 min	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	

	 >0	 >0	 MAX	 >0	 >0	 MAX	 min	 min	 MAX	
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	 <0	 <0	 min	 <0	 <0	 min	 MAX	 MAX	 min	

	 >0	 >0	 MAX	 <0	 MAX	 <0	 MAX	 MAX	 <0	

	
<0	sx	
>0	dx	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	 ≈0	

	 >0	 <0	 >0	 >0	 <0	 ≈0	 <0	 <0	 <0	

	 MAX	 MAX	 <0	 <0	 <0	 <0	 <0	 <0	 <0	

	 MAX	 >0	 MAX	 <0	 MAX	 <0	 MAX	 MAX	 MAX	

	 >0	 >0	 MAX	 >0	 min	 >0	 min	 min	 min	

newMean	 ≈0	 ≈0	 MAX	 >0	 min	 min	 min	 min	 min	

	 MAX	 MAX	 MAX	 ≈0	 min	 <0	 min	 min	 min	

	

The	 analysis	 performed	 and	 presented	 in	 this	 table	 has	 the	main	 aim	 of	 supporting	 automatic	 landmarking	
methods	based	on	geometry	[6]	[7]	[8]	[9]	[10]	[11]	[12]	[13]	[14]	[15]	[16].	

The	cells	of	Table	6	have	been	coloured	relying	on	the	reliability	of	the	descriptor	in	terms	of	its	behaviour	on	
different	faces.	Figure	5	shows	highlighted	local	behaviours	of	a	highly	consistent	descriptor,	thecurvature,	on	
the	locus	of	each	landmark.	Similar	considerations	could	be	deduced	from	all	other	descriptors.	Table	7	shows	
the	same	descriptor	mapped	on	49	faces	belonging	to	7	people	with	7	emotions.		
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Concerning	 landmarks,	 the	 landmark	which	reached	the	highest	soundness	 in	terms	of	descriptiveness	 is	 the	
pronasale	(PRN)	with	a	global	mark	equal	to	79.	It	is	followed	by	other	well‐described	landmarks	such	as	labial	
ones	(mark	55),	pupils	(50),	and	subnasale	(47).	The	worst	reliability	was	obtained	by	the	exocanthion,	with	
global	mark	‐28.	
	
 

6 CONCLUSION 
 
105	novel	derived	and	composed	geometrical	descriptors	for	3D	face	are	here	presented	and	analysed.	Facial	
descriptiveness	 is	 taken	 as	 the	 core	 objective	 of	 descriptors’	 usability	 and	 innovativeness.	 In	 particular,	
completeness	 of	 description	 all	 over	 the	 face	 and	 particular	 behaviour	 (maximum	 or	 minimum)	 in	
correspondence	to	landmark	points	are	searched	for	and	looked	as	key	indicators	of	descriptors’	soundness.	
	
The	application	of	the	new	descriptors	onto	217	facial	depth	maps	acquired	via	laser	scanner	by	our	research	
group	has	revealed	that	some	of	them,	such	as	those	given	by	sine,	arctangent,	mean,	and	median	of	primary	
descriptors,	are	not	only	suitable	 to	3D	 face	description	and	 landmark	 localization	processes,	but	even	more	
accurate	 and	 clearer	 than	 their	 traditional	 predecessors.	 Thus,	 these	 descriptors	 can	 be	 considered	 as	
holistic/global	features	for	facial	surface	analysis;	their	accessibility	and	legibility	make	them	suitable	for	visual	
interpretation	and	appropriate	for	being	processed	by	Computer	Vision	algorithms. 
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