
POLITECNICO DI TORINO

SCUOLA DI DOTTORATO
Dottorato in Ingegneria Elettronica e delle Comunicazioni – XXVIII

ciclo

Tesi di Dottorato

Architectural Solutions for
NanoMagnet Logic

Giovanni Causapruno

Tutore Coordinatore del corso di dottorato
prof. Maurizio Zamboni prof. Ivo Montrosset

Maggio 2016

Summary

The successful era of CMOS technology is coming to an end. The limit on minimum
fabrication dimensions of transistors and the increasing leakage power hinder the
technological scaling that has characterized the last decades. In several different
ways, this problem has been addressed changing the architectures implemented in
CMOS, adopting parallel processors and thus increasing the throughput at the same
operating frequency. However, architectural alternatives cannot be the definitive
answer to a continuous increase in performance dictated by Moore’s law. This
problem must be addressed from a technological point of view.

Several alternative technologies that could substitute CMOS in next years are
currently under study. Among them, magnetic technologies such as NanoMagnet
Logic (NML) are interesting because they do not dissipate any leakage power. More-
over, magnets have memory capability, so it is possible to merge logic and memory
in the same device.

However, magnetic circuits, and NML in this specific research, have also some
important drawbacks that need to be addressed: first, the circuit clock frequency is
limited to 100 MHz, to avoid errors in data propagation; second, there is a connection
between circuit layout and timing, and in particular, longer wires will have longer
latency. These drawbacks are intrinsic to the technology and for this reason they
cannot be avoided. The only chance is to limit their impact from an architectural
point of view.

The first step followed in the research path of this thesis is indeed the choice and
optimization of architectures able to deal with the problems of NML. Systolic Ar-
rays are identified as an ideal solution for this technology, because they are regular
structures with local interconnections that limit the long latency of wires; more-
over they are composed of several Processing Elements that work in parallel, thus
exploit parallelization to increase throughput (limiting the impact of the low clock
frequency). Through the analysis of Systolic Arrays for NML, several possible im-
provements have been identified and addressed: 1) it has been defined a rigorous
way to increase throughput with interleaving, providing equations that allow to esti-
mate the number of operations to be interleaved and the rules to provide inputs; 2)
a latency insensitive circuit has been designed, that exploits a data communication

II

protocol between processing elements to avoid data synchronization problems. This
feature has been exploited to design a latency insensitive Systolic Array that is able
to execute the Floyd-Steinberg dithering algorithm. All the improvements presented
in this framework apply to Systolic Arrays implemented in any technology. So, they
can also be exploited to increase performance of today’s CMOS parallel circuits.
This research path is presented in Chapter 3.

While Systolic Arrays are an interesting solution for NML, their usage could
be quite limited because they are normally application-specific. The second re-
search path addresses this problem. A Reconfigurable Systolic Array is presented,
that can be programmed to execute several algorithms. This architecture has been
tested implementing many algorithms, including FIR and IIR filters, Discrete Cosine
Transform and Matrix Multiplication. This research path is presented in Chapter 4.

In common Von Neumann architectures, the logic part of the circuit and the
memory one are separated. Today bus communication between logic and memory
represents the bottleneck of the system. This problem is addressed presenting Logic-
In-Memory (LIM), an architecture where memory elements are merged in logic ones.
This research path aims at defining a real LIM architectures. This has been done in
two steps. The first step is represented by an architecture composed of three layers:
memory, routing and logic. In the second step instead the routing plane is no more
present, and its features are inherited by the memory plane. In this solution, a
pyramidal memory model is used, where memories near logic elements contain the
most probably used data, and other memory layers contain the remaining data and
instruction set. This circuit has been tested with odd-even sort algorithms and it
has been benchmarked against GPUs and ASIC. This research path is presented in
Chapter 5.

MagnetoElastic NML (ME-NML) is a technological improvement of the NML
principle, proposed by researchers of Politecnico di Torino, where the clock system
is based on the induced stretch of a piezoelectric substrate when a voltage is ap-
plied to its boundaries. The main advantage of this solution is that it consumes
much less power than the classic clock implementation. This technology has not
yet been investigated from an architectural point of view and considering complex
circuits. In this research field, a standard methodology for the design of ME-NML
circuits has been proposed. It is based on a Standard Cell Library and an enhanced
VHDL model. The effectiveness of this methodology has been proved designing a
Galois Field Multiplier. Moreover the serial-parallel trade-off in ME-NML has been
investigated, designing three different solutions for the Multiply and Accumulate
structure. This research path is presented in Chapter 6.

While ME-NML is an extremely interesting technology, it needs to be combined
with other faster technologies to have a real competitive system. Signal interfaces
between NML and other technologies (mainly CMOS) have been rarely presented in

III

literature. A mixed-technology multiplexer is designed and presented as the basis
for a CMOS to NML interface. The reverse interface (from ME-NML to CMOS) is
instead based on a sensing circuit for the Faraday effect: a change in the polarization
of a magnet induces an electric field that can be used to generate an input signal
for a CMOS circuit. This research path is presented in Chapter 7.

The research work presented in this thesis represents a fundamental milestone
in the path towards nanotechnologies. The most important achievement is the de-
sign and simulation of complex circuits with NML, benchmarking this technology
with real application examples. The characterization of a technology considering
complex functions is a major step to be performed and that has not yet been ad-
dressed in literature for NML. Indeed, only in this way it is possible to intercept
in advance any weakness of NanoMagnet Logic that cannot be discovered consid-
ering only small circuits. Moreover, the architectural improvements introduced in
this thesis, although technology-driven, can be actually applied to any technology.
We have demonstrated the advantages that can derive applying them to CMOS cir-
cuits. This thesis represents therefore a major step in two directions: the first is the
enhancement of NML technology; the second is a general improvement of parallel
architectures and the development of the new Logic-In-Memory paradigm.

IV

Contents

Summary II

1 Motivation 1

2 Technological Background 6
2.1 CMOS scaling . 6
2.2 Quantum-Dot Cellular Automata (QCA) 7

2.2.1 Signal propagation and Clock 9
2.3 NanoMagnet Logic . 9

2.3.1 Logic Gates . 11
2.3.2 Magnetic Clock NML . 12

2.3.2.1 Snake Clock Layout 13
2.3.2.2 Working frequency 15

2.3.3 Magnetoelastic Clock NML (ME-NML) 16
2.3.3.1 Circuit Layout . 18

2.3.4 Intrinsic Pipeline . 19
2.3.5 Summary on NanoMagnet Logic 20

I Parallel Architectures for NanoMagnet Logic 23

3 Systolic Arrays Optimization 25
3.1 Introduction to Systolic Arrays . 25

3.1.1 Systolic Arrays for NanoMagnet Logic 27
3.2 Data Interleaving in Systolic Arrays 28

3.2.1 Interleaving Technique . 28
3.2.2 Proposed SA Taxonomy . 30

3.2.2.1 WOIL Systolic Arrays 30
3.2.2.2 WIL Systolic Arrays 31

3.2.3 WOIL SA Optimization . 32
3.2.4 WIL SA Optimization . 33

V

3.2.5 Results . 34
3.2.5.1 WOIL Systolic Arrays results 35
3.2.5.2 WIL Systolic Arrays results 36

3.2.6 Data Interleaving in CMOS and NML 38
3.3 Latency Insensitive Systolic Arrays 39

3.3.1 Motivation . 39
3.3.2 Proposed Communication Protocol 40
3.3.3 Latency Insensitive PE . 42

3.3.3.1 Algorithm Block . 43
3.3.3.2 I/O Blocks . 44
3.3.3.3 Communication Block 44

3.3.4 Application Example: Matrix Multiplication 46
3.3.4.1 Serial Booth Multiplier 47

3.4 Systolic Array for the Floyd-Steinberg algorithm 48
3.4.1 Floyd-Steinberg Algorithm . 48
3.4.2 Latency Insensitive Implementation 50
3.4.3 Simulation . 51

3.5 Final Remarks . 52

4 Reconfigurable Systolic Array 54
4.1 Motivation . 54

4.1.1 Limits of Systolic Arrays . 55
4.1.2 The Reconfigurable approach 55
4.1.3 Existing Reconfigurable architectures 57

4.2 Proposed Reconfigurable Systolic Array 58
4.2.1 Architecture . 58
4.2.2 Preloading Phase . 61
4.2.3 Results in CMOS and NML 61

4.3 Algorithms . 64
4.3.1 Matrix Multiplication . 65
4.3.2 Discrete Cosine Transform (DCT) 66
4.3.3 FIR Filters . 66
4.3.4 IIR Filters . 69
4.3.5 RSA Configurator . 71

4.4 Final Remarks . 72

5 Logic-In-Memory 74
5.1 Concept . 75

5.1.1 Limit of Von-Neumann Architecture 75
5.1.2 Other Parallel Architectures 76
5.1.3 Logic-In-Memory Improvements 79

VI

5.2 LIM 1.0 Architecture . 80
5.2.1 Routing Plane . 82

5.2.1.1 The input interface 82
5.2.1.2 The selection unit 83
5.2.1.3 The output interface 83

5.2.2 Logic Plane . 85
5.2.2.1 Converters . 85
5.2.2.2 Cell Logic Plane . 85

5.2.3 Memory Plane . 85
5.2.4 Operation Set . 86

5.3 LIM 2.0 Architecture . 87
5.3.1 Improvement Concept . 87
5.3.2 Pyramidal Memory Design . 88

5.4 Results . 90
5.4.1 Test Algorithm . 91
5.4.2 Results Comparison . 91

5.5 Final Remarks . 94

II MagnetoElastic NML Circuit Design 97

6 Design Rules for ME-NML Circuits 99
6.1 Standard Cell Approach for ME-NML Circuits 100

6.1.1 Standard Cells Library . 100
6.1.2 VHDL Model for ME-NML Circuits Design 103

6.1.2.1 Generic parameters 103
6.1.2.2 Logic Behavior of the Cell 104
6.1.2.3 Area and Energy . 104
6.1.2.4 Hierarchical model 107

6.1.3 Circuit layout . 109
6.2 Circuit Design Example: Galois Field Multiplier 110

6.2.1 Galois Field Multiplier circuit 111
6.2.1.1 Galois Field Multiplier scheme 112

6.2.2 CMOS Implementation . 113
6.2.3 NML Implementation . 115
6.2.4 ME-NML Implementation . 116
6.2.5 Results . 120

6.2.5.1 CMOS Results . 121
6.2.5.2 NML Results . 122
6.2.5.3 ME-NML Results . 125
6.2.5.4 Results Comparison 126

VII

6.3 Parallel and Serial Computation in ME-NML 130
6.3.1 Parallel MAC Unit . 131

6.3.1.1 Circuit Scheme . 131
6.3.1.2 ME-NML Implementation 133
6.3.1.3 Timing Analysis . 134

6.3.2 Serial-Parallel MAC Unit . 135
6.3.2.1 Circuit scheme . 136
6.3.2.2 ME-NML implementation 138
6.3.2.3 Timing analysis . 139

6.3.3 Serial MAC Unit . 140
6.3.3.1 Serial MAC scheme 141
6.3.3.2 Serial MAC with shared Accumulator 142
6.3.3.3 ME-NML implementation 143
6.3.3.4 Timing analisys . 143

6.3.4 Results . 145
6.3.4.1 Parallel MAC Results 145
6.3.4.2 Serial-Parallel MAC Results 146
6.3.4.3 Serial MAC Results 147
6.3.4.4 Results Comparison 147

6.4 Final Remarks . 151

7 Mixed ME-NML/CMOS Circuits 153
7.1 Concept . 153

7.1.1 Advantages of Mixed Circuit 154
7.1.2 Circuit Layout . 155

7.1.2.1 RSA with Mixed Technology Multiplexer 157
7.2 Technological Interfaces . 158

7.2.1 From CMOS to ME-NML . 159
7.2.2 From ME-NML to CMOS . 159

7.2.2.1 Signal Transduction 159
7.2.2.2 CMOS bridge . 163

7.3 Final Remarks . 164

8 Conclusions 166

A List of Publications 168

Bibliography 170

VIII

Chapter 1

Motivation

This Chapter explains the motivations that guided me through research path de-
scribed in this Thesis.

Over the past three decades, the constant evolution of electronics has been
founded on the ever-smaller device dimensions of silicon-based CMOS technology.
CMOS has exponentially improved in both performance and density of integra-
tion, producing the transistor trend described by Moore’s law. Today, however, the
conventional physical scaling is slowing down. As forecasted in the International
Technology Roadmap for Semiconductors [1], CMOS scaling is expected to reach its
boundaries soon, probably marking the end of CMOS era. Scaling in CMOS cannot
continue forever for two main reasons: 1) the minimum achievable dimensions is in
any case limited; 2) the off-state leakage power is increasing with device shrinking.
We will describe in next Chapter with more details the physical limitations that
CMOS is encountering. With these limitations, it seems to be clear that CMOS will
not be the leading technology in the next 20 years, because it cannot keep-up with
improvements expected by Moore’s law.

The negative effects of CMOS scaling have been already addressed from an ar-
chitectural point of view: parallel architectures have been introduced in CMOS to
avoid an excessive increase of clock speed leading to too high power consumption.
Therefore, in this framework, where architectural solutions have already been ex-
plored, the only chance to keep-up with Moore’s law is to address these limitations
from a technological point of view. This happened in past decades when technology
shifted from BJT to CMOS transistors, and more recently with the introduction of
3D transistors. Today, one of the most important challenges of VLSI and technology
researchers is to find a valid alternative that could substitute CMOS in next years.

Several technologies are currently under study. The International Technology
Roadmap for Semiconductors (ITRS) [1] summarizes some of them, among which
Quantum-dot Cellular Automata (QCA) and its magnetic implementation Nano
Magnetic Logic (NML). NML is particularly interesting for its physical features: a

1

1 – Motivation

magnetic circuit does not have leakage power consumption, and magnets have an
intrinsic memory capability. Therefore, NanoMagnet Logic could be an important
solution to reduce power consumption (and area occupation), that are the main
drivers of today logic circuit design. The most important drawback of magnetic
circuits is the low clock frequency achievable (hundreds of MegaHertz). Another
limitation of this kind of circuits is that the layout influences the timing character-
istics of the circuit. Indirectly, long wires have long latency. A complete description
of NML technology is given in Section 2.3.

The approach here followed is to design logic circuits in NML, addressing the
limitations that this technology has nowadays from an architectural point of view.
We will explain in detail in Chapter 3 that Systolic Arrays can be an ideal ar-
chitecture for NML technology. Systolic Arrays are parallel architectures made of
identical and locally interconnected Processing Elements. In this way they can ad-
dress the low clock frequency of NML, because the throughput is guaranteed with
parallelization of tasks in several Processing Elements. At the same time the short
local interconnections allow to reduce the long latency of wires problem.

We start introducing Systolic Arrays for NML and analyzing several alternatives
to improve them. Then we consider another kind of architecture called Logic-In-
Memory. In this way we push forward the research for NanoMagnet Logic archi-
tectures as it has never been done before. Indeed, literature presents only small
architectures with few gates designed for NanoMagnet Logic. However, we believe
that a correct and complete study of a technology shall be done taking into account
real circuits that implement complex functions. This is the only possible way to in-
tercept any limitation of the technology that can appear only when big circuits are
considered. In fact, it is not at the device level that the features of a technology can
be asserted. It is therefore necessary to analyze how NML behaves in real operating
conditions (many cells with complex interconnections and complex algorithms).

NanoMagnet Logic and in general all post-CMOS proposed technologies are still
under development. So, the technological solution is not definitive, yet it is already
interesting for its preliminary results. For this reason it is worth working on NML in
its actual state. It is probable that the technology will evolve with new features and
different behaviors: for example considering Domain Wall interconnections, it could
be possible to eliminate the long latency of wire problem. Therefore, it is important
that the enhancements introduced with this research can be used also with other
technologies. Without this assumption the work here presented may be useless in
few years if the technology is modified.

In general, an architectural approach allows to refrain from the technology itself.
In this way the improvement introduced thinking to the circuit in NML can also be
applied to a CMOS circuit (or a circuit implemented in any other nanotechnology).
All the improvements that we propose at architectural level are indeed applicable

2

to CMOS and in several cases the effect on the current technology has also been
asserted to show the achievable improvement.

The whole research activity is divided into two parts: the first deals with Parallel
Architectures for NanoMagnet Logic; the second is focused on MagnetoElastic NML
Circuit Design.

The first step in this architectural approach towards NML logic circuits has been
the adaption of current existing solutions to overcome main limitations of this tech-
nology. Indeed, starting from technological constraints (long delay of wires and low
clock frequency) architectures like Systolic Arrays have been identified as an ideal
solution. The Systolic Array concept has been enriched with a “Pipeline Interleav-
ing” concept based on input data feeding, that has been analyzed in detail and
described with mathematical equations. This approach has been adapted also to
CMOS circuits that can benefit from input interleaving. Moreover Systolic Arrays
have been made latency-insensitive through a communication protocol among Pro-
cessing Elements. In this way even if Processing Elements have different delays,
the asynchronous communication protocol guarantees the correct circuit behavior.
Finally to test this approach a real-case scenario has been identified, based on the
Floyd-Steinberg dithering algorithm for image processing. This research path is
described in Chapter 3.

The second step has been the definition of a new Systolic Array that overcomes
the main limitation of the original one, i.e. the algorithm-dependency. The Ar-
ray has been made reconfigurable through new interfaces and functions inside each
Processing Element. The reconfigurable Systolic Array has been mapped both in
CMOS and NML technologies. Moreover, it has been tested with several algorithms
to properly show the reconfigurability potentiality. Algorithms belong to real pro-
cessing applications such as FIR and IIR filters. This research path is described in
Chapter 4.

Finally other parallel architectures that exploit the Logic-In-Memory concept
have been designed. In these kind of circuits, logic and memory can be mixed in
the same device, overcoming the common bottleneck of today’s systems in commu-
nication between ALU and memory. The Logic-In-Memory array was designed first
as a 3-layered circuit (logic - routing - memory) and then as 2-layered circuit with a
pipelined memory. Also in this case, a real application has been used to test these
circuits: the Odd-Even Sort algorithm. Results show that this circuit can outper-
form both GPUs and ASIC when big datasets are considered. This research path is
described in Chapter 5.

An important phase of the research has been tailored to the new technological
solution proposed for NML clock, called MagnetoElastic NML (ME-NML) from our

3

1 – Motivation

group. ME-NML has a quite different approach at circuital level with respect to
classic NML. For this reason in this thesis we have defined: 1) a set of standard cells
for these circuits and 2) a VHDL model that can be used to design and simulate
ME-NML circuits. In addition, this VHDL model can compute area occupation and
power dissipation of the circuit. To evaluate how well ME-NML performs when com-
plex circuits are considered, we have designed a Galois Field Multiplier. Synthesis
results are encouraging since ME-NML outperforms CMOS and classic NML in area
and power dissipation. Finally we have analyzed the trade-off between Parallel and
Serial circuits in ME-NML. While in CMOS the parallel solution is always the best
one, in ME-NML this is not always true. For example the Galois Field Multiplier
performs extremely well in ME-NML thanks to its partially parallel and partially
serial input protocol. For this reason we have investigated in general parallel and
serial solutions in ME-NML. We have used Multiply and Accumulate (MAC) as test
circuit, thus exploiting this opportunity to introduce new ME-NML circuits never
designed before. This research path is described in Chapter 6.

The Reconfigurable Systolic Array mentioned before has great features but also
one important drawback: the high number of multiplexers used to reconfigure the
array have a big impact on circuit area in NML. It was hence proposed a mixed
architecture NML/CMOS for multiplexers, where a simple logic gate made by 3
NML cells is used to work as multiplexer with correct CMOS clock signals. Actually
the multiplexer is moved to the CMOS plane instead of being in the NML one.
While this approach has been successfully verified for MUX structures, it could be
also extended to other gates to have a fully hybrid CMOS/NML circuit. The basis
for this kind of circuits were laid identifying the readout circuit for NML and the
command circuit for CMOS. This last research path is described in Chapter 7.

Before starting the description of the five research paths and their results, it is
worth giving an advice. Throughout the thesis and in general during the research
activities, several technological comparisons are presented (among CMOS and NML
implementations). Usually this comparison is given in terms of area occupation
and power dissipation. While in CMOS it is possible to obtain true and reliable
estimations using Synopsys and Encounter, this is not true for NML. The only tools
that we have to make a simple estimation of area and power are ToPoliNano for
classic NML and a VHDL model developed ad-hoc for ME-NML. These two ways are
neither official, nor tested against thousands of circuits as it is done for CMOS. It is
then possible that the real numbers vary from those obtained for NML and ME-NML
in our synthesis. It is also reasonable that changes in the technology itself may lead
to circuits requiring less or more area, less or more power. At this moment it is not
possible to state that one technology that outperforms CMOS in our tests will truly
behave better in a real environment. Nevertheless, the comparison is still meaningful
and important if seen in a different way: With our architectural approach, we want

4

to intercept as soon as possible potential weaknesses of NML technology that cannot
be discovered looking only at small circuits made of few cells. With this in mind,
it is clear that if a technology has already worse performance than CMOS, it will
probably not be the technology of the future. We will see that this is exactly the
case of classic NML with magnetic clock. Differently, it is possible to identify if a
technology is encouraging on one aspect and instead is performing worse on another
aspect: in this way technologists can focus on the weak aspect and try to identify
technological solutions in a precise scenario. The final consideration of this advice
is that even if numbers are not reliable at 100%, it is still very important to analyze
and compare them, to have a clearer idea of the characteristics of the technology
when complex circuits are considered. An analysis of this kind is done in NML in
this thesis, and similarly it is done on other technologies by other researchers.

5

Chapter 2

Technological Background

2.1 CMOS scaling

Over the past three decades, the constant evolution of electronics has been founded
on the ever-smaller device dimensions of silicon-based CMOS technology. CMOS
has exponentially improved in both performance and density of integration, produc-
ing the transistor trend explicited in Moore’s law. Today, however, the conventional
physical scaling is slowing down. As forecasted in the International Technology
Roadmap for Semiconductors [1], it is expected to reach its boundaries soon, prob-
ably marking the end of CMOS era.

CMOS decay is due to several factors [2], mainly due to physical and material
limits. Basically, both electrostatics and tunneling mechanisms cause leakage cur-
rent increase in ultra-small MOSFETs, till it has become comparable to the drain
current. The increased leakage current negates the threshold and supply voltages
reduction, denying a speed increase. These are some of the well known effects
of down scaling: Drain Induced Barrier Lowering (DIBL), Short Channel Effect
(SCE), Punch-Through and subthreshold inversion, mobility degradation, band-to-
band tunneling [3][4]. Another challenge involves power consumption and thermal
dissipation: Power density has been growing, as the supply voltage did not scale as
much as the channel length.

Due to all these factors, keeping up with the Moore’s Law will most probably
be a challenge that will not be answered by Silicon CMOS nanoelectronics. For
this reason many alternative technologies are under study to preserve the same
rate of performance improvements. The efforts have been focused toward two main
directions [1]:

• Innovation of CMOS materials and structures. Some examples are: SOI (Sili-
con On Insulator) transistors, with an insulator layer between substrate silicon
body, and FinFET, where a multigate structure heavily reduces short channel

6

2.2 – Quantum-Dot Cellular Automata (QCA)

effects.

• Creation of completely new nanoelectronic devices, called “Beyond CMOS De-
vices”, able to replace CMOS technology. One of the most promising principle
is Quantum-dot Cellular Automata (QCA). Nanotechnologies like QCA offer
very high integration density, but they are still in a premature stage: A re-
liable and functional realization still requires extended study from the device
up to the architectural level.

Current transistors exploit electronic charge to store information, therefore switch-
ing between logic levels involves charge movement, thus requiring a current flow and
a consequent Joule dissipation. Energy losses are then an intrinsic characteristic of
charge based electronics and, as explained before, highly scaled transistors will not
be able to preserve the charge due to significant leakage. It is clear that charge based
devices do not seem to be able to maintain the cost per function improvements of
the last decades. The spreading concept is to replace the charge with a new kind
of information token such as for instance: Polarization of nanomagnets, change in
molecular configuration, electron spin or position of a micro-mechanical object.

2.2 Quantum-Dot Cellular Automata (QCA)

Since the introduction of the Cellular Automata idea in 1993 [5], Quantum-Dot Cel-
lular Automata (QCA) has been attracting an increasing interest. QCA is a valuable
candidate for the post-CMOS era, because it effectively addresses the problems of
device density and power dissipation.

'0' '1' NULL

Figure 2.1. Possible states of a QCA cell: Stable states ’0’ and ’1’ and
unstable NULL state.

QCA technology is based on a bistable cell; properly organized arrays of these
cells can realize logic functions. The first proposed implementation used a square
cell with 4 quantum dots in the corners and 2 electronis. Due to electric repulsion,
electrons will place at opposites corner in steady state. The two possible configura-
tions represent hence logic values ’0’ and ’1’ [6]. In reality, to allow a correct signal
propagation a third unstable state (NULL state) is necessary, therefore two more
dots need to be added (Figure 2.1). The explanation of the NULL state is given

7

2 – Technological Background

in paragraphs 2.3.2 and 2.3.3. In Figure 2.1 it is shown the generic base cell, but
the theoretical principle of QCA can be realized in different ways, depending on the
technology used.

Several technological implementations have been proposed in the literature. Here
we present three physical solutions that seem to be more promising.

• Molecular QCA [7]. The fundamental states of the Molecular QCA cell corre-
spond to different charge distributions in a complex molecule. Charge move-
ments can be triggered by electrons reacting with the oxide-reduction center
of the molecule. Using molecules, every QCA cell would be identical to the
others and would have dimensions in the order of few nanometers, making this
structure extremely attracting. Moreover, molecules reactions work perfectly
at room temperature and are extremely fast. Indeed, the expected switching
speed of this implementation is in the order of THz [8][9][10]. This is the most
promising approach, even though a real implementation is unreachable at the
moment: Current technology cannot manipulate single molecules as required
yet. Another delicate issue is the transduction of electrical signals from and to
information understandable by the molecule, as up to now there are no valid
solutions to this problem.

• Silicon Atomic QCA [11]. The QCA principle is implemented using atoms
as quantum-dots. It has been proved that the dangling bond (DB) state of
silicon atoms can be exploited as a quantum dot. Up to now the experimental
results are promising and the electrostatic control over the charge within DB
assemblies has been verified [12].

• Magnetic QCA or NanoMagnet Logic (NML) [13]. The base cell is a single-
domain nanomagnet with dimensions lower than 100nm. Magnets of this
size can have only two possible magnetization states, corresponding to ‘0’ and
‘1’ logic values [14]. The key interesting factor of Magnetic QCA is that,
thanks to its magnetic nature, it has exceptionally low power consumption
and a strong logic-in-memory predisposition [15][16][17].Concerning operating
frequency (hundreds of MHz) and dimensions, this implementation is instead
less interesting than the Molecular QCA; it is also slower than CMOS systems.
Another key advantage for this technology is the physical realization feasibility
with current technology, that allows to study and experiment on QCA based
architectures on a higher abstraction than the single cell, facing directly design
problems common to any QCA implementation.

Magnetic QCA is the addressed technological implementation chosen in this
research. This technology is presented with more details in Section 2.3.

8

2.3 – NanoMagnet Logic

To design logic circuits, QCA cells are placed close each other, so that the elec-
trostatic interaction between cells allow signal to propagate. This is further analyzed
for the case of NML in paragraph 2.3.1. However the electrostatic interaction cannot
generate an infinite signal propagation. For this reason it is necessary an external
mean as explained in the following paragraph.

2.2.1 Signal propagation and Clock

Generally the electrostatic interaction between QCA cells is not strong enough for
a signal to propagate through a number of cells (a wire). The switching of a cell
requires as much energy as the barrier between its two stable states, that is the
energy keeping electrons trapped in the dots.This value is generally high enough to
not allow autonomous data propagation. For this reason there is the need for an
external mean able to control the signal propagation by acting on the energy barrier
between the two stable states. Such barrier can be lowered by applying an electric
field, that will force electrons into the central dots leaving the cell in an unstable
state, which is referred to as NULL state. Once removed the external field the cell
will stabilize either at ’0’ or ’1’, depending on the state of neighbor cells.

So the main idea is that if we want that a cell to assumes the same value as its
neighbor, we force such cell in an unstable state through an external electric field,
and then we simply release the field. This control field is called clock. In principle
this technique could work with an infinite number of cascaded cells, but practically
this number is limited, otherwise there will be propagation errors mainly due to
thermal noise [18]. Therefore a spatial flow control system is mandatory.

From the remarks above it is clear that a signal cannot pass through a whole
circuit at once because the cells pattern would be too long. The solution is to
divide the circuit in small sections and let signals go over one section at a time, in a
pipelined manner. So circuits are partitioned in small areas, where each area counts
a limited number of cascaded cells; these areas will be called clock zones.

This concept is further extended, presenting the actual implementation of a clock
mechanism for NML, in paragraphs 2.3.2 and 2.3.3.

2.3 NanoMagnet Logic

In this Section we describe NanoMagnet Logic technology. Some key concepts are
given in the following. Then the fundamental elements of an NML circuits are shown
in paragraph 2.3.1. Two possible clock solutions are presented: Magnetic Clock in
paragraph 2.3.2, and MagnetoElastic Clock in paragraph 2.3.3. Finally we focus on
the Intrinsic Pipelined nature of NML in paragraph 2.3.4, as this is one of the most
relevant aspects of this technology that we want to address in this research.

9

2 – Technological Background

! !

"#$#"%&'

()

*)

"$"%&'#+#*) "$"%&'#+#()

,-, ,),

./0 .10 .20(a) (b)

Figure 2.2. (a) Hysteresis cycle of a single domain magnetic signal. (b) The two
stable states of the NML base cell.

Magnetic Quantum dot Cellular Automata (MQCA), also called NanoMagnetic
Logic (NML), is an innovative technology based on the idea of using magnets to
implement logic functions. The result are digital circuits with intrinsic memory
capability [19].

The base element of NML is a small bistable magnetic cell. Since it is not a per-
manent magnet, its magnetization can be influenced by external means. Therefore
nanomagnets placed side by side will arrange themselves in an antiferromagnetic
manner, because of the attraction between opposite poles.

The nanomagnets dimensions must be between 50nm and 100nm. The upper
limit assures that the magnets only have one magnetic domain, which means that the
magnetization does not vary across the magnet and the hysteresis cycle is coherent
with the one shown in Figure 2.2(a). The two saturation values M = +1 and M =
−1 are the only stable states, therefore they are associated to logic values ’0’ and ’1’.
The lower bound of 50nm is, instead, crucial to avoid the superparamagnetic effect,
which would cause the magnetization to vary together with thermal fluctuations. To
assure thermal stability the energy barrier between the two stable states must be at
least 30kBT . As from Figure 2.2(b) the two states have magnetizations in opposite
directions, so they both lie on the same axis. In steady state conditions, if one side of
the magnet is longer than the other, thanks to shape anisotropy, the magnetization
will be forced along the longer axis (easy axis). Therefore it is important that in
NML the ratio between the magnets dimensions (aspect ratio) is at least 1.2.

In similar way to general QCA, when we put several magnets in chain to make
a logic circuit, if the inputs switch, only few cascaded magnets will flip accord-
ingly. This is due to the fact that the energy produced by one magnet switching
is not enough to align all other magnets. Indeed only few magnets can switch au-
tonomously, while after them the polarization of successive magnets may not change
or become unpredictable [15]. As explained for general QCA, the solution to this

10

2.3 – NanoMagnet Logic

problem is a clocking mechanism explained in paragraphs 2.3.2 and 2.3.3.
There are several reasons that make the NML study worthy, even if the working

frequency is limited:

• NML is the only QCA implementation that works at room temperature and
it can be fabricated with current technology [20].

• Magnets do not dissipate static power and a single magnet switching absorbs
around 30kBT . Therefore NML potentially has an extremely low power con-
sumption.

• Since the difference between QCA and CMOS technologies is bottomless, to
fully comprehend the potential of QCA, it is mandatory to investigate complex
architectures, also considering all the working and fabrication constrains. For-
tunately most of the architectural study on NML could probably be applied to
other implementations like the molecular QCA, which seems far more promis-
ing than Magnetic QCA but it is still not supported by current technology.

The main advantage of Magnetic QCA is to be realizable with current technology
(electron beam lithography or high end optical lithography) together with its ability
to operate at room temperature. The fabrication feasibility was first proven by
researchers of the University of Notre Dame in Indiana (US). They built horizontal
wires, vertical wires and majority gates [21]. A Magnetic QCA horizontal wire was
also created by researchers at Politecnico di Torino.

2.3.1 Logic Gates

!"! !#!

!" #$%
&'(

&)(

&*(&+(&,(&-(&.(

/0/ /1/ /0/

/0/ /1/ /0/ /1/

/0/

/0/

/0/

!" #$%

#$%

!"

!"

!"

#$%

!"

!"

#$%

#$%

!"

!"

#$%

!"

!"

(a)

(b)

(c) (d) (e) (f) (g)

Figure 2.3. (a) Horizontal wire. (b) Inverter. (c) Vertical wire. (d) Majority
Voter. (e) AND port. (f) OR port. (g) Crosswire.

Figure 2.3 shows a complete set of logic blocks for NML circuits. Gates rely
on coupling between magnets. In particular it is important to notice horizontal

11

2 – Technological Background

coupling: Horizontally magnets align themselves antiferromagnetically, where each
magnet has inverted polarization with respect to the neighbors. So the inverter can
be simplified to a simple horizontal wire with an even number of magnets as in
Figure 2.3(a). On the other hand an odd number of adjacent magnets would result
in a buffer function, that is a simple wire (Figure 2.3(b)). Vertically the coupling
is ferromagnetic, so no inversion is possible (Figure 2.3(c)). The majority voter,
depicted in Figure 2.3(d), is pretty much the same as for general QCA.

Moreover, it is possible to obtain specific logic gates modifying the shape of a
magnet: By making magnets with slanted edges it is possible to create AND and
OR logic functions [22]. QCA would generally need a three inputs majority gate to
obtain AND and OR logic ports, while only two inputs are needed for non-majority
based gates, considerably optimizing area occupation and layout entanglements.
The different-shaped magnets acquire a preferential state, which they will leave
only when both inputs, from above and below, are up or down, implementing as a
consequence an AND or OR logic function (Figure 2.3(e), Figure 2.3(f)). Another
important advantage of this solution is that existing synthesizers with a dedicated
library cell including AND and OR can already be used for the first stages in the
design of an NML circuit.

Since NML is a planar technology at the time of writing, a crosswire gate is neces-
sary. A possible implementation is the one represented in Figure 2.3(g), the crossing
is made of five square cells (50nm − 100nm of edge) that have four stable states
instead of two. In this way they can let pass through two signals simultaneously.

2.3.2 Magnetic Clock NML

Oxide insulator
Ferrite yoke

Si substrate

Copper wire

H (magnetic field)

I (current)

Figure 2.4. NML with Magnetic Clock mechanism. The magnetic field H is
generated by the current I flowing through the copper wire, which is placed
under the magnets plane.

One solution for controlling the nanomagnets magnetization in NML circuits is
the Magnetic clock, as proposed in [13] and verified experimentally in [20]. The
magnetic field is generated by a current flowing through a wire positioned under

12

2.3 – NanoMagnet Logic

the magnets plane (Figure 2.4). The material for the wire is copper, buried in a
ferrite yoke envelope for field confinement. The wire’s thickness must be enough to
generate a magnetic field able to force cells to the intermediate state (NULL state)
[23].

As explained in Section 2.2.1 a clock system is required. This is normally done
with a multiphase signal, with each phase assigned to a clock zone. The classic
scheme has 4 phases, but also a 3-phase clock is feasible [24][25][26]. The Magnetic
NML normally exploits a 3 phase clock system.. Figure 2.5 shows the functioning
of the 3-phase clock of a horizontal wire over time (vertical axis).

Each clock zone undergoes three phases in the following temporal sequence:
RESET, SWITCH and HOLD. The RESET (clock = 1) erases the information,
leading cells to an intermediate state. In the SWITCH phase the clock goes to zero,
so cells can assume a magnetic orientation. The orientation is influenced by the
nearby cells being in HOLD state, as cells in the RESET state cannot affect the
neighbors. When a group of cells, in the same clock zone, is in the HOLD phase,
they have a stable magnetization.

To assure a correct signal propagation the RESET phase applied to different
zones must overlap in time as in Figure 2.5(b), where the RESET state lasts slightly
more than 2π/3. The reason lies in the fact that when a zone is in the SWITCH
phase, the two neighbor zones must be respectively in HOLD and RESET phase.
However if the field of the SWITCH zone is removed and the field is applied to the
RESET zone at the same time, a back propagation phenomenon could take place.
Initially, when the field is removed from the SWITCH zone, the RESET zone would
still be in the HOLD state, as magnets need a finite time to switch from a stable
polarization to the intermediate state. In Figure 2.5(a) we can see how the value in
Time step 1 on the left is propagated step by step to magnets in the clock zone on
the right.

2.3.2.1 Snake Clock Layout

The generic QCA is based on a 4-phase clock system, however it is also possible to
use a 3-phase clock [13], given that the signals are overlapped. The clock network for
Magnetic NML is a 3-phase overlapped system, called Snake-clock; its 3D structure
and top layout are depicted respectively in Figure 2.6(a) and Figure 2.6(b).

The Snake-clock is a phase arrangement able to manage both left to right and
right to left signal propagation. It is based on clock wires where current flows
generating an induced magnetic field that will force magnets in the reset state.

The clock wires are basically simple metal wires parallel to the magnets plane,
two positioned above and one below [24]. Two thin oxide layers provide separation
between clock wires and nano-magnets. One clock wire is straight (number 1), while
the other two have a complementary zig-zag shape. They are like twisted wires, but

13

2 – Technological Background

!"#$!"#$%& %&'&(

)#")*+

,"-&+.

(/0&

'(&1+.

)#")*+

,"-&+2

)#")*+

,"-&+3

)#")*+

,"-&+.

(/0&

'(&1+2

(/0&

'(&1+3

(/0&

'(&1+4

(/0&

'(&1+.

(/0&

'(&1+2

(/0&

'(&1+3

(/0&

'(&1+4

!
"
#
$

!
"
#
$
%
&

)5678+

'9:;<5+2

)5678+

'9:;<5+3

)5678+

'9:;<5+.
/

= = =

>?@ >A@

!"#$

!"#$!"#$%& %&'&(%&'&(

!"#$!"#$%&%&'&(!"#$%&

!"#$%&'&(!"#$%&!"#$
%
&
'
&
(

!
"
#
$

!
"
#
$
%
&

%
&
'
&
(

!
"
#
$

!
"
#
$
%
&

!
"
#
$

%
&
'
&
(

!
"
#
$
%
&

(a) (b)

Figure 2.5. The clock phase sequence is RESET, SWITCH, HOLD. (a) Function-
ing in space (horizontally) and time (vertically) of a horizontal NML wire. (b) The
3 clock signals. They are applied to different zones in space and they are repeated
over time. They are the same in magnitude but with a 120◦ phase shift. [27]

they do not display any interference, as they are on different planes. In the case in
Figure 2.6(a) the wires 1 and 2 are routed on the same plane, while the clock 3 is
on the other one.

Considering the top view in Figure 2.6(b), it is straightforward to understand
that magnets cannot be placed on areas corresponding to the wires twisting, as they
would be affected by both clock wires 2 and 3.

Figure 2.7 shows a very simple circuit based on the Snake-Clock system. The
direction of the information flow is highlighted by arrows. Signals propagate through
clock zones in the order 1, 2, 3 and so on. The clock wires twisting divides the circuit
area in horizontal stripes with alternate propagation directions. Furthermore, as
required by this clock mechanism, there are no magnets placed over the twisting
areas. The magnets with a slanted edge required for the AND logic function are
highlighted in black.

14

2.3 – NanoMagnet Logic

!""#""$""!""#""$""!

%&' %('

!
"

#

!"#$%
&%'()*+#,%-

.(.!&(/.%'-!""#""$""!""#""$""!

(a) (b)

Figure 2.6. Snake-clock. (a) 3-D layout. (b) Top 2-D layout. The nanomagnets
are placed between the two planes. Magnets cannot be placed in the zone where
two phases twist each other.

1 2 3

1 3 2

Figure 2.7. Example of a simple circuit based on the Snake-Clock system.
Different background colours refer to different clock zones. The arrows show
the signal flow direction. [27]

2.3.2.2 Working frequency

The main limitation of NML technology is the maximum working frequency, which
is intrinsically bounded. To obtain the highest possible clock frequency the clock
zone width should be equal to that of a single magnet. However the usual width is

15

2 – Technological Background

sufficient to contain 3-5 magntes [18] because of several factors: fabrication limita-
tions, thermal noise, latency, throughput. The more are the consecutive magnets in
a clock zone, the lower will be the clock frequency. The constraints on the clock fre-
quency are mainly related to the clock mechanism chosen and the fall and rise time
of the adiabatic switching of clock signals, mandatory to reduce power consumption.
Less critical is instead the bound derived from the switching time of nanomagnets
from the intermediate (NULL) state to a stable one and viceversa. The NML circuit
speed is expected to be of the order of 100MHz [28][29][30].

In the beyond-CMOS scenario, NML technology is a good solution but it cannot
aim to completely substitute CMOS. Despite the clear benefits for what concern oc-
cupied area, power consumption and memory ability, NML’s clock frequency cannot
compete with existing solutions like CMOS. We will address this clock limitation
at an architectural scale introducing architectures able to increase the throughput.
Nevertheless, it is clear that a NML system cannot live on its own. Rather, it
should be thought as part of a multi-technology environment in which NML is used
to perform power consuming operations where a long operational time is acceptable.

2.3.3 Magnetoelastic Clock NML (ME-NML)

Recently a valuable alternative to the Magnetic Clock NML has been proposed
and studied by Politecnico di Torino researchers: the MagnetoElastic Clock NML
(ME-NML) [15][31].

In previous paragraph 2.3.2 the proposed external mean, responsible for the
magnets switching, was the Magnetic Clock with a Snake-clock layout. The idea was
to position clock wires below or above the magnets plane. A current flowing through
the wires would generate a magnetic field able to control the cells magnetization.
The generated field is then along the magnets’ short side of the magnets, forcing
cells in an intermediate unstable state.

The interest in Magnetic QCA is mainly due to the very low power consumption,
several times lower than the latest CMOS transistors. While this is true for the
magnets switching, unfortunately the clock generation system based on magnetic
clock is not able to guarantee this low power performance. Indeed, it is based
on 1µm copper wires with a required current of 545mA [15]. Therefore, due to
Joule losses, the power dissipation of the clocking system is very high, nullifying the
advantage of a low-power magnets switching.

To solve this problem an alternative solution has been recently proposed [15][31],
based on the Magnetoelastic effect. Using a piezoelectric material, applying a volt-
age to its boundaries, a mechanical stress will derive in the piezoelectric. With this
stress, magnetic cells above can be forced into the RESET state. The magnetic cells
(10nm thick) are coupled with a 40nm thick PZT layer (Figure 2.8(a)). To maxi-
mize the mechanical coupling, magnets are deposited directly onto the piezoelectric

16

2.3 – NanoMagnet Logic

!"#$%& '(%)&*+,%-

./0

1

'(%)&*2)342%(,

567 587(a) (b)

Figure 2.8. Magnetoelastic NML clocking mechanism. (a) No voltage applied.
(b) Voltage applied to the electrodes. The PZT substrate induces a strain on the
nanomagnets forcing their magnetization to their intermediate state.

material. For a proper strain transfer, the PZT substrate has to be much thicker
than the magnets. The magnetic material is then controlled by applying a voltage
(few mW) to the piezoelectric. When the voltage is applied, the strain induced
by the piezoelectric material, forces the magnetization of the magnets layer to the
intermediate position, parallel to the short edges (see Figure 2.8(b)).

The electrodes are deposited on top of the PZT, while the wires that drive the
electrodes can be placed in additional layers, just as for CMOS. This makes this
NML implementation compatible with CMOS fabrication.

This approach comes from a previous idea based on multiferroic structures in-
stead of simple magnets [30][32]. The performances of the pure multiferroic structure
are better, but there are two major fabrication problems. The aspect ratio is critical,
there are only 2nm of difference between the length of the two cell’s sides. Such a
low resolution is hardly achieved with the Electron Beam Lithography. Moreover the
electrodes should be only a few nanometers thick, a request that does not comply
with the current technology. A pair of them is necessary for every element, to apply
the required voltage. The advantage of the solution with the simple magnets is the
feasibility with current fabrication techniques. Even if its performances are slightly
worse than the multiferroic solution, they are anyway remarkably better than the
previous NML solutions.

Since the clock system exploits a voltage instead of a current, the power consump-
tion is extremely low, meeting the unmatched expectations for the initial Magnetic
QCA concept. In [15], after a detailed analysis, the selected magnetic material is
Terfenol, an alloy of Terbium, Disprosium and Iron. The choice is mainly based on
three parameters:

• maximum stress that can be applied to avoid permanent damage on the mag-
nets;

17

2 – Technological Background

• maximum value of electric field that can be tolerated by the piezoelectric
material, since it is an insulator;

• minimum stress to force magnets in the RESET state;

• assure shape anisotropy equal of at least 30KbT ≈ 1.24 · 10−19J , to have
negligible effects of the thermal noise on the magnets stability;

• minimum aspect ratio for fabrication feasibility;

• tolerance to process variation of ±20%, remaining within the working range.

2.3.3.1 Circuit Layout

!"#

!$#

!%#

!"#"$!"#%$!"#&$

!&#"$!&#%$!&#&$

!%#"$!%#%$!%#&$

'()*+,+-./0123

!4$(a)

(b)

(c) (d)

Figure 2.9. Clock zones of the ME-NML. (a) Clock zone with AND logic
function. (b) Clock zone with OR logic function. (c) Circuit layout example.
(d) Placement grid for ME-NML Cells.

Starting from the structure described in paragraph 2.3.3, MagnetoElastic clock
NML (ME-NML) circuits are composed by mechanically isolated islands, like the
one in Figure 2.9. Each island corresponds to a clock zone and it is driven by one
of the clock signals, applied as a voltage on the Platinum electrodes. Notice that
the electrodes position on top of the PZT is compatible with CMOS fabrication and
leads to a uniform electric field distribution on the magnets plane.

The presence of the electrodes makes the clock zones communication on those
sides impossible. The signal propagation among cells is allowed only through the top
and bottom sides. For this reason the Majority Voter port cannot be constructed.
Therefore the basic logic gates exploited are inverter, AND (Figure 2.9(a)) and OR
(Figure 2.9(b)) [22], so that any logic circuit can be implemented.

18

2.3 – NanoMagnet Logic

Figure 2.9(c) shows how to put together the clock zones to create a circuit. As
already said, the communication among cells can take place only through the top
and bottom corners, because of the electrodes. For this reason the cells in a row are
shifted with respect to the adjacent ones, to assure a correct signal propagation. In
fact the cells are placed on a grid as in Figure 2.9(d), where the coefficients identify
row and column of the cell’s positioning within the circuit.

In the example of Figure 2.9(c) the clock zones have both height and width
equal to three nanomagnets. Thermal noise [18] and fabrication constraints allow
cells dimensions to vary only between 3 and 5 nanomagnets. Small dimensions lead
to smaller electrodes and cells, requiring then a very high resolution fabrication
process. The minimum size feasible with current technology is 3. Bigger dimensions
will relax the technology constraints, but will increase the error probability due
to thermal noise and decrease the maximum circuit speed. If two many cascaded
magnets are present in a clock zone, the signal propagation will be error prone. In
this thesis the 3 magnets cells are used.

The size of the electrodes varies according to the clock zones dimensions. They
are 30 − 40nm for the three magnets cells, while 70 − 100nm for the five magnets
case. This kind of electrodes are already available for CMOS technology.

2.3.4 Intrinsic Pipeline

In a N-phase clock system, signals need a clock period to propagate through N clock
zones. As a consequence the delay of a signal depends on how many clock zones it
has to cross. This is quite different from CMOS where wires with different lengths
have very similar delays. Each clock zone crossed by a signal can be modeled as a
register, therefore it is easy to understand that NML circuits (just like QCA) are
intrinsically pipelined. Every group of N adjacent clock zones has an overall delay
of a clock cycle.

For this reason signal synchronization is a very delicate issue in NML circuits. In
Figure 2.10 we present an example useful to clarify the difficulties in routing signals
in NML. The input wires routing is correct in Figure 2.10(b), while incorrect in
Figure 2.10(a). For a proper circuit functioning the three input signals must reach
the two AND ports simultaneously,. To do so, the routing must assure that the
input wires cross the same amount of clock zones. The example is presented for the
Magnetic NML case, but the same concept applies to ME-NML as well as any QCA
implementation.

This is normally called the “Timing = Layout” problem, because the layout of
the circuit directly influences its timing property.

The problem gets more complex when dealing with feedback signals, see for
example the feedback in Figure 2.7 at the top left corner. While the external input
of the AND port arrives at every clock cycle, the second one (the feedback) arrives

19

2 – Technological Background

!

!"#

!$#

" #

(a)

(b)

Figure 2.10. NML signal synchronization. The three inputs must arrive to the
two AND ports simultaneously. To do so the input wires must pass through the
same number of clock zones. (a) Not working routing. (b) Correct routing.

later. The output of the AND port needs two clock cycles to be fed back. Therefore
at every clock cycle the AND operation is performed between the new input and
the output result obtained 2 cycles before. The proper result will arrive at the next
time step. Notice that the longer the feedback wire, the longer the delay. The
management of long feedback loops is common in NML, and for this reason we have
decided to approach it with a systematic analysis presented in Chapter 3.

2.3.5 Summary on NanoMagnet Logic

In this paragraph the main advantages and drawbacks of NanoMagnet Logic are
mentioned. The objective is twofold: on the one hand we highlight the reasons that
made this technology so attractive for real implementation; on the other hand we
mention all the drawbacks, that led us to the study reported in this thesis to address
them from an architectural point of view.

Main advantages of NanoMagnet Logic are:

• No power dissipation in steady state conditions: as mentioned before, magnets
that are not affected by other near magnets or clock polarization change will

20

2.3 – NanoMagnet Logic

maintain their polarization and will not consume any energy. This has two
important derivative advantages, that are the two following.

• Intrinsic memory capability: when a magnet is not driven by a reset clock and
not affected by other external higher magnetic fields, it will keep its polariza-
tion and thus maintain the logic value stored.

• Low power consumption: this is mainly due to MagnetoElastic NML technol-
ogy, that has the advantage of an efficient clock generation system. Moreover
energy required by magnets to switch in normal conditions is very low.

• Small area occupation: this technology allows to compact logic circuits in few
magnets, guaranteeing a small area occupation.

Main drawbacks are instead:

• Low clock frequency: with respect to CMOS, NML circuits can run at much
lower operating frequencies (about 100 MHz). This makes the comparison
between these two technologies, based only on performance, unsatisfying.

• Long wires have long latency: this is the main effect of Intrinsic Pipeline
effect and “Timing = Layout” problem. A long wire may require hundreds of
clock cycles to be traveled by a logic signal. This would mean a reduction in
throughput and hence generally in performance.

In the rest of this thesis, NanoMagnet Logic will be the principal objective of the
study. We will show the advantages of this technology through comparisons with
CMOS mainly. The drawbacks will be instead addressed from an architectural point
of view and we will demonstrate that it is possible to overcome them and reduce at
the minimum their impact.

Nevertheless, it is normal to think of future systems made by components pro-
duced with different technologies, where each of them can exploit its main features.
In this scenario it is clear that NML will not be used for timing-constrained opera-
tions, because it has a low clock frequency. Instead for recursive operations where
the main constraints are on power dissipation, NML circuits can be an ideal choice.

21

2 – Technological Background

22

Part I

Parallel Architectures for
NanoMagnet Logic

24

Chapter 3

Systolic Arrays Optimization

In this Chapter the first step of the architectural analysis for NML logic circuits
is presented. This deals with “Systolic Arrays”, a particular class of architectures
that is interesting for the regularity of the layout and the short interconnections.
Moreover, Systolic Arrays are parallel architectures that can execute several tasks
at the same time to increase the throughput. While this architecture is particularly
interesting in its classical aspect, as presented in Section 3.1, it is possible to in-
troduce several improvements to Systolic Arrays, in particular for the NanoMagnet
Logic implementation.

Data interleaving can be applied to Systolic Arrays, with proficient results as
described in Section 3.2; Latency Insensitive circuits can be embedded in Systolic
Arrays to allow asynchronous communication between blocks with different delays,
as presented in Section 3.3. The results of a Latency Insensitive circuit can be
analyzed using as case study the Floyd-Steinberg algorithm; for this reason we have
designed a Systolic Array that is able to execute this algorithm. The final results
of this research activity on the enhancement of Systolic Arrays are presented in
Section 3.5.

3.1 Introduction to Systolic Arrays

In this Section we will introduce Systolic Array (SA) architecture, dealing with
the concept of this architecture, the most important field of applications and its
advantages and disadvantages.

Systolic Arras (SA) concept was introduced for the first time by Kung and Leis-
erson in 1978. In [33] they stated: “a systolic system is a network of processors
which rhythmically compute and pass data through the system”. In their common
representation, Systolic Arrays are composed of Processing Elements (PEs) locally
interconnected. Each PE receives data from neighbor cells and it provides results

25

3 – Systolic Arrays Optimization

to other close PEs. PEs at the boundaries of the array are used for input/output
data exchange.

An example of Systolic Array, used for matrix multiplication, is shown in Fig-
ure 3.1. In this case top and left boundary cells are used to retrieve input data,
while results are stored inside each PE. Through a final downloading phase, results
can then be obtained from bottom cells. This example has been also proposed by
Kung in [33].

PE PE PE

PE PE PE

PE PE PE

a0

ai1

ai2

bi0 bi1 bi2

Figure 3.1. An example of square Systolic Array. This can be used for
matrix multiplication.

There are two main concepts at the basis of SAs:

1. Parallel Computation: all PEs work in the same way and at the same time on
different data;

2. Local Transmission: data are only transmitted between near PEs, so there are
not global signals.

For their parallel nature, SAs can be used in signal processing [34][35][36]. They
can also be used to execute algorithms for video processing (such as those for MPEG
compression). For example, in [37] and [38] a SA for logarithmic search motion
estimation is presented; it exploits a bi-dimensional systolic architecture and pipeline

26

3.1 – Introduction to Systolic Arrays

interleaving to achieve a 256x improvement with respect to the classical linear array
implementation. The usage of pipeline interleaving to increase the performance of
a Systolic Array, especially in the NanoMagnet Logic implementation, is one of
the key research points of this path, described in 3.2. While till now interleaving in
Systolic Arrays has been proposed randomly depending on the algorithm, we propose
a rigorous approach to this technique that allows to adopt Data Interleaving quite
straightforwardly.

SAs have been exploited also for image processing [39][40], exploiting the paral-
lelism between Processing Elements and image pixels. Each PE will be in charge
one or more pixels depending on the size of the image and output data granularity.
We present in Section 3.4 the Floyd-Steinberg image processing algorithm, that is
used as case study to design a Latency Insensitive Systolic Array with octagonal
cells.

Finally Systolic Arrays have been used for biological sequence comparison [41][42]
[43]; the reader can refer to [44] to have an overview of the different hardware
solutions for biosequence analysis; this comparison shows that the best performance
can be achieved adopting SAs, with a focus on nanotechnologies.

Although Systolic Arrays are now used in several fields, their history has not been
very successful. After their introduction in 1978, they did not emerge as a relevant
architecture solution till recent years. The reason is quite simple: Throughout the
years, technological scaling has allowed to increase operating frequencies and this
has been enough to produce the required performance improvement; therefore, pure
transliterations of algorithms to hardware modules have been sufficient to achieve
desired results thanks to the technology improvement. In recent years the technolog-
ical scaling has slowed down [45][46] and so parallel architectures have been adopted
to guarantee a continuous increase in computing performance. Among them, Sys-
tolic Arrays have gained interest because they can combine the high computational
capacity, given by parallelism of processing elements, with the short interconnec-
tions propriety that makes them one of the ideal architectures for nanotechnologies
based on the Quantum-dot Cellular Automata principle.

3.1.1 Systolic Arrays for NanoMagnet Logic

In Section 2.3 we have identified the strengths and limitations of NanoMagnet Logic.
We anticipated that if we want to exploit the advantages of low power consumption
and small area occupation, we need to address the limitations from an architectural
point of view. The main limitations identified were:

1. Low Clock Frequency (100 MHz), due to technological constraints;

2. “Timing = Layout” problem: long wires have long latency.

27

3 – Systolic Arrays Optimization

To address these limitations it is possible to: 1) increase throughput of the system
using parallelization, thus reducing the impact of the low clock frequency; 2) use
regular structures that have only short and regular interconnections, thus reducing
the impact of the “Timing = Layout” problem.

If we consider these two constraints, it is evident that Systolic Arrays repre-
sent one ideal architecture for NanoMagnet Logic. Nevertheless, there are still im-
provements that can be applied to Systolic Arrays for NanoMagnet Logic. We
have investigated these improvements and next Sections present the results of our
study. Moreover, while these improvements (for example Data interleaving) have
been thought to further enhance Systolic Arrays for NML, the same approach can
be used in CMOS to have similar benefits. For this reason we will present results
that comprise both NML and CMOS.

3.2 Data Interleaving in Systolic Arrays

The first step in the improvement of Systolic Arrays has been a rigorous definition
of the interleaving technique applied to this kind of architectures, that is thoroughly
described in this Section.

In this Section we first provide an introduction to the Interleaving technique
(paragraph 3.2.1). Then a taxonomy of SAs based on the structure of the cell
is described in paragraph 3.2.2. Starting from this taxonomy, then for each case
a full analysis of the number of interleaved operations that can be executed and
architectural solutions to enhance this feature are provided (paragraph 3.2.3 and
3.2.4). Results are shown to demonstrate that pipeline interleaving applied to SAs
can guarantee better performance in terms of Giga Cell Updates Per Second (para-
graph 3.2.5. Results are provided both in CMOS and other nanotechnologies; for
the latter, as we have detailed before, the adoption of interleaving is quite obliged,
unless under-using drastically the SA. We detail the difference in the approach to
introduce data interleaving in Systolic Arrays in paragraph 3.2.6.

3.2.1 Interleaving Technique

Interleaving is in general a way to arrange data in a non-contiguous way to increase
performance of a computing system.

Consider the circuit shown in Figure 3.2: this is an accumulator based on an
adder and a feedback loop with three registers (represented with squares). Fig-
ure 3.2(a) shows the execution of A + B + C. Three clock cycles of delay are
necessary between one input and the successive one, which means that one addi-
tion can be executed every three clock cycles. This is due to the data dependency
present between each addition and the successive one, because each addition can be

28

3.2 – Data Interleaving in Systolic Arrays

+ + +

A

A A

B

+ + +

A

A A

D

D

+

A+B

+

B

A+BD

E

(a) No interleave: A+B+C

(b) Interleave 2: A+B+C and D+E+F

t=1 t=2 t=4 t=5 time ...

Figure 3.2. Interleave example: an accumulator that contains in its internal
feedback three registers. (a) the circuit without exploiting interleave requires
to provide one input every 3 cycles, thus having an addition every 3 cycles.
(b) the circuit with interleave 2: input values are interleaved and in this way
the throughput can be simply doubled because it is possible to execute second
addition D + E immediately after A+B.

executed only when the previous one has been completed and the result is ready at
the input of the adder. Figure 3.2(b) shows the same circuit applying interleaving:
in this case it is required to have at least another operation to execute, for example
D + E + F ; interleaving consists in providing inputs in a non-continuous manner,
i.e. A, D, B, E, C, F in the example, and in exploiting the delay of the loop to store
results of different operations. This can be applied in general to any loop-based
circuit.

Data interleaving can be applied only when there is no data-dependency between
successive steps; D + E for example can be executed immediately after A + B. It
could be possible to interleave also another operation to maximize the throughput,
since the pipeline cue is three registers long. In the example, there is no architectural
reason to design an adder with 3 registers in the loop; however, it is possible to think
that through a retiming procedure, these registers are inserted in the middle of the
adder to reduce its critical path and increase the operating frequency, in CMOS.
This would still mean that three clock cycles are required to execute addition and
feedback of the signal and for this reason it would be possible to apply pipeline

29

3 – Systolic Arrays Optimization

interleaving as explained. This can clearly apply to any CMOS circuit to reduce
critical path. If we think to NML instead, the three clock cycles may be requested
by a longer wire, due to “Timing = Layout” problem.

The benefits of interleaving have been analyzed in literature. In the case of digital
filters [47][48][49], for example, internal feedbacks negate the most obvious ways of
improving performance, that is pipelining. Indeed, while in nonrecursive systems
it is possible to place latches across any feed-forward cutset without changing the
transfer function (increasing latency of course, but reducing the critical path) and
achieve the desired level of pipelining, recursive systems cannot be pipelined at an
arbitrary level by simply inserting latches. This problem can be solved by changing
the internal structure of the algorithm to create additional logic delay operators
inside the recursive loop, which can then be used for pipelining.

3.2.2 Proposed SA Taxonomy

It is possible to divide Systolic Arrays into two main classes: those With cells that
have an Internal Loop (herein WIL), and those WithOut Internal Loop (herein
WOIL): the former can be further split in systolic arrays that Store results in the
cells (WIL-S) and systolic arrays where the partial result is Passed Through the cells
to obtain the final value (WIL-PT). Each of these classes is analyzed hereinafter.

3.2.2.1 WOIL Systolic Arrays

WOIL SAs are those in which each cell does not have an internal loop. It is important
to highlight that, since there is no loop inside cells, the PE can be pipelined and
interleaving is not required (meaning that it is possible to input data in the same
order of the original case, but latency is increased according to the pipeline depth).

It is possible to define in a general way a WOIL Processing Element, as shown
in Figure 3.3.

The PE is made of j different blocks, each requiring dn clock cycles to be com-
pleted, n = 1, 2, . . . , j. It is assumed that these blocks cannot be internally pipelined.
Some of them (for example from block i+ 1 to j) are along the path that connects
the cells each other (called P), and their total delay is D:

D =

j
∑

n=i+1

dn (3.1)

while the others (from 1 to i) work on input data and on stored ones, and are not
interested by partial results.

30

3.2 – Data Interleaving in Systolic Arrays

T0

entry (e)

(d1) (di)

(di+1) (dj-1) (dj)

input data

from

previous

PE

D + T0

to next

PE

output data

Figure 3.3. WOIL cell: dn, n = 0, 1, . . . j is the delay of each block in clock
cycles; blocks from 1 to i work on input data and on stored ones, while
blocks from i + 1 to j are along the path P that connects the cells each
other and their total delay is D.

3.2.2.2 WIL Systolic Arrays

WIL SAs are those in which each PE has one (or more) loops. In this case each
cell exhibits data dependencies between signals traveling through the loop and data
coming from outside; it is hence not possible to increase unconditionally the speed
of the PE, without changing the rule for providing inputs. In this case it is necessary
to exploit data interleaving if we want to increase the throughput.

WIL SAs are divided in WIL-S in which the cell stores the partial result and
WIL-PT where results are evaluated through cells of one line. However, from a PE
point of view, they are the same.

A cell with internal loop is shown in Figure 3.4. It is made of 4 parts: an entry
section, made of blocks numbered from 1 to i; the forward part of the loop, made
of blocks from i + 1 to j, the feedback part of the loop, made of blocks from j + 1
to k − 1; the output block, called k. Each of these blocks is associated to a delay
dn, n = 1, 2, . . . , k.

Let us call Te the total delay of the entry block, Tff the delay of the forward
side of the loop, Tfb the delay of the feedback in the loop and To the output delay.
They can be computed as expressed in equation 3.2.

31

3 – Systolic Arrays Optimization

T0

entry (e)

(d1) (di)

(di+1) (dj-1) (dj)

(dj+1)(d1��*

(d1*

input data

from

previous

PE

D + T0

to next

PE

feedback (fb)

forward (fo)

output data

Figure 3.4. WIL cell: this PE is made of 4 parts: an entry section, the forward
and feedback parts of the loop, and the output section. Data coming from previous
PE can enter at any stage of the cell.

Te =

j
∑

n=1

dn; Tff =

j
∑

n=i+1

dn; Tfb =
k−1∑

n=j+1

dn; To = dk (3.2)

Input data coming from outside enter in the first block, while data coming from
the neighboring processing element can enter at any stage of the cell. This cell can
be part of a systolic array where each result is finally stored in the cells of the array
(WIL-S); or it can be part of an array where local results are re-used in the cell and
also passed to neighboring cells (WIL-PT).

These cells usually have also a shift register used to pass inputs to neighboring
cells, whose delay is L, and that is not shown in Figure 3.4 for sake of simplicity.

3.2.3 WOIL SA Optimization

WOIL SAs can be optimized using pipelining rather than interleaving because they
do not present loop structures.

32

3.2 – Data Interleaving in Systolic Arrays

Let us assume that the j blocks of the structure depicted in Figure 3.3 cannot
be internally pipelined (if any of them can be internally pipelined, then it could be
divided into two different blocks). Each of theese blocks requires dn cycles to com-
plete the operation and during these cycles no new inputs can be given. Therefore,
each of these blocks can receive valid inputs every dn cycles (notice that if a block
can be pipelined in s stages, it can be thought as s different blocks, each with its
own delay).

The output rate of each block is the same of the input one, so, in order to match
the delay condition for all the blocks of the processing element, input data should
be given at least every K cycles: K = max{dn} with n = 1, 2, . . . , j.

The throughput that can be achieved is 1/K; however, without exploiting the
intrinsic pipelined nature of the cell (where each block is a new stage of pipe), data
would be given at the end of the whole computation, hence the throughput would
be 1/

∑

n dn; it is then clear that a speed-up of
∑

n dn/K can be achieved.

As shown in Figure 3.3, one cell receives data from previous cell at time T0

and will produce the output at time T0 + D. Inputs from the external are given
every Kmin cycles; the delay between one cell and the successive is D, hence the
external inputs to the following cell shall also have a delay of D with respect to the
corresponding inputs in the previous cell. In other words, first processing element
can be fed with input data at time 0, K, 2K, . . . ; second processing element instead
is fed with data at time D, D +K, D + 2K, . . . and so on.

While this analysis is quite simple and straightforward, it is possible to define
some general rules for the optimization of WOIL SAs: given one Systolic Array
implementing a specific function, first it is necessary to understand if cells have no
internal loops. If this is the case, the cell must be decomposed in the minimum
atomic operations. For each of these atomic operations it is necessary to evaluate
the delay. Then, the maximum of the delays will set the timing constraints for the
PE.

3.2.4 WIL SA Optimization

WIL-S and WIL-PT systolic arrays can be optimized at a cell level exploiting inter-
leaving.

Consider the PE shown in Figure 3.4: in order to match timing of inputs with
delay of the feedback, inputs must be given every Tloop = Tff + Tfb cycles, that is
the total time of the feedback loop. However, given the intrinsic pipelined nature of
the structure, we can improve performance and usage of the cell giving inputs every
K = max{dn}, as done for the cells without loop.

Every K cycles a new operation can start, and in this way N different operations
can be interleaved, being N = Tloop/K (integer division). After Tloop cycles, the

33

3 – Systolic Arrays Optimization

second set of inputs is fed; evaluations on these inputs will be done and stored in
the registers of the loop.

When Tloop is not a perfect multiple of K, the remainder of the division, called
R, must be taken into account: after N operations have been started, the following
one must start with a delay of K + R with respect to the previous, so to have
synchronization with the result coming from the loop. R represents a number of
“stalls” that must be inserted between one set of N inputs and the following set.

Consider the following example: Te = 3, Tff = 3, Tfb = 10; it is possible to
interleave Tloop/K = 13/3 = 4 operations, inserting a stall (R = 1) after each set of
4 inputs.

With respect to the normal usage of this kind of PEs, it is possible to evaluate in
the same time N different operations, having an increase in performance of N . The
number of stalls represents a factor of performance decrease, that must be carefully
analyzed at design time; consider this other example: Tff = 20, Tfb = 6, K = 9; it
will result in N = 2 and R = 8. In this case it would be favorable to increase of 1
cycle the delay of the feedback, so to have 3 possible interleaved operations, and no
stalls.

As far as the global array is concerned, in the case of WIL-S SAs, processing
elements work independently each from the others, and the only connections are the
shift registers to pass inputs from one cell to another. Being L the length of the shift
register in each cell, inputs must be given with the same rule for all cells (number of
interleaved operations and stall cycles), but starting at cycle Si = mi ×L; mi is the
Manhattan distance between cell i and the top-left one (if we consider data moving
from top to bottom and left to right).

In the case of WIL-PT it is instead common to have a synchronization relation
between cells that must be guaranteed. It is therefore not possible to derive a general
equation to give some standard rule to provide inputs to the whole array.

3.2.5 Results

We have defined how it is possible to increase the performance of a Systolic Ar-
ray acting on the elements of a Processing Element, inserting more pipeline stages
to have higher operating frequencies, or acting on inputs, to provide them at the
maximum rate supported by the Array. Now it is necessary to have some metrics
that can tell us how good is the enhancement that we obtain increasing the pipeline
stages or providing more inputs.

In order to evaluate this improvement, the Cell Updates Per Second (CUPS)
parameter can be computed. This is a measurement parameter widely used when
comparing architectures for protein sequence alignment; here we inherit it to com-
pare performance among SAs in the most general case. However, the peak CUPS
are often evaluated as the number of PEs times the frequency; here we introduce

34

3.2 – Data Interleaving in Systolic Arrays

different methods to evaluate CUPS that directly takes into account the interleave
level, the size of the array and even the number of inputs. In a systolic array, PEs
rhythmically compute and pass data through the system [50]. Timing of operations
follow a “wavefront” order; if we assume that the top-left PE is the one that starts
operating first, the bottom-right one will be the last to complete operations. Given
a finite number of inputs, the bottom-right PE is also the one that finishes later
computation; hence, total time will be given by the time at which this PE will finish
to compute the last result. Total time, Tend, is then given by the time for last inputs
to reach last PE, plus the time to execute the operation inside the PE itself, called
Tcell. In the following we will analyze the case of WOIL SA and WIL SA, evaluating
the total time of computation and then the CUPS.

3.2.5.1 WOIL Systolic Arrays results

In a WOIL Systolic Array we have to differentiate between vertical and horizontal
propagation. We consider here that results are evaluated through rows. Then, ver-
tical propagation of inputs is achieved through shift registers of length L; horizontal
propagation of partial results depends on the computational time of the cell, hence
it is given by the delay of the horizontal path called D according to Figure 3.3. In
the following we also consider that the SA is a square one with N PEs per side.

Call T
(i)
end the time at which computation of i-th result is available. Then: T

(1)
end =

(N − 1)L+ (N − 1)D + Tcell, and considering last input p, we obtain equation 3.3.

Tend = T
(p)
end = (N − 1)L+ (N − 1)D + (p− 1)K + Tcell (3.3)

Notice that this equation does not change if results are evaluated through vertical
lines rather than through rows.

Equation 3.3 expresses the total time needed for executing operations on a N×N
SA that receives p successive data from each input path. During this period of time
each cell will execute p operation (one every time a new input is received). Then,
the total cell updates are pN2, and, given the clock frequency in ns, GCUPS (Giga
Cell Updates Per Second) can be evaluated as:

GCUPS = fclk
pN2

(N − 1)L+ (N − 1)D + (p− 1)K + Tcell

(3.4)

This equation must be adapted in two cases: when the array is used without
interleaving operations (i.e., without exploiting internal pipeline of the cell), and
when interleaving is exploited to achieve an improvement in performance.

In case of no-interleaving equation 3.4 can be adapted considering p = N . In
case of n-interleaving instead, each cell will update n times than the previous case,
hence p = nN ; this increase reflects also at the denominator of equation 3.4 as an
increase in total time.

35

3 – Systolic Arrays Optimization

 0

 50

 100

 150

 200

 0 20 40 60 80 100

G
C

U
P

S

N

WOIL

NO Interleave

Interleave n
=
1

n
=
8

Figure 3.5. The effect of interleaving in terms of GCUPS: for the
same N ×N WOIL-S SA, interleaving and increasing frequency allow
achieving better results. [51]

In Figure 3.5 we have plotted the GCUPS depending on number of cells N . It
is clear that better results can be achieved by increasing frequency and using deep
interleaves; if we just increase frequency and exploit pipelining, still with n = 1 we
have an improvement with respect to the original case. The improvement saturates
with the increase of n.

Since pipeline requires more hardware resources (registers) and in general it in-
creases latency, designers should be aware of the fact that after a certain point
performance improvement do not justify higher costs in terms of area (and conse-
quently power dissipation).

3.2.5.2 WIL Systolic Arrays results

Consider a WIL-S Systolic Array; in this case the inputs for the last PE are inputs
to the whole array that have been shifted through registers. We have previously
defined L as the number of cycles needed for an input to pass through a cell, that is
the number of registers of the shift chain. In this case we can assume that this value
is equal to transmit data left to right or top to bottom. The first set of inputs will be
available at the last cell after 2(N − 1)L, where 2(N − 1) is the Manhattan distance
between first cell and last one in an array of N×N PEs. Following equation results:

36

3.2 – Data Interleaving in Systolic Arrays

T
(1)
end = 2(N − 1)L+ Tcell.
Let us call K the delay between one input and the following one; if we have p

inputs, then we have the total time will be as expressed in equation 3.5:

Tend = T
(p)
end = 2(N − 1)L+ (p− 1)K + Tcell (3.5)

Equation 3.5 and equation 3.3 correspond when D = L.
GCUPS in the case of WIL-S SA can be computed as reported in equation 3.6:

GCUPS = fclk
pN2

2(N − 1)L+ (p− 1)K + Tcell

(3.6)

This equation must be adapted in two cases: when the array is used without inter-
leaving operations, and when interleaving is exploited to achieve an improvement in
performance.

As already discussed for WOIL SA, in case of no-interleaving equation 3.6 can be
adapted considering p = N . In case of n-interleaving instead, each cell will update
n times more than the previous case, hence p = nN ; this increase reflects also at
the denominator of equation 3.6 as an increase in total time.

 0

 50

 100

 150

 200

 0 20 40 60 80 100

G
C

U
P

S

N

WIL

NO InterleaveInterleave n
=
1

n
=
2

n
=
4

n
=
8

Figure 3.6. The effect of interleaving in terms of GCUPS: for the same N × N
WIL-S SA, interleaving and increasing frequency allow achieving better results. [51]

The advantage of interleaving is shown in Figure 3.6. The higher the number
of PEs in the array, the higher is also the increase, in terms of GCUPS, that is

37

3 – Systolic Arrays Optimization

achieved using interleaving. However, the increase in performance saturates, and
after a certain point, higher values of p do not translate in further significant increase
in performance.

One particular case is interleave with n = 1; in this case there is not an interleave
inside the loop (i.e. there are not 2 values traveling along the loop together) but
still the pipelined nature of the PE is exploited to improve performances.

3.2.6 Data Interleaving in CMOS and NML

In previous paragraphs we have detailed the performance improvements that can
be achieved applying pipeline interleaving to Systolic Arrays. The rigorous analysis
allows to adopt this mechanism for nearly all kind of SAs. In this paragraph we
detail the actions that must be taken by a circuit designer to achieve best-performing
circuits with the right adoption of pipeline interleaving. The approach is different
for CMOS and NML, so we will also point out what are the analogies and the
differences.

Circuit design in CMOS is about finding the right balance between operating
frequency and area occupation. Power dissipation will be closely dependent on area.
Given an initial design for a CMOS Systolic Array, used to implement a certain
algorithm, the designer must first identify the atomic elements of each Processing
Element. This allows to understand what is the current critical path delay and the
basic level of pipelining/interleaving that can be applied. Sometimes this could also
be enough for an efficient usage: if the array has been originally designed trying
to balance as much as possible the critical paths and achieving a high operating
frequency, it could be sufficient to act on inputs providing them in the right manner
(i.e. with the right delay and if the circuit already supports it, interleaving unrelated
operations).

However, in most of the cases the design will need a refinement and should be
speeded-up. Here is when pipelining and interleaving techniques can give their con-
tribute. Given that pipelining technique is quite common and similar to interleaving
except for the relation between successive inputs, let us concentrate on interleaving.

If the critical path is outside the loop, it is sufficient to insert additional registers
in between and in this way reduce the value of K = max{dn}. If the critical path is
in the feedback loop instead, it is possible to apply proficiently interleaving. In this
case the number of operations that can be interleaved will grow, but at the same
time area and power dissipation will be impacted by additional registers. Usually
the first stages of interleaving are quite advantageous, while increasing too much the
interleave level will not produce additional value.

So the design is an iterative process, in which additional stages of interleaving are
added one by one and every time some common metrics like the Power Delay Product
are evaluated to find the best level of interleave. It is also possible to perform an

38

3.3 – Latency Insensitive Systolic Arrays

initial analysis with the equations that we have provided. These allow to extrapolate
a trend in performance increase given by additional level of interleave. In the same
way it is possible to design some curves that reflect the circuit area increase with
interleaving. Combining these curves it is possible to identify the best-minimum.

The description below is valid for CMOS, where it is possible to change the level
of interleaving adding new registers in the loop. When we consider NML instead,
the delay of the loop is fixed and it is given by its layout, due to the “Timing =
Layout” problem. Changing (increasing) the delay would mean to re-design all the
circuit to have the correct synchronization among signals. For this reason in NML
the approach to data interleaving is different: given a circuit layout already defined,
a static analysis allows to understand how many operations can be interleaved.
Most of the work is then devoted to the generation of the correct sequence of inputs
to use interleaving and exploit the intrinsic pipelined nature of this technology.
Without interleaving, NML circuits would have dramatic performance due to these
long delays.

3.3 Latency Insensitive Systolic Arrays

Another enhancement that can be applied to Systolic Arrays in the eye of NML
implementation is the creation of Latency Insensitive Processing Elements. We will
go more in the details that drove us to take this research path in paragraph 3.3.1.
Then we will describe the communication protocol adopted in paragraph 3.3.2 and
the structure of the Processing Element in paragraph 3.3.3. Finally we present an
application example in paragraph 3.3.4.

3.3.1 Motivation

NanoMagnet Logic (NML) is affected by the “Timing=Layout” problem, as we have
described in the introduction. Generally there can be two ways to approach this
problem.

The first is to have a careful design that is able to balance all the paths delays so
to ensure that data arrive at a computational block with the correct timing. This is
a common approach, that we have used for example for the design of NML Systolic
Arrays where all processing elements can be identical. In this phase we do not
consider eventual tolerances necessary for the production process, but we consider
that the final circuit can respect the delays imposed during the design phase and
verified through simulations.

The second way to deal with the “Timing=Layout” problem is to make circuits
able to support different delays of inputs. This is the path that we want to follow
in this research topic. Basically, the circuit is enriched with some synchronization

39

3 – Systolic Arrays Optimization

blocks, so that when an input arrives at the boundary of a computational cell, it
is stored and saved until all other inputs are available. Only at that moment the
processing is executed.

Normally, a Latency Insensitive circuit requires additional area, power and gen-
erally introduces some delay. However, without this kind of circuit the design of
NML circuits becomes nearly unpredictable. While for classic systolic arrays it
is possible to approach carefully one Processing Element and then replicate it N2

times, thus reducing the design of the Array to the design of the singe PE, there are
other architectures where there is not such regularity of structure.

In Chapter 4 we will introduce a Reconfigurable Systolic Array (RSA), where
each processing element can be configured to execute a different operation. Of course
operations have not the same delay: a multiplication may require much more time
than an addition. If we need to synchronize all the operations with the same delay,
we should set on the lowest operation, wasting an incredible amount of time. On
the contrary, adopting a Latency Insensitive approach, each Processing Element can
execute operations in the minimum necessary time. Then synchronization blocks are
used to manage all the inputs. This is far more advantageous and gives even more
flexibility to this architecture.

We still consider Systolic Arrays as the principal architecture for NML because,
as we have seen in Section 3.1, they can deal with the main disadvantages of this
technology. Nevertheless this approach can be used also with any other circuit.
Moreover, this approach is valid also for CMOS circuits in case of logic blocks with
different delays.

Given a Systolic Array, we design in the next paragraphs the elements necessary
to provide this Latency Insensitive interface among processing elements. The whole
circuit is of course synchronized using clock signals, but the PEs communicate using
an asynchronous protocol.

We have exploited the opportunity of this re-design of Processing Elements (with
interface blocks for Latency Insensitive circuits) to introduce also a new kind of PEs:
these are octagonal elements that can communicate with eight boundary cells. This
gives more flexibility to the array and will be particularly interesting for image
processing algorithms as we will detail in next section. In our flexible design PE
inputs that do not receive any signal are simply ignored and an eight-sided cell can
be used as a cell with less I/O sides. Each I/O side has a data bus and a control
bus. The first one carries both information that has to be processed and results of
execution, while the latter contains configuration bits for the PEs.

3.3.2 Proposed Communication Protocol

The first step in the design of Latency Insensitive circuits is the communication
protocol that must be used between PE. The final goal is to have array cells that

40

3.3 – Latency Insensitive Systolic Arrays

handle the local synchronization on their own and perform their computation cor-
rectly even if they receive different inputs at different times. This can achieved
employing a self-timed approach using an handshaking protocol. Several possible
solutions have been analyzed before settling for a two-way handshake, the simplest
protocol that prevents errors in the propagation of information.

TX RX

data

valid

request

Figure 3.7. Signals involved in the communication between a transmitting cell
(TX) and a receiving cell (RX).

Even if all the cells are identical, neighboring PEs are not necessarily performing
the same task at the same time; if a PE is ready to send out its output, the reader
might not be ready, or counter wise the reader can be ready but the sender is not.
The chosen two-way handshaking technique has the advantage of providing blocking
read and write operations, which means that a PE is stuck in either operation until
it is over. This means that no data can ever be lost, but there is a drawback in the
timing overhead. Synchronization between PEs requires an exchange of signals and
this takes time: introducing additional delay slows down the whole structure, but
that is a small price to pay if correct data transmission is guaranteed. The asyn-
chronous communication protocol involves two synchronization signals: request
and valid, as shown in Figure 3.7.

When the transmitting PE (TX) wants to send out an output, it sets the valid
signal and waits. The receiving PE (RX) now knows that its input is valid and it
reads it as soon as it can, storing it inside its input registers. The RX PE then sets
the request signal for the duration of one clock cycle to communicate that the data
has been received. To prevent loss of information a new read will not start until the
valid signal goes to ‘0’ again.

Upon seeing the request the TX PE sets the valid signal back to ‘0’ and the
communication is over.

The example of Figure 3.8 presents the ideal situation where the output data
is read immediately. In this case the TX PE is stuck in write mode for the least
amount of time: 3 clock cycles. If the RX PE is not ready to receive a new data as
soon as Valid becomes True, the sender PE has to wait for a longer time. The RX

41

3 – Systolic Arrays Optimization

Clock

Data Out DATA 0

Valid

Data In DATA 0

Request

Clock

Data Out

Valid

Data In

Request

Figure 3.8. Timing diagram for the transmission of DATA 0.

PE takes only one clock cycle to read and store its input data, but it may be stuck
waiting for it, introducing a delay.

In conclusion, the delays are unpredictable, but they are always correctly man-
aged. They are related to the delays on the array inputs, to the way the data
propagates through the structure and to the difference in execution time of the dif-
ferent PEs. If a PE has more than one input side, it waits for all inputs to be
available before starting its computation. In the same way, before starting a new
computation, a PE waits until all its outputs are read by its neighbors. Because of
this, the reader block outside plays a key role: reading the outputs of the array is
necessary to make it work. The blocking nature of the read and write operations can
slow down the circuit, but it guarantees correct execution. At this point the true
data-driven nature of the structure becomes evident, and it is exactly this behavior
that keeps the computational wavefronts separated and prevents loss of information
or wrong computation. No global control is required, each PE independently follows
a few synchronization rules and that is enough to make the system work.

3.3.3 Latency Insensitive PE

We will now describe in more detail the architectural elements that must be intro-
duced to give a Processing Element the Latency Insensitive feature.

Normally a Processing Element has inside the computational elements to execute
the algorithm. In this case instead, the architecture of the PE shall be modified as
shown in Figure 3.9. The cell is composed of three type of blocks:

• Algorithm Block: this is the common block that executes the operations to
implement the algorithm;

42

3.3 – Latency Insensitive Systolic Arrays

• I/O Blocks: these blocks, one for each side, manage communication between
PEs.

• Communication Block: this element manages synchronization among all
I/O blocks, to guarantee that no new operation is started inside the PE if the
output blocks have not yet delivered their results.

PE
I/O

I/O

I/O I/O
comm

algorithm

EN

EN

EN

EN

Figure 3.9. Internal blocks of a 4-sided cell. The EN signals are the enables for
the registers of the I/O blocks.

In the following each of these elements is described in more details.

3.3.3.1 Algorithm Block

This is simply the element that executes the algorithm. It is composed of logic
computational blocks and intermediate registers if necessary. In Chapter 4 we will
describe how to design an Algorithm block that can execute different operations
and can be run-time configured to change the algorithm that it implements. An
example of simple algorithm block is instead presented in Section 3.4, implementing
the Floyd-Steinberg algorithm. This is the only block that does not depend on the
Latency Insensitive nature of the circuit.

43

3 – Systolic Arrays Optimization

Figure 3.10. Internal I/O block structure. The signals on the left are the ones
coming from the outside, while those on the right go inside the cell. [52]

3.3.3.2 I/O Blocks

Input/Output blocks are placed at the boundaries of the PE. There will be one I/O
block for each side. While commonly one side is used only as input or output, this
I/O block can manage both input and output at the same time. In this way it is not
necessary to differentiate at design time and this makes the entire PE more flexible
also in the eye of the Reconfigurable version.

A simple schematic of the I/O Block is shown in Figure 3.10. The input valid and
request signals do not pass through registers, they are just used for synchronizing
data exchange. Data and control bits, instead, need to be stored in a set of registers
enabled by the PE only when new data is requested. The outputs are also stored in
a set of registers, so that they do not change until the next outputs are ready.

The management signals that enter in the I/O Block are controlled by the Com-
munication Block described in next paragraph.

3.3.3.3 Communication Block

The Communication block handles synchronization between I/O blocks and indi-
rectly with other PEs. Its role is to execute the protocol defined in paragraph 3.3.2.
Let us define a “communication cycle” the time from when inputs are read to when
outputs are delivered inside a PE. During a communication cycle, as long as the
cell is waiting for new inputs, it is said to be in waiting state. Once the inputs are
received, it exits this state and does not return in it until it has delivered all its
outputs.

Inputs are of course received using the valid and request signals to synchronize

44

3.3 – Latency Insensitive Systolic Arrays

Figure 3.11. The algorithm implemented by the Communication block. [52]

the communication. The communication block now waits for the algorithm block to
produce the output values; once they are all ready, the corresponding valid signals
are set. When all outputs have been delivered, the PE goes back to the waiting
state and a new cycle can begin.

To generate this logic, several sub-blocks have been defined in the Communi-
cation Block. These sub-blocks generate flags that are used to synchronize the
communication algorithm and verify its execution. Mainly they are:

• Indata valid: a flag that indicates that inputs are valid and can be used for
computation;

• Waiting: a flag that indicates whether the PE is in waiting phase where not
all inputs are ready, or it is in computation/delivering phases;

• Valid: this is the flag that indicates that result is ready to be delivered;

• Delivered: this is the flag that indicates that results have been delivered and
a new cycle can start.

We will not enter into the details of the logic circuit design, for which it is possible
to refer to [52], but is useful to highlight some of the main interactions among flags
and blocks. A simple scheme of the algorithm processed by the communication block
is shown in Figure 3.11.

First, the Valid signal is set by the algorithm block and directly used by the
output blocks. The Delivered signal is instead dependent on the successive PEs
that refer when they have received and started using the result of the PE. When

45

3 – Systolic Arrays Optimization

Delivered is set, Waiting flag is asserted. It will be reset when the other flag
Indata valid will become true.

This is basically the behavior of the communication block, that has been de-
signed in VHDL and simulated along with the others. One example is reported in
next paragraph, while a more complex one based on Floyd-Steinberg algorithm is
described in next Section.

3.3.4 Application Example: Matrix Multiplication

The first chosen algorithm to show the impact of Latency Insensitive circuitry on
Systolic Arrays is Matrix Multiplication. This algorithm can be mapped to a square
Systolic Array in two ways: a WIL Systolic Array with results that will be stored
inside the PE, or a WOIL Systolic Array with results traveling in a column (or row)
and one of the two multiplicand matrices stored in the PE. For our test we consider
the WOIL implementation.

The array we have proposed for Latency Insensitive approach is an Octagonal
array with eight-sided PEs. If we want to map the Matrix Multiplication in this
array, we propose two options as shown in Figure 3.12. It is clear that the array is
not used completely, since some cells will not be necessary. Nevertheless this is a
good option if this array shall implement several algorithms. As we will see in next
Section, the octagonal Systolic Array can be used for image processing algorithms
such as the Floyd-Steinberg algorithm. In the eye of a reconfigurable array, the
flexibility of this architecture is fundamental to allow as many algorithms as possible
to be mapped in this array.

(a) (b)

Figure 3.12. Octagonal Systolic Array used for Matrix Multiplication.
Two possible mappings.

46

3.3 – Latency Insensitive Systolic Arrays

In the WOIL implementation of the Matrix Multiplication algorithm each PE is
composed by a multiplier and an adder. The parallel multiplier could be extremely
expensive in terms of area occupation and power dissipation. For this reason we
designed a serial Booth multiplier that works on N bits at every cycle. While this
is more time consuming in general, it is possible to identify a speed-up mechanism,
described in next paragraph.

3.3.4.1 Serial Booth Multiplier

Figure 3.13. Structure of the serial version of the Booth multiplier.

The Serial Booth multiplier shown in Figure 3.13 basically implements the com-
mon Booth algorithm, with an accumulator to sum up the partial result. Usually
when a multiplication is executed bitwise, there will be some elements that remain
at 0 and do not add any information. For example, imagine to execute 00110101b
× 00000101b. The second operand has five ‘0’ in most significant bits, therefore the
result of the multiplication of the first operand for these five bits is ‘0’ and can be
neglected.

47

3 – Systolic Arrays Optimization

Through a control mechanism we enhanced the Booth multiplier, in such a way
to be able to detect when the successive operations will be useless. So, the Valid
signal is asserted even before the real computation has finished, but when the result
is already the final one. Of course this will give an uncertain delay to each Processing
Element. Depending on the inputs, each PE could need more or less clock cycles to
produce the result. This result availability uncertainty is managed with the Latency
Insensitive Array.

We have implemented this array in VHDL and simulated with a random set of
inputs. Results were correctly achieved and the variable delay was managed by the
Latency Insensitive circuit as expected [52].

3.4 Systolic Array for the Floyd-Steinberg algo-

rithm

In previous Sections we have introduced Systolic Arrays and their optimization
techniques. Then we have focused our attention on Latency Insensitive Systolic
Arrays, showing one additional mechanism to give this architecture more flexibility
and to make it more attractive for NML.

In this Section we present an example of application based on image processing.
This on the one hand shows that the Systolic Array is a great architecture when
multiple data can be processed in parallel, as in image processing algorithms. On
the other hand it is used to demonstrate that the latency insensitive circuit can be
applied to real operating environments.

We first provide an introduction to the Floyd-Steinberg algorithm in paragraph 3.4.1,
and then we show how to map it to the Latency Insensitive Array in paragraph 3.4.2.
Finally

3.4.1 Floyd-Steinberg Algorithm

In digital audio and video processing, the quantization of data yields error patterns
that produce undesirable artifacts, such color-banding in images. Dithering tech-
niques are then used to redistribute the quantization error to prevent these patterns.
One of the most typical application is the conversion of a grey-scale image to a black
and white image.

When the conversion is performed without dithering (Figure 3.14(b)), each pixel
is simply compared to a fixed threshold value. With this reduction of quantization
levels large monochrome patches are generated and the re-quantization error on the
whole image would be very large. Employing an error diffusion dithering technique,
the redistribution of the quantization error lowers the overall error on the whole

48

3.4 – Systolic Array for the Floyd-Steinberg algorithm

(a) Original image (b) Threshold (c) Floyd-Steinberg dither-
ing

Figure 3.14. Image processing - bit depth reduction.

image, eliminates the monochrome patches and preserves more details of the original
image. In Figure 3.14(c) Floyd-Steinberg dithering has been applied.

The Floyd-Steinberg algorithm is quite old as concept but, since it produces a
very fine-grained dithering, it is still used and there exist a lot of variations. The
algorithm scans the image pixel by pixel, from left to right and from top to bottom,
starting in the top left corner. It reduces the quantization level on the current pixel
and pushes the residual error onto the neighboring pixels. The distribution of the
error follows is done weighting the error as in matrix 3.7.

 ∗ 7/16
3/16 5/16 1/16

 (3.7)

The asterisk represents the current pixel while the different values are the weights
associated to the four neighboring pixels. The blanks are the positions of the pixels
that have been already scanned. Mapping this algorithm onto an array structure
is rather intuitive: each pixel is assigned to an octagonal PE, which reads its four
inputs, performs quantization on its own pixel and diffuses the quantization error
onto its four neighboring PEs.

The original pixel values have to be preloaded inside the PEs and then, during
execution, they are reevaluated considering the redistributed quantization error.
The local communication involves only the quantization error, so the new values do
not propagate through the structure. Instead, they can be retrieved in parallel with
the successive preload phase.

49

3 – Systolic Arrays Optimization

Figure 3.15. Signal propagation in the octagonal Systolic Array for Floyd-
Steinberg dithering.

3.4.2 Latency Insensitive Implementation

The PEs have eight sides and are placed in an orthogonal grid, replicating the grid
of pixels in an image. The array structure of Figure 3.15 presents the order of
processing with numbers inside the cells.

During execution phase the PEs add the four inputs to their own pixel value,
reduce the quantization level of the result and multiply the quantization error by
the output coefficients. So, the computation of the elements of matrix 3.7 are done
on the pixel PE, and transmitted already with their weight to the destination PEs.

In our PE implementation, the four sums are performed one after the other by a
serial adder, controlled by a 2-bit counter, as shown in Figure 3.16(a). This structure
has been chosen over a parallel approach to save area. Once the input quantization
errors have been added, the quantization level is reduced finding the closest color in
the available palette (black or white). Finally, the new pixel value is compared with
the original one to obtain the quantization error and, in the Coefficients block, the
distribution coefficients are applied to obtain the outputs of the PE.

The schematic of the entire PE circuit is shown in Figure 3.16(a).
The coefficients are applied through a series of shifts and sums, so no multiplier

is required, as shown in Figure 3.16(b). This is possible because the values are
fractions of a power of 2. Shifting right performs an integer division, which trun-
cates any fractional value. In general such approximation could cause issues during
computation and lead to wrong results, but in the case of image dithering this does
not matter. The purpose of these operations is to obtain a new quantized image

50

3.4 – Systolic Array for the Floyd-Steinberg algorithm

(a)

(b)

Figure 3.16. (a) PE Logic for Floyd-Steinberg dithering algorithm. (b) Implemen-
tation details for the Coefficients block.

with redistributed error and no color banding, so that, while being represented on
a smaller number of bits, it maintains a certain level of detail and clarity when
compared to the original.

The quality of the final result is to be judged by the human eye, so small ap-
proximations on the decimal numbers of a pixel does not matter, especially if the
original representation cover enough bits. What matters is that the density of black
pixels after dithering is close to the average level of grey in the original image.

3.4.3 Simulation

The Floyd-Steinberg algorithm implemented in the Latency Insensitive Systolic Ar-
ray has been a great opportunity to push forward our research in several ways. First,
we have mapped this algorithm to a new, octagonal, systolic array. Second, it has
been the occasion to see the performance of such systolic array for image processing
algorithm. Last, but not least, we had the opportunity to verify with more details
and with a real scenario the capability of the Latency Insensitive Array.

We have created a Matlab script that performs the Floyd-Steinberg algorithm
(and we have double checked with some library functions in Matlab). Then we have
provided the same inputs to the Matlab script and to the VHDL of the Array in

51

3 – Systolic Arrays Optimization

simulation. The delay of each cell was chosen randomly by a configuration file.

In this way we have verified that: the result of our hardware module are correct,
compared to the Matlab results; the random delay given to each cell does not block
the computation and is correctly managed by the Latency Insensitive SA. Each PE
is able to autonomously wait for all the inputs and produce the output only when it
is correct. Further details about this simulation are given in [52]. Notice that this
algorithm has no back-dependencies, that is one important constraint for this type
of data dependent architectures. If there was a data dependency between the output
of one PE and the input of a previous PE, then deadlock prevention mechanism are
necessary.

3.5 Final Remarks

In the approach to NanoMagnet Logic we have identified some technological limita-
tions: low clock frequency and long latency of wires are the most important ones.
While at the moment there is not a technological solution to address these limitations
(except from a drastic change of technology), it is possible to provide answers to
these problems through careful architectural choices. Long interconnections should
be avoided and parallel architectures that can increase the throughput (limited by
the low clock frequency) should be preferred.

In this framework the ideal architecture solution is represented by Systolic Ar-
rays. These are parallel architectures made of regular Processing Elements locally
interconnected. Systolic Arrays have been thought till now only for CMOS technol-
ogy, and only recently they have gained a certain amount of interest.

The Systolic Array simple concept can be enhanced with several considerations.
In this research path we have thought to Systolic Arrays for NML and we have
identified some improvements that can be applied. The following achievements can
be mentioned:

• Classification of Systolic Array based on PE structure: till now some classifica-
tion of Systolic Arrays have been presented, based on the size and shape of the
architecture and on the way data travel through the array. Here we provide a
new taxonomy, that is based on the internal structure of the PE and on the
way results are exchanged with other PEs. This taxonomy is fundamental to
distinguish the improvement that can be applied (pipelining for PEs without
internal loops, interleaving in the other cases).

• Data Interleaving in Systolic Arrays: if implemented in NML, a Systolic Array
will still be inefficient due to a certain delay of connections (even the shorter
ones). We have defined a rigorous way to introduce data interleaving and

52

3.5 – Final Remarks

avoid the throughput reduction due to this delay of wires. The approach can
be used with any Systolic Array and any technology.

• Latency Insensitive Array: synchronizing an NML circuit is quite complex
due to significant delays of logic elements. To avoid that, it is possible to use
Asynchronous logic circuits. We have introduced this improvement in Sys-
tolic Arrays with a precise communication protocol. Nevertheless, the same
approach can be generalized to any logic circuit (in NML and other technolo-
gies).

• Systolic Array for the Floyd-Steinberg algorithm: with the aim to test the
latency insensitive systolic array, we have designed a processor able to execute
correctly and with random delays the Floyd-Steinberg algorithm for image
dithering.

With all these achievements it is possible to state that Systolic Arrays are a great
architecture for NML and that it can be really exploited using the improvements
proposed to outperform CMOS and trace the path towards the post-CMOS era.
Nevertheless, other improvements to the Systolic Array concept can be introduced
and they are described in next chapters.

One important aspect to underline is that these improvements, tailored for NML
in our discussion, are valid also for other technologies. Also CMOS circuits can
benefit from data interleaving as we have stated in paragraph 3.2.6. Therefore, even
if NML will not be the technology of the future, these achievements can be still
considered and could improve new nanotechnologies with similar characteristics as
well.

53

Chapter 4

Reconfigurable Systolic Array

In previous Chapter we have analyzed Systolic Arrays as ideal architectures to design
NanoMagnet Logic (NML) circuits. Systolic Arrays can guarantee a throughput
increase with parallelization of tasks in several Processing Elements (PEs) and at
the same time reduce at the minimum the delay of wires, having regular and short
interconnections.

Nevertheless, we have seen that some improvements shall be introduced in order
to meet the peculiar characteristics of this new technology: asynchronous logic cir-
cuits and data interleaving have been presented and discussed. These optimization
are applicable also to CMOS technology, thus making them even more interesting.

With the same principle we have studied an enhanced architecture that we have
called “Reconfigurable Systolic Array” (RSA). This is a Systolic Array able to im-
plement several algorithms. We present in this Chapter this research path, starting
from the motivations that drove us to this choice, in Section 4.1, to the description
of the architecture in Section 4.2. Then we present some of the algorithms that can
be mapped onto the RSA in Section 4.3, and finally we summarize the results in
Section 4.4.

4.1 Motivation

In this Section the reasons that led us to the introduction of the Reconfigurable
Systolic Array are discussed. First, we describe the limits of common Systolic Arrays
in paragraph 4.1.1. Then the approach used for reconfigurability that we want to
introduce is presented in paragraph 4.1.2. Finally we will cite some already existing
reconfigurable architectures in paragraph 4.1.3.

54

4.1 – Motivation

4.1.1 Limits of Systolic Arrays

We have analyzed thoroughly the adoption of Systolic Arrays for NML technology
in previous Chapter. The adoption of Systolic Arrays for NML is quite obliged, in
order to deal with the main limitations of this technology.

Let us consider for a moment the actual usage of Systolic Arrays (SAs) with
current technology. In CMOS, SAs are usually designed as dedicated co-processors
to accelerate a given task (usually, a computational-bounded algorithm). This is
done implementing ad-hoc designs that cannot be reused for other operations, i.e.
they are algorithm-dependent. For this reason SAs have been adopted only for a
small subset of problems requiring a high number of calculations: signal processing
[34], video processing [37], biological sequence comparison [43][44].

If, instead, it is required to accelerate a given task without the effort of design-
ing and producing a costly dedicated Systolic Arrays, the same algorithms can be
mapped to FPGA [53][54]. In this way the hardware could be reused if a different
algorithm must be implemented.

The first case (ad-hoc ASIC) can be used only for a small set of algorithms
while the second (implementation on FPGA) limits the operating frequency and the
number of Processing Elements that can be mapped. We propose, as a solution to
this disadvantageous duality, the introduction of a Reconfigurable Systolic Array. It
must inherit the following attributes:

• From classic Systolic Arrays, it must have a regular layout and high clock
frequency in CMOS. It must be faster than FPGAs, so to guarantee higher
throughput.

• From FPGA, it must have a reconfigurability capability. It must be able to
execute several algorithms and must have a configuration phase to choose the
operation to execute inside each PE.

The concept of the Reconfigurable Systolic Array is graphically summarized in
Figure 4.1: the RSA shall have an adaptability similar to the one of FPGAs but
with speed performance of normal Systolic Arrays.

With these constraints we have approached the design of the Reconfigurable
Systolic Array as described in next paragraph.

4.1.2 The Reconfigurable approach

The Reconfigurable Array Architecture shall overcome one of the main limitations
of classical Systolic Arrays, i.e. the algorithm-dependent relation. Nevertheless it
shall maintain some of the key features of Systolic Arrays, mainly for NML imple-
mentation, that are: avoid long wires and maintain identical PEs.

55

4 – Reconfigurable Systolic Array

Speed

Adaptability

FPGA

RSA

Systolic
Array

Figure 4.1. Reconfigurable Systolic Array concept: in a speed-adaptability
graph, it must guarantee an adaptability similar to FPGAs but with speed
of normal Systolic Arrays.

In particular it is important that all PEs are almost identical when we consider
the implementation in NML. Since an automatic tool for NML is not yet available,
the design of PEs in this technology shall be done ad-hoc and by hand. Subsequently,
designing several different PEs would be too costly and time-consuming. Therefore,
it is necessary to have one single PE type that can be configured in different ways in
order to implement several operations. Moreover it is necessary to balance the PE so
that the delay to execute one operation or another is always the same. This is done
for sake of simplicity in the first version of this circuit, while in future version we
could introduce the Latency Insensitive circuitry and thus use the only minimum
time necessary to execute each operation. Without the asynchronous approach
however, to guarantee synchronization, it is necessary that all the operations require
the same amount of time. Feedback signals will be present in the architecture to have
WIL Processing Elements. The delay is not known before the actual implementation,
but it is possible to use Data Interleaving to maximize performance acting on inputs.

The Reconfigurable Systolic Array shall comprise three phases: the first phase
is called “Reset” and is necessary to clear the registers and reset the array to an
initial configuration; the second phase is called “Configure” and is used to choose
the operations to execute in each Processing Element; the third phase is called
“Execute” and is when the actual operations are performed.

Concerning the “Configure” phase, there are two different options that we have

56

4.1 – Motivation

approached for the design of the RSA. Taking into account that the inputs are
always provided from boundaries, we have decided to use the left side to introduce
the configuration signals. It is possible in this case to manage in two ways the
configuration: 1) each configuration word is provided to one row of the array and is
used to configure the entire line; 2) in each configuration line N words are provided,
each corresponding to one PE, used to configure with a fine-grained approach each
PE independently. This difference in further described in paragraph 4.2.2.

4.1.3 Existing Reconfigurable architectures

In this paragraph we present some Reconfigurable architectures that can be consid-
ered as competitors of our RSA. This analysis has been performed to extrapolate
some of the key features of these solutions that can be implemented in our RSA, and
in order to evidence the situations in which our architecture allows more flexibility.

Among the Reconfigurable SAs that have been proposed in recent years, the
work in [55] presents a reconfigurable architecture for VLSI implementation of BP
neural networks with on-chip learning, while in [56] a general purpose architecture
for the parallelization of nested loops in reconfigurable architectures is described.
Both SAs adopt reconfigurability to address a specific problem’s scale.

There are several other examples of reconfigurable architectures presented in
literature. We present here some of the most interesting: You et al. [57] have
presented a Reconfigurable Systolic Array for solving either single-source shortest
path problem or 0-1 knapsack problem, where the array can be reconfigured into the
other and vice versa according to the problem; Ishimura et al. [58] have proposed a
dynamically reconfigurable array, tested only for matrix multiplication with different
size of operands; finally Mishra et al. [59], have presented an array dynamically
reconfigurable to execute Viterbi decoder with different length of K parameter (from
3 to 6). All these example show that the field of application is extremely limited.

A fully reconfigurable architecture has been proposed in [60]. In this case, a
systematic design approach to map two or more algorithms into a single SA is
exploited. While this research is quite similar to the one we propose, the work in
[60] however lacks real data and physical implementation, and it has been conceived
for CMOS implementation only.

Finally it is clear that while some interest has been given to these reconfigurable
architectures, a final solution has not been yet found. It is also evident that a clear
and exhaustive comparison is beyond the scope of our activities. In this framework
we propose an array that is as much as possible reconfigurable, shifting to the map-
ping and configuration phases the effort of making it effective for a given algorithm.
In this way the hardware costs for the design of the architecture do not impact as
it would have done an application specific array. On the other hand it is of course
necessary to work on the correct choice of configurations to avoid any area or time

57

4 – Reconfigurable Systolic Array

wasting in the execution of the algorithm.

4.2 Proposed Reconfigurable Systolic Array

In this Section we describe in details the Reconfigurable Systolic Array that we
propose. The architecture is shown in paragraph 4.2.1; then we discuss the impor-
tant preloading and configuration phase, in paragraph 4.2.2. Finally we show the
results that can be achieved implementing this architecture with NML and CMOS
in paragraph 4.2.3.

4.2.1 Architecture

In this paragraph we describe the architecture of the Reconfigurable Systolic Array.

PE PE PE

PE PE PE

PE PE PE

ri
g
h
t_
o
u
t_
p
e

ri
g
h
t_
o
u
t_
ch
ai
n

re
su
lt
_
le
ft
_
p
e

le
ft
_
in
_
ch
ai
n

PE PE

Top(1)

L
ef
t(
1
)

C
tr
l(
2
)

Top(0) Top(2)

C
tr
l(
1
)

C
tr
l(
0
)

L
ef
t(
0
)

L
ef
t(
2
)

Figure 4.2. Reconfigurable Systolic Array: this is composed by a square
array of Reconfigurable Processing Elements (RPE). Controlling signals are
given from the left boundary (Ctrl). It is also shown the interface between
two PEs that is composed of two signals: one is the result of one PE that
is given to the successive PE, while the other is the signals that carry input
values from the external (chain signal).

The Reconfigurable Systolic Array is composed by a square array of Reconfig-
urable Processing Elements (RPEs), as shown in Figure 4.2. The interface between
PEs is composed by two signals: right out chain that carries the value coming
from the external inputs through all the PEs and right out pe that is the result
of one PE transmitted to the successive PE.

The structure of an RPE is shown in Figure 4.3. The RPE is composed of
a Reconfigurable ALU, registers, multiplexers and a CTRL block. The latter is

58

4.2 – Proposed Reconfigurable Systolic Array

MUX

Reconfigurable

ALUM
U
X

REG

REG

R
E
G CTRL

result_top_petop_in_chain

ct
rl
_
in

re
su
lt
_
le
ft
_
p
e

le
ft
_
in
_
ch
ai
n

feedback

result

down_out_chain

ri
g
h
t_
o
u
t_
ch
ai
n

REG

M
U
X

ri
g
h
t_
o
u
t_
p
e

down_out_pe

op1

o
p
2

fb

Figure 4.3. Reconfigurable Processing Element (RPE): CTRL block redi-
rects the ctrl in signal to all the configurable elements of the RPE, i.e. the 2
input multiplexers, the horizontal chain multiplexer, and the Reconfigurable
ALU. The transmission of ctrl in signal to RPE below is not represented for
sake of simplicity. [61]

used to redirect the ctrl in signal to multiplexers and to the Reconfigurable ALU.
ctrl in signal defines the behavior of each PE, i.e. its configuration, and it is
transmitted locally from left to right in each PE (this transmission is not represented
in Figure 4.3). Each RPE has 4 input signals: top in chain is a signal provided
from the boundaries of the SA and transmitted with a direct propagation, through
each PE, via a register to down out chain. The same solution is implemented
for left in chain signal, but in this case the propagation can occur through 1 or
2 registers depending on the control signal of the multiplexer. Finally the other
two inputs, result top pe and result left pe transmit the values computed in the
above and left PE respectively (Figure 4.2).

Input multiplexers are used to choose between the two inputs for each side: the
value evaluated in previous PE (for example result top pe for inputs from above)
and the one that arrives from the outside (top in chain for inputs from above).

59

4 – Reconfigurable Systolic Array

+

"

<<

MAC

M
U
XM
U
X

M
U
X

M
U
X

3 op.

op1

op2

'0'

'1'

fb

result

Figure 4.4. Reconfigurable ALU inside Reconfigurable Processing Element. The
set of operations to implement can be chosen during design phase to allow more or
less flexibility depending on the area and power available.

The Reconfigurable ALU can implement a given set of operations, always working
on 3 input data: they can be chosen among input data coming from multiplexers,
stored values ‘0’ and ‘1’, and feedback signal shown in Figure 4.3. In our minimum
proposal, the Reconfigurable ALU can execute addition, multiplication, Multiply
and ACcumulate (MAC), and logic left shifting (Figure 4.4). The adder is simply
implemented as a classical Ripple Carry Adder, while the multiplier is an Array
Multiplier composed of AND gates to perform multiplications and Ripple Carry
Adders to sum partial products. The MAC is actually a multiply and add structure
that can use the fb (feedback) signal as input to implement a MAC. Depending on
the available area, the designer can decide to enhance the ALU providing hardware
for other arithmetic or logic functions. Normally this can also depend on the ty-
pology of algorithms that the designer is willing to address with this reconfigurable
architecture.

Each RPE can be programmed independently from the others. In this way a
given PE in a custom SA that implements several operations can be mapped to a
set of RPEs in the RSA. RPEs are programmed sending a set of Ctrl signals to
the first column of the array (in Figure 4.3 local transmission from one PE to the
successive is not represented). Each PE contains a configuration register that stores
the Ctrl signal. One bit of Ctrl signal is used to select between programming and
normal operation mode (it represents the Write Enable of the configuration register).
The programming/preloading phase is further described in next paragraph.

60

4.2 – Proposed Reconfigurable Systolic Array

4.2.2 Preloading Phase

Preloading Phase is basically composed of two activities: 1)preload necessary data
inside the registers of the PE and 2) configure each PE to execute the requested
operation on selected inputs. The two activities can run in parallel as they use
different buffers.

The preloading is done using the chain signals. These carry the value to preload
and a dedicated bit of the Ctrl signal is used to select the correct Processing Ele-
ment. N clock cycles are necessary, being N the number of Processing Elements in
a row of the array. Even though this is a time-consuming operation, it can be done
in parallel with the downloading of data or the final turn of computation. In this
way the overhead for each new preloading after the first one is of 1 clock cycle only.

Let us focus now on the configuration of the PEs. We have analyzed two pos-
sible solutions for the configuration. In the first solutions, all PEs of one row are
programmed in the same way. In this case it is sufficient to send the programming
word one time from the left boundary. This will be transmitted trough the several
PEs and will configure each of them. In this case the “config” bit of Ctrl signal is
enough to manage the configuration. We will use this configuration for the succes-
sive example of Matrix Multiplication. In the second solution, instead, it is possible
to configure each PE independently. This option gives more granularity but at the
same time requires more hardware to be implemented. The solution we have thought
has been called “Four-in-a-row” method, from the name of the famous game. Basi-
cally The configuration word shall be sent considering that they are configured right
to left in one row. When the first configuration word reaches the last PE (PE N),
one bit inside the PE is set (called “configured” bit). This bit is transmitted to the
previous PE. At successive clock cycle the PE N −1 receives the configuration word
and at the same time the “configured” bit from PE N . In this way PE N − 1 knows
that it is its turn to be configured. This mechanism continues till the first PE and
requires N clock cycles. The implementation of this mechanism basically requires
one additional register in each PE and some simple logic to manage these registers.
The “configured” bit of the successive PE is used as enable of register in one PE,
that takes the value 1 as default. The reset phase is used to clear these registers.

4.2.3 Results in CMOS and NML

In this paragraph we describe the results that can be obtained with the Recon-
figurable Systolic Array, synthesized for CMOS, classic NML with magnetic clock
and MagnetoElastic NML (ME-NML). In this thesis, this is the first technological
comparison presented, although many others will be proposed in Chapter 6.

In CMOS, the RSA was synthesized using Synopsys Design Compiler and a 28nm

61

4 – Reconfigurable Systolic Array

low power commercial library. This is near to the state of the art for CMOS technol-
ogy so we can assume that these results are quite similar to a real implementation.

The RSA was then mapped on NML technology using ToPoliNano, a tool de-
veloped by Politecnico di Torino and able to design NML logic circuits starting
from HDL description. At the time of writing the tool is not yet able to handle
sequential circuits and tackle hierarchical floorplanning. Both functions are under
development. So we have automatically generated the layout of all main blocks
with ToPoliNano, while the floorplan is designed assembling these main blocks in a
custom way.

Figure 4.5. Processing element floorplan and layout. The general floorplan is
shown in the central figure, while on the right the equivalent circuit can be seen.
On top and on the bottom two circuits obtained by ToPoliNano are reported: A
2to1 8 bits multiplexer (top) and an 8 bits adder (bottom). [61]

62

4.2 – Proposed Reconfigurable Systolic Array

Figure 4.5 shows the general floorplan of the processing element, on the left
the equivalent schematic. We have reviewed the design in order to optimize it for
NML. The processing element can be divided formally into two stages. The first
stage is composed of an 8 bits adder and an 8 bits multiplier. The two outputs
are connected through a multiplexer , whose selection is transmitted to the second
stage. The second stage comprises an 8 bits adder and a 16 bits multiplier. This
particular organization was chosen to better exploit the technology characteristics.
Depending on how the multiplexers are configured we can obtain the three opera-
tions required by the programmable processing element (3-operands sum, 3-operands
multiplication and multiply-and-accumulate) and an additional operation (sum and
multiplication) that expands the capabilities of the SA. A shift register is also re-
quired to complete the logic functionality of the processing element. Figure 4.5 (top
and bottom) shows an example of two blocks obtained using ToPoliNano, a 2to1 8
bits multiplexer in Figure 4.5 (top) and an 8 bits adder in Figure 4.5 (bottom).

The floorplan organization has a particular U-shape, where the second stage is
bent under the first one. In this way input signals are from the top-left side and
output signals are connected to the bottom-right side. This solution was chosen
considering the matrix-like structure of the SA, so that input and output signals
among neighbor processing elements are perfectly matched.

ToPoliNano at the time of writing is not able to synthesize ME-NML circuits.
Till now the design of these circuits has been done manually. We have indeed
designed all the logic blocks of a PE and evaluated the interconnections overhead to
have an estimation of the total power and occupied area. Perhaps with an automatic
synthesizer it would be possible to have a more compact and efficient circuit, but
this rough estimation is sufficient to appreciate the performance of this technology.

Some of the main blocks present in the Reconfigurable Systolic Array are pre-
sented in Chapter 6.

Table 4.1. Synthesis results of the Reconfigurable Systolic Array

Technology
Frequency Power Area Figure Of Merit
(MHz) (µW) (µm2) (nJ)

CMOS 28nm 1200 430.00 854.52 358.33
NML 100 506.90 5167.92 506.90
ME-NML 100 32.67 361.94 326.66

Table 4.1 resumes the synthesis results. Frequency is fixed and due to technolog-
ical constraints for NML and ME-NML. It is limited by the time necessary to reset
magnets and their successive switching. According to the analysis in [16], the clock
frequency can be set to 100 MHz to guarantee a proper functioning of the circuit.

63

4 – Reconfigurable Systolic Array

From the CMOS synthesis we obtain a maximum clock frequency of 1.2 GHz.

ME-NML has the best performances in terms of power consumption. The RSA
implemented with this technology consumes indeed 13 times less than the equiva-
lent CMOS circuit. NML instead cannot compete with the other two technologies,
resulting in an higher value of power consumption.

ME-NML is also the best solution in terms of area occupation, since it needs less
than half the area occupied by CMOS circuit. Also in this case NML results are the
worst. This is due to the limited maturity of this technology: indeed classical NML
has a planar layout and a rigorous propagation direction due to clock mechanism
that leads to this high area occupation. In the case of ME-NML, instead, since
signals have not a fixed propagation direction, it is possible to achieve extremely
compact layouts and values of area occupation sensibly lower. Several technological
improvements are under study to reduce NML area occupation and power dissi-
pation: Out-of-Plane NML [62], 3D circuits with Logic-In-Memory approach [63],
NML circuits with Domain-Walls [64].

Finally to better compare ME-NML and CMOS we have also computed the
Figure Of Merit of a digital circuit, that is given by the Speed-Power product,
defined as the product of propagation delay (in ns) and power dissipation (in mW)
and is measured in pico joules. ME-NML is finally the best solution (lowest value)
because its low power consumption greatly compensates the lower clock frequency.

4.3 Algorithms

In previous Section we have presented the architecture of the Reconfigurable Systolic
Array and we have shown that it can be implemented in ME-NML achieving also ad-
vantages in terms of area occupation and power dissipation with respect to a CMOS
implementation. In this Section we focus instead on the reconfigurability property,
showing some of the algorithms that can be mapped in this Reconfigurable Array.
From this discussion it should be evident how this architecture gives extremely high
flexibility with respect to an algorithm dependent Systolic Array.

We will describe the mapping of four different algorithms: Matrix Multiplication
in paragraph 4.3.1, Discrete Cosine Transform (DCT) in paragraph 4.3.2, FIR Filters
in paragraph 4.3.3 and IIR Filters in paragraph 4.3.4. Finally, we will also describe
our preliminary implementation of a tool, called “RSA Configurator” that is able to
generate the necessary inputs to configure the Reconfigurable Systolic Array in the
desired way (paragraph 4.3.5).

64

4.3 – Algorithms

MAC MAC MAC

MAC MAC MAC

MAC MAC MAC

a0i

a1i

a2i

bi0 bi1 bi2

Figure 4.6. Matrix Multiplication mapped onto the Reconfigurable Systolic Array.
Each PE is configured as a Multiply and Accumulate (MAC) block.

4.3.1 Matrix Multiplication

Given two rectangular matrices A = (aik) and B = (bkj) of order N1 × N3 and
N3×N2 respectively, their product, matrix C = A×B, C = (cij), of order N1×N2,
can be obtained according to the equation (4.1):

cij =

N3∑

k=1

aik · bkj, i = 1, 2, . . . , N1 j = 1, 2, . . . , N2 (4.1)

This equation can be mapped to a SA of N1 × N2 cells, each performing Mul-
tiply and Accumulate operations to store partial results cij(k) at each iteration k
(Figure 4.6) [33]. This is the WIL implementation of matrix multiplication, where
an internal loop is necessary. To map this solution into the RSA, it is necessary
to configure the array in this way: the Reconfigurable ALU shall be configured to
use the MAC resource, with op1 and op2 as inputs of the multipliers and fb signal
as second input for the adder. The other multiplexers must select top in chain
and left in chain signals as input data, and one single register in the left-to-right
transmission of left in chain signal.

65

4 – Reconfigurable Systolic Array

4.3.2 Discrete Cosine Transform (DCT)

Discrete Cosine Transform (DCT) algorithm works in the following way: a sequence
of input data xn (n = 1, . . . , N) is translated in the sum of cosine at different
frequency. The output is a sequence Xk (k = 1, . . . , N). DCT is similar to discrete
Fourier transform, but while in DFT coefficients can have an imaginary part, in
DCT they have only the real part. There are different types of DCTs; in this case
we refer to the one used in JPEG compression that can be expressed by equation 4.2:

Xk = w(k)
N∑

n=1

xn cos
[π

2N
(2n− 1) (k − 1)

]

,

k = 1, . . . , N

(4.2)

where w(k) is computed as in equation 4.3.

w(k) =

1/
√
N k = 1

√

2/N 2 ≤ k ≤ N

(4.3)

Our objective is to map this algorithm in a similar way of matrix multiplication.
Our following analysis is therefore aimed at mapping this algorithm to a square
SA to perform matrix multiplication. In this case the mapping will be to a WOIL
Systolic Array for matrix multiplication, differently from the previous mapping. The
indexes of the array are n and k. Given a couple (n, k) that will identify one PE
of the SA, the value of cos [π/2N(2n− 1)(k − 1)] is known and constant. Therefore
the cosine values can be preloaded in the PEs, stored in internal register and
maintained for the entire computation. It is then possible to map the algorithm as
shown in Figure 4.7: each Xk is computed by one column of the array, while inputs
xn are provided from the left boundary. Each cell performs a MAC operation:
signal left in chain is multiplied by signal In reg (value stored in the internal
register) and then added to the signal result top pe. The result is then sent to
the down out pe, while left in chain signal is propagated to right out chain.
Finally, it is necessary to consider the multiplicative factor w(k). One additional
row of the matrix (at the bottom) is used to multiply the signal result top pe
value by the w(k) factor in order to have the correct result. This SA uses therefore
two different configurations: Multiplier for the last row, MAC for all the other cells.

4.3.3 FIR Filters

The following explanation refers to Figure 4.8(a) to describe the logic organization
of FIR filters, to Figure 4.8(b) to present the implementation in the reconfigurable

66

4.3 – Algorithms

!"# !"# !"#

!$%&
'()*+

!$%&
'()*,

!"#
'()++

!"#
'()+,

!"#
'()+-

!"#
'(),+

!"#
'(),,

!"#
'(),-

!"#
'()-+

!"#
'()-,

!"#
'()--

!$%&
'()*-

!�

!#

!$

%# %$ %&

!"#$
!"'(#)
%&'()

!"#$
!"'($)
%&'(*

!"#$
!"'(&)
%&'(+

Figure 4.7. Mapping of the Discrete Cosine Transform (DCT) onto the Reconfig-
urable Systolic Array. PEs are configured in two different ways: as Multiplier for
the last row and as MAC for the others.

architecture and to Fig. 4.9 to discus the simulations.
Given a discrete-time FIR filter (Figure 4.8(a)), the output sequence y[n] can be

expressed in terms of input sequence x[n] and weights bj with equation (4.4):

y[n] =
N∑

j=0

bj · x[n− j] (4.4)

where N is the filter order.
Looking at Figure 4.8(a), it is evident that, to map FIR filters in the RSA,

cells must be programmed in three different ways (with a granularity that exceeds
one configuration per row): this is possible since we can manage one configuration
signal for each PE. In Figure 4.8(b), two rows of the Reconfigurable Array are used
to implement a FIR filter. Other FIR filters can be mapped in other rows of the
RSA. They must all share the same weights bj since these must be provided from
the external and are locally transmitted to PEs below (through each column). The
three following configurations must be used: MUL, ADD and top-to-right signal
transmission (the bottom-left PE in Figure 4.8(b)), hereinafter called TRANSMIT.
In the following each of these configuration is described.

67

4 – Reconfigurable Systolic Array

(a)

MUL MUL MUL MUL MUL

ADD ADD ADD ADD

(PE_00) (PE_01) (PE_02) (PE_03) (PE_04)

(PE_10) (PE_11) (PE_12) (PE_13) (PE_14)

x[n]

y[n]

REG REG REGx[n]

y[n]

(b)

Figure 4.8. Mapping of one FIR Filter onto the Reconfigurable Systolic Array. PEs
are configured in three different ways: as Multiplier for the first row, as Adders for
the second row except for the leftmost cell that is configured as “Transmit” cell.

1. MUL cells are configured to execute multiplications on operands provided
from top and left, therefore the Reconfigurable ALU is programmed to use
op1, op2 and ‘1’ as operands to be multiplied. The other multiplexers select
top in chain and left in chain. Notice that in this case the left-to-right
transmission must follow the path with two registers, to have one clock delay
difference with respect to the horizontal path between Adders, where one reg-
ister only (the one that stores the result) is present. This can be evidenced
from Figure 4.8(a), where each dashed line represents a cut-set for retim-
ing. According to this analysis, additional registers must be inserted in each
left-to-right signal transmission and in each path from multipliers to adders.
Configuring word for MUL cells is shown Figure 4.9(a).

2. ADD cells are configured to execute addition on input operands from top and
left, therefore the Reconfigurable ALU is programmed to use op1, op2 and
‘0’ as operands to be added. The other multiplexers select result top pe and
result left pe. In this case the delay for the partial result to be transmitted
to neighbor PE is always 1 clock cycle as expected. Configuring word for ADD
cells is shown Figure 4.9(c).

3. TRANSMIT: result top pe must be transmitted as result to the PE at its
right. This can be done configuring the PE to execute an addition with
operands result top pe (op1 inside the Reconfigurable ALU), ‘0’ and ‘0’.
So the chosen solution is a fake addition which does not add any information.
Of course it could have also been configured as multiplier with ‘1’ and ‘1’
operands. Configuring word for TRANSMIT cell is shown Figure 4.9(b).

68

4.3 – Algorithms

!" #!$

!" %#&

'!(!" #!$

')(!" %#&

ctrl_in(1)

ctrl_in(0)

!!00000000000

00000000000 011011100011

010000001001 011000001101

01 10 00 00 1 1 0 1

1
st

 o
p

er
an

d
:

o
p

1

2
n

d
 o

p
er

an
d

:
o
p

2

3
rd

 o
p

er
an

d
:

'0
'

o
p

er
at

io
n

:
A

D
D

to
p

:
re

su
lt

_
to

p
_

p
e

le
ft

:
re

su
lt

_
le

ft
_

p
e

h
o

ri
z

p
at

h
:

1
 r

eg

re
se

t:
 N

O

01 10 11 10 0 0 1 1

1
st

 o
p

er
an

d
:

o
p

1

2
n

d
 o

p
er

an
d

:
o
p

2

3
rd

 o
p

er
an

d
:

'1
'

o
p

er
at

io
n

:
M

U
L

to
p

:
to

p
_

in
_

ch
ai

n

le
ft

:
le

ft
_

in
_

ch
ai

n

h
o

ri
z

p
at

h
:

2
 r

eg
s

re
se

t:
 N

O

(MUL)

(TRANSMIT) (ADD)

clk

x[n]

01 00 00 00 1 0 0 1

1
st

 o
p

er
an

d
:

o
p

1

2
n

d
 o

p
er

an
d

:
'0

'

3
rd

 o
p

er
an

d
:

'0
'

o
p

er
at

io
n

:
A

D
D

to
p

:
re

su
lt

_
to

p
_

p
e

le
ft

:
le

ft
_

in
_

ch
ai

n

h
o

ri
z

p
at

h
:

1
 r

eg

re
se

t:
 N

O

(TRANSMIT)(MUL) (ADD)(a) (b) (c) (d)

RESET CONFIGURE COMPUTE

! "# $% #& !! #"

! "# $% #& '& $" "#

! "# $% $& "# (%

! "# "") ! '

! # ' $ "

! "# $% #& !! #"

! "# $% #& '& $" "#

! "# $% $& "# (%

! "# "") ! '

! # ' $ "

! " # $ %! " # $ %

n x[n] y[n]

0 5 5

1 4 14

2 3 26

3 2 40
4 1 55

!

y[n]

PE_10

PE_11

PE_12

PE_13

PE_14

!!

(e) (f)

Figure 4.9. Simulation of the RSA configured to implement a FIR Filter. (a) Con-
figuration word for MUL cells. (b) Configuration word for TRANSMIT cells. (c)
Configuration word for ADD cells. (d) FIR filters input values and correspondent
results. (e) RESET and CONFIGURE waveforms. (f) COMPUTE waveforms that
represent inputs (x[n]) and results of PEs in the bottom row (PE 1x). [61]

Figure 4.9 summarizes the example of FIR filter implementation in the RSA.
Three phases are necessary: reset, to clear registers; configure, to program each PE
to execute a given function (Figure 4.9(e)); compute, when the array is actually
used for its scope, in this case FIR filtering (Figure 4.9(f)).

4.3.4 IIR Filters

The last example of algorithm mapping onto the RSA is Infinite Impulse Response
(IIR) filters. Generally an IIR filter can be expressed by equation 4.5:

y(t) =
N∑

i=0

ci x(t− i)

︸ ︷︷ ︸

A(t)

−
M∑

j=0

bj y(t− j)

︸ ︷︷ ︸

B(t)

(4.5)

In equation 4.5 N is the feedforward filter order, ci are the feedforward filter
coefficients, M is the feedback filter order and bj are the feedback filter coefficients.
To ease the description we will refer to A(t) for the feedforward part of the equation,
and to B(t) for the feedback one, as shown by brackets below equation 4.5 . It is
important to notice that this kind of filter has memory, meaning that outputs y(t)
depend not only on input values, but also on previous outputs y(t−j). To implement
it, external feedback loops are necessary to provide outputs back in the array to be
used for computation of next steps.

To compute the result y(t) at a given step t it is necessary to perform two sum
of products as expressed in equation 4.5. This can be done in the same way of the

69

4 – Reconfigurable Systolic Array

!"#

$%&''

!"# !"#!"#
$%&''

!"#
$%&'(

!"#
$%&')

!"# !"# !"#

$%&))

$%&(' $%&((

$%&)'

$%&()

$%&)(

!"#
$%&*'

!"#
$%&*(

!"#
$%&*)

!"#$

!"

!#

!$

%&'(

!%&

!")$
'()*+

!%&

!")#
'()*,

!%&

!")"
'()*-

!%&

!"*$
'()++

!%&

!"*#
'()+,

!%&

!"*"
'()+-

%&'+"(%&'+#(%&'+$(

,&'(

,&'(

Figure 4.10. Infinite Impulse Response (IIR) filter configuration. PEs are config-
ured in 4 different ways: MAC, Bypass left to right, Bypass left to down (PE 12
and PE 21) and Bypass up to down (PE 22).

DCT mapping, using a row or column configured as MAC. In this case the mapping
is reported in Figure 4.10: the first row is used to sum the weighted outputs, i.e.
compute B(t). In each of these PE, signal top in chain is multiplied by signal
In reg and then summed to signal result left pe. The rightmost PE of the first
row produces the result y(t). Externally this is fed back to the other PEs of the
first row (external loops not shown in Figure 4.10). These external feedbacks give
memory capability to the circuit. The same configuration is used in the last row
to execute the other part of computation, i.e. A(t). The other rows in the middle
are used to synchronize the inputs: a new data is given every clock cycle as input
to all the leftmost PEs and then the structure handles the timing requirements,
i.e. provide x signals to the bottom row in the right manner. All the elements of
this type are BYPASS cell. Three different cases are present in the structure: a
bypass from left to right, a corner bypass that route the data from the left to the
bottom of the PE and a vertical one. Finally, to execute the subtraction between
the two sum-of-products of equation 4.5, the output of the last row (bottom-right
PE), indicated as A(t) is fed back to the top-left PE. The PEs are hence configured
in four different ways: MAC, Bypass left to right, Bypass left to down and Bypass
top to down.

70

4.3 – Algorithms

We have seen four algorithms mapped into the RSA with different complexity:
Matrix Multiplication had cells all configured in the same way; to design DCT, it was
necessary to configure cells in two different way; for FIR filters, three different kind
of cells were necessary; finally for IIR filters we counted four different configurations.

Several other algorithms have been mapped to the RSA: Kalman Filters, Discrete
Fourier Transform (DFT), Finite Difference Derivative are some of the examples.
Others will be mapped in the future depending on the applications to implement
for our purposes. With this description it this evident the rate of flexibility that can
be achieved by this architecture, that represents an extremely important step ahead
with respect to original, algorithm-dependent, Systolic Arrays.

4.3.5 RSA Configurator

(a)

(b)

Figure 4.11. Reconfigurable Systolic Array Configurator: this tool, runnable in
Windows, is able to automatically generate configuration words depending on the
chosen configuration of each PE in the Array.

Finally in this paragraph we present an useful tool that we have designed to
automatically generate configuration words for the Reconfigurable Systolic Array.
This is called “RSA Configurator” and its graphical interface is shown in Figure 4.11.

The tool generates a .sac file that is automatically read by the test bench and
used in simulation of the RSA. The RSA Configurator starts with an input block in
which the number of PEs present in a row/column shall be inserted by the user. It is
assumed that the array is a square one. Then the interface shown in Figure 4.11(a)
is opened. For each PE it is possible to select the operation that it must execute.

71

4 – Reconfigurable Systolic Array

Depending on the chosen operation, several configurations are possible and can be
chosen in the successive drop down menu. For example in Figure 4.11(b) are shown
the several configurations that can be selected for a “bypass” (or transmit) cell.
Moreover to each PE it is possible to assign a value to be stored inside the internal
register for computations.

While this is only a simple tool, useful to speed-up the testing phase of the Re-
configurable Array, it could be part of a more complex and useful environment. In
the future it could be possible to insert the configurator inside a tool that, starting
from the selected algorithm to implement, automatically generates the whole config-
uration of the RSA. In this way all the mapping could be automatic and the effort
that is now allocated to the designer could be assigned to the machine.

4.4 Final Remarks

Once that we have identified Systolic Arrays as ideal structure for NanoMagnet
Logic (NML), our attention has focused on how to make this architecture interesting
for a real implementation. The proposed path aims at making Systolic Arrays
more flexible, by providing them with a reconfigurability property that allows to
use the same architecture to execute several algorithms. While this idea has been
centered on the usage of Systolic Arrays for NML, it can be exploited also with other
technologies, like CMOS.

The Reconfigurable Systolic Array (RSA) that we propose has the adaptability
of an FPGA (or similar) but it guarantees the high operating frequency of Systolic
Arrays. It is an architecture based on a square array of Reconfigurable Processing
Elements, where each of them can be programmed in a different way to execute
different tasks and use different input data.

Several achievements can be mentioned in this design path:

• Definition of the Reconfigurable Systolic Array architecture: it has been de-
fined this flexible, yet extremely powerful, architecture, that is based on mul-
tiplexers to select data and operations to execute. The architecture can be
enriched by designers simply adding further resources if space and power avail-
able allow it.

• Technology comparison based on RSA: this architecture is the first example of
benchmark that we have used to analyze the different performance of the three
technologies, i.e. CMOS, classic NML with magnetic clock and ME-NML.
Results show that ME-NML, even if it can work at lower clock frequencies,
has overall better performance than CMOS.

• Algorithm mapping examples: the RSA has been tested on several algorithms.

72

4.4 – Final Remarks

We have shown as examples the Matrix Multiplication, Discrete Cosine Trans-
form, FIR Filters and IIR Filters. This is fundamental to distinguish our
approach from other architectures proposed in literature that address only a
specific problem’ scale with reduced reconfigurability option.

• RSA Configurator: finally we have designed a tool to make the configuration
of this Reconfigurable Array as simple as possible. This could be in the future
one of the elements of an integrated RSA-designer that could autonomously
configure an RSA starting from an algorithm description.

The Reconfigurable Systolic Array is another step forward in the design of archi-
tectures for NML. With this solution, we have separated the algorithm/application
domain from the design one. In this way the design is more effective and reusable.

73

Chapter 5

Logic-In-Memory

We have deeply analyzed the adoption of Systolic Arrays for NanoMagnet Logic: in
Chapter 3 we have introduced this architecture and we have shown several improve-
ments that can be put in place to overcome some of NML drawbacks. In Chapter 4
we have instead addressed one of the main limitations of classical Systolic Arrays,
i.e. the algorithm dependency, introducing our Reconfigurable Systolic Array that
can be programmed to execute several algorithms.

This research path is instead aimed at addressing another limitation of Systolic
Arrays: memory availability inside the processor. Systolic Arrays that we have ana-
lyzed till now have little to no memory available inside the PE. The Reconfigurable
Systolic Array contains one memory cell to store data and one memory cell to store
results. However big memory banks will be placed outside the SA.

With Systolic Array architecture (as well as with newer Von Neumann paradigm
architectures), the communication between processor and memory becomes the bot-
tleneck of the system. Indeed, the bus connecting the two elements cannot feed data
in the processor at the necessary bandwidth to exploit at the maximum the compu-
tational power of the array.

For this reason in this research path we have focused on a new processor paradigm,
called Logic-In-Memory (LIM). In this architecture, Logic elements and Memory
ones are merged in one single device. In this way bus communication does not exist
anymore, and the complexity is shifted to an algorithm level: processing elements
should have data to use stored in their memory element or in memories of near PEs.
So it is necessary to define a communication protocol between PEs to exchange data
and memory structure should be provided with a sort of “intelligence” to have the
right data in the right place and at the right moment.

We introduce the main concept behind Logic-In-Memory in Section 5.1. Then
we present two different kind of architectures: the first, described in Section 5.2, is a
first version of LIM architecture with a one-to-one mapping between memory blocks
and logic; the second, described in Section 5.3, is instead a more complex version

74

5.1 – Concept

with a pyramidal pipelined memory. The results achievable with these solutions are
shown in Section 5.4, while a final discussion is presented in Section 5.5.

5.1 Concept

In this Section we introduce the concept of Logic-In-Memory (LIM). We start analyz-
ing the main limit of common Von Neumann Architecture, that rely on separated
logic and memory elements, in paragraph 5.1.1. Then we analyze other parallel
architectures existing in literature, with the aim to give a framework in which it
is possible to introduce LIM structure, showing advantages and differences with
respect to all the other existing architectures. This analysis is provided in para-
graph 5.1.2. Finally we introduce improvements that can be achieved with the LIM
in paragraph 5.1.3.

5.1.1 Limit of Von-Neumann Architecture

Von Neumann architecture represents the backbone of modern computational sys-
tems. Indeed, the majority of the existing electronics devices are based on the Von
Neumann model [65]. The basic idea behind this architecture is to have a compu-
tational unit connected with an interconnection bus to a memory, where program
instructions and data are memorized. The success of this idea lies probably in its
simplicity. This is a concept that has served well the purpose of building electronic
computational systems in the last 70 years. However, the huge advancements in
MOSFET technology, mainly due to transistors scaling [46][66], have highlighted
the main limitation of this approach: Data communication is the bottleneck of this
system and it limits the performance of the processing unit.

Using ultra-scaled MOSFET transistors it is now possible to create microchips
with billions of transistors working at a frequency of several GigaHertz. The full
computational power of a processing unit cannot however be exploited due to the
limited bandwidth of interface between the processing unit and the memory. This is
due on the one hand to the limited number of physical connections on a microchip
and on the other hand to the frequency limits on signals traveling on communication
buses. This problem is attenuated in modern computational system by exploiting
memory hierarchy and by embedding part of the memory on-chip [67]. But, since
this is an issue intrinsic to the model, the memory bottleneck problem cannot be
completely solved adopting these techniques. Moreover, given that many computa-
tional systems exploit parallel computing to improve performances, this problem is
exacerbated.

To address this issue, a new computing paradigm must be developed. Logic-
In-Memory is aimed at solving this bottleneck creating a system where logic and

75

5 – Logic-In-Memory

memory are embedded together. From a theoretical point of view, in this way the
memory bottleneck problem is completely solved. We will analyze in next Section
in further details what means from a practical point of view “to embed memory
and logic in the same device” and what kind of applications benefit most from
Logic-In-Memory concept.

5.1.2 Other Parallel Architectures

Figure 5.1. Graph showing how the gap in terms of performance between logic
and memory increases through the years.

Before analyzing in detail the Logic-In-Memory principle, it is useful to analyze
other parallel architectures. The objective is to give evidence of the strengths of
parallel architectures and at the same time highlight the limitations due to bus
communication between memory and logic.

Different types of processing units are available nowadays. Among them, the
processing units that mostly benefit of the philosophy behind the design of modern
computational systems are probably superscalar microprocessors [68]. In this type
of processors an execution unit, coordinated by a control unit, executes software
instructions on data stored on a dedicated memory. The concept behind micropro-
cessors is indeed very simple, but their architecture has evolved greatly throughout
the years to cope with the advancement of technology. Transistors scaling allows
to pack an always increasing number of transistor on a chip and higher clock fre-
quencies can be reached. One of the evolution that mostly affected microprocessors
architecture is the memory structure. Microprocessors can elaborate huge amount
of instructions, but extremely fast and big memories are required. Since this re-
sult cannot be physically achieved, a caching mechanism coupled with a hierarchical

76

5.1 – Concept

memory structure was introduced. But also applying these solutions memory can-
not keep up with the speed of computational units. This problem is known as “the
memory wall” problem [69][70], and is schematically represented in Figure 5.1. The
performance gap between processing units and memories with their communication
buses is steadily increasing with the CMOS technology advancements [71]. As a
consequence processing systems cannot exploit their full potential.

The bandwidth limitations of communication buses is nowadays one of the major
problems of processing units. The reason lies in the diffusion of multicore structures,
circuits where several units working in parallel are used to enhance performance
reducing at the same time power consumption. More processing units means however
more data that can be elaborated and must be fetched from memory. An example
of this problem are graphical processing units (GPUs) [72] performing texturing
operation. Texturing is an operation performed by GPUs where bitmap images are
attached to surfaces of object to generate realistic 3D images. The main problem of
texturing process is that a huge amount of high resolution bitmap images must be
loaded from memory. As a consequence the texturing operation considerably slows
down GPUs computation [73].

Traditional memories are getting faster and smaller to cope with parallel archi-
tectures. The recent introduction of 3D structures is an answer to the demand of
faster and more capable memories. The study and development of new memory
structures, such like 3D memories [74][75] and magnetic RAMs [76][77][78], is also
an attempt to reduce the performance between logic and memory. Parallel circuits
are an ideal ground to develop new kind of architectures based on a completely
different structure.

Two architectures have been the major source of inspiration that we followed in
the development of our Logic-In-Memory circuit: 1) Systolic Arrays, that we have
analyzed in previous Chapters and that we resume in the following; 2) GPUs whose
particular memory structure is interesting for our purposes.

As already thoroughly described, a Systolic Array [33][50] is composed by several
processing elements working in parallel. Processing elements are generally small
and execute a single operation (multiplication, subtraction, etc..). Each processing
element receives data from neighbor elements or from the outside. Output signal
are sent to neighbor processing elements or to outside. Each processing element can
contain few registers to temporary store the result of the operation depending on
the type of systolic array [51][43]. Few key elements distinguish therefore Systolic
Arrays:

1. Processing elements work in parallel and generally perform the same operation
[79].

2. Processing elements are small and therefore there is a huge number of them
[36].

77

5 – Logic-In-Memory

3. Communication is local among processing elements easing the memory wall
problem [34][35].

Figure 5.2. Representation of a GPU architecture, with local and shared memory.

Differently from Systolic Arrays, GPUs exploit the parallelism at two different
levels. Referring to Figure 5.2, a GPU is made of a number of cores composed
of different functional units working in parallel and having access to a local and a
shared memory [80]. When a program is executed on a GPU, firstly each thread is
associated with a single core, then, inside each core, an instruction is fetched and
simultaneously executed in parallel by the functional units inside the core like in
a SIMD (single instruction multiple data) structure [81][82]. In GPUs, functional
units are complex and execute a huge number of mathematical and logical oper-
ation. In addition every unit has access to its own local memory and generally
the only way to communicate with other units it to access to the shared memory.
Figure 5.2 is only a simplified schematics. In current GPUs, functional units are
similar to programmable processors, where several algorithms can be executed. The
communication with memory is also much more complex than in a Systolic Array,
due to the different types of memories available, local, shared and global. A correct
handling of memory communication can have a huge impact on GPUs performance.

Current GPUs are very complex devices that are increasingly used as algorithm
hardware accelerators. An algorithm can be defined as suitable to be computed on
a GPU if it is massively parallel and if the number of mathematical operations to be
executed is higher than the number of memory accesses. This concept is expressed by
the arithmetic intensity that is calculated as the number of mathematical operations
executed by a single functional unit divided by the number of memory accesses to
load data.

Arithmetic Intensity =
#arith. operations

#MEM access
(5.1)

78

5.1 – Concept

The higher is the arithmetic intensity, the more suitable is an algorithm for a GPU.

This analysis gives us precious information regarding how to overcome the mem-
ory wall problem. GPUs and Systolic Arrays have been used as inspiration for the
design phase of our Logic-In-Memory architectures.

5.1.3 Logic-In-Memory Improvements

We have analyzed the limitations of Von Neumann architecture and other parallel
architectures inspiring the design of Logic-In-Memory. Now we enter into the details
of this new architecture defining the main concepts and improvements that can be
achieved.

The idea behind the Logic-In-Memory principle is relatively simple: Remove the
separation between logic and memory and embed them in a single entity. However
this simple principle rises an important question: How it is possible to translate it
in a new and effective electronic circuit architecture? We believe that there are two
key concepts that distinguish a Logic-In-Memory system.

1. Memory Locality. The first key concept implies the distribution of memory
elements among the whole circuit, instead of having a big memory block in-
terfaced with the logic core. Furthermore data communication should happen
through local data exchange among local memories, avoiding access to external
memories that compromise performance.

2. Intelligent Memory. The second key concept implies instead the necessity
of providing memories with “intelligence”, that means logic capabilities. Mem-
ories should be able to automatically provide data to logic processors, fetching
data from neighbor memories and/or from outside.

Given these two key concepts it is clear why we have focused our attention on
parallel architectures, like systolic arrays and GPUs. They intrinsically have local
memories and local connections. They represent therefore the perfect basis upon
building the Logic-In-Memory architecture. In Sections 5.2 and 5.3 we will describe
how we have translated these two principles in our two implementations of the LIM
principle.

Given the nature of the LIM architecture that we propose, not all algorithms
are fitted for it. Particularly we have identified two requirements that an algorithm
must have to best exploit the LIM architecture.

1. High parallelism. An algorithm should feature an high number of operations
that can be executed in parallel.

79

5 – Logic-In-Memory

2. High percentage of local interactions among neighbor processing
elements. Similarly to what happens in systolic arrays, where input data are
obtained from neighbor processing elements, and output data are provided to
neighbor processing elements, the same concept shall be applied for Logic-In-
Memory. While not strictly necessary (as we will see our architectures work
also if data are fetched from outside), a high percentage of local data exchanges
can maximize performance.

Using these requirements as a base, we have identified four classes of algorithm
that can exploit the true potential of our LIM architecture: sorting algorithms,
cryptography, mathematical problems and image processing [83][84][85]. One of
them, presented in paragraph 5.4.1, is used for our results analysis and comparison.

5.2 LIM 1.0 Architecture

In this Section we present the first proposal for the implementation of our Logic-In-
Memory architecture.

Logic-In-Memory is a structure divided into multiple cells operating concurrently,
each one combining processing and storage capabilities.

PE

00

PE

01

PE

02

PE

10

PE

11

PE

12

PE

20

PE

21

PE

22

IN 0

IN 1

IN 2

Figure 5.3. Logic-in-memory grid, with the input interface at the left border.

The Logic-In-Memory structure is a rectangular array (grid) of cells, as shown
in Figure 5.3. Even though they operate independently each from the others, the
interactions among them is a key feature of the system. Inter-cell communication
is defined by fixed protocols, with operations (also referred as instructions or com-
mands) coded in packets of a fixed length.

80

5.2 – LIM 1.0 Architecture

The grid access points are situated in the left border of the grid, with a number
of input/output points equal to the number of rows of the grid (one access point for
each row). The interfacing must follow the inter-cell communication protocols. The
I/O requests must be expressed in read/write instructions coded in packets.

Till now the description is extremely similar to Systolic Arrays. What we de-
scribe hereinafter represents instead the important innovation of this architecture.

Figure 5.4. Logic-in-memory cell, composed of three layers (or planes):
Memory, Routing and Logic.

The structure of a Logic-In-Memory cell is displayed in Figure 5.4. Each cell is
internally divided into three planes: logic, routing and memory. The distinction is
only at the architectural point of view, as they do not necessarily belong to three
different physical layers. In general, physical mapping is technology- dependent. The
center of the cell is the routing plane. It acts like a router, receiving and forwarding
instructions. It is connected to the logic plane, to the memory plane and to the
adjacent cells, as in Figure 5.4. It cannot start an operation on its own initiative,
but it simply routes messages as instructed by the commands it receives. The
memory plane is dedicated to storage. It is a rectangular array of words accessible
by the routing plane only. Finally, the logic plane is dedicated to computation. It is
the only “active” plane in the system. It performs arithmetic operations as well as
memory accesses. The interaction with memory is not direct. A memory read/write
request has to be encoded in a read or write operation, which is transmitted to the
routing plane, which in turn accesses memory.

81

5 – Logic-In-Memory

Logic-in-Memory is not simply a way to distribute computation in several par-
allel units. A key element is the possibility of interactions among adjacent cells.
Cells can interact through memory read/write operations. The architecture privi-
leges communication between near cells. Each cell is connected directly just to the
adjacent cells (NORTH, SOUTH, EAST, WEST in Figure 5.4). Two distant cells
can communicate sending packets through all the cells in between, with a delay pro-
portional to the distance among them. Memory accesses are classified differently if
logic (which requests the memory access) and memory (which receives the request)
plane belong to the same cell or not. The fastest access is when the memory plane is
in the same cell of the logic plane, not needing any inter-cell interaction. A slower,
but still fast, access is to the adjacent cells, denominated toc-toc access. Finally,
there is the possibility to access the memory of a random cell in the grid, but at the
cost of a high access time, operation called remote access.

The logic plane is strongly dependent on the algorithm. It is a custom circuit
executing a certain sequence of operations. The set of all the cells active at the same
time is able to produce the result of the algorithm on the input data store in the
cells memory plane. Therefore, any change of algorithm requires a modification of
the logic plane. Conversely, routing and memory plane are algorithm-independent.
The first is standard because the communication system is a function of the division
in cells and the set of available operations, which are properties of the architecture,
independently of the algorithm. Likewise, the second is a simple array of words,
which receives read/write commands from the routing plane, completely ignoring
their purpose.

The remaining part of this Section describes in detail the architecture of the
Logic-In-Memory cell: Routing plane (in paragraph 5.2.1), Logic plane (in para-
graph 5.2.2 and Memory plane (in paragraph 5.2.3. Finally the instruction set is
described in paragraph 5.2.4.

5.2.1 Routing Plane

The most complex layer is the routing one. This is the layer that manages the com-
munication inside one PE and with near PEs. Its datapath is shown in Figure 5.5. It
can be formally divided into three parts to ease the description: the input interface,
the selection unit and the output interface. They are separated by thick dashed
lines in Figure 5.5. In the following each of these parts is described.

5.2.1.1 The input interface

In Figure 5.5 it is possible to see that the input interface includes mainly the “Pri-
ority Management” component and some additional logic to select inputs. Indeed,
each cell is able to communicate with its adjacent cells and it can receive signals

82

5.2 – LIM 1.0 Architecture

from north, west, east and south cells. Only one of these inputs is selected using
a multiplexer which is controlled by the priority manager. This component selects
only one word according to its priority. Some of the rules to manage priority are
described hereinafter: 1) If the logic plane performs a request, it has to be satisfied
immediately, independently from the cell that is performing its own request. In
addition, the priority manager detects if a request made by the cell itself has been
satisfied or not: in the second case, an acknowledge bit is sent to the logic plane to
inform it that the operation has to be performed again. 2) If more requests arrive
at the same clock cycle, the priority manager selects the one with highest priority
and sends to the other cell the acknowledge bit. Further, the two bits used by the
priority manager to control the multiplexer are used as destination bits, useful to
decide the cell that will receive a request.

5.2.1.2 The selection unit

Each instruction is made of a word composed by several fields. The selection unit
task is to divide the word into the several fields, in order to save or manage them.
Two main blocks compose the selection unit: the Target Cell Address (TCA) man-
ager and the TAG manager (the TAG is the binary encoding of an operation).

The target address (TCA) is used to indicate each cell inside the grid: for this
reason it is composed of two parts, one that specifies the position in the row and one
for the column. The TCA is sent to a comparator to understand if the target cell is
exactly the one that received the request; if not, the received word has to be passed
to another cell until it reaches its destination. The comparator is therefore useful
to determine the destination. Notice that since TCA represents the position in the
grid, its size depends on the grid size (number of rows and number of columns).
Hence, the bigger the grid, the longer the instruction.

The TAG is also sent either to the control unit (FSM in Figure 5.5) and to the
tag generator. This component is fundamental to define which TAG has to be sent
inside the successive word to send. Indeed, if a request for a read arrives, the sending
TAG will be an “answer to read”; or, if a remote operation arrives to the cell that
is non the target one, that operation has to be passed to another cell and therefore
the TAG will be different. More details on the available operations and the relative
TAGS are provided in paragraph 5.2.4.

5.2.1.3 The output interface

In this region the main components are the control unit (FSM) and the decoder.
The control unit is the brain on this layer and sends the control bits to the other
components. Its behavior is described by a state machine that manages the several
situations that could occur. It has 4 inputs coming from previous blocks in the

83

5 – Logic-In-Memory

Figure 5.5. Logic-In-Memory Processing Element with focus on the dat-
apath of the routing plane. [86]

routing plane, and has 8 outputs that manage the logic plane, the memory plane
and some multiplexer in the outputs interface itself. For a more detailed description
of this component it is possible to refer to [86][87]. The decoder is instead used to

84

5.2 – LIM 1.0 Architecture

compute the acknowledge signal and to transmit it to the right near cell (selecting
which one of the four adjacent cells is the destination one).

5.2.2 Logic Plane

The logic plane is the algorithm-dependent part of the logic-in-memory structure.
It interacts with the routing plane, sending commands to it. In the case of a read
operation it can receive values from the routing plane. Its role is to implement the
algorithm, using the routing plane to interact with the memory. Even though the
logic plane is algorithm-dependent, some parts can be standardized. For instance,
the routing plane receives inputs and sends outputs in the form of packets. It is useful
to implement a standard unit that composes/decomposes packets, distinct from the
core of the logic plane (logic core), in which only the algorithm is implemented,
without considering the subdivision in packets. This choice further simplifies the
design of new algorithms, that practically require only the editing of the VHDL files
describing the logic core. The two principal standard modules are Converters and
Cell Logic Plane.

5.2.2.1 Converters

A series of converters receive in input the various fields of the instruction and com-
poses the packets that are sent to the routing plane. In the same way, some de-
converters decompose the input from the routing plane. This is a combinational
part of the design, standardized and in this way it is separated from the logic core.

5.2.2.2 Cell Logic Plane

Cell logic plane is the standardized part of the logic plane. It forwards the commands
received from the logic core to the routing plane, formatting them into packets,
one at each clock cycle. At the same time it reads the input coming from the
routing plane and transmit it to the logic core, decomposing the packets. The
datapath is composed of a converter for each operation plus a de-converter for the
read operations. When the logic plane starts a new instruction, a multiplexer selects
the active converter according to the kind of operation. The choice is maintained
until the operation is completed, i.e. all the packets have been transmitted. A
counter counts the number of packets so that the converters can provide the right
output at the right clock cycle.

5.2.3 Memory Plane

The memory plane is the storage area of the cell. It is designed as a rectangular
memory, that receives a write enable signal from the routing plane, used to discern

85

5 – Logic-In-Memory

between write and read. The address in input is divided into two parts: the row
and column address. The memory has a single input port with synchronous write
and asynchronous reads.

5.2.4 Operation Set

To complete the description of the LIM 1.0 architecture, it is necessary to indicate
what are the operations that can be performed between PEs. There are three main
kind of operations: operations that occur inside a PE, called “Local”; operations
that occur between one PE and an adjacent one, called “toc-toc”; operations that
occur between distant cells, called “Remote”. The following is the entire set of
operations. Each of them can be assigned to a binary value for the TAG field.

• Local Write: the logic layer asks to write a data inside the memory of the
same cell;

• Local Read: the logic layer asks to read a data from the memory of the same
cell;

• toc-toc Write: a cell asks to an adjacent cell to write a data inside its memory;

• toc-toc Read: a cell asks to an adjacent cell to read a data from its memory;

• Return Read: after a toc-toc read, the data to be read is sent to the cell which
performed the request. Once arrived, the data is sent to the logic layer;

• Remote Write: specifying the target cell address (TCA), a cell asks to write a
data inside the memory of the target cell;

• Remote Read: specifying the target cell address (TCA), a cell asks to read a
data from the memory of the target cell;

• Remote Return Read: it is the equivalent of the return read. Obviously in this
case it follows the remote read operation;

• Logic-Logic: this operation has been introduced to increase the overall per-
formance of the LIM. This operation allows a cell to compute a data and to
send it immediately to the logic layer of another cell without saving it inside
the memory. In this way not only clock cycles are saved but also the number
of memory accesses is reduced.

86

5.3 – LIM 2.0 Architecture

5.3 LIM 2.0 Architecture

In previous Section we have analyzed the LIM 1.0 concept and architecture. If
we consider the LIM Improvements define in paragraph 5.1.3, we can state that
Memory Locality is perfectly fulfilled since each PE has its own memory layer and
there is not an external memory. On the other hand, Intelligent Memory concept is
not exploited, since memory is just distributed among the PEs but it has not any
intelligence.

Therefore the aim of LIM 2.0 concept is to exploit also the Intelligent Memory,
re-designing our structure in a different way. The principle of the improvement is
presented in paragraph 5.3.1, while the new memory organization (pyramidal) is
described in paragraph 5.3.2.

5.3.1 Improvement Concept

The architecture described in Section 5.2 is a first example of a Logic-In-Memory
circuit, but it has several limitations and weak points. First of all, the way how the
circuit works is similar to a 3D systolic array, where the brain of the architecture is
the logic and the memory is just an instrument of the logic itself.

However, with Logic-In-Memory we mean a structure where the memory is the
real brain of the circuit. In particular, the concept behind is that there must be no
necessity to access a huge memory to read data since each cell is already provided
with necessary information (so, data are available in the right cell and at the right
moment). Obviously, sometimes it will be necessary to access the memory in order
to store the computed data and provide each functional unit with new ones.

To accomplish these constraints, we need an architecture that loads a big amount
of data from the memory and distributes data to each functional unit. Afterwards,
while each unit is performing some mathematical operations, other data are col-
lected, ready to be distributed again to each unit. This can be considered as a 3D
pipeline of memories where those memories are smart and can decide and predict
what data is going to be needed and which functional unit is going to request that
data.

Differently from the first version of the LIM, in the LIM 2.0 the logic plane does
not care about the data that it needs but its the memory plane duty to provide
the logic with the correct data. This new structure may help to solve definitely the
problem of memory bottleneck. Indeed, the amount of data needed by functional
units and the quantity that can be loaded from the memory in a time unit is ex-
tremely different; with common architectural concepts, the logic is under-utilized.
Exploiting the idea of 3D pipeline of smart memories, instead (whose detailed de-
scription is provided in paragrap 5.3.2) the vertex of the pyramidal memory accesses
the outside memory and loads data. Since the frequency reached by memories is

87

5 – Logic-In-Memory

not high, the vertex may load a small quantity of data and then passes them to the
lower layers that compute them working at their own frequency. While the logic
layers are working, the vertex continuously collect data and provide them to the
logic at the right moment. It can be said that the main role of the smart memories
is to continuously feed the logic with proper data. Moreover, since the memory layer
store themselves a certain amount of data, the slowest accesses to the outside mem-
ory do not compromise the performance of the system. Indeed, exploiting time and
spatial locality of algorithms, as done in caching mechanism, data necessary to the
logic layer will be probably already available somewhere in the intelligent memory
plane: it is up to this intelligence to provide them to the right logic PE.

Moreover, the logic layer should be designed like an ALU, able to perform a
large variety of mathematical and logical operations. Each operation should be
identified by an opcode generated by the memories; in particular, each memory
should communicate with its own ALU. The operation to be performed has to be
specified by the memory according to the described algorithm: the new architecture
should be therefore programmable in order to avoid to design the datapath of the
logic layer every time that the algorithm changes.

5.3.2 Pyramidal Memory Design

LOGIC LAYER

FIRST MEMORY LAYER

SECOND MEMORY LAYER

PILLAR

3x3 MEMORY ARRAY

PILLAR
3x3 MEMORY ARRAY

I/O INTERFACE

Figure 5.6. Pyramidal structure of LIM 2.0. The logic plane (green) is composed
of as many units as the cells in the bottom plane (red). The upper plane (blue)
has 9 cells, 1 for every 9 cells of the lowest memory plane. [86]

The new version of the LIM inherits a number of features from the previous
architecture. First of all, the idea of having many independent functional unit

88

5.3 – LIM 2.0 Architecture

organized in a matrix structure, that has been demonstrated to be successful. For
this reason, in this new architecture, the PE is the key element but it is simpler
than before. In principle each cell is composed of only two layers: the Memory and
the Logic one. The Routing plane features available in LIM 1.0 are inherited by the
memory plane. This concept is shown in Figure 5.6, where the green part is the
logic layer and the red part is the memory layer, divided into the several PEs.

The fundamental novelty of this structure is that each memory layer is sur-
rounded by other memories in order to create a 3D pipeline. The idea is to create a
lower layer of memories where each of them communicates with a logic plane creating
a cell. This cell is an element of a grid as it happened in the LIM 1.0. In addition,
above the grid, there are other layers of memories only. In this way each memory is
able to communicate with its neighboring memories and with the memories above
and below. Only the memories at the bottom of the structure exchange data with
the logic plane. To avoid an excess of interconnects, each memory can communicate
with the layer below but only the “pillar” can communicate with the layer above.
The pillar is a memory not different from the others but it is the only one that has
connections to the above plane. In our design it is the central cell of a group of 9
memory cells. The entire design of the new architecture is shown in Figure 5.6.

The new LIM follows a pyramid model: it is composed of a vertex that com-
municates with the layer below made of 9 memories. Each of them exchanges data
with another layer below made of 9 memories for each pillar, therefore 81 memories.
So each plane is composed of a number of memories in a number of power of 9: the
vertex is only one (90), the layer below is of 91 = 9 memories, the other one is of
92 = 81 memories and so on.

To summarize, the green box in Figure 5.6 is the logic layer: it is composed of
a number of functional units equal to the number of memories of the first layer of
the pyramid. Those functional units are ALUs and therefore are able to perform
many different mathematical and logical operations. Each functional unit of the
logic plane is controlled by one smart memory at the bottom layer of the pyramid,
in red in Figure 5.6. Then it is shown in blue a second memory layer. Only the top
of the pyramid is able to communicate with the user. The I/O pins should be used
to provide each memory element with data and instructions (i.e., this becomes the
interconnection with external slow memory in a Von Neumann style architecture).

As said before, the memory is the brain of the architecture, so each smart memory
should be provided with a proper control unit. The idea is to model an algorithm
into a sequence of instructions to be given to each memory element. To do so, the
instructions ought to be passed to the vertex of the pyramid that will then distribute
them to the neighboring memory cells and to the layer below. Each memory element
at the bottom layer should have a sequence of instructions to provide to the logic
plane. The logic plane is only constituted of an ALU to which the memory layer
will transmit codes that identify the mathematical and logical operations to be

89

5 – Logic-In-Memory

performed. At the end of the algorithm, the logic ought to write the final result
into the memory of the corresponding PE that will give new data to the functional
unit and that will send the final result to the top of the pyramid. For this reason,
the cells of the above layers should have two different memories to separate the
data coming from the top and the neighboring cells and the data coming from the
layer below. In this way it is possible to have an horizontal communication and a
vertical communication: the first one is referred to the exchange of data between
two different layers; the second one is referred to the exchange of data among cells
of the same layer.

A brief description of the elements present inside each cell is given hereinafter.
Memory elements incorporate features of the routing and memory planes of the
LIM 1.0. Each memory block contains the memory used to store data, the priority
management block used to handle conflicts in case of multiple requests and the
request management block used to identify the operation that must be executed by
a logic brick. The control unit is now fully programmable.

Logic elements are composed by an ALU that communicates only with its cor-
respondent memory cell in the lowest memory layer. Data are fetched and provided
to the logic cell by the memory, which also control the type of logic operation that
must be executed. Each logic cell contains an adder/subtract unit, a multiplier, a
unit capable of logic operations (LU), a comparator, a shifter and a counter. Mul-
tiplexers are used to control the data flow inside the logic cell. A more detailed
description of the implementation of this architecture is provided in [86].

The instruction set of the LIM 2.0 is similar to the instruction set of the LIM
1.0, containing therefore the instructions used to exchange information among cells.
Moreover the instruction set features a long set of arithmetic and logic instructions
and commands used to program the control unit in each memory cell. Each memory
cell can be programmed independently, giving to the architecture the maximum
possible flexibility.

One consideration is necessary now about the mechanism to provide data to logic
elements at the right time. Predictive techniques can be used, as done in caching
mechanism, and the spatial and temporary locality of data will help as well. We
have still not developed a mechanism to produce this predictive technique, so in the
example reported in paragraph 5.4.1 we have designed the data exchange ad-hoc for
the algorithm. Nevertheless, this is an important improvement that will be analyzed
in the future.

5.4 Results

We have shown two possible implementations of the LIM concept and we have
pointed out the main differences with respect to Von Neumann architectures and

90

5.4 – Results

GPUs. To have a clear indication of the benefits and disadvantages of our pro-
posed architectures, it has been decided to run one particular algorithm on the two
LIM architectures, as well as on a GPU and using a dedicated ASIC. The algo-
rithm is presented in paragraph 5.4.1, while the comparison of results is shown in
paragraph 5.4.2.

5.4.1 Test Algorithm

As target algorithm for the demonstration of the performance of our LIM architec-
tures we use the odd-even sort algorithm. This is a sorting algorithm developed to be
used on parallel processor. The purpose of the algorithm is to compare all odd/even
indexed pairs of adjacent elements in a list and, if a pair is in the wrong order, the
elements are switched. The next step repeats this procedure for even/odd indexed
pairs (of adjacent elements). Then it alternates between odd/even and even/odd
steps until the list is sorted. The code of the algorithm is reported in listing 5.1.

Listing 5.1. Odd Even Sort algorithm
1 void OddEvenSort (T a [] , i n t n) {
2 f o r (i n t i = 0 ; i < n ; i++) {
3 i f (i & 1) /∗ ’ i ’ i s odd ∗/ {
4 f o r (i n t j = 2 ; j < n ; j += 2) {
5 i f (a [j] < a [j −1])
6 swap (a [j −1] , a [j]) ;
7 }
8 }
9 e l s e {

10 f o r (i n t j = 1 ; j < n ; j += 2) {
11 i f (a [j] < a [j −1])
12 swap (a [j −1] , a [j]) ;
13 }
14 }
15 }
16 }

5.4.2 Results Comparison

In this paragraph we compare the obtained results of the Odd-Even sort algorithm
with those achievable with other kind of digital architectures. The goal is to under-
stand the quality and the relevance of our architecture. In particular we focused on
two targets in our tests, Application Specific Integrated Chips (ASIC) and GPUs.
ASIC circuit is chosen because generally it allows to reach the maximum speed
among integrated circuits. GPUs are nowadays largely used as hardware accelera-
tors. They are fast parallel architectures where memory is already embedded locally
inside the chip. They offer therefore a fair comparison with our circuits, especially
with the LIM 2.0. Since we do not have the possibility to implement the odd-even
sort algorithm on a GPU to test its performance, we have used data presented in
the paper of Khan et al. “Analysis of Fast Parallel Sorting Algorithms for GPU
Architectures” [88].

91

5 – Logic-In-Memory

1

10

100

1000

10000

100000

1000000

10000000

80 160 240 480 1200

n
.
cl

o
ck

 c
y
cl

es

sorted numbers

Number of clock cycles in function of the numbers to sort

LIM 1.0

LIM 2.0

ASIC

Figure 5.7. Comparison between LIM 1.0 and LIM 2.0 and ASIC implementation
of the odd-even sort algorithm. Logarithmic graph.

To compare the results obtained we designed a custom ASIC circuit and synthe-
sized it on a 28 nm low power technology. We followed two rules in the designing
the ASIC test circuit. First, it has a traditional architecture, a logic circuit execut-
ing the sorting algorithm and fetching data from a separated memory. Second, to
do a fair comparison the test architecture is partially parallel. Four units work in
parallel inside the chip fetching data from four independent memories. Since the
architecture is very simple, the working frequency obtained after the synthesis is ex-
tremely high, 5 GHz, much higher then the working frequency of our LIM circuits.
Instead of synthesizing the memory directly on chip, we choose to use the GDDR5
memories recently developed by Samsung [89]. The Samsung GDDR5 memory are
capable of reaching a theoretical frequency of 8 GHz for each signal, which is higher
than the frequency that we obtain from the synthesis on 28 nm technology. In doing
the comparison, we suppose that our custom chip is surrounded by four GDDR5
modules that work in parallel at the maximum frequency. Figure 5.7 shows the time
required by the LIM architecture and the test ASIC to sort up to 1200 numbers. The
time is expressed in number of clock cycles, so it is independent from the technology
chosen and the type of memory selected. Notice that the graph is in logarithmic
scale. The difference between the LIM architecture and the ASIC is huge. With
1200 numbers nearly 1800000 clock cycles are required by the ASIC against 10000
for the LIM 1.0 and 28000 for the LIM 2.0. Results in term of timing are reported in
Table 5.1. Results presented in [88] are used to compare the LIM performance with
a GPU. The GPU used in [88] is a NVDIA QUADRO 6000. It is based on a 40 nm
technology, the processor clock is fixed at 1148 MHz and it has 6 Gb of GDDR5
memory. Results comparison, when sorting 215 numbers, is reported in Table 5.1.

92

5.4 – Results

The GPU needs 230 ms to sort all the numbers. Our test ASIC circuit has
similar performance, requiring slightly more time, 268 ms. The difference with both
LIM versions is very high, since the LIM 1.0 needs only 0.283 ms and the LIM 2.0
just 0.269 ms. The LIM architecture is nearly 800 times faster. These results also
demonstrate that the LIM 2.0 is faster then the LIM 1.0 with millions of numbers
to sort. The comparison with the GPU is particularly important, because they are
both two fully programmable parallel architectures. The LIM is faster and it has
also a lower power consumption, 40 W against the 204 W of the NVIDIA QUADRO
6000 at full load.

The results for our test ASIC circuit were obtained considering a state of the art
memory working in ideal conditions. Moreover we are not considering any memory
access time, supposing that data are continuously fed to the circuit. The working
frequency and the test conditions that we have chosen allow the logic part to work
always at maximum speed. In many situations this condition is not verified and the
logic circuit is slowed down by the memory. To test these assumption we simply con-
sider two other types of memory, the same GDDR5 used by the NVIDIA QUADRO
GPU working at 3 GHz and a common DDR3 memory working at 1.6 GHz. The
complete comparison in terms of timing required to sort 215 numbers is reported in
Table 5.1.

Odd-Even Sort
n. of clock Freq. Time Speed-up

cycles (GHz) (ms) wrt GPU

LIM 1.0 2.83∗105 1.0 0.283 813.8
LIM 2.0 2.69∗105 1.0 0.269 853.6
ASIC (GDDR5 8GHz) 1.34∗109 5.0 268 0.857
ASIC (GDDR5 3GHz) 1.34∗109 3.0 447 0.5
ASIC (DDR3 1.6GHz) 1.34∗109 1.6 838 0.26
Quadro 6000 1.1 230

Table 5.1. Performance comparison among the two version of LIM archi-
tecture, the test ASIC circuit with three types of memory and the NVIDIA
Quadro 6000 GPU.

Considering a GDDR5 memory working at 3 GHz the execution time is increased
to 447 ms, while with a DDR3 memory the time required is 838 ms. These results are
useful to highlight a common situation in many computational systems, where the
overall speed of the circuit is limited by the memory. In these more realistic cases,
the advantages provided by our Logic-In-Memory architecture are much evident.

93

5 – Logic-In-Memory

5.5 Final Remarks

The concept of Systolic Arrays used in previous Chapters as an interesting solution
for NML technology, shows its limitations when inserted in a more general picture.
This architecture, given its parallel nature, requires a huge amount of data for
computations. These data can be retrieved from an external memory, connected to
the processor with a bus as in a common Von-Neumann architecture. The problem of
this architecture is that bus communication becomes the bottleneck of the system;
the Systolic Array cannot be exploited at its best because memory cannot feed
data at the same operating rate. Finally this results in a reduction of the overall
performance.

To overcome this limitation, we have introduced a new architecture called Logic-
In-Memory, where logic elements and memory ones are merged in one single device.
This architecture presents several new features, while inherits some others from
Systolic Arrays and GPUs. Several achievements can be mentioned in this research
path:

• Analysis of the scenario and alternatives: first an analysis on other parallel
processing units has been performed to analyze their strengths and weaknesses.
Based on this analysis the principal characteristics of Logic-In-Memory have
been defined.

• LIM 1.0 Architecture: a new architecture composed of Processing Elements,
each made of a memory, logic and routing plane. In particular the routing
plane is the core of this architecture, that manages communication inside and
between cells.

• LIM 2.0 Architecture: an evolution of the first architecture, composed by
a logic plane and a 3D pipelined memory. This architecture is definitively
different from the previous one and respects the given constraint of intelligent
memory. Each PE is made by a logic plane (reconfigurable) and a memory
plane that is in turn connected to upper memory planes through pillars. This
architecture guarantees high flexibility and reduced access to higher memory
levels.

• Overall comparison: using as benchmark the Odd-Even Sort algorithm, we
have compared the results of our LIM architectures with ASIC chips and GPU.
Our LIM finally turn out to be the best solutions in terms of processing time
when huge amount of data are sorted.

With this scenario we close the first part of this research having analyzed Systolic
Arrays and with incremental improvements having reached Reconfigurable Systolic
Arrays. Then, with a complete change of paradigm, we have introduced a new kind of

94

5.5 – Final Remarks

architecture that can still benefit of the improvements presented for Systolic Arrays,
but is also able to eliminate the memory communication bottleneck of common
systems, that we have called Logic-In-Memory.

95

5 – Logic-In-Memory

96

Part II

MagnetoElastic NML Circuit
Design

98

Chapter 6

Design Rules for ME-NML
Circuits

The Second Part of the research has focused on MagnetoElastic NML (ME-NML).
This technology is quite different from the classical magnetic clock NML, but it
allows to achieve important reduction in power dissipation and area occupation.
While this technology is extremely interesting for its characteristics, it is still in de-
velopment and few small circuits have been proposed. The objective of this research
path is to enrich the tools and methodologies necessary to approach the design of
this kind of circuits. At the same time, it is important to approach circuits with
higher complexity to analyze the features or drawbacks that can arise when many
ME-NML cells are considered. Indeed, only considering small circuits with few cells,
it is not possible to understand the projection to real circuits. It is only with big
and significant circuits that the characteristics of this technology can be analyzed
proficiently.

In this Chapter the MagnetoElastic NML (ME-NML) technology is studied to
make the design of circuits with this technology more effective. In particular, Sec-
tion 6.1 deals with the definition of a Standard Cell Approach for this technology,
that can be used for a future automatic tool for the design of ME-NML circuits.
Section 6.2 presents the design of a Galois Field Multiplier (GFM), the first con-
ceived complex logic circuit in ME-NML. From the analysis of the GFM, it came
out the opportunity to study in more detail the Parallel versus Serial approach in
ME-NML, that is treated in Section 6.3. Finally the most important results achieved
are resumed in Section 6.4.

99

6 – Design Rules for ME-NML Circuits

6.1 Standard Cell Approach for ME-NML Cir-

cuits

In this research topic, a completely new and rigorous approach for the design of ME-
NML circuits, is defined. This is based on: 1) a set of Standard Cells, analyzed in
Section 6.1.1; 2) a VHDL model to simulate any logic circuit in ME-NML, described
in Section 6.1.2; 3) a standard circuit layout presented in Section 6.1.3. With these
achievements the automatic synthesis and routing of ME-NML logic circuits can
become much simpler.

6.1.1 Standard Cells Library

In Section 2.3.3 we have anticipated the layout of ME-NML circuits. This is based
on mechanically isolated islands, also called ME-NML cells. Each of these cells
receives its own clock signal. For fabrication and physical limitations, the height
and width of a ME-NML cell can be of either 3 or 5 magnets. In particular using
these cell sizes, it is possible to guarantee an operating frequency of 100MHz, being
sure that all the magnets inside the cell will flip correctly.

In this work we consider the 3× 3 cell dimension, that is the smallest size feasi-
ble with current lithographic resolution. Compared to bigger cells, it has a shorter
critical path (number of cascaded magnets) leading to both an higher working speed
and a better signal propagation reliability. The drawings and circuits described here-
inafter consider therefore 3×3 cells, but the VHDL model presented in Section 6.1.2
is generalized for any cell size.

!"# !$#!"# !$#

3x3 5x3

(a) (b)

Figure 6.1. ME-NML cells. (a) 3× 3 size. (b) 5× 3 size.

Given these ME-NML cells sizes, we have identified a limited number of possible
magnets configurations. Hence the totality of the conceivable cells configuration
is reasonably small. In this way it is possible to define a Standard Cell Library,
where each element is described in VHDL language. The result is that, using the

100

6.1 – Standard Cell Approach for ME-NML Circuits

cells of this library, any digital circuit can be designed. This feature is particularly
interesting in the perspective of automatic synthesis tools for ME-NML, that do not
exist at the time of writing but for which some work has been done at Politecnico
di Torino in ToPoliNano [90][91].

Wire

AND

OR

Inverter

Standard Cells

'0' '1'

'0' '1'

"00" "01" "10" "11"

Double

Inverter

Crosswire

Double

Wire

Figure 6.2. Standard 3× 3 Cells Library for ME-NML. [27]

The full Standard 3 × 3-Cells Library is presented in Figure 6.2 [27]. The logic
gates used are: Wire, Crosswire, Inverter, AND, OR. So, except for Crossiwire that
is used to cross two signals in this planar technology, the logic gates used are the
same of CMOS circuits. In a complete Standard Cells Library, these cells must be
distinguished also by layout and orientation, not only by their logic function. In
this way it will be possible, from a general circuit layout composed of Nanomagnets,
isolating a 3× 3 magnets area, to assign a corresponding ME-NML Standard Cell.

Cells aligned in the same row in Figure 6.2 can be derived from each other by
horizontal and/or vertical flipping. Since they represent different orientations of
the same cell, they are described using the same VHDL entity. The numbers in
Figure 6.2 for a certain cell, will be given as generic parameters to identify the cell
orientation. This does not apply to Double Wire, AND, OR: These cells are shown
in the same row to get a more compact image, but they have to be defined with
different VHDL entity.

In the following the several Standard Cells are described. In general each cell is
modeled as a CMOS register plus, if needed, an ideal logic port. The register models

101

6 – Design Rules for ME-NML Circuits

the delay of the cell, that is one clock phase, while the logic port is necessary to
model AND, OR and Inverter.

AND: In Section 2.3.1 we described how AND and OR gates can be obtained
by modifying the shape of a magnet [22]. A cut on the bottom left corner gives
a preferred orientation to the magnet, thus creating the AND function. None of
the six AND cells in the library can be derived from another one by vertical or
horizontal flipping. Notice that the slanted edge is always on the bottom left corner
of the magnet. Therefore each AND cell is described with a different VHDL entity.
The first four cells have one output, while the others have two outputs. The third,
fourth, and sixth configuration have inputs on the right side of the cell, while the
others have inputs on the left side of the cell.

OR: The six OR cells of the library are exactly the same of the AND cells, except
for the slanted magnet that produces the logic gate. In this case the slanted edge is
on the top left corner of the magnet.

Wire: The cells belonging to the wire group are composed by a number of ad-
jacent magnets. In NML technology these magnets can propagate signals with a
domino-like behavior. The horizontal alignment of magnets is antiferromagnetic, as
explained in Section 2.3, while vertically each magnet has the same polarization of
its neighbors. Therefore, to work as a wire, an ME-NML cell must have an odd
number of horizontal magnets. Since wires have no logic function, each wire cell is
simply described as a register.

As clear from Figure 6.2, there are four different wires in the library: Verti-
cal Wire with two possible orientations (left and right); Horizontal Wire with two
possible orientations (up and down); Long Wire, that connect one signal from one
corner to the opposite one, with two possible orientations; 2 Outputs Wire with four
possible orientations.

Double Wire: It contains two independent wires with length of three magnets.
In the model this cell is described with two different registers. There are two Dou-
ble Wire cells in the library, described by two different VHDL entities, one for
horizontal propagation and the other for vertical one.

Crosswire: It is modeled similarly to the Double Wire, but physically the wires
cross each other. This interference-immune crossing is fundamental, since for now
NML is still a planar technology.

102

6.1 – Standard Cell Approach for ME-NML Circuits

Inverter: The horizontal antiferromagnetic alignment of magnets is exploited to
obtain the inverter function: Any even number of adjacent horizontal magnets gen-
erates an inversion in the signal. The VHDL model is modeled as an ideal CMOS
inverter plus register. There are two possible configurations depending if the in-
verter is placed on the top or bottom zone of the cell. Just like for the wires, two
inverters can be present in the same cell, but only horizontally (Double Inverter).
The vertical coupling is ferromagnetic, so the inversion does not take place. The
library also contains a cell with both an inverter and a horizontal wire (Inverter plus
Wire).

6.1.2 VHDL Model for ME-NML Circuits Design

Once that the Standard Cell Library has been defined, each of the cells can be
modeled with a VHDL entity. In this Section the VHDL model is described in
details. This model is used to represent the logic behavior of the circuit, but it
also computes the Area and Power and can hierarchically sum up these values. In
this way the top entity can evaluate the total area and power of the circuit. The
Listing 6.1 is used as example; it contains the code that models the Inverter plus
Wire. The inverter (4 adjacent magnets) and the wire (3 adjacent magnets) are
horizontal, so the cell can be flipped around its horizontal axis.

6.1.2.1 Generic parameters

Each VHDL entity has some generic parameters that are used to assign a clock
zone to each cell and its relative positioning within the circuit (see lines 2-4 of listing
6.1). In Figure 6.4(b) they are represented as inputs of the Standard Cell.

PHASE: ME-NML has a 4-phase clocking system. This generic defines which
one of the four clock signals must be connected to the cell. This information is
redundant, as the required clock signal is directly connected to the clk port, but it
is included to assure a better suitability of this model to a design tool.

ROW and COLUMN: ME-NML circuits are composed by cells arranged in a
grid-like fashion, as it will further described in Section 6.1.3. ROW and COLUMN
refer to the relative position of a cell within the circuit described by the upper level
entity.

ORIENTATION: As represented in Figure 6.2, when cells can be obtained from
each other by a simple flipping, they are described using the same VHDL file. The
ORIENTATION parameter defines which one to use. It does not affect the logic or
the circuit performance, but it can be used for automatic layout with a design tool.

103

6 – Design Rules for ME-NML Circuits

H and L: The choice for this work has been to exploit 3 × 3 clock zones. So
the height and width (in terms of nanomagnets) of a cell are always equal to 3.
Anyway the model is as generic as possible, so the height and width are defined as
parameters: H and L.

Listing 6.1. “Inverter plus Wire” VHDL Model
1 en t i t y i nv w i th w i r e i s

2 gene r i c (PHASE: s t d l o g i c v e c t o r (1 downto 0) ;−− Clk phase .
3 ROW: natura l ; −− Re l a t i v e c e l l p o s i t i o n (row)
4 COLUMN: natura l ; −− Re l a t i v e c e l l p o s i t i o n (c o l)
5 ORIENTATION: s t d l o g i c ;
6 H: natura l ; −− Heigh t (# o f magnets)
7 L : natura l) ; −− Width (# o f magnets)
8 port (d1 , d2 : in s t d l o g i c ; −− Inpu t s
9 c lk : in s t d l o g i c ; −− Depends on the phase

10 q1 n , q2 : out s t d l o g i c ; −− Outputs
11 n mag : bu f f e r natura l ; −− # of magnets
12 n zones : out natura l := 1 ;−− # number o f c e l l s
13 a r e a e f f : out natura l ; −− Tota l magnets area
14 a r e a t o t : out natura l ; −− Ce l l area
15 Er : out natura l ; −− Swi t ch ing energy
16 Ec : out natura l) ; −− Clock network l o s s e s
17 end i nv w i th w i r e ;
18
19 a r ch i t e c t u r e behavior o f i nv w i th w i r e i s

20 component reg i s −− D Fl i pF l op (1 b i t)
21 . . .
22 end component ;
23 component area and energy i s

24 gene r i c (H: natura l ; −− Heigh t (# o f magnets)
25 L : natura l) ; −− Width (# o f magnets)
26 port (n mag : in natura l ; −− # of magnets
27 a r e a e f f : out natura l ; −− Tota l magnets area
28 a r e a t o t : out natura l ; −− Ce l l area
29 Er : out natura l ; −− Swi t ch ing energy
30 Ec : out natura l) ; −− Clock network l o s s e s
31 end component ;
32 s i g n a l q1 : s t d l o g i c ;
33 begin

34 n mag <= L∗2+1; −− Eva lua te the number o f magnets us ing H and L .
35 q1 n <= not q1 ; −− I n v e r s i on
36
37 Wire1 : reg port map(d => d1 , c l k => clk , q => q1) ;
38 Wire2 : reg port map(d => d2 , c l k => clk , q => q2) ;
39
40 Eva luate area energy : area and energy gene r i c map(H,L)
41 port map(n mag , a r e a e f f , a r ea to t , Er , Ec) ;
42 end behavior ;

6.1.2.2 Logic Behavior of the Cell

Referring to the listing 6.1, it is necessary to describe the logic behavior of the cell.
The “Inverter plus Wire” cell is composed by two parallel series of magnets: 4 for
the inverter and 3 for the wire. Therefore it is modeled by two D Flip Flops, plus
an ideal inverter applied to one of the outputs. Lines 37-38 of the listing contain
the registers instances, while the inversion function is described at line 35.

6.1.2.3 Area and Energy

As previously described, the model is able to compute Area and Energy hierarchi-
cally. Each cell described with VHDL evaluates and gives as output its own number
of magnets (n mag), its area occupation (area eff, area tot) and power consumption

104

6.1 – Standard Cell Approach for ME-NML Circuits

(Er, Ec) (6.4.B). The number of magnets is evaluated at line 34, while the other
values are calculated by a component named area and energy (lines 23-31 and 40-
41 in listing 6.1). This component, starting from the number of magnets, height and
width of a cell, provides as output the required information on area and power.

The two following paragraphs clarify the equations implemented in the VHDL
model to evaluate area occupation and power dissipation.

65 nm

20 nm

235 nm

5
0

 n
m

2
0

 n
m

3
0

 n
m

3
0

 n
m

3
0

 n
m

250 nm

20 nm

Figure 6.3. Detailed measures of the ME-NML 3× 3 cell. [27]

Area information Figure 6.3 shows the complete clock zone measures and the
distance from nearby cells. The relevant parameters are:

• Magnets height: Hmag = 65nm, width: Wmag = 50nm.

• Magnets separation. Both horizontal and vertical separation: Sepmag = 20nm.

• Electrodes width: Welectrode = 30nm.

• Cells separation: horizontal: Seph cell = 30nm, vertical: Sepv cell = 20nm.

The values above are assigned to the constants in the model in a dedicated con-
stants file, so that the component area and power can evaluate the correct area
information for each cell. Each cell gives as output two data related to area occu-
pation:

Magnets Area: this is the total area occupied by magnets. It is normally given by
the area of a magnet multiplied for the number of magnets.

Amagnets = (Hmag ·Wmag) · nmag (6.1)

105

6 – Design Rules for ME-NML Circuits

Cell Area: It is the area of the cell, including the electrodes and the separation
space among cells. It is used to evaluate the total area of the circuit. Since in
this work the cell dimension is fixed to 3 × 3, the Cell Area will be the same
for every cell.

Hcell = 3 · (Hmag + Sepmag) = 255nm (6.2)

Wcell = 3 ·Wmag + 2 · (Sepmag +Welectrode) + Seph cell = 280nm (6.3)

Acell = Hcell ·Wcell = 71400nm2 (6.4)

Energy information The area and power component actually estimates the en-
ergy dissipation E and not the power. Knowing the working frequency fclk, that for
this technology and with this cell layout can be assumed to be 100MHz, the power
P can be easily derived with equation 6.5.

P = E · fclk (6.5)

Energy constants used for energy computation are defined in the VHDL model
and reported in Listing 6.2. The main sources of energy dissipation in NML circuits
are basically two:

Magnets Switching: this is the intrinsic energy loss required to force magnets in
the NULL state (Er in Listing 6.1). The switching can be either adiabatic
or abrupt: For the Magnetic clock NML the difference in term of losses is
extremely wide, so the switching has to be adiabatic. However, in ME-NML,
the behavior is different: The energy consumption is still equal to 30KbT if
adiabatic, but only 180KbT (the whole energy barrier for 50 × 65 × 10nm3

nanomagnets) if abrupt. Since in both cases the consumption will be negligible
compared to the second component, the choice is the abrupt switching, that
allows to reach better performance.

After defining how much energy is dissipated by the switching of a single
magnet (Emag), to obtain the energy consumption of the entire cell it is possible
to multiply for the number of magnets:

Ecell = nmag · Emag (6.6)

Clock Network: this is the energy dissipated by the clock network mainly due to
Joule losses (Ec in Listing 6.1). Since PZT (like all piezoelastic materials)
is an insulator, a ME-NML cell behaves as a capacitor. Therefore the main
contribution to clock losses is the charge of such capacitor.

106

6.1 – Standard Cell Approach for ME-NML Circuits

The capacitance is estimated in equation 6.7 [15].

C =
ǫ0 · ǫr · tPZT ·Hcell eff

Wcell eff

(6.7)

The first three constants are the absolute dielectric constant (ǫ0), the relative
dielectric constant of PZT (ǫr), the thickness of the PZT substrate (tPZT =
40nm[15]). The other two values are the effective dimensions of a clock zone,
without the inclusion of the separation between cells. HenceHcell eff = 235nm
and Wcell eff = 250nm (Figure 6.3).

Equation 6.8 evaluates instead the voltage that must be applied to a clock
zone to force it into the RESET state.

V =
Wcell eff · σ
Y · d33

(6.8)

Listing 6.2. Constants for Energy estimation
1 −− CONSTANTS FOR ENERGY EVALUATION −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2
3 −− For sw i t c h i n g energy e v a l u a t i o n
4 constant Kb: r e a l := 13.8065 e−23;−−Boltzmann cons t
5 constant T: r e a l := 300 . 0 ; −−Room temperature (K)
6 constant E MAG: r e a l := 180∗Kb∗T; −−
7 −− For c l o c k energy e v a l u a t i o n
8 constant VACUUMPERM: r e a l := 8.854 e−12; −−Vacuum p e rm i t t i v i t y (F/m) .
9 constant REL PERM: r e a l := 1300 . 0 ; −−Sub s t r a t e r e l a t i v e perm . (−)

10 constant T PZT : r e a l := 40e−9; −−E l e c t r o d e s t h i c k n e s s (m)
11 constant STRESS : r e a l := 28e+6; −−App l i ed s t r e s s (Pa)
12 constant YOUNGMODULUS: r e a l := 80e+9; −−Young modulus o f Ter f eno l (Pa)
13 constant PZT CONST: r e a l := 150e−12; −−Piezo c o e f f . (m/V)

In this equation σ = 28MPa is the applied stress, Y = 80GPais the Young
modulus for Terfenol and d33 = 150 pm/V it the coefficient for strain and
applied voltage coupling in the PZT substrate. Normally the applied voltage
should be in the range of 0.7−1.3V [15]. Finally the energy required to charge
the capacitance of one cell is expressed in well known equation 6.9.

Eclk =
1

2
· C · V 2 (6.9)

The power contribution of the circuit for clock generation is negligible, as the
circuit counts a limited number of transistors [13]. Therefore this component
is not be taken into account.

6.1.2.4 Hierarchical model

We have exploited the hierarchical property of VHDL language to obtain a hierar-
chical model. The standard cells compose the bottom layer, while components in the

107

6 – Design Rules for ME-NML Circuits

!"#!$#%#"&'

#(!)*!+,-%

.-/
0%+,+'

123

+-+!)45"#!

67,+89,%&40%#"&'

8):40%#"&'

;4-<4=!&%#+6

;4-<48#))6

=!&%#+645"#!

153

;4-<4=!&%#+6

;4-<48#))6

=!&%#+645"#!

+-+!)45"#!

67,+89,%&40%#"&'

8):40%#"&'

9#,&9+

)#%&+9

/9!6#

-",#%+!+,-%

"-7

8-)*=%

!"#!4$4#%#"&'

#(!)*!+,-%

!"#!$#%#"&'

#(!)*!+,-%

!"#!$#%#"&'

#(!)*!+,-%

!"#!$#%#"&'

#(!)*!+,-%

(a)

(b)

Figure 6.4. (a) VHDL hierarchical model. The information on energy dissipa-
tion and area occupation are propagated hierarchically toward the top entity. (b)
generic inputs and outputs of a Standard Cell.

upper layer are assembled together to create logic circuits. These blocks of cells can
be then instantiated by bigger circuits and so on up to the top entity. Figure 6.4(a)
depicts a generic 3-layers hierarchy. The Top Entity (layer 3) is composed by many
Block of cells (layer 2), while each block of cells encloses the required standard cells
(layer 1).

This hierarchy is exploited for a bottom-up evaluation of the number of mag-
nets, number of cells and performance in terms of area and power. As explained
in paragraph 6.1.2.3, each Standard Cell provides in output all these information
about itself thanks to the area and power component. The elements in the upper
layer sum up the data received from every element in the lower layer (using the
component arrays sum shown in Figure 6.4), providing the results of that Block.
This mechanism goes on recursively up to the Top Entity, that produces as output
the total results for the whole circuit. Notice that the model provides exact results,
as there is no approximation in the hierarchical evaluation and the circuit design for
ME-NML provides a layout correspondent with the actual physical mapping.

108

6.1 – Standard Cell Approach for ME-NML Circuits

!"#$

!"#%

&'(()

*+,
!"#$

!"#%

&'(()

*+,

&-.$

&-.%

&-./

&-.0

!"#$

!"#%

&'(()

1

&

2

3

45-.

!"#$

!"#%

&'(()

*+,
1

& 2

3
$

$

$

$

/

/

/

/

%

%

0

0

% 0

637 617 6&7

627 687

&-.$

&-.%

&-./

&-.0

(��(a)

(d)

(c)

(e)

Figure 6.5. (a) CMOS Half Adder. (b) ME-NML Half Adder. (c) Wave-
forms for the 4-phase overlapped clock system. A color is associated to each
clock signal. (d) VHDL counterpart of the ME-NML circuit, it is the circuit
described by the VHDL model. (e) Timing diagram of an example of signal
propagation through the adder. [27]

6.1.3 Circuit layout

In the Standard Cell Approach proposed for ME-NML logic circuits, we have till now
presented the Cells Library that can be used to design any circuit and the VHDL
model that can be used to simulate it and to estimate power and area parameters.
In this section we provide the first example of a ME-NML circuit, focusing on
many general aspects of the design: the circuit layout, the CMOS circuit described
by the model, the multiphase clocking system, the timing of signal propagation.
The simple circuit presented as case study is a Half Adder (HA). A configuration
comprising only Inverter, AND, OR logic gates (the gates available in ME-NML
technology) is presented in Figure 6.5(a), while the corresponding ME-NML circuit
is in Figure 6.5(b).

109

6 – Design Rules for ME-NML Circuits

Cells are placed on a grid-like scheme as we have pointed out in the introduc-
tion(Figure 2.9(d)). The path from inputs to outputs is 5 clock zones long. To
ease the comprehension of the ME-NML circuit, the AND, OR and inverter mag-
nets are highlighted respectively in blue, red and orange, while the substrate color
identifies the clock phase of a cell. The clock system for ME-NML is composed
of 4-phases overlapped clocks, whose 4 waveforms, with their assigned colors, are
shown in Figure 6.5(d).

The model presented in this chapter maps each clock zone to one register, plus a
logic gate if needed. The VHDL code for the ME-NML HA describes an equivalent
RTL circuit as shown in 6.5(d). Notice that the path from input to outputs counts
5 registers (5 pipeline stages), just like the 5 clock zones needed to pass through the
ME-NML version. The numbers inside registers define their clock phase.

The timing graph in Figure 6.5(e) shows a simple propagation example. The
signals follow the path from the inputs to the Carry output, passing through the
nodes indicated with A-B-C-D in Figure 6.5(d). All clock signals have the same
period Tclk, but they are shifted by 90◦ depending on the clock phase. It is quite
clear from the timing that a signal needs one clock cycle Tclk to cross 4 clock zones
(registers in the VHDL counterpart of the ME-NML circuit). Hence a signal has a
latency of Tclk/4 to cross a clock zone.

6.2 Circuit Design Example: Galois Field Multi-

plier

In previous section the tools and methodologies for an effective design of ME-NML
circuits have been provided. To show the benefits of this approach, and to qualify
the effectiveness of this technology, in this section it is provided a complex circuit
design example.

In particular, this research topic aims at giving a preliminary answer to the
following fundamental question: does ME-NML offer significant improvements over
state-of-the-art CMOS transistors? Moreover, it will be clear if this technology really
overcomes the classic Magnetic Clock NML in terms of power dissipation (that is
the main drawback of classic NML).

To prove the benefits of ME-NML, it is presented an accurate comparison of
performances between three different implementations of the same circuit: 28nm
CMOS, Magnetic Clock NML and ME-NML.

The circuit chosen as example is a Galois Field Multiplier (GFM). This circuit
is interesting because it is used in several applications in the field of cryptography,
digital signal processing, coding theory and computer algebra. We will discuss in
detail in paragraph 6.2.1 the circuit adopted for Galois Field Multiplication. It

110

6.2 – Circuit Design Example: Galois Field Multiplier

is however worth noticing in advance that the common hardware implementation
of the Montgomery algorithm, to execute Galois Field Multiplication, is a Systolic
Array structure.

The advantages of this kind of architecture for NML have been described in
Chapter 3. Here we recall that this kind of circuits show strong modularity [33],
avoiding long interconnections that are inefficient in NML technology.

6.2.1 Galois Field Multiplier circuit

To describe the Galois Field Multiplier (GFM) circuit, we start recalling the main
principles of Galois Field computing. A Galois Field GF(q) encloses a finite number
q of elements, together with the definition of addition and multiplication operations
on pair of elements [92]. When q = pm, with m positive integer and p prime number,
the field exists and is unique. For this work we are exclusively interested in Binary
Galois Fields (GF(2m), p = 2), as they perfectly suit digital systems. So GF(21), the
smallest possible Binary Galois Field, only has the two elements {0, 1} and modulo
2 operations. Table 6.1 shows the addition and multiplication results for GF(21),
that are basically XOR and AND functions.

Table 6.1. Addition and multiplication for GF(2)

+ 0 1
0 0 1
1 1 0

× 0 1
0 0 0
1 0 1

Table 6.2. Polynomial mapping and multiplication table for GF(8).
Primitive: x3 + x+ 1.

Element Polynomial Binary Repr.
0 0 000
1 1 001
A x 010
B x+ 1 011
C x2 100
D x2 + 1 101
E x2 + x 110
F x2 + x+ 1 111

× 0 1 A B C D E F
0 0 0 0 0 0 0 0 0
1 0 1 A B C D E F
A 0 A C E B 1 F D
B 0 B E D F C 1 A
C 0 C B F E A D 1
D 0 D 1 C A F B E
E 0 E F 1 D B A C
F 0 F D A 1 E C B

However, when m > 1, modulo operations between polynomials are required.
A polynomial with degree up to m − 1 can be associated to each element of a

111

6 – Design Rules for ME-NML Circuits

field GF(2m). Its coefficients are elements of the field GF(2), that is 0 or 1, so each
polynomial can be represented by a binary number composed by its own coefficients.
In Table 6.2 we can see the polynomial mapping and the corresponding binary
representation for the field GF(23). Its elements are eight: {0, 1, A,B,C,D,E, F}.
This representation has as primitive polynomial x3 + x + 1, which guarantees an
efficient hardware implementation.

The results of multiplication in GF(23) are presented in Table 6.2. To obtain
these results, it is necessary to execute the algorithm for multiplication of two poly-
nomials a(x) and b(x) modulo an irreducible polynomial p(x) (called primitive)
reported in listing 6.3. It is called the Montgomery Multiplication Algorithm [93].
For GF(2m) the primitive polynomial has degree equal to m. The algorithm can
perform modular multiplication without requiring division, which would be very
costly. The multiplication is performed by sum-and-shift of partial products, while
the modulo operation is obtained by subtracting the irreducible polynomial when-
ever the degree of the intermediate result gets equal to m. The ai · b(x) term is
either equal to 0 or to b(x), when ai = 0 and ai = 1 respectively. So one coefficient
of a(x) at a time is multiplied with all the coefficients of b(x) (without taking into
account any carry). Then the current result is shifted left (multiplying by x) before
adding the new partial result.

Listing 6.3. Montgomery multiplication algorithm.
1 r (x) := 0
2 f o r i = m−1 downto 0 do

3 r (x) := x∗ r (x) + a i ∗b(x)
4 i f degree (r (x)) = m then r (x) := r (x)−p(x)
5 return r (x)

6.2.1.1 Galois Field Multiplier scheme

The RTL circuit that implements the Montgomery algorithm is shown in Figure 6.6
for GF(24). 1-bit registers are exploited to hold inputs and partial results (so they
are used to memorize the state of previous loop of the algorithm), while the × and
+ symbols represent multiplication and addition.

The various steps of the algorithm can be associated to elements of the cir-
cuit. The Shift operation (x · r(x)) is implemented with a 1-bit shift register toward
the MSB. The partial product (ai · b(x)) is implemented with m bit-wise multipli-
cations with AND gates in the upper part of the circuit. Notice that data a(x)
has to be fed serially, while data b(x) is a parallel input. The Intermediate result
(r(x) = x · r(x) + ai · b(x)) is obtained with 4 bit-wise additions implemented as
three-input XOR gates. Finally the modulo operation executed with subtraction
(if degree(r(x)) = m → r(x) = r(x) + p(x)) is implemented with a bottom row of
AND gates. These are used to input p(x) or 0 to the XOR gate depending if the
degree of result is m or not, respectively.

112

6.2 – Circuit Design Example: Galois Field Multiplier

dataB(0)

P(0)
Res(0)

dataB(1)

P(1)
Res(1)

dataB(2)

P(2)
Res(2)

dataB(3)

P(3)
Res(3)

dataA
(serial)

Basic block

Figure 6.6. Scheme of a 4-bit bit-serial Galois Field Multiplier (GF(24)).

In Figure 6.6 the systolic array organization is evident: the Processing Element
(PE) is evidenced with a dashed line, and multiple PEs are used in a chain to
create the GFM. A N-bit GFM requires N almost identical basic blocks: The only
exception are the first and last which are slightly different from the others. Simply
connecting a different number of thee blocks it is possible to obtain any parallelism.
Therefore a generalized GFM can be designed defining only three blocks, which will
be named hereinafter first, central and last. This characteristic will be valid for any
GFM implementation explored throughout the whole work.

Now that the circuit to be used for this example has been thoroughly described,
in next paragraph the three implementations (CMOS, NML and ME-NML) are pre-
sented, and an overview of the various results obtained is reported in paragraph 6.2.5.

6.2.2 CMOS Implementation

For CMOS implementation, the scheme in Figure 6.6 has been modified into the
one in Figure 6.7 to make it fully pipelined. This is necessary because without the
pipeline, dataA and feedback propagation would have too long critical paths, as
these critical paths grow proportionally to the circuit parallelism. The full pipeline
guarantees a constant critical path for any parallelism leading to a greater through-
put, but requiring additional registers that will have an impact on circuit area.
Moreover, the pipelined version would be more similar to the ME-NML circuit, thus

113

6 – Design Rules for ME-NML Circuits

making the comparison more appropriate. Indeed, the scheme in Figure 6.7 will
be the starting point to design the ME-NML version of the Galois Field Multiplier
(GFM).

dataB(0)

P(0)
Res(0)

dataB(1)

P(1)
Res(1)

dataB(2)

P(2)
Res(2)

dataB(3)

P(3)
Res(3)

dataA
(serial)

Figure 6.7. Scheme of the 4-bit fully pipelined Galois Field Multiplier. [27]

Because of this strong modularity, once defined the three basic blocks (first,
central, last), it is straightforward to create a GFM with any parallelism just by
tuning the number of central blocks (Nbit − 2 central blocks). For example a 4-
bit multiplier, like in Figure 6.6, is composed of 2 central blocks. Increasing the
parallelism the circuit layout will simply grow horizontally with more central blocks.

The generalized N-bit CMOS GFM has been described with VHDL language.
The top entity, called Galois Multiplier, instantiates N basic block components.
The basic block has slightly different configurations, depending on its position
within the circuit: first, last or center. This exact organization has been used also
for the two NML implementations.

Now it is necessary to provide some additional information concerning the timing
characteristic of this circuit. GFM is a sequential circuit, in which input dataA is
provided serially. When dataA(n) must be provided, the result of the computation
done with dataA(n-1) must be available at the rightmost XOR gate. The delay
between the input of one bit of dataA and the corresponding usage of the computed
result is 2 clock cycles. Hence a new input can be given every 2 clock cycles.
Therefore the overall time for dataA to be fed in input is 2N · Tclk, leading to a
throughput of 1/(2N · Tclk).

114

6.2 – Circuit Design Example: Galois Field Multiplier

From a deepen timing analysis, there are three principal issues that derive from
the required protocol:

• There is an unused clock cycle between a dataA bit and the next. This means
that meaningful inputs are fed only for half of the time, so at any time half of
the registers in the circuit would contain useless data.

• It is not possible to supply all bits of dataB simultaneously. The same is true
for P and to acquire Res.

• To guarantee a continuous data flow, the inputs of an operation are fed right
after the ones from the previous one. Therefore the new operation starts while
the previous one is still processing. The first partial product has to be summed
to 0, so the central shift register would be required to contain zero when the
new data arrives. However it would still be carrying the final result from the
previous operation.

.
These issues can be addressed with the following adopted solutions, that are

valid also in the case of the two nanomagnetic implementations:

• Interleaving: To have a continuous flow of input data multiple non correlated
sets of operations can be executed in parallel, so that the delay time between
an input and the next is filled with other operations (this has been thoroughly
described in Section 3.2).

• Preskew and deskew networks: A full set of additional registers must be
added to the multiplier’s body, in order to form preskew (for dataB and P)
and deskew (for Res) networks.

• Shift Register Reset: Each register of the central row has to be reset (set
to ′0′) when data from a new operation arrives. Since in that moment it will
contain the final result of the previous operation, such result will be erased.
Therefore a line of additional registers, with the same input as the shift reg-
isters, is added right below. In this way the final result can be preserved,
allowing to execute a continuous flow of operations. The reset of the shift
register is applied in the same way as dataB is fed to the circuit. A single
clock cycle reset is applied to each register when a new data is fed to its
correspondent dataB register.

6.2.3 NML Implementation

Once implemented in CMOS, the GFM can now be designed in classic NML and
ME-NML in order to provide a timing, area and power comparison. In this section

115

6 – Design Rules for ME-NML Circuits

we analyze the Magnetic clock implementation (we will refer to this technology as
“NML”, while the MagnetoElstic one will be “ME-NML”).

1 2 3 1

1 3 2 1

1 3 2 1

dataA (serial)

Result
P

dataB

Reset Reset

Feedback loop

Figure 6.8. The 2-bit Magnetic NML Galois Multiplier, comprehensive of
preskew and deskew networks. [27]

The snake-clock configuration for NML leads to a peculiar circuit organizations.
Nevertheless, also with this technology it is possible to define a Systolic Array like
structure.

We enclose the drawing of the 2-bit Magnetic NML Galois Multiplier including
the synchronization networks in Figure 6.8. The circuit body (central stripe) i
separated by the preskew/deskew networks (top and bottom).

A small area on the left in Figure 6.8 shows the exact layout of snake-clock wires
and the signal propagation directions, while in the rest of the drawing the forbidden
areas are simply marked by black crosses.

Notice also the feedback critical path for this implementation, represented in
blue. Its length is 30 clock zones, which correspond to 10 clock cycles, since the
snake-clock is a 3-phase clocking system. So, a new bit of dataA can be sent to
the circuit every 10 clock cycles. The basic block depth is instead equal to 15
clock zones (5 clock periods), so that will be the delay between bits of dataB, P
and Res. So the throughput can be computed considering that 10 clock cycles are
necessary to provide a new dataA signal and 15 clock cycles are necessary for each
block computation (so for each bit). For the 2-bit implementation, throughput will
be 1/(40 · Tclk). However it is possible to interleave two operations to increase the
throughput, that will be in general 1/(2N · Tclk).

6.2.4 ME-NML Implementation

We have described till now the CMOS and NML implementation of the Galois
Field Multiplier, showing how much different are the two circuits in this technology.
Now we consider the MagnetoElastic NML implementation. This is actually the

116

6.2 – Circuit Design Example: Galois Field Multiplier

first approach to the design of ME-NML circuits ever done, and it is particularly
interesting because it takes into account the technological and physical constraints
of this newly proposed technology. The first part of this Section is devoted to the
design of the circuit in ME-NML technology, while in the second part we will focus
on the VHDL description and circuit simulation of the circuit.

The starting point for the circuit design in ME-NML is the RTL circuit shown
in Figure 6.7. Considering ME-NML technology, the register function is embedded
in clock zones and magnets memory property. So, we need to consider only the
combinational logic. Since the only available ports are AND, OR and Inverter the
3-inputs XOR has been realized as in Figure 6.9.

A

B

C

f

3-inputs XOR
f = A B C

Figure 6.9. 3-inputs XOR function constructed with AND, OR and Inverter gates. [27]

We start our design considering the three different Processing Elements identified
in CMOS circuit. These represent our basic blocks. All of them contain two AND
and one XOR gates, plus a certain number of registers. At the time of writing there is
not an automatic tool for ME-NML circuits, so the design has been done manually
trying to identify the optimum solution and guaranteeing modularity. Through
several steps of manual design and optimization, the final basic blocks for the GFM
were designed as reported in Figure 6.10. The in/out signals for each block are
indicated for an easier comparison with the CMOS circuit.

The reset network is not shown for CMOS, but its functioning was explained in
paragraph 6.2.2. In the ME-NML implementation the reset (rst) is treated just like
any other signals. It is applied to the signal (PEin) that propagates the temporary
result from a block to the next one. The reset is obtained through an AND gate
with as inputs PEin and the reset signal itself. The same is true for the reset applied
to the feedback wire in the Last block (bottom-right corner).

For the sake of clarity each ME-NML cell in the picture has no electrodes, and
there is no vertical separation between cells. The cells color is used to identify the

117

6 – Design Rules for ME-NML Circuits

First block Central block Last block

dataB(0) d�����	
 d������
 dataA
(serial)

Res(0) R���
R��	

P(0) P�	
 P��

'0'

Ain A��� A�� A���

f���� f����� f���� f�����

����� ���� ����� ����

'�'

d������

P��

A��

f����

�����

R���

A��

f����

�
�
���

d�����	

R��	

P�	

Aout

f�����

����

d������

P��

Aout

f�����

����

dataA

r� r� r�

Figure 6.10. Basic blocks of the GFM. ME-NML blocks on top are matched with
the correspondent CMOS blocks.

clock phase: yellow for phase 1, pink for phase 2, light blue for phase 3, green for
phase 4. A N-bit multiplier requires N adjacent blocks: 1 First block, N−2 Central
blocks, 1 Last block. Notice that the right border of a general n block has the same
shape as the left border of the n+1 block; this was carefully achieved by design to
have the maximum modularity. We can now describe an complete ME-NML circuit.

In Figure 6.11 the basic blocks have been assembled to compose the 4-bit GFM.
The timing propriety of the circuit is highly affected by the delay of single ME-NML
cells. For example, a feedback path is highlighted in the drawing: It is 6 clock cycles
long, that is the time for crossing 24 ME-NML cells (simply counting the number
of cells crossed by that signal). The delay between dataA bits has to correspond to
this critical path length. This delay is much longer compared to the CMOS circuit,
because of the intrinsic pipeline nature of NML.

118

6.2 – Circuit Design Example: Galois Field Multiplier

'0'

dataB(0) dataB(1) dataB(2) dataB(3)

P(0)

Res(0) Res(1) Res(2) Res(3)
dataA
(serial)

rst P(1) rst P(2) rst P(3) rst

Figure 6.11. Magnetoelastic NML implementation of a 4-bit Galois Multiplier.

One aspect described in Section 6.2.2 is the necessity to introduce a preskewdeskew
network, so that all bits of dataB, P and Res can be served/acquired simultaneously.
The additional circuitry has been designed and added to the GFM body, as showin
Figure 6.12. This image is divided into three horizontal stripes. The central one
is the GFM’s body (same of Figure 6.11), while the top and bottom ones are the
required synchronization networks. The preskew/deskew circuitry can also be de-
composed in basic blocks and described with VHDL generically for any number of
bits, even though they are not as regular as the central section. They do not contain
any logic, only interconnections.

To verify the circuit functioning and to evaluate performances, the ME-NML
Galois Multiplier has been described with the RTL model presented Paragraph 6.1.2.
The top entity Galois Multiplier instantiates and connects the required number of
basic blocks (Figure 6.10), which are defined by another entity called Base Blocks.

The timing protocol is very similar to the CMOS case but with 3 times longer
delays, because the critical path is 6 clock cycles instead of 2 of the CMOS version.
The result is a 6 clock periods delay between dataA bits, and 3 clock cycles of delay
for the others: dataB, P, Res. To reach the maximum throughput 6 uncorrelated
operations should be interleaved.

The total time to execute one operation is given by 4 × 6Tclk to provide inputs
and a same amount of time to complete the operations. So without interleaving the
throughput would be 1/(48 · Tclk). Applying interleaving it is instead possible to
achieve a more interesting 1/(8 · Tclk). Generalizing for any number of bit, adopting
interleaving it is possible to have a throughput of 1/(2N · Tclk.

119

6 – Design Rules for ME-NML Circuits

'0'

dataB

dataA
 (serial)�

�

#
$%

&()(+

P (primitive
 polynomy)

Figure 6.12. ME-NML Galois Multiplier with additional preskew and deskew networks.

6.2.5 Results

This chapter is devoted to performance evaluation of the three GFM implementa-
tions in terms of occupied area and power consumption. First of all the results
produced for each technology are discussed separately, providing details on their
evaluation. Then the three versions are put together, presenting an accurate com-
parison. NML circuits are handled keeping into account technological constraints
and the exact details on the clock network chosen.

The outcomes demonstrate the effectiveness of ME-NML for power and area per-
formances. For each implementation the results are evaluated for 4 to 64 bits, both
with and without the preskew/deskew circuitry for input and outputs signals. The
additional synchronization networks are a factor generally neglected in literature,
even though they bring a significant increase in circuit area.

120

6.2 – Circuit Design Example: Galois Field Multiplier

6.2.5.1 CMOS Results

The CMOS version of the GFM has been presented in previous Section 6.2.2. All the
results are extracted after finalizing the physical layout through Cadence Encounter
13.1. For the place&route we exploited a low power CMOS 28 nm FDSOI standard
cell library, with the following working conditions: V = 0.9V , T = 25◦C.

Table 6.3 contains all the results of area occupation for the CMOS GFM. The
same results are plot in Figure 6.13 to make them more understandable at a glance.

Table 6.3. Area occupation of CMOS GFM both with and without
synchronization circuitry.

Circuit Area (µm2)
Number of bits

4 8 16 32 64

Without Synch Network 154,6 320,6 646,9 1299,7 2605,3
With Synch Network 262,3 810,1 2745,2 9972,5 37856,0

Interconnection Overhead 1,7 2,5 4,2 7,7 14,5

0

5000

10000

15000

20000

25000

30000

35000

40000

4 8 16 32 64

A
re

a
 [

u
m

2
]

Bit Number

CMOS Area Overhead

155

262

321

810
647

2745
1300

9973

2605

37856Without synch circuitry
With synch circtuitry

Figure 6.13. Comparison of area occupation for the CMOS GFM both with and
without synchronization circuitry.

The interconnection overhead is simply evaluated as the ratio between values
with and without preskew/deskew networks. The impact of the additional circuitry
goes from 1.7 (4 bit) to 14.5 (64 bit). In other words it means that it is necessary

121

6 – Design Rules for ME-NML Circuits

to increase the area of the 70% for the 4 bit circuit, while to increase it more than
13 times for the 64 bit circuit.

The post-route power estimation gave the results in Table 6.4. The increase in
losses, due to interconnection overhead, is also evident in Figure 6.14. The additional
circuitry affects the power consumption less than the area occupation, reaching a
maximum increase of 12.5 times with respect to the power required by the GFM
body itself.

Table 6.4. Power consumption of the CMOS GFM both with and without
synchronization circuitry.

Power Consumption (µW)
Number of bits

4 8 16 32 64

Without Synch Network 14,30 33,63 68,62 140,24 294,03
With Synch Network 23,72 81,37 278,82 977,21 3687,80

Interconnection Overhead 1,7 2,4 4,1 7,0 12,5

0

500

1000

1500

2000

2500

3000

3500

4000

4 8 16 32 64

P
o
w

e
r

[u
W

]

Bit Number

CMOS Power Overhead

14. 3

23. 7

33. 6

81. 4
68. 6

279 140

977

294

3688Without synch circuitry
With synch circtuitry

Figure 6.14. Comparison of power consumption for the CMOS GFM both with
and without synchronization circuitry.

6.2.5.2 NML Results

In this paragraph we discuss how to evaluate the performance of Magnetic Clock
NML circuits.

122

6.2 – Circuit Design Example: Galois Field Multiplier

Table 6.5. Dimensions and number of magnets of the Magnetic NML GFM both
with and without synchronization circuitry.

Number of bits
4 8 16 32 64

W/O
Synch

Number of magnets 1818 3678 7398 14838 29718
Width (clock zones) 67 127 247 487 967
Height (magnets) 24 24 24 24 24

With
Synch

Number of magnets 3154 7388 18880 53960 172504
Width (clock zones) 67 127 247 487 967
Height (magnets) 40 56 88 152 280

The evaluation of area and power performances requires: the number of clock
zones, the length of the clock zones (circuit height) and the total number of magnets.
These values are first computed for each basic block and then put together to obtain
results for each parallelism and with or without the upper and lower interconnections
parts. The final results are presented in Table 6.5. The number of clock zones is
given by the circuit horizontal width, while the circuit height is measured in terms
of magnets.

Table 6.6. Area of the Magnetic NML GFM both with and without
synchronization circuitry.

Circuit Area (µm2)
Number of bits

4 8 16 32 64

Without Sync Network 57 107 209 411 817
With Synch Network 94 250 765 2610 9530

Interconn. overhead 1.7 2.3 3.7 6.3 11.7

The Magnetic Clock NML exploits 90×60nm2 magnets with separation Sepmag =
20nm. Horizontally each clock zone contains four magnets, therefore its width is
Wzone = 4·(Wmag+Sepmag) = 320nm. These data, together with those in Table 6.5,
allow to evaluate the total area of magnets and the rectangle circumscribed to the
circuit, shown in Table 6.6. Information on the preskew/deskew networks overhead
are reported as well. This is the lowest among the three technologies considered.
We will see that the interconnection overhead is the same for both area and power
estimation. Figure 6.15 gives an idea of the GFM behavior increasing the number
of bits, with and without the additional synchronization circuits.

123

6 – Design Rules for ME-NML Circuits

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

4 8 16 32 64

,
re

a
 [

u
m

2
]

Bit Number

Magnetic NML -rea Overhead

57

94

107

250
209

765 411

2610

817

9530Without synch circuitry
With synch circtuitry

Figure 6.15. Comparison of area occupation for the Magnetic NML GFM both
with and without synchronization circuitry.

The power dissipation, as for the ME-NML, has two sources: magnets switching
and clock wires. The average energy required by the switching of a single nano-
magnet is equal to δE = 30KbT = 1.24 · 10−19J , since an adiabatic switch has
to be exploited. The switching energy is obtained multiplying this value for the
total number of magnets. However the main contribution is due to the clock net-
work losses, because the current needed to generate the magnetic field is very high:
I = 3mA. The power consumption is therefore the dissipation of the current I
flowing through a copper wire, which has resistivity ρ = 16.8nΩ ·m. For each clock
zone we consider a copper wire with width Wclk = Wzone = 320nm and thickness
of Tclk = 400nm, so its section is Sclk = Wclk · Tclk. At any instant, only one third
of the clock zones is active, since only one of the clock wires at a time is active.
Summing the length Hzone of one third of the clock zones Nzones eff we obtain the
length Lclk = Nzones eff · Hzone to assign to the copper wire, that will model the
clock dissipation of the whole circuit. The power consumption is derived from the
following formula:

P = I2 · ρLclk

Sclk

The power consumption results are reported in Table 6.7. For further information
on the Magnetic NML model refer to [94] and [27].

124

6.2 – Circuit Design Example: Galois Field Multiplier

Table 6.7. Power of the Magnetic NML GFM, both with and without
synchronization circuitry.

Power Consumption µW
Number of bits

4 8 16 32 64

W/O Synch
Magnets Switching 0.023 0.046 0.092 0.18 0.37

Clock Wires 70 132 257 506 1010
TOTAL 70 132 257 506 1010

With
Synch

Magnets Switching 0.040 0.092 0.24 0.67 2.14
Clock Wires 116 308 941 3210 11700

TOTAL 116 308 942 3210 11700

Interconn. overhead 1.7 2.3 3.7 6.3 11.7

6.2.5.3 ME-NML Results

Finally we consider results in terms of Area and Power for the MagnetoElastic
NML case. The methodology and equations to compute area occupation and power
dissipation have been detailed in paragraph 6.1.2.3. The results for the GFM body
are directly evaluated by the VHDL model. Total area and energy components are
given as output of the top entity Galois Multiplier during simulation.

Table 6.8. Number of magnets and cells of ME-NML GFM both with and
without synchronization circuitry.

Magnets
and Cells

Number of bits
4 8 16 32 64

W/O
Synch

N of magnets 974 1990 4022 8086 16214
N of cells 199 403 811 1627 3259

With
synch

N of magnets 2007 6431 22287 82509 297710
N of cells 427 1273 4117 14547 50235

First, the number of nanomagnets and cells are determined; they are listed in
Table 6.8. The results concerning area occupation, both with and without the
preskew/deskew circuits, are organized in Table 6.9 and plotted in Figure 6.16,
where the interconnection overhead can be observed clearly. The overhead due to the
upper and lower interconnections behaves similarly to the CMOS implementation:
It grows quadratically with the number of bits, going from 2.1 (4 bit) to 15.4 (64
bit).

125

6 – Design Rules for ME-NML Circuits

Table 6.9. Occupied area of ME-NML GFM both with and without
synchronization circuitry.

Circuit Area
(µm2)

Number of bits
4 8 16 32 64

No
Synch

Magnets 3.2 6.5 13 26 53
Cells 14 29 58 116 233

With
synch

Magnets 6.5 21 72 268 968
Cells 31 91 294 1040 3590

Interc. overhead 2.1 3.2 5.1 8.9 15.4

0

500

1000

1500

2000

2500

3000

3500

4000

4 8 16 32 64

A
re

a
 [

u
m

2
]

Bit Number

ME.NM/ 0rea Overhead

14

31

22

21 53
224

116

1040

233

3520Without synch circuitry
With synch circtuitry

Figure 6.16. Comparison of area occupation for the ME-NML GFM both with
and without synchronization circuitry.

The power consumption is proportional to the area occupation, because both
measures have the number of cells as factor. Therefore the interconnections overhead
is the same as for the occupied area. The results are reported in Table 6.10. It is
worth underlining that the magnets switching energy is negligible (20 times smaller)
compared the clock network dissipation.

6.2.5.4 Results Comparison

Now that all the results have been presented, we compare the performances of the
three implementations in terms of area and power. This is where we can finally

126

6.2 – Circuit Design Example: Galois Field Multiplier

Table 6.10. Power consumption of ME-NML GFM both with and without
synchronization circuitry.

Power Consumption (µW)
Number of bits

4 8 16 32 64

Without Synch Network 1,28 2,60 5,22 10,5 21,0
With Synch Network 2,74 8,21 26,7 94,5 327,0

Interconnection Overhead 2,1 3,2 5,1 9,0 15,6

tag ME-NML as an interesting technological alternative to CMOS and where we
can demonstrate that the MagnetoElastic clock allows to dramatically reduce power
consumption with respect to the classic magnetic field clock.

First we consider the circuit without synchronization networks.

0

500

4000

4500

2000

2500

3000

6 7 46 32 66

:

re

a
[u

m
2

]

Bit Numbe;

A;ea Compa;ison

14

57

155

29

107

321

58

209

647

116

411

1300

233

817

2605

NM< ma=netic >ield
NM< ma=netoelastic
CMOS 2?nm

Figure 6.17. Area comparison between the three GFM implementations with-
out synchronization networks.

Data on occupied area, without considering the additional networks, are plotted
in Figure 6.17. Of course the area increases with the number of bits: It is interesting
to notice that the CMOS implementation has the worst performance (blue line),
while the smallest area is achieved with ME-NML circuit (green line). On average
CMOS circuit is 11 times larger than ME-NML, Magnetic NML instead is 3.5-4.1
times bigger.

Figure 6.18 depicts instead the power comparison, still neglecting the upper and
lower interconnections. The curves are similar to the graphs of the circuit area.

127

6 – Design Rules for ME-NML Circuits

0

200

@BB

DBB

FBB

1BBB

12BB

@ F 1D G2 D@

P
o

w
er

 [

u

W
H

BIt JuKber

PoQer ToKparIsoU

1. 3

4. 3

69. 7

2. 6

33. 6

132

5. 2

68. 6

257

10. 5

130

506

21

294

1005

JVX KaYUetIc ZIeld
JVX KaYUetoelastIc
TV\^ 2_UK

Figure 6.18. Power comparison between the three GFM implementations
without synchronization networks.

However, while ME-NML confirms itself as the best technology, the Magnetic NML
is now definitely the worst one. It is though what expected, as the Magnetic Clock
network requires a very high current to generate the magnetic field. On average
CMOS consumes 11-14 times more energy than ME-NML, Magnetic NML instead
requires around 50 times more than ME-NML.

In the next graphs we take into account the upper and lower synchronization
networks.

For what concerns the synchronization networks, it is important to state im-
mediately that the circuit body only grows horizontally, while the upper and lower
networks grow also vertically, hence they grow quadratically. This additional cost
is often neglected in literature, even though such circuitry is essential to properly
interface our module with others. This is a recurring problem of QCA circuits [19],
because of their intrinsic pipeline nature.

Figure 6.19 shows the occupied area for the three GFM versions after adding the
preskew/deskew modules. All the curves have similar trends. ME-NML and CMOS
have respectively the best and worst performance, like when considering the area
of the GFM’s body only. However the additional interconnections have a slightly
stronger impact on ME-NML than on the others. The ratio between technologies
lowers to 8.5-10.5 for CMOS and 2.5-3.0 for Magnetic NML.

Figure 6.20 shows instead the power consumption for the three GFM versions
after adding the preskew/deskew modules. Just like for the area, when considering
the full circuit, ME-NML performance suffers more for the additional interconnec-
tions. However this does not weaken its leadership significantly. The ratios decrease

128

6.2 – Circuit Design Example: Galois Field Multiplier

0

5000

10000

15000

20000

25000

30000

35000

`bbbb

` c 1e h2 e`

A
re

a

j u

k

2

l

Bot puqber

Area soqparosot uotv preskeu atd deskeu tetuorks

94-NML

31-ME NML
262-CMOS

250-NML

91-ME NML
810-CMOS

765-NML

294-ME NML
2745-CMOS

2605-NML

1040-ME NML
9972-CMOS

9530-NML

3590-ME NML

37855-CMOSpxy qaztetoc {oeld
pxy qaztetoelastoc
sx|} 2~tq

Figure 6.19. Area comparison between the three GFM implementations with
synchronization networks.

0

2000

����

����

����

1����

12���

� � 1� �2 ��

P
o

�

er
 �

u

�
�

B�t �u�ber

Po�er �o�par�so� ��t� preske� a�d deske� �et�orks

116�NML

2.7-ME NML

23.8-CMOS

308-NML

8.2-ME NML

81-CMOS 942-NML

26.7-ME NML

279-CMOS

3207-NML

94.5-ME NML

977-CMOS

11729-NML

327-ME NML

3688-CMOS

��� �a��et�c ��eld
��� �a��etoelast�c
���� 2���

Figure 6.20. Power comparison between the three GFM implementations
with synchronization networks.

to 8.7-11.3 for CMOS and 42-36 for Magnetic NML.

The final considerations are mostly three. First, the MagnetoElastic NML has
confirmed its potentialities in this circuit example. With a proper architectural
choice it leads to a great reduction of circuit area and power losses of the clock
network, which was the unavoidable drawback of previous NML implementation.

129

6 – Design Rules for ME-NML Circuits

Second, the synchronization networks have a huge impact on performances, thus
it is imperative to take them into consideration when they are required. Third,
even with these excellent results, NML technology is not meant as a replacement
for CMOS technology, since its speed is intrinsically limited. The benefits of NML
technology are bounded to circuit area and power consumption, together with its
intrinsic memory ability. As already thoroughly described in Chapter 3, to address
the low clock frequency of this technology it is necessary to adopt parallelization
of tasks using massive parallel architectures such as square or octagonal Systolic
Arrays.

6.3 Parallel and Serial Computation in ME-NML

Results of previous Section analysis, highlight that Magnetoelastic NML can over-
come both Magnetic Clock NML and CMOS technologies in terms of circuit area
and power consumption. The ME-NML implementation of the bit-serial Galois Mul-
tiplier, organized as a Systolic Array, is extremely compact and easily scalable. The
Galois Field Multiplier (GFM) exploiting the Montgomery algorithm is interesting
for its input rules: one input is provided serially to the circuit, while the other is
fed in parallel. The architecture is parallel but it adopts this hybrid input approach
with recurrence on the logic block (N loops on the logic core to achieve the final
result, where N is the number of bits of inputs).

Generally CMOS circuits are designed as much parallel as possible to avoid re-
currences (loops on same computational blocks) and increase performance. This is
also advantageous because in CMOS additional signal lines to increase the paral-
lelism of signals have an extremely low impact on the circuit, so the only circuit
area increase is due to additional logic gates. This is definitively not true for NML
technology. We have seen in Section 6.2 how interconnection networks produce an
important area increase in NML and ME-NML.

The idea of this research path is to investigate what can be the best solutions
for ME-NML: on the one hand parallel circuits can guarantee faster operations and
it is not necessary to use the same logic block several times for one computation,
but these may suffer from area devoted to the routing of signals; on the other hand
serial circuits can guarantee smaller sizes and an interesting logic/routing area ratio,
but they require several reiterations to achieve the final result.

So, our inquiry focuses on the dualism between serial and parallel structures,
trying to determine which one of the approaches gets the best out of ME-NML. The
case study chosen is a generalized Multiply Accumulate unit (MAC), which will be
realized in three different versions: fully parallel, serial-parallel, fully serial. The
serial-parallel solutions exploits the principle seen for the GFM, where one input is
provided serially to the circuit while the other is fed in parallel.

130

6.3 – Parallel and Serial Computation in ME-NML

The three generalized MAC are designed, modeled, simulated and compared in
terms of area, power, throughput and latency. The MAC unit is composed by a mul-
tiplier, an adder and an accumulator: The main scheme is depicted in Figure 6.21.

ADDER

DataA DataB

Result

MULTIPLIER

ACCUMULATOR

Figure 6.21. Multiply Accumulate unit scheme.

6.3.1 Parallel MAC Unit

The first implementation presented is a parallel version of the MAC unit. It is
basically composed by a parallel multiplier and an adder with feedback. The accu-
mulator function is instead embedded, as ME-NML is intrinsically pipelined. The
array multiplier and the ripple carry adder (RCA) have been chosen as components
of the parallel MAC, because they both have a Systolic Array architecture. They
are composed of blocks that communicate only with their neighbors, avoiding as
much as possible long interconnections and feedback.

6.3.1.1 Circuit Scheme

The scheme of the 4-bit Array Multiplier (left) and the 8-bit Ripple Carry Adder
(right) are drawn in Figure 6.22, where FA and HA represent Full Adder and Half
Adder. The two inputs A and B an the output Res are parallel. Consider a MAC
unit with Nbit inputs A and B. The result of the N-bit multiplication is a 2Nbit

number, therefore the adder will have 2Nbit inputs. Indeed in Figure 6.22 we have
a 4-bit multiplier and a 8-bit adder.

Notice that the multiplier is basically a matrix of Full Adders, so it is two-
dimensional and its area grows quadratically with the circuit parallelism. The Array
Multiplier algorithm is the simplest one that follows step by step the handmade

131

6 – Design Rules for ME-NML Circuits

FA

HA

FA

HA

A0

A1

A2

A3

FA

HA

FA

FA

A0

A1

A2

A3

FA

HA

FA

FA

A0

A1

A2

A3

A0

A1

A2

A3

B0 B1 B2 B3

����

����

����

����

����

Res2

Res1

����

FA

FA

FA

FA

FA

HA

FA

FA

���

¡¢

c1

c2

¡£

¡¤

¡¥

¡¦

¡§

Figure 6.22. 4-bit MAC scheme. Array Multiplier on the left and Ripple
Carry Adder on the right. [27]

multiplication. Partial products are shifted and added to an intermediate result.
Each AND ports column in the drawing evaluates a partial product, which is then
added to the intermediate result by the Full Adders. Moreover every AND column
has a 1-bit shift with respect to the previous column to assure the proper alignment
of the partial products sum. The final product goes to the RCA, that sums it with
the accumulator value (stored in the RCA feedback). Within the adder the carry
propagates vertically from one FA to the next.

The circuit arrangement and orientation imitates the ME-NML implementation
that will be presented shortly, to guarantee an easy visual comparison between the
two circuits. However there are some differences. The scheme in Figure 6.22 does not
have any pipeline stage, while the ME-NML MAC will be fully pipelined. To have
the two circuits more similar, each row and column in Figure 6.22 should represent
a pipeline stage.

132

6.3 – Parallel and Serial Computation in ME-NML

6.3.1.2 ME-NML Implementation

¨

©

!"

#

$

#

$

#

$

!"

(a) (b)

Figure 6.23. Half Adder and Full Adder realized with both ME-NML and CMOS
technologies. (A) Half Adder. (B) Full Adder. [27]

The basic modules of the MAC unit are Full Adder (FA) and Half Adder (HA).
These modules can be arranged in many different ways. One version of the Half
Adder has already been depicted in Figure 6.5. Here we present the FA and HA
that have been exploited to create the parallel MAC. Figure 6.23(a) shows the ME-
NML HA together with its CMOS scheme, Figure 6.23(b) represents instead the
FA.

Basically the whole parallel MAC has been designed exploiting these blocks
only, providing them with a properly routed network of interconnections. The final
Parallel MAC circuit in ME-NML is shown in Figure 6.24.

The VHDL model and simulation procedure is the same of the Galois Multiplier.
The generic parallel MAC has been modeled with the usual components’ hierarchy
and tested up to 64 bits. Using a Matlab script, for each parallelism to be tested,
we created a set of 1000 random inputs and related results. The VHDL testbench
acquires those random inputs and writes the simulation results into another file,
which can be compared to the expected results.

133

6 – Design Rules for ME-NML Circuits

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

1212

12

12

12

12

12

12

12

12

12

12

12

1212

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

1212

12

12

1212

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12 12

12

12 12

12

12 12

12

12 12

12

12 12

12

12

12

12

12 1212

12

12

12

12 12

12

1212

12

1212 12

121212 12 12

1212 12 12

12

1212 1212

12

12

1212

12 12 1212

1212 12

12 12

12 12

12 12 12 121212 12 12 12 12

12 12 121212 12 12 12 12 12 1212 12 12 12 12

12

12

12

12

12

12
12

12

12

12

12 12

12

12

12 12 12 12

12

12

12

12

12

12

12

12

12

12

12

12 12

12 121212

12 12 12 12 12

12 12 1212 12

12

12

12

1212

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12

12 12

12

12

12

12

12

Mult(N-1,0)

Mult(i,0)

Mult(0,0)

Mult(0,j)

Mult(0,N-2)

Mult(i,j)

Mult(N-1,j)

Mult(N-1,N-2)

Mult(i,N-2)

Mult(i,0)

Mult(i,j)

Mult(i,N-2)

X

Y rst

Result

Add-LSB(0)

Add-LSB(j)

Add-LSB(N-2)

Add-MSB
(0)

Add-MSB
(i)

Add-MSB
(i)

Add-MSB
(N-1)

Figure 6.24. 4-bit parallel ME-NML MAC unit. Labels identify the base blocks
of Multiplier and Adder. [27]

6.3.1.3 Timing Analysis

The Array Multiplier is composed by a matrix of N×(N−1) base blocks. Increasing
the circuit parallelism the matrix will get bigger, affecting the overall circuit latency.
On the other hand for any number of bits the RCA will always be only one column
thick, having a constant impact on the latency. Every block of the Multiplier requires
5 clock cycles to be crossed horizontally (signal x) and 2 vertically (signal y in
Figure 6.25). Therefore the inputs (bottom-left) need (5(N − 1) + 2N + 5) · Tclk

to reach the result. The additional 5 clock cycles are fixed and mainly refer to the
time needed to pass through the RCA. The critical paths are highlighted with blue
in Figure 6.25 Mult(i,i).

134

6.3 – Parallel and Serial Computation in ME-NML

Add-MSB(i)

12

12

12

12

12

12

S_in

c_in

S_out

c_out

rst

Mult(i,i)

12

12

12

12

12

12

12

12

12

12

S_in

x(i)

y(i) c_in

S_out

c_out
y(i)

x(i)

2
 T

cl
k

5 Tclk

5 Tclk

Figure 6.25. Critical paths of the parallel MAC: 1) Critical paths of multiplier’s
base blocks. 2) Feedback loop of adder’s base blocks. [27]

In a MAC each multiplication result is added to the value in the accumulator.
Since each block of the adder has a 5 clock long feedback loop (Figure 6.25 Add-
MSB(i)), operations cannot be fed to the MAC in a continuous flow. Two operations
must be fed with 5 cycles of delay in order to be added to each other. Therefore
to reach the maximum throughput 5 uncorrelated operations should be interleaved.
With the interleaving, throughput is of one operation per clock cycle. All informa-
tion regarding timing performance of the parallel MAC are listed in Table 6.11. This
table indicates the maximum achievable throughput, when interleaving technique is
exploited.

Table 6.11. Timing performance of the Parallel MAC

N bit Interleaving Throughput Latency: 1st Result out

4 5 op. 1/(Tclk) 28Tclk

8 5 op. 1/(Tclk) 56Tclk

N 5 op. 1/(Tclk) 5(N − 1) + 2N + 5 · Tclk

6.3.2 Serial-Parallel MAC Unit

The parallel MAC described in the previous section has a 2D layout. The idea for
the second version of the MAC is to create a circuit organized as a 1D array of
elements. It is called “serial-parallel MAC”, because it has serial inputs and parallel
output. While the design of the parallel MAC was trivial, in this case it was not

135

6 – Design Rules for ME-NML Circuits

possible to design a simple circuit able to keep up with the parallel implementation.
The circuit’s body itself has excellent characteristics, but its input/output protocol is
unique, it would be very difficult to interface it directly with other devices. Moreover
additional interconnections are required, as in the case of the Galois Multiplier,
terribly spoiling the performances.

6.3.2.1 Circuit scheme

The scheme in Figure 6.26 is the body of the 4-bit serial-parallel MAC, but to have
serial inputs and parallel output it requires additional registers. The circuit is com-
posed of 2Nbit 1-bit adders. Each adder has its own feedback, so that the array of
FAs can work as an accumulator. A reset signal allows to reset the accumulator
whenever necessary. As usual the scheme is fully pipelined to imitate ME-NML be-
havior. The timing protocol follows the handmade multiplication procedure, where
the N partial products are evaluated one by one and summed together.

B(0)

B(1)

B(2)

B(3) B(3) B(3) B(3)0 0 0

0 0

0

0 0 0

0 0

0

A(0)

A(1)

A(2)

A(3)

B(0) B(0) B(0)

B(1) B(1) B(1)

B(2) B(2) B(2)

t3

t2

t1

t0

t6

t5

t4

t3

FAFAFAFA FA FA FA

reset

Res(0) Res(1) Res(2) Res(3) Res(4) Res(5) Res(6) Res(7)

HA

Figure 6.26. Body of the 4-bit serial-parallel MAC. [27]

Figure 6.26 also shows a timeline that explains the input protocol to execute
a 4-bit operation. At t0 A is fed serially starting from the MSB. After all 4 bits
of A are fed in the shift register, they are multiplied bitwise with B(0), which has
been applied in the meantime. This gives the first 4-bit partial product which goes
in the first four Full Adders, while the remaining three Adders receive ′0′. Data
B always has N − 1 = 3 bits equal to ′0′, because partial products have a N-bit
width. After the first partial product is evaluated data A bits shift to the right and
are multiplied with data B(1) which arrives right after B(0) but shifted of one step

136

6.3 – Parallel and Serial Computation in ME-NML

toward the MSB (right). In this way the second partial product is correctly aligned
to the first one, so that they are added properly.

FAFAFAFA FA FA FA

reset

Res(0)

Res(1)

Res(2)

Res(3)

Res(4)

Res(5)

Res(6)

Res(7)

HA

ª «¬®ial)

B (serial)

Figure 6.27. Full scheme of the 4-bit serial-parallel MAC. [27]

Evaluating all the partial products only requires N clock cycles. But another N
cycles have to be spent feeding ′0s′ to prepare the circuit for the next operation. The
Full Adders’ carry-out signals are propagated to the carry-in of the next FA on the
right. It is now evident that input B enters the circuit in a way that would make it
difficult to interface this circuit with others. The same applies to the result, whose

137

6 – Design Rules for ME-NML Circuits

bits need to be synchronized, just like for the Galois Multiplier. In Figure 6.27 the
preskew (for B) and deskew (for Res) networks are added on top and bottom of the
circuit body. It is immediately clear their great impact.

6.3.2.2 ME-NML implementation

The main element of the serial-parallel MAC is a Full Adder with a feedback loop
for the result. The ME-NML FA used for our serial-parallel MAC is drawn in
Figure 6.28. The feedback loop, highlighted in blue, is 3 clock periods long. Like the
previous cases, the feedback is the critical path that determines the delay required
between inputs. In this case an input bit has to be served every 3 clock cycles,
hence the maximum throughput can be reached with a 3-operations interleaving.
The two other patterns point out that the base block takes 2 clock cycles to be
crossed horizontally, and 3 cycles vertically.

A

¯°±²³

Res

Rst

B

¯°´µ

3 Tclk

¶ ·clk

3 Tclk

Figure 6.28. Full Adder block for the serial-parallel MAC. Three patterns under-
line horizontal crossing, vertical crossing and feedback loop. [27]

The full adders in the scheme of Figure 6.27 only have 1Tclk latency, therefore
the timing is slightly different than the final ME-NML implementation. The two
circuits are exactly the same apart from the internal delays. For example consider
the input conditioning structure for B in Figure 6.27, each register of the column
at the top-left corner is realized in ME-NML with a 3 cycles delay.

The ME-NML final circuit of the 4-bit MAC is shown in Figure 6.29. The circuit
is divided into four main regions and within each region the dashed lines identify the
basic blocks. To construct the generic MAC each region has been treated separately.

138

6.3 – Parallel and Serial Computation in ME-NML

B

Res

'0'

A

Rst

Figure 6.29. ME-NML implementation of the serial-parallel MAC.

First, we selected the set of recurrent blocks, then we investigated how to organize
them so that combining them properly it is possible to create a MAC with any
number of bits.

The whole circuit has been described with the RTL model we developed for
ME-NML technology. A substantial effort was devoted to the generic description of
the interconnection networks. The top entity MAC 1D instantiates the four entities
reported above.

6.3.2.3 Timing analysis

Data A and data B are provided serially with a delay of 3 clock cycles between
them. Then the time required to feed all the bits is 3Nbit ·Tclk. After that, for other
3Nbit · Tclk the inputs are set to ′0′, until a new operation starts. The throughput
would be equal to one operation every 3 · 2Nbit clock cycles, but exploiting the
interleaving technique it can be increased to 1/(2Nbit · Tclk). Table 6.12 reports
these results and evaluates the overall circuit latency. Data A arrives directly at the

139

6 – Design Rules for ME-NML Circuits

MAC’s body, data B instead has to cross the preskew network first.

Table 6.12. Timing performance of the Serial-Parallel MAC

N bit Interleaving Throughput Latency: 1st Result out

4 3 op. 1/(8Tclk) 36Tclk

8 3 op. 1/(16Tclk) 76Tclk

N 3 op. 1/(2N · Tclk) (6(N − 1) + 4N + 2) · Tclk

6.3.3 Serial MAC Unit

The third and last implementation analyzed in this work is the Serial MAC, which
has both serial inputs and output. The starting idea was to create a circuit exploiting
only two 1-bit Full Adder, one for the multiplier and one for the adder.

FA

¸¹º»¼½ult

Res(serial)

¾¿¹¿À
(serial)

dataB

(serial)

Á ¼ Â ¼ Â ¼ Â
ÃÄ

ÃÅ

ÆÇ¹¼½È»t
ÆÇ¹¼¿¾¾Ér

ÃÅ

ÆÇ¹¼¿ÊÊ

ÃÄË

Multiplier Adder

ÌÍÎÏÐÑ ÒÓÔÏÐ

ÒÓÕÍ

ÖÏ×

Accumulator

ÌÍÎÏÐØ

Result

Figure 6.30. Scheme of the 4-bit serial MAC (preliminary implementation). [27]

140

6.3 – Parallel and Serial Computation in ME-NML

6.3.3.1 Serial MAC scheme

The architecture that implements our concept is represented in Figure 6.30 in its
4-bit version. It consists of a serial multiplier, a serial adder and an accumulator, im-
plemented as the adder feedback loop. Registers with the x3, x4, x32 labels represent
multiple cascaded registers (respectively 3, 4, 32) that have been combined together
for a sharper visual understanding. Let us analyze each of the three components in
detail.

Multiplier The multiplier accurately imitates the handmade multiplication algo-
rithm (Figure 6.31 shows the 4-bit case). The serial inputs A and B are multiplied
and then fed to the first Full Adder. Their products must produce all the 1-bit
partial products of the form Ai ·Bj (see Figure 6.31). To do so the inputs protocol
for a 4-bit multiplication is shown in Figure 6.31.

A3
B3

A2
B2

A1
B1

A0
B0

A3B0 A2B0 A1 B0 A0B0
A3B1 A2B1 A1 B1 A0B1

A3B2 A2B2 A1 B2 A0B2
A3B3 A2B3 A1 B3 A0B3

S3 S2 S1 S0S6 S5 S4S7

x
=

Figure 6.31. Handmade 4-bit multiplication algorithm.

Data A bits are given in the order {A0, A1, A2, A3} for 4 times (Nbit times)
and then data A is set to ′0′ until the end of the operation. To generate the par-
tial product properly, each bit of data B must be multiplied with all the data
A bits. Therefore the elapsed time to generate all the Ai · Bi products is 16 ·
Tclk (in general N2

bit · Tclk). In the 4-bit case B is fed in the following order:
{B0, B0, B0, B0, B1, B1, B1, B1, B2, B2, B2, B2, B3, B3, B3, B3}. After that data B is
set to ′0′ until the end of the operation.

The Full Adder of the multiplier sums the partial products one bit at a time. It
has two feedbacks, one for the result S and one for the carry-out, so that the whole
multiplication can be carried out by a single FA module. For a correct alignment
of the partial products’ sum the carry feedback has to be Nbit registers long, while
only Nbit− 1 are required for the result loop. The multiplier produces one bit of the
result every Nbit clock cycles, therefore the whole operation takes 2N2

bit · Tclk, as the
result is in 2N bits. The result is then forwarded to the adder, but only 1 bit out
of N is meaningful.

141

6 – Design Rules for ME-NML Circuits

Notice that the multiplier feedbacks require a control signal. The Rst-mult

simply resets the carry-in before starting a new operation. The Ctrl-mult has
instead a more complex function. We said that the output of the FA contains a bit
of the final result every Nbit · Tclk, all the other data are intermediate results. For
a correct circuit functioning (see the algorithm in 6.31), the bits of the final result
must not be fed back to the FA. Ctrl-mult is supposed to mask those bits, setting
the feedback to ′0′.

Adder The adder sums up the multiplication result to the value in the accumulator
starting from the LSB and puts the result back into the accumulator. It also has
to keep track of the carry bits. Rst-adder resets the carry loop when the LSB of a
new result arrives. The other reset signal Rst-acc allows to set the accumulator to
0.

Accumulator The accumulator works as a shift registers, its data is always mov-
ing. Its length is equal to the duration of a multiplication: 2N2

bit · Tclk. Because of
the circuit functioning, at any instant only 2N cells (1/N) of the accumulator reg-
isters will contain useful data. A lot of space is then wasted by registers (or cells in
ME-NML) that for most of the time do not contain meaningful data. The solution
we propose to reduce the great impact of the accumulator on the circuit area is to
let multiple MAC units share the same accumulator.

6.3.3.2 Serial MAC with shared Accumulator

The accumulator of the first serial MAC proposed (Figure 6.30) is too long and costly.
Even though the data to be stored is 2Nbit long, the accumulator has a length of
2N2

bit registers. At every instant 2Nbit · (Nbit − 1) register contain meaningless data.
This means that ideally the same accumulator could be shared by N different MAC
units. Moreover, the Adder block can be shared as well, as it processes useful data
only once every Nbit clock cycles.

We designed hence a circuit comprising N multipliers, one adder and one accu-
mulator. The final scheme is shown in Figure 6.32, where eight 8-bit serial MAC
units are represented together. They all share the same Accumulator and Adder.
The Mult. and Adder are simplified as boxes, but they refer to the 8-bit circuit in
Figure 6.30.

Under the multiplier blocks there are four rows of shift registers. The top line
is necessary to carry the results from all the multipliers to the Adder, but only the
meaningful values are allowed to enter that shift register. The output of each mul-
tiplier has to pass first through a multiplexer which is controlled by Ctrl results.
This signal makes sure that the intermediate results of the multiplication will not
enter the shift register, given that all the multipliers output the result bits at the

142

6.3 – Parallel and Serial Computation in ME-NML

Adder

Mult.

ÙÚ

ÙÛ

ÙÜ

Mult.

ÙÚ

ÙÛ

ÙÜ

ÙÛ

Mult.

ÙÚ

ÙÛ

ÙÜ

ÙÛ

Mult.

ÙÚ

ÙÛ

ÙÜ

ÙÛ

Mult.

ÙÚ

ÙÛ

ÙÜ

ÙÛ

Mult.

ÙÚ

ÙÛ

ÙÜ

ÙÛ

Mult.

ÙÚ

ÙÛ

ÙÜ

ÙÛ

Mult.

ÙÚ

ÙÛ

ÙÜ

ÙÛ

A
c
c
u

m
u

la
to

r

MAC 0 MAC 1 MAC 2 MAC 3 MAC 4 MAC 5 MAC 6 MAC 7

Ctrl-results

Result Result Result Result Result Result Result Result

Figure 6.32. Scheme of the 8-bit serial MAC with shared Accumulator and Adder. [27]

same time. The length of 7 registers assures that the results of one MAC do not
overwrite those of another one. The signal Ctrl results is set to ′1′ once every N
clock cycles, otherwise it is ′0′.

The Adder works as described before, but this time it will be exploited to its best,
processing useful data all the time. The MAC result, stored in the accumulator, can
be extracted serially from any point of it.

6.3.3.3 ME-NML implementation

The scheme in Figure 6.32 has been designed as suitable as possible to ME-NML
technology. Until now all the ME-NML circuits were in some way modular, so that
they could be described generically for any number of bits. On the contrary the
serial MAC designed in this section is not scalable. All the feedbacks increase in
length together with the number of bits, modifying radically the circuit layout.

6.3.3.4 Timing analisys

Changing the parallelism, the MAC requires to be redesigned from scratch, so we
only designed and simulated the 8-bit serial MAC. The full 8-bit serial MAC is in
Figure 6.33. It contains 8 different MAC units working in parallel and sharing both
Accumulator and Adder. The results are provided from the top of each block, while
in Figure 6.32 they were outputted at the bottom. Anyway both cases have the
same timing. As usual this architecture has been described with our RTL model for
ME-NML.

Since the Full Adders of the Multiplier process a continuous flow of data, for this
implementation it is not necessary to use the interleaving technique. Table 6.13 con-
tains the main information concerning timing. The throughput is the inverse of the

143

6 – Design Rules for ME-NML Circuits

Ý
Þ
ß
à

R
e
s

C
trl-re

s

Rst-acc

R
s
t-a

d
d
e

r

á
âãäå
æ
ç t

Ý
Þ
ß
á
è

s

ß
ãéçäå

u
lt

êëìëí

î
ï
ãï
ð

Figure 6.33. ME-NML implementation of the 8-bit serial MAC with shared
Accumulator and Adder.

execution time of one operation: 1/(2N2 · Tclk). Since the proposed circuit requires

144

6.3 – Parallel and Serial Computation in ME-NML

N MAC to be linked together, the throughput for the entire shared-accumulator
serial MAC (8 MACs) is 1/(2N).

Table 6.13. Timing Performance of the Serial MAC

N bit Interleaving Throughput Latency: LSB of Result out

4 1 op. 1/(32Tclk) 45Tclk

8 1 op. 1/(128Tclk) 85Tclk

N 1 op. 1/(2N2 · Tclk) (2N2 + 9) · Tclk

The latency from the beginning of an operation to when the LSB of the result
reaches the output is 2N2 · Tclk.

6.3.4 Results

This section presents the performance outcomes for the MAC unit implementations
proposed before. Here the three architectures are examined in terms of occupied
area and power consumption, while the throughput and latency information have
already been exhibited. At last the different MAC versions are placed side by side,
offering a rigorous comparison. The results estimation follows the main guidelines
adopted for the case study on the Galois Multiplier.

It will be proved that the parallel MAC outperforms the other two architectures.
For a fair comparison of area and power, each implementation should have the same
throughput, but this is not the case. Therefore we combined as many MAC modules
as needed to reach a throughput equal to 1. For example since the serial MAC has
throughput 1/(2N2), the area and power of a single serial MAC have been multiplied
by (2N2) as if (2N2) MAC units were working together to achieve a 1/1 throughput.

6.3.4.1 Parallel MAC Results

Table 6.14. Parallel MAC performance results.

Parallel MAC
Number of bits

4 8 16 32

Area (µm2) 150 601 2410 9630
Power (µW) 9.7 38 150 600
Increase rate - 3.92 3.96 3.98

145

6 – Design Rules for ME-NML Circuits

For what concerns area occupation of the Parallel MAC, the layout of this circuit,
as clear from Figure 6.24, has many empty internal regions. So the area evaluated
by the model (not shown in Table 6.14) is smaller than it should, because it only
considers the space occupied by cells. The value actually assigned to the parallel
MAC is rounded up to the parallelogram circumscribed to the circuit. To obtain the
parallelogram area we derived a generic equation for evaluating height and width
(in terms of cells) for any number of bits. Through the VHDL model it is instead
possible to evaluate the two power components, which have been added together to
get the total consumption. Finally, referring to Table 6.14, it has to be noticed that
the increase rate shows the growth of area when the number of bits doubles. So the
increase rate in the Nbit = 16 column is the result for Nbit = 16 divided by the result
for Nbit = 8. Area is more critical in this implementation, but similar values could
be derived for Power.

6.3.4.2 Serial-Parallel MAC Results

Table 6.15. Serial-parallel MAC performance results.

Serial-parallel MAC
Number of bits

4 8 16 32 64

Area (µm2) 41 128 432 1560 5900
Power (µW) 3.7 12 39 140 530
Increase rate - 3.10 3.37 3.61 3.78

Since the Serial-parallel MAC layout is very compact, the area calculated by the
VHDL model corresponds to the actual space occupied by the circuit. So increase
rates of area and power are pretty much the same as they are both proportional
to the number of cells. Actually the switching energy is only proportional to the
number of nanomagnets, but for big circuits it is also in some way proportional to
the number of cells.

All the results are displayed in Table 6.15. It is possible to see that the increase
rate grows with the number of bits. This means that with higher number of bits
this solution will be less convenient. The reason is that while the central block is
proportional to the number of bits, the interconnection networks grow quadratically.
Hence the impact of preskew/deskew circuits will be higher on the total circuit area
occupation and power dissipation.

146

6.3 – Parallel and Serial Computation in ME-NML

Table 6.16. Serial MAC performance results.

Serial MAC
Number of bits

4 8 16 32 64

Area (µm2) 9.1 10.2 15.7 27 50
Power (µW) 0.82 0.92 1.4 2.4 4.5
Increase rate - 1.12 1.54 1.72 1.84

6.3.4.3 Serial MAC Results

Even if only the 8-bit serial MAC has been designed and simulated, a projection
of the number of cells for the other parallelisms has been obtained through some
consideration on the circuit. What varies with the number of bits are the two
feedback loops of the multiplier block (Figure 6.30), the Accumulator and the shift
register that brings the products to the Adder (Figure 6.32). Also the loop of the
adder increases in length. In each single MAC block, to obtain the 2N-bit circuit
from the N-bit one, the multiplier’s loops must get N clock periods longer. The
same is true for the segment of the products’ shift register and for each of the two
segments of the accumulator. From this considerations it was possible to predict
with good approximation the growth of the serial MAC with the number of bits.

Results are shown in Table 6.16, where area and power are the effective values
for a single MAC, not those for the whole structure containing many MAC units.

The throughput of the serial MAC decreases quadratically with the number of
bits. Therefore ideally, to keep up with the parallel MAC performance, the increase
rate of a single MAC should be equal to 1. Unfortunately this is clearly not the
case.

6.3.4.4 Results Comparison

The three architectures have been analyzed in terms of throughput, latency, circuit
area and power consumption. Up to now the results of each MAC implementation
have been presented singularly, now they are compared to evaluate the best solution.

Comparison conditions

Interleaving To reach their maximum throughput, both Parallel MAC and
Serial-Parallel MAC, need to use the interleaving technique. The parallel circuit
requires an interleave level equal to 5, otherwise its throughput would be 1/5Tclk

and not 1/Tclk. The serial-parallel version requires instead an interleave level of 3
only. The Serial MAC does not require any interleaving. The comparison is carried

147

6 – Design Rules for ME-NML Circuits

out in two different situations, at first considering the interleaving possibility, that
would be similar to a real application scenario, then assuming that the interleaving
cannot be exploited to analyze the effects of this technique.

Equal throughput To obtain a meaningful comparison, area and power per-
formance should be referred to circuits with the same throughput. The output rate
of the Parallel MAC has been used as reference for both cases: With and without
interleaving. So the results concerning the parallel MAC are simply those of a single
unit. On the other hand the results of the other two implementations have been
multiplied by a coefficient, which is the number of units that should work in parallel
to reach the same throughput as the Parallel MAC. They have to arrive at a 1/5Tclk

rate without interleaving, and a 1/Tclk with interleaving.

• Serial MAC. Throughput always is 1/(2N2 · Tclk). 2N2 MAC units are re-
quired to reach 1/Tclk, 2N

2/5 MAC units are required to reach 1/5Tclk.

• Serial-parallel MAC. Exploiting interleaving its throughput is 1/(2N ·Tclk),
so 2N units are required to reach 1/1Tclk. Without using the interleaving
technique output rate is 1/(3 · 2N · Tclk). So 3/5 · 2N units are necessary to
obtain 1/5Tclk throughput.

Results exploiting interleaving Results of the comparison for area and power,
adopting interleaving, are depicted in Figure 6.34 and Figure 6.35. The 2D imple-
mentation is undoubtedly the most efficient, while the 1D (serial-parallel) has the
worst outcomes.

The parallel MAC, with respect to the other implementations, is the best both
for area and power, but in different ways. The power performance leads on the other
architectures definitely more than the area occupation. This fact is to be attributed
to the empty regions within the parallel MAC layout (serial and serial-parallel MAC
do not have any), which largely increase the area but do not affect the power con-
sumption. Furthermore, the area has been rounded up to the circumscribed paral-
lelogram, including then also some empty space outside of the multiplier.

Results without exploiting interleaving In a situation where the interleaving
technique could not be used, the hierarchies among the three MAC versions undergo
slight changes. Referring to Figure 6.36 and Figure 6.37, it is clear that the perfor-
mance of the parallel and serial-parallel MAC units worsen respectively of 5 and 3
times, according to their previous interleaving usage. The serial MAC gains a lot in
this situation because it cannot exploit interleaving anyway.

In fact the serial MAC becomes the leading architecture up to a 16 bits par-
allelism. But since, as explained before, none of the implementations can keep up

148

6.3 – Parallel and Serial Computation in ME-NML

0

10000

20000

30000

40000

50000

60000

70000

ñ0000

ò0000

100000

4 ñ 16 32

A
re

a
 ó

u
m

2

ô

õöt ÷umøer

Area Comùarösoú ûötü öúterleaýöúþ

150-2D

331-1D
291-0D

601-2D

2050-1D
1300-0D

2410-2D

13800-1D
8030-0D 6930-2D

99900-1D
55300-0D

ÿarallel MAC (2D)

Seröal-ÿarallel MAC (1D)

Seröal MAC (0D)

Figure 6.34. Area comparison of the three MAC implementations exploiting in-
terleaving and with the throughput being equal.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

4 8 16 32

A
re

a
 [

u
m

2

]

Bit Number

Power Comparison with interleaving

9. 71-2D

29. 8-1D
26. 3-0D 38. 1-2D

185-1D
117-0D

151-2D

1250-1D
724-0D 600-2D

9010-1D
4990-0D

Parallel MAC �2��

�erial-Parallel MAC �1��

�erial MAC �0��

Figure 6.35. Power comparison of the three MAC implementations exploiting
interleaving and with the throughput being equal.

with the parallel one when the number of bits increases, finally the parallel MAC
takes back its lead for 32 or higher number of bits.

In conclusion the Parallel MAC is the best solution. The Parallel MAC has been
designed with a structure similar to a systolic array. In this way the interconnections
are kept to the minimum. With this analysis we have also investigated the effect

149

6 – Design Rules for ME-NML Circuits

0

10000

20000

30000

40000

50000

60000

4 � 16 32

A
re

a
 �

u
m

2

�

��t 	um
er

Area Com�ar�so� �t�out ��terlea����

150-2D

198-1D

58-0D
601-2D

1230-1D

260-0D

2410-2D

8300-1D

1610-0D 6930-2D

59000-1D

11100-0D

�arallel MAC �2��

�er�al-�arallel MAC �1��

�er�al MAC �0��

Figure 6.36. Area comparison of the three MAC implementations without inter-
leaving and with the throughput being equal.

0

1000

2000

3000

4000

5000

6000

4 � 16 32

A
re

a
 �

u
m

2

�

��t �um�er

�o�er Com�ar�so ��t!out � terlea"� #

9. 71-2D

17. 9-1D

5. 3-0D
38. 1-2D

111-1D

23. 5-0D

151-2D

748-1D

145-0D 600-2D

5410-1D

998-0D

�arallel MAC $2%&

'er�al-�arallel MAC $1%&

'er�al MAC $0%&

Figure 6.37. Power comparison of the three MAC implementations without inter-
leaving and with the throughput being equal.

of preskew/deskew networks and set a first design of the MAC that can be reused.
Indeed, since there is not yet an automatic tool for ME-NML technology, the design
is done by hand and it is important to define the principle blocks that can be
reused when other designs are approached (as in the Reconfigurable Systolic Array
seen in Chapter 4). With this design we have enriched our library with a Ripple

150

6.4 – Final Remarks

Carry Adder, an Array Multiplier and finally a parallel MAC. These designs can be
extended to any number of bits, since they are modular, thus making them more
attractive.

6.4 Final Remarks

MagnetoElastic NML (ME-NML) is an extremely interesting enhancement for NML
technology. Mainly, its clock generation mechanism is able to dramatically reduce
power consumption. At the same time the extremely small definition of clock zones
(each cell is a clock zone) allows to compact the design and obtain more flexible
circuit paths. Area occupation is smaller than classic NML and at the same time
the circuit density is much higher. Moreover, it is quite simple to achieve modular
designs that can be extended to higher number of bits and reused in other circuits.

The design of complex ME-NML circuits has never been approached before. In
this thesis the foundations for this circuit design are set. Several achievements can
be mentioned:

• Standard Cell Library: a set of standard cells have been defined; they can
be used to design any logic circuit in ME-NML. They represent the first gate
library that can be used by an automatic tool (when it will be available) to
translate general VHDL circuit descriptions in logic circuits with this technol-
ogy.

• Enhanced VHDL Model: the Standard Cell Library has been completed cre-
ating the VHDL model of each cell. Moreover, this model can hierarchically
compute area and power of the entire circuit. In this way it is also possible to
have all the metrics of the circuit during simulation.

• Galois Field Multiplier design: GFM is widely used in cryptography and other
relevant fields, so while we have used this as an example for the design of
complex circuits, it will be possible in the future to use this generated circuit
in a framework of ME-NML design of even higher complexity. The obtained
circuit is advantageous over both CMOS and classic NML.

• Parallel approach for ME-NML: the best architectural choices made for CMOS
are not always the best when translated in another technology. We have deepen
analyzed the Parallel and Serial approach using as case study a Multiply and
ACcumulate (MAC) structure. We have identified that the parallel solution
is the best one, thus confirming that a CMOS parallel circuit can probably be
translated in NML without the necessity to redistribute inputs and adapt the
entire circuit (i.e. the exchange protocol between blocks can be maintained as
it is).

151

6 – Design Rules for ME-NML Circuits

• Multiplier, Adder and MAC design for ME-NML: since there is not yet an
automatic tool for ME-NML, the design of principal blocks that can be then
reused is fundamental. We have successfully designed the three blocks in such
a way that the number of bits can be simply increased or reduced without
further design effort.

With all these improvements, it is clear that ME-NML will make a step forward as
potential technology to substitute some aspects of CMOS circuits, principally in such
applications where power consumption is the main driver. With the growing usage
of mobile technologies that suffer from low battery availability, then the research
in this field may become fundamental for next-years advancements and to drive
companies to the right choices. While we believe that ME-NML cannot be itself the
only substitute of CMOS, with the results here presented it can be definitely one
important solution for key logical blocks of low power consumption applications.

152

Chapter 7

Mixed ME-NML/CMOS Circuits

The work presented in Chapter 6 has evidenced the potentiality of ME-NML tech-
nology, in particular its low power consumption with respect to classic NML. The
design of other ME-NML logic circuits has however evidenced also some limitations
of this technology.

• When it is necessary to use several signals and mainly when they need to be
crossed each other, the wasted area is extremely high. This is due to the fact
that ME-NML is still a planar technology.

• This technology itself cannot be used to make complete systems, because its
operating frequency is too low to respect timing constraints of some algorithms
or applications. So, it is necessary to use it jointly with other technologies that
can execute faster tasks. At the time of writing the obvious other technology
is CMOS.

The idea of this research path is to exploit the jointly contribution of ME-NML
and CMOS to have circuits that can benefit from both technologies’ strengths. To
do so, it is then necessary to design CMOS to NML and NML to CMOS interfaces,
to let signals propagate from one technology to the other.

The concept of a mixed ME-NML/CMOS circuit is developed in Section 7.1 of
this chapter. In particular the multiplexer with mixed circuitry is described and
analyzed in detail. Section 7.2 is instead devoted to the electrical interface that can
be used to exchange information between CMOS and ME-NML circuits. Conclusions
on this topic and most important achievements are then summarized in Section 7.3.

7.1 Concept

This Section explains the Concept of the Mixed ME-NML/CMOS circuits. First,
in paragraph 7.1.1, the advantages that can be gained with a mixed technology

153

7 – Mixed ME-NML/CMOS Circuits

approach are explained. So, the reasons that lead us to this research path are
evidenced. In paragraph 7.1.2 it is explained how it should look like a mixed circuit;
in particular it is presented the mixed technology multiplexer that is the first step
in the design of completely mixed circuits.

7.1.1 Advantages of Mixed Circuit

Table 7.1. Advantages and Drawbacks of ME-NML and CMOS technologies.

Technology Advantages Drawbacks

ME-NML
Low Power Consumption Inefficient Multiplexer
Small Area Occupation Long Latency of Wires

CMOS
Small Multiplexers Higher Power Consumption

Little Latency of Wires Greater Area Occupation

In Table 7.1.1 some advantages and drawbacks of ME-NML and CMOS are
listed. It is evident that those that are the disadvantages of ME-NML can be seen
as advantages of CMOS. In particular, two aspects are considered and highlighted:

1. Multiplexers in ME-NML are inefficient, because many wires have to be crossed
in a single-layer technology. This is evident from Figure 7.1, where a simple 2
input 1 output 4-bit Multiplexer occupies 49 magnets horizontally and 35 mag-
nets vertically. This area grows quadratically with the number of bits. Notice
that the scheme of Figure 7.1 has a different graphical layout with respect to
the ME-NML circuits shown in Chapter 6. Figure 7.1 has been obtained with
MagCAD, a tool that we have developed at Politecnico di Torino that is able
from a ME-NML (or even classic NML) to derive the corresponding VHDL
circuit automatically. This tool is not yet stable and releasable, but it has
already permitted us to make some preliminary analysis. Most of the circuits
presented in this thesis have been imported and where possible optimized with
MagCAD.

2. As already evidenced in the technological background (Section 2.3), long wires
in NML have long latency. Even if we try to minimize long interconnections
adopting a Systolic Array Processor organization, there may still be the ne-
cessity to route some external signal; for example some algorithms mapped
in the Reconfigurable Systolic Array presented in Chapter 4 require external
quick feedback loops. While this is not achievable in ME-NML, a CMOS wire
between two distant ME-NML cells would solve this problem. There may be

154

7.1 – Concept

Figure 7.1. A 4-bit 2to1 multiplexer designed in ME-NML technology
using MagCAD tool.

other technologies that could be combined with ME-NML to achieve the same
result, as for example Domain Walls. This path has not been yet been covered,
but it is a possible research path in the prosecution of this work.

7.1.2 Circuit Layout

In this first paragraph we will analyze how it is possible to create a Multiplexer
with Mixed ME-NML/CMOS technology. This is the first design stage that we
have approached towards multiple-technology circuits. The details of the electrical
interface between CMOS and ME-NML are instead given in Section 7.2.

The concept circuit for mixed-technology Multiplexer is shown in Figure 7.2(a).

155

7 – Mixed ME-NML/CMOS Circuits

Input A

Input B

Output

Input A

Input B

Output

Input A

Input B

Output

HOLD

SWITCH

RESET

RESET

SWITCH

HOLD

(a) (b) (c)

Figure 7.2. The concept of Mixed technology Multiplexer. In (a) it is presented
the concept circuit, made by 3 ME-NML cells. Through clock signal selection, it is
possible to obtain the Multiplexer function: in (b) it is presented the case of Input
A selection, while in (c) it is presented the case of Input B selection.

The circuit is composed by three cells. The peculiar cell is the central one, that
has a particular configuration non foreseen in the Standard Cell Library shown in
Figure 6.2. This cell has indeed no meaning if applied to a normal circuit, because
two inputs would pass through the same magnet that has no preferential polarization
(so, it does not implement a logic cell) and the result would be always uncertain.
However, the concept for this mixed-technology multiplexer is that only one cell
between the top and the bottom one will provide its information to the central cell.
The other cell (the one that does not provide the input) will be in conterphase and
so it does not influence the central cell.

The signal selection to implement the multiplexer is shown in Figure 7.2(b-c).
This is based on an appropriate clock phase selection for the top and bottom cell.
In the first case (Figure 7.2(b)), the top cell is set in normal clock phase while the
bottom cell will be in counterphase. In this way, top cell will be in HOLD phase and
Input A will propagate to the center cell. The bottom cell in this moment will be
in the RESET state and therefore it will not influence the central cell. The reverse
situation will occur in Figure 7.2(c), where in this case Input B will be the signal
that will propagate through the central cell to the output.

The signal distribution between the two technologies is shown in Figure 7.3. The
selection SEL signal is placed in the CMOS Plane. This is used to select the correct

156

7.1 – Concept

Input A

Input B

Output

ME-NML PlaneCMOS Plane

M
U

X
M

U
X

Clock

Phase 1

Clock

Phase 3

SEL

0

0

1

1 CMOS Plane

ME-NML Plane

Figure 7.3. The two technology planes in the Mixed Multiplexer: the SEL
signal is in the CMOS plane, and it is used to select the right clock phase of
the top and bottom cell in ME-NML.

input of the multiplexer. When one of the two cells is assigned to Clock Phase 1,
the other cell is assigned to Clock Phase 3, hence it is in counterphase. Notice also
that the top and bottom block of the ME-NML multiplexer can be the last cells of
two computational blocks. Hence the only additional area required to implement a
multiplexer is the central cell. The additional area in CMOS plane for multiplexer
is instead negligible with respect to the area necessary for ME-NML circuit.

7.1.2.1 RSA with Mixed Technology Multiplexer

The outstanding assumptions of this Mixed Technology Multiplexer, that can dra-
matically reduce area occupation (till 1 single ME-NML cell per bit), drove us to the
design of the Reconfigurable Systolic Array (RSA), using this technology. The RSA
is particularly interesting in this case because it makes broad usage of multiplexers
for configuration. Moreover, in this case it is also interesting to notice that the mul-
tiplexers are only used for configuration. So all the SEL signals can be placed on
the CMOS plane, and it is not necessary to implement an interface from ME-NML
to CMOS.

In Figure 7.4 it is shown the effect in terms of number of cells (hence, area
occupation), when the Mixed approach is applied to the Reconfigurable Systolic
Array (RSA), in the version without multiplier. The RSA was not implemented for
any number of bits, but analyzing the projections of circuit area made on single
blocks, it is possible to extrapolate the trend shown in Figure 7.4.

In the case without multiplier, all circuit elements grow almost linearly with the

157

7 – Mixed ME-NML/CMOS Circuits

!"

#!!!"

$!!!"

%!!!"

&!!!"

'!!!"

(!!!"

)!!!"

!" $" &" (" *" #!" #$"

N
u

m
b

e
r
 o

f
M

E
-N

M
L

 C
e

ll
s

Number of Bit

ME-NML

MIXED

Figure 7.4. The effect of Mixed Multiplexer when applied to the Reconfig-
urable Systolic Array (RSA) - version without multiplier. Area saving is evident
with the increasing number of bits.

number of bits. With this assumption it is clear that the impact of multiplexer is
almost constant and in this case equal to 25%. If we consider instead the case with
multiplier, RSA increases in area with a quadratic trend with respect to the number
of bits. In this case the impact of the multiplexer will be reduced when a higher
number of bits is considered.

Even if the effect on total circuit area might be negligible when we consider
complex circuits with multipliers, there are other advantages in using this mixed-
technology multiplexers: it is possible to completely separate the configuration sec-
tion from the computation one. In this way it is also possible to change run-time
the selected input or operation while the circuit on below ME-NML plane is al-
ready computing. This means that the configuration and the execution phase can
be partially overlapped, overall resulting in a computational time saving.

7.2 Technological Interfaces

The basics of Mixed ME-NML/CMOS circuits have been described in previous Sec-
tion. In this Section we will describe in detail the interface between the two technolo-
gies. We will first consider the interface from CMOS to ME-NML, that is derived
from the multiplexer example, in paragraph 7.2.1; then we will analyze the opposite
interface, from ME-NML to CMOS, in paragraph 7.2.2.

158

7.2 – Technological Interfaces

7.2.1 From CMOS to ME-NML

Output

ME-NML PlaneCMOS Plane
M

U
X

M
U

X

Clock

Phase 1

Clock

Phase 3

Logic

0

0

1

1

Figure 7.5. The interface from CMOS to ME-NML: the “Logic” signal in CMOS
is used to select the right clocks phase that will drive two ME-NML cells. In this
way in ME-NML the correct signal is selected.

The basic concept of the interface towards ME-NML is the multiplexer described
in previous section and shown in Figure 7.3. In the case of general interface, the top
and bottom cells must be initialized with ‘1’ and ‘0’ values. In this way the logic
signal in CMOS will be used to drive two CMOS Multiplexers that will select be
used in ME-NML to select the correct input. This concept is shown in Figure 7.5.
Finally this interface will occupy only 2 multiplexers in CMOS and three cells in
ME-NML, that is a reasonable amount of area for a technological interface.

7.2.2 From ME-NML to CMOS

The transduction of the CMOS signal in ME-NML has been quite straightforward,
starting from the Multiplexer design. As a matter of fact, the circuit does not
require particular sensing element or processing block. The opposite interface is
instead more complex and it has been more difficult to conceive. It is described in
the remaining of this paragraph.

7.2.2.1 Signal Transduction

For the transduction of the nanomagnet magnetization state the idea is to adopt a
simple structure which consists of a piece of metal with the same planar dimensions
of a nanomagnet (50 × 100 × 10nm). This metal element is placed above the

159

7 – Mixed ME-NML/CMOS Circuits

Figure 7.6. Simulated structure

nanomagnets level over a dielectric layer. This element represents the sensor of the
technological interface. It exploits the Faraday effect: a variation of the magnetic
field due to changes in the nanomagnet logic state induces an electromotive force
that can be then processed by a CMOS circuit.

The simulation of this structure has been carried out by exploiting COMSOL [95]
and considering the source of magnetic field as an ideal conductor through which a
current flows. The current I0 is described by equation 7.1.

I0 =
√
2 90

(

2 rect(t)− 1
)

10−3[A] (7.1)

The rect function represents a square waveform that has Duty Cycle DC = 50%,
period of 2 ns and unitary unipolar amplitude. The peak value of I0 has been chosen
to guarantee a saturation magnetization value of Nickel (Ni) Ms ≈ 0.5 · 106 [A/m]
at 5 nm from the ideal conductor. So, the surface of a Ni nanomagnet is assumed to
be at 5 nm from the conductor. Simulations have been run with the metal feature,
made by Copper (Cu), 25 nm far from the source, thus 20 nm from the nanomagnet.
The dielectric layer has not been considered because it is supposed to be made of
SiO2, with µr ≈ 1, hence transparent to the magnetic field. The described structure
is depicted in Figure 7.6.

Transitions between logic states, hence magnetic field variations, do not occur

160

7.2 – Technological Interfaces

abruptly but a time rise tr = tf is set in COMSOL within the function rect. By
keeping the distance of the metal feature constant, several simulations have been
performed by sweeping the rise time during which the electric field induction occurs.

The system has been precisely oriented parallel to the x̂, ŷ and ẑ so to study the
simulation by only evaluatingH·ŷ and E·x̂ and not the absolute values. By the way,
the other components resulted to be negligible because of the adopted symmetry.

In Figure 7.7 results of a simulation carried out with tr = 10 ps are shown. The
time evolution of the electric and magnetic fields are plot, with amplitudes nor-
malized to the respective absolute maximum values just to appreciate the behavior
of the Induction Electric Field (IEF) with respect to the magnetic field. In Fig-
ure 7.7(b) it has been reported the upper view of the sensor at time t = 1.5 ps and
the color scale refers to average computed value.

What can be observed in Figure 7.7(a) is that tf does not coincide with tr, this
is because of different time steps adopted by the simulator during the simulation.
Indeed, it has been observed that during the simulation the initial time step was not
fixed at the same set value (dt = 0.001 ns) but instead the simulator started with
an higher value, converging to the set one. This can be noticed in graph plotted
during the simulation.

(a)

COMSOL 5.0.0.243 ���

(b)

Figure 7.7. Results of the COMSOL simulation with tr = 10 ps. (a) Normalized
Hy and Ex components with respect to their maximum absolute value. (b) Up view
at t = 1.5 ps, in the picture are shown average value and direction of Ex [V/m].

With the same structure it has been also performed a simulation in which the
source of magnetic field has been supposed to be spin waves. Because of the harmonic
nature of such waves, simulations have been carried out in the frequency domain,
keeping the amplitude value of the current I0 constant at

√
2 90·10−3 A. Simulations

have been run at different frequencies, as shown in Table 7.2. In Figure 7.8 it is

161

7 – Mixed ME-NML/CMOS Circuits

shown the up view of the sensor at f = 50 GHz and the average value of |E|.

Table 7.2. Values of IEF in function of the operating frequency achieved
f [GHz] Average IEF [V/m]

10 1.06 · 104
20 2.11 · 104
30 3.17 · 104
40 4.22 · 104
50 5.28 · 104
60 6.33 · 104
70 7.39 · 104
80 8.45 · 104
90 9.50 · 104
100 1.05 · 105

COMSOL 5.0.0.243 ���

Figure 7.8. Up view at f = 50 GHz, in the picture is shown the
average value of |E| [V/m]

About numerical solutions related to this sensor, they are encouraging. Values
of the IEF obtained by the time dependent simulations present an exponential-like

162

7.2 – Technological Interfaces

decay with respect to the rise time of the magnetic variation as expected. This is
because of the differential relation between the two fields. From frequency based
simulations, instead, a linearly increasing trend has been shown for the IEF, indeed
as the frequency increases so does the coupling between the wavelength of the spin
wave and the sensor dimension.

To summarize what it has been presented in this paragraph, it is possible to
state that the COMSOL simulations of the proposed metal sensor for magnetic field
in ME-NML guarantees a change in the electric field that can be used to drive a
CMOS logic circuit. The amplification on this signal in order to be used correctly
with other CMOS logic gates is presented in next paragraph.

7.2.2.2 CMOS bridge

Figure 7.9. CMOS - NML interface, electric scheme designed with LTspice.

The configuration proposed is shown in Figure 7.9. It is able to hold on signals
for 500 MHz signals.

The circuit is composed by three blocks, from the left to the right: a Graetz
bridge, a differential amplifier and a D-FF used as a T one in toggle mode. The
electric signal from the sensor passes through the Graetz configuration and it is
supplied as input to the differential amplifier. The amplified signal, Vd1, is then
sourced as clock to the toggle circuit. Note that the flip flop has a clock input which

163

7 – Mixed ME-NML/CMOS Circuits

is sensible to the falling edge of the signal. The simulation of this circuit has been run
with ideal components (low level models) and the results are shown in Figure 7.10
for a tr = 10 ps input signal. The output signal has the same frequency of the
input one, with a delay due to the decay of the electric field when the magnetic field
varies no more. The signal obtained from the flip flop, can be then used to drive a
corresponding CMOS circuit. An eventual discrimination for the initial conditions of
the system can be accounted for by realizing an ad-hoc logic function which controls
PRE and CLR inputs shown in Figure 7.9.

Figure 7.10. Simulation result on a virtual oscilloscope.

7.3 Final Remarks

The design of complex ME-NML logic circuits has evidenced some limitations, in
particular the high area occupation of multiplexers. Another important technolog-
ical limitation is the long latency of wires. To address these items it is possible to
design mixed-technology circuits that can benefit from the strength points of both
ME-NML and CMOS. Several achievements can be mentioned in this research path:

• Hybrid Multiplexer: since the multiplexer is one of the components that oc-
cupy a lot of area in ME-NML, it has been designed an Hybrid Multiplexer

164

7.3 – Final Remarks

where the selection of the output is actually done in the CMOS clocking plane,
while the below ME-NML circuit is used only to transmit the correct signal to
the other blocks in ME-NML. This approach allows to save a relevant number
of cells, as it has been demonstrated with the Reconfigurable Systolic Array
example.

• CMOS to ME-NML interface: based on the previous multiplexer, it has been
designed a general CMOS to ME-NML interface that can be used to have fully
hybrid logic circuits.

• ME-NML to CMOS interface: the transduction of magnetic fields variation
generated by a flipping in the state of a nanomagnet can be read with a metal
sensor and then translated in a signal that can be used to drive a CMOS
circuit. In this way it is possible to achieve fully hybrid circuits.

Finally with these achievements it is possible to state that ME-NML can have
a relevant role as future technology. It has outstanding features that have been
presented in previous Chapter; moreover, its main limitations can be addressed
technologically by using CMOS for special functions such as multiplexers or long
wires with no delay.

165

Chapter 8

Conclusions

In this Thesis I have presented the main topics of my research activity during the
PhD.

The entire work has been split into two parts. The first part dealt with Architec-
tural solutions for NanoMagnet Logic, that however can be also implemented with
other technologies. The second part was dedicated to MagnetoElastic NanoMag-
net Logic technology, introducing some rules and techniques for the design of logic
circuits and showing how to implement an interface with other technologies.

Five main topics have been covered: Systolic Arrays optimization, Reconfig-
urable Systolic Arrays and Logic-In-Memory circuits in the Architectural framework.
Design rules and technological interfaces in the ME-NML framework.

All these topics have common points and are in several ways linked together,
starting from the technology itself. Indeed the achievements and the research topics
were not pre-defined at the beginning of the PhD activity, but they have emerged
while the knowledge on the technology augmented. As an example of this process,
the Mixed technology multiplexer would have never been thought before the intro-
duction of the Reconfigurable Systolic Array, that made broad use of multiplexer,
becoming less efficient in NML.

As a matter of fact, there are no well defined future achievements to pursue. The
introduction of all these technological and architectural enhancements has evidenced
many strengths of NML but also some limitations. Therefore, the effort in finding
the best technological alternative to CMOS will continue in future years. NML can
be strengthened with the improvements presented, and it will probably be enhanced
with new technological features, mainly to become a faster technology.

Nevertheless, if another new beyond-CMOS technology will be finally chosen, the
architectural improvements presented in this thesis could again be used to design
new circuits layouts. In a similar way some of the improvements here presented
could be immediately applicable to CMOS technology in some peculiar fields.

166

The final advice is that the improvements presented in this thesis can be mixed
together to generate new circuits with incredible features. As an example, it is
possible to design a Logic-In-Memory processor with Reconfigurable PE, inherit-
ing the architecture of the Reconfigurable Systolic Array. The multiplexers of this
architecture can be done in mixed technology, and the core itself can be made
latency-insensitive.

167

Appendix A

List of Publications

• Giovanni Causapruno, Marco Vacca, Mariagrazia Graziano and Maurizio Zam-
boni, “Interleaving in Systolic-Arrays: A Throughput Breakthrough”
in IEEE Transactions on Computers, vol.64, no.7, pp.1940-1953, July 2015.
DOI: 10.1109/TC.2014.2346208

• Giovanni Causapruno, Gianvito Urgese, Marco Vacca, Mariagrazia Graziano
and Maurizio Zamboni, “Protein Alignment Systolic Array Throughput
Optimization” in IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol.23, no.1, pp.68-77, January 2015.
DOI: 10.1109/TVLSI.2014.2302015

• Giovanni Causapruno, Fabrizio Riente, Giovanna Turvani, Marco Vacca, Mas-
simo Ruo Roch, Maurizio Zamboni and Mariagrazia Graziano, “Reconfig-
urable Systolic Array: From Architecture to Physical Design for
NML” in IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, Early Access Article.
DOI: 10.1109/TVLSI.2016.2547422

• Marco Vacca, Mariagrazia Graziano, Juanchi Wang, Fabrizio Cairo, Giovanni
Causapruno, Gianvito Urgese, Andrea Biroli and Maurizio Zamboni, “Nano-
Magnet Logic: An Architectural Level Overview” in Field-Coupled
Nanocomputing, Volume 8280 of the series Lecture Notes in Computer Sci-
ence, Editors Neal G. Anderson and Sanjukta Bhanja, pp. 223-256, June
2014.
DOI: 10.1007/978-3-662-43722-3 10

• Davide Giri, Marco Vacca, Giovanni Causapruno, Wenjing Rao, Mariagrazia
Graziano and Maurizio Zamboni, “A standard cell approach for Magne-
toElastic NML circuits” in 2014 IEEE/ACM International Symposium on

168

Nanoscale Architectures (NANOARCH), pp.65-70, 8-10 July 2014.
DOI: 10.1109/NANOARCH.2014.6880491

• Diego Pala, Giovanni Causapruno, Marco Vacca, Fabrizio Riente, Giovanna
Turvani, Mariagrazia Graziano and Maurizio Zamboni, “Logic-in-Memory
architecture made real” in 2015 IEEE International Symposium on Circuits
and Systems (ISCAS), pp.1542-1545, 24-27 May 2015.
DOI: 10.1109/ISCAS.2015.7168940

• Mario Cofano, Giulia Santoro, Marco Vacca, Diego Pala, Giovanni Causapruno,
Fabrizio Cairo, Fabrizio Riente, Giovanna Turvani, Massimo Ruo Roch, Mau-
rizio Zamboni and Mariagrazia Graziano, “Logic-in-Memory: A Nano
Magnet Logic Implementation” in 2015 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), pp. 286-291, 8-10 July 2015.
DOI: 10.1109/ISVLSI.2015.121

• Giovanni Causapruno, Alessandro Audero, Sergio Tota and Massimo Ruo
Roch, “A Framework for Network-On-Chip comparison based on
OpenSPARC T2 processor” in Applications in Electronics Pervading In-
dustry, Environment and Society, Lecture Notes in Electrical Engineering, pp.
99-105, May 2014.
DOI: 10.1007/978-3-319-20227-3 13

• Guoping Xiao, Waqar Ahmad, Syed Azhar Ali Zaidi, Massimo Ruo Roch
and Giovanni Causapruno, “High Speed VLSI architecture for finding
the first W maximum/minimum values” in Applications in Electronics
Pervading Industry, Environment and Society, Lecture Notes in Electrical En-
gineering, pp. 35-41, May 2014.
DOI: 10.1007/978-3-319-20227-3 5

• Giovanni Causapruno, Umberto Garlando, Fabrizio Cairo, Mariagrazia Graziano
and Maurizio Zamboni, “A Reconfigurable Array Architecture for NML”,
in 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Ac-
cepted for Publication.

169

Bibliography

[1] “International technology roadmap for semiconductors (ITRS)”, 2013,
http://www.itrs.com.

[2] N.Z. Haron and S. Hamdioui, “Why is cmos scalig coming to an end?”, Design
and Test Workshop, 2008. IDT 2008. 3rd International, pp. 98–103, 20-22 Dec
2008.

[3] Yong-Bin Kim, “Review paper: Challenges for nanoscale mosfets and emerging
nanoelectronics”, Trans. Electr. Electron. Mater. 10(1) 21, 2009.

[4] S. Deleonibus, B. De Salvo, L. Clavelier, T. Ernst, O. Faynot, T. Poiroux, and
M. Vinet, “Cmos devices architectures for the end of the roadmap and beyond”,
Solid-State and Integrated Circuit Technology, 8th International Conference on,
pp. 51–54, 23-26 Oct 2006.

[5] C.S. Lent, P.D. Tougaw, W. Porod, and G.H. Bernstein, “Quantum cellular
automata”, Nanotechnology, vol. 4, pp. 49–57, 1993.

[6] P.D. Tougaw and C.S. Lent, “Dynamic behavior of quantum cellular au-
tomata”, Journal Of Applied Physics, , no. 80, pp. 4722–4736, 1996.

[7] C.S. Lent and B. Isaksen, “Clocked Molecular Quantum-Dot Cellular Au-
tomata”, IEEE Transactions on Electron Devices, vol. 50, no. 9, pp. 1890–1896,
Sept. 2003.

[8] M. Liu C. Lent Y. Lu, “Molecular electronics - from structure to circuit dy-
namics”, in Sixth IEEE Conference on Nanotechnology, Cincinnati-Ohio, USA,
2006, pp. 62–65, IEEE.

[9] A. Pulimeno, M. Graziano, D. Demarchi, and G. Piccinini, “Towards a molec-
ular QCA wire: Simulation of write-in and read-out systems”, Solid-State
Electronics, Elsevier, vol. 1, pp. 7, 2012.

[10] A. Pulimeno, M. Graziano, V.Cauda, A. Sanginario, D. Demarchi, and G. Pic-
cinini, “Bis-ferrocene molecular qca wire: ab-initio simulations of fabrication
driven fault tolerance”, IEEE Trans. Nanotechnol., vol. 12, no. 3, 2013.

[11] RobertA. Wolkow, Lucian Livadaru, Jason Pitters, Marco Taucer, Paul
Piva, Mark Salomons, Martin Cloutier, and BrunoV.C. Martins, “Silicon
Atomic Quantum Dots Enable Beyond-CMOS Electronics”, in Field-Coupled
Nanocomputing, Neal G. Anderson and Sanjukta Bhanja, Eds., pp. 33–58.

170

Bibliography

Springer Berlin Heidelberg, 2014.
[12] M. B. Haider and al., “Controlled coupling and occupation of silicon atomic

quantum dots at room temperature”, Phys. Rev. Lett., vol. 102, Jan. 2009.
[13] M. Niemier and al., “Nanomagnet logic: progress toward system-level integra-

tion”, J. Phys.: Condens. Matter, vol. 23, pp. 34, Nov. 2011.
[14] R.P. Cowburn and M.E. Welland, “Room temperature magnetic quantum cel-

lular automata”, Science, vol. 287, pp. 1466–1468, 2000.
[15] Marco Vacca, Mariagrazia Graziano, Alessandro Chiolerio, Andrea Lamberti,

Marco Laurenti, Davide Balma, Emanuele Enrico, Federica Celegato, Paola
Tiberto, Luca Boarino, and Maurizio Zamboni, “Electric Clock for Nano-
Magnet Logic Circuits”, in Field-Coupled Nanocomputing, Neal G. Anderson
and Sanjukta Bhanja, Eds., Lecture Notes in Computer Science, pp. 73–110.
Springer Berlin Heidelberg, 2014.

[16] M. Vacca, M. Graziano, L. Di Crescenzo, A Chiolerio, A Lamberti, D. Balma,
G. Canavese, F. Celegato, E. Enrico, P. Tiberto, L. Boarino, and M. Zam-
boni, “Magnetoelastic Clock System for Nanomagnet Logic”, IEEE Trans.
Nanotechnol., vol. 13, no. 5, pp. 963–973, Sep. 2014.

[17] C. Augustine, X. Fong, B. Behin-Aein, and K. Roy, “Ultra-Low Power Nano-
Magnet Based Computing: A System-Level Perspective”, IEEE Trans. Nan-
otechnol., vol. 10, no. 4, pp. 778–788, 2011.

[18] G. Csaba and W. Porod, “Behavior of Nanomagnet Logic in the Presence
of Thermal Noise”, in International Workshop on Computational Electronics,
Pisa, Italy, 2010, pp. 1–4, IEEE.

[19] Marco Vacca, Mariagrazia Graziano, Juanchi Wang, Fabrizio Cairo, Giovanni
Causapruno, Gianvito Urgese, Andrea Biroli, and Maurizio Zamboni, “Nano-
Magnet Logic: An Architectural Level Overview”, in Field-Coupled Nanocom-
puting, Neal G. Anderson and Sanjukta Bhanja, Eds., Lecture Notes in Com-
puter Science, pp. 223–256. Springer Berlin Heidelberg, 2014.

[20] M.T. Alam, M.J. Siddiq, G.H. Bernstein, M.T. Niemier, W. Porod, and X.S.
Hu, “On-chip Clocking for Nanomagnet Logic Devices”, IEEE Transaction on
Nanotechnology, 2009.

[21] Alexandra Imre, Experimental study of nanomagnets for Quantum-dot cellular
automata(MQCA)logic applications, PhD thesis, University of Notre Dame,
Notre Dame, Indiana, Dec. 2005.

[22] M.T. Niemier, E. Varga, G.H. Bernstein, W. Porod, M.T. Alam, A. Dingler,
A. Orlov, and X.S. Hu, “Shape Engineering for Controlled Switching With
Nanomagnet Logic”, IEEE Trans. Nanotechnol., vol. 11, no. 2, pp. 220–230,
Mar. 2012.

[23] M. Vacca, M. Graziano, and M. Zamboni, “Majority Voter Full Characteriza-
tion for NanoMagnet Logic Circuits”, IEEE Trans. Nanotechnol., vol. 11, no.
5, pp. 940–947, 2012.

171

Bibliography

[24] M. Graziano, M. Vacca, A. Chiolerio, and M. Zamboni, “A NCL-HDL Snake-
Clock Based Magnetic QCA Architecture”, IEEE Transaction on Nanotech-
nology, , no. 10, pp. DOI:10.1109/TNANO.2011.2118229.

[25] Marco Vacca, Emerging Technologies: NanoMagnets Logic (NML), PhD thesis,
Politecnico di Torino, Turin, Italy, april 2013.

[26] M. Graziano, A. Chiolerio, and M. Zamboni, “A Technol. Aware Magnetic QCA
NCL-HDL Architecture”, in Int. Conf. Nanotechnol., Genova, Italy, 2009, pp.
763 – 766, IEEE.

[27] D. Giri, “MagnetoElastic NanoMagnet Logic Circuits”, Master’s thesis, Po-
litecnico di Torino, December 2014.

[28] J. Das, S.M. Alam, and S. Bhanja, “Low power magnetic quantum cellular
automata realization using magnetic multi-layer structures”, J. on Emerging
and Selected Topics in Circuits and Systems, vol. 1(3), pp. 267–276, Sep 2011.

[29] N. Rizos, M. Omar, P. Lugli, G. Csaba, M. Becherer, and D. Schmitt Land-
siedel, “Clocking schemes for field coupled devices from magnetic multilayers”,
in IEEE International Workshop on Computational Electronics, Beijing, China,
2009, pp. 1–4.

[30] J. Atulasimha and S. Bandyopadhyay, “Hybrid spintronic/straintronics: A su-
per energy efficient computing scheme based on interacting multiferroic nano-
magnets”, in 12th IEEE International Conference on Nanotechnolog, 2012, pp.
1–4.

[31] D. Giri, M. Vacca, G. Causapruno, W. Rao, M. Graziano, and M. Zamboni,
“A standard cell approach for MagnetoElastic NML circuits”, in EEE/ACM
Int. Symp. Nanoscale Architectures (NANOARCH), Jul. 2014, pp. 65–70.

[32] M. S. Fashami, J. Atulasimha, and S. Bandyopadhyay, “Magnetization dynam-
ics, throughput and energy dissipation in a universal multiferroic nanomagnetic
logic gate with fan-in and fan-out”, Nanotechnology, vol. 23(10), February 2012.

[33] H.T. Kung, C.E. Leiserson, and Carnegie-Mellon University. Dept. of Com-
put. Science, Systolic Arrays for VLSI, CMU-CS. Carnegie-Mellon University,
Department of Comput. Science, 1978.

[34] Hyesook Lim and Jr. Swartzlander, E.E., “Multidimensional systolic arrays
for the implementation of discrete Fourier transforms”, IEEE Trans. Signal
Process., vol. 47, no. 5, pp. 1359 –1370, may 1999.

[35] H. Herzberg and R. Haimi-Cohen, “A systolic array realization of an LMS
adaptive filter and the effects of delayed adaptation”, IEEE Tran.s on Signal
Processing, vol. 40, no. 11, pp. 2799–2803, nov 1992.

[36] L.-W. Chang and M.-C. Wu, “A unified systolic array for discrete cosine and
sine transforms”, IEEE Tran.s on Signal Processing, vol. 39, no. 1, pp. 192–194,
jan 1991.

[37] Hangu Yeo and Yum Hen Hu, “A modular high-throughput architecture for
logarithmic search block-matching motion estimation”, IEEE Trans. Circuits

172

Bibliography

Syst. Video Technol., vol. 8, no. 3, pp. 299 –315, 1998.
[38] Yeu-Shen Jehng, Liang-Gee Chen, and Tzi-Dar Chiueh, “An efficient and sim-

ple VLSI tree architecture for motion estimation algorithms”, IEEE Tran.s on
Signal Processing, vol. 41, no. 2, pp. 889–900, feb 1993.

[39] Sung Bum Pan and Rae-Hong Park, “Unified systolic arrays for computation of
the dct/dst/dht”, IEEE Tran.s on Circuits and Systems for Video Technology,
vol. 7, no. 2, pp. 413–419, apr 1997.

[40] S. Panchanathan and M. Goldberg, “A systolic array architecture for image
coding using adaptive vector quantization”, IEEE Tran. on Cir. and Sys. for
Video Technology, vol. 1, no. 2, jun 1991.

[41] M. Gok and C. Yilmaz, “Efficient cell designs for systolic Smith-Waterman
implementations”, in 2006. FPL ’06. Int. Conf. on Field Programmable Logic
and Applications, aug. 2006, pp. 1–4.

[42] G. Urgese, M. Graziano, M. Vacca, M. Awais, S. Frache, and M. Zamboni,
“Protein alignment HW/SW optimizations”, in 19th IEEE Int. Conf. Elec-
tronics, Circuits and Syst. (ICECS), 2012, pp. 145–148.

[43] G. Causapruno, G. Urgese, M. Vacca, M. Graziano, and M. Zamboni, “Protein
Alignment Systolic Array Throughput Optimization”, IEEE Trans. Very Large
Scale Intgr. (VLSI) Syst., 2014.

[44] Mariagrazia Graziano, Stefano Frache, and Maurizio Zamboni, “A Hardware
Viewpoint on Biosequence Analysis: What’s Next?”, ACM J. Emerging Tech.
Computing Syst., vol. 9, no. 4, 2013.

[45] A. Pulimeno, M. Graziano, and G. Piccinini, “UDSM trends comparison: From
technology roadmap to ultrasparc niagara2”, IEEE Tran.s on Very Large Scale
Integration (VLSI) Systems, vol. 20, no. 7, pp. 1341–1346, july 2012.

[46] N.Z. Haron and S. Hamdioui, “Why is CMOS scaling coming to an end?”, in
Design and Test Workshop, 2008. IDT 2008. 3rd Int., dec. 2008, pp. 98–103.

[47] K.K. Parhi and D.G. Messerschmitt, “Pipeline interleaving and parallelism in
recursive digital filters. i. pipelining using scattered look-ahead and decompo-
sition”, IEEE Tran.s on Acoustics, Speech and Signal Processing, vol. 37, no.
7, pp. 1099–1117, jul 1989.

[48] K.K. Parhi and D.G. Messerschmitt, “Pipeline interleaving and parallelism in
recursive digital filters. ii. pipelined incremental block filtering”, IEEE Tran.s
on Acoustics, Speech and Signal Processing, vol. 37, no. 7, pp. 1118–1134, jul
1989.

[49] H. Dawid, S. Bitterlich, and H. Meyr, “Trellis pipeline-interleaving: a novel
method for efficient viterbi decoder implementation”, in 1992 IEEE Int. Sym-
posium on Circuits and Systems, 1992. ISCAS ’92. Proceedings, may 1992,
vol. 4, pp. 1875–1878 vol.4.

[50] Sun-Yuan Kung, K.S. Arun, R.J. Gal-Ezer, and D.V. Bhaskar Rao, “Wavefront
array processor: Language, architecture, and applications”, IEEE Tran.s on

173

Bibliography

Computers, vol. C-31, no. 11, pp. 1054–1066, nov. 1982.
[51] G. Causapruno, M. Vacca, M. Graziano, and M. Zamboni, “Interleaving in

Systolic-Arrays: a Throughput Breakthrough”, IEEE Trans. Comput., vol. 64,
no. 7, pp. 1940–1953, 2015.

[52] G. Fenga, “Adaptive Latency Insensitive Systolic Array”, Master’s thesis,
Politecnico di Torino, December 2014.

[53] M. Mosleh, S. Setayeshi, M. Mehdi Lotfinejad, and A. Mirshekari, “FPGA
implementation of a linear systolic array for speech recognition based on HMM”,
in 2nd Int. Conf. Comput. and Automation Engineering (ICCAE), Feb 2010,
vol. 3, pp. 75–78.

[54] C. K. Wijenayake, A. Madanayake, and L.T. Bruton, “FPGA-prototypes of
differential-form 2D-IIR systolic-array DSP architectures for multi-beam plane-
wave filters”, in IEEE Workshop Signal Processing Systems (SIPS), Oct 2010,
pp. 58–63.

[55] Qin Wang, Ang Li, Zhancai Li, and Yong Wan, “A Design and Implementation
of Reconfigurable Architecture for Neural Networks Based on Systolic Arrays”,
in Proc. 3rd Int. Conf. Advances in Neural Networks - Vol. Part III, Berlin,
Heidelberg, ISNN’06, pp. 1328–1333, Springer-Verlag.

[56] Ioannis Panagopoulos, Christos Pavlatos, George Manis, and George Papakon-
stantinou, “A Flexible General-purpose Parallelizing Architecture for Nested
Loops in Reconfigurable Platforms”, in Proc. 17th Int. Conf. Integrated Circuit
and System Design: Power and Timing Modeling, Optimization and Simula-
tion, Berlin, Heidelberg, 2007, pp. 20–30, Springer-Verlag.

[57] M. K. You, Y. J. Oh, and G. Y. Song, “Case study: Functional verification of a
reconfigurable systolic array using truss”, in IEEE 8th International Conference
on ASIC, Oct 2009, pp. 694–697.

[58] T. Ishimura and A. Kanasugi, “A design and simulation for dynamically re-
configurable systolic array”, in ICCIT ’08. Third International Conference on
Convergence and Hybrid Information Technology, Nov 2008, vol. 2, pp. 172–175.

[59] A. K. Mishra and P. P. Jiju, “Low power, dynamically reconfigurable, mem-
oryless systolic array based architecture for viterbi decoder”, in International
Conference onEnergy, Automation, and Signal (ICEAS), Dec 2011, pp. 1–5.

[60] Wei Jin, C.N. Zhang, and Hua Li, “Mapping multiple algorithms into a recon-
figurable systolic array”, in Canadian Conf. Electrical and Comput. Engineer-
ing (CCECE), 2008, pp. 001187–001192.

[61] G. Causapruno, F. Riente, G. Turvani, M. Vacca, M. Ruo Roch, M. Zamboni,
and M. Graziano, “Reconfigurable Systolic Array: From Architecture to Phys-
ical Design for NML”, IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 2016.

[62] F. Cairo, G. Turvani, F. Riente, M. Vacca, S.Breitkreutz-v. Gamm,
M. Becherer, M. Graziano, and M. Zamboni, “Out-of-plane NML modeling

174

Bibliography

and architectural exploration”, in IEEE 15th International Conference on Nan-
otechnology (IEEE-NANO), 2015, pp. 1037–1040.

[63] M. Cofano, G. Santoro, M. Vacca, D. Pala, G. Causapruno, F. Cairo, F. Riente,
G. Turvani, M.R. Roch, M. Zamboni, and M. Graziano, “Logic-in-Memory:
A Nano Magnet Logic Implementation”, in IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), 2015, pp. 286–291.

[64] F. Cairo, M. Vacca, M. Graziano, and M. Zamboni, “Domain magnet logic
(dml): A new approach to magnetic circuits”, in IEEE 14th International
Conference on Nanotechnology (IEEE-NANO), 2014, pp. 956–961.

[65] M.D. Godfrey and D.F. Hendry, “The computer as von neumann planned it”,
IEEE Annals of the History of Computing, vol. 15, no. 1, pp. 11–21, 1993.

[66] J. Kawa, C. Chiang, and R. Camposano, “Eda challenges in nano-scale tech-
nology”, Proc. IEEE Custom Integrated Circuit Conference, 2006.

[67] M.A. Maddah Ali and U. Niesen, “Fundamental limits of caching”, IEEE
Transactions on Information Theory, vol. 60, no. 5, pp. 2856–2867, March
2014.

[68] N.D. Shah, Y.H. Shah, and H. Modi, “Comprehensive study of the features,
execution steps and microarchitecture of the superscalar processors”, IEEE In-
ternational Conference on Computational Intelligence and Computing Research
(ICCIC), pp. 1–4, December 2013.

[69] Xian He Sun, “Remove the memory wall: from performance modeling to archi-
tecture optimization”, 20th International Parallel and Distributed Processing
Symposium, April 2006.

[70] P. Jacob, A. Zia, O. Erdogan, P.M. Belemjian, J.W. Kim, M. Chu, R.P. Kraft,
J.F. McDonald, and K. Bernstein, “Mitigating memory wall effects in high-
clock-rate and multicore cmos 3-d processor memory stacks”, Proceedings of
the IEEE, vol. 97, no. 1, pp. 108–122, January 2009.

[71] C.C. Liu, I. Ganusov, M. Burtscher, and S. Tiwari, “Bridging the processor-
memory performance gap with 3d ic technology”, IEEE Design & Test of
Computers, vol. 22, no. 6, pp. 556 – 564, November-December 2005.

[72] Tomas Akenine-Möller, Eric Haines, and Naty Hoffman, Real-Time Rendering
3rd Edition, A. K. Peters, Ltd., Natick, MA, USA, 2008.

[73] Song Jun Park, “An analysis of gpu parallel computing”, DoD High Perfor-
mance Computing Modernization Program Users Group Conference (HPCMP-
UGC), pp. 365–369, June 2009.

[74] Sang-Yun Lee and D.K. Schroder, “3d ic architecture for high density memo-
ries”, 2010 IEEE International Memory Workshop (IMW), pp. 1–6, May 2010.

[75] Sang-Yun Lee and Junil Park, “Architecture of 3d memory cell array on 3d ic”,
2012 4th IEEE International Memory Workshop (IMW), pp. 1–3, May 2012.

[76] Brad N. Engel, Nicholas D. Rizzo, Jason Janesky, Jon M. Slaughter, Renu
Dave, Mark DeHerrera, Mark Durlam, and Saied Tehrani, “The science and

175

Bibliography

technology of magnetoresistive tunneling memory”, IEEE Transaction on Nan-
otechnology, vol. 1, no. 1, March 2002.

[77] J. L. Ndai, P. Goel, A. Haixin, and Liu K. Roy, “An alternate design paradigm
for robust spin-torque transfer magnetic ram (stt mram) from circuit/architec-
ture perspective”, DAC, pp. 841–846, January 2009.

[78] M. Bollo, G. Turvani, M. Zamboni, J. Das, S. Bhanja, and M. Graziano, “De-
sign of nml circuits based on m-ram”, IEEE International Conference on Nan-
otechnology, July 2015.

[79] Wei Jin, C.N. Zhang, and Hua Li, “Mapping multiple algorithms into a recon-
figurable systolic array”, in 2008. Canadian Conf. on Electrical and Computer
Eng., may 2008.

[80] David Luebke and Greg Humphreys, “How gpus work”, IEEE Computers, pp.
126–130, February 2007.

[81] J.D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone, and J.C. Phillips,
“Gpu computing”, Proceedings of the IEEE, vol. 96, no. 5, pp. 879–899, May
2008.

[82] Gang Chen, Guobo Li, Songwen Pei, and Baifeng Wu, “High performance com-
puting via a gpu”, 2009 1st International Conference on Information Science
and Engineering (ICISE), pp. 238–241, December 2009.

[83] B. Buyukkurt and W.A. Najj, “Compiler generated systolic arrays for wave-
front algorithm acceleration on FPGAs”, in Int. Conf on Field Prog. Logic and
App., 2008., sept. 2008, pp. 655–658.

[84] K. Mani Chandy and J. Misra, “Systolic algorithms as programs”, Distributed
Computing, vol. 1, no. 3, pp. 177–183, 1986.

[85] The pocket handbook of image processing algorithms in C, Englewood Cliffs,
N.J. : PTR Prentice Hall, 1993.

[86] M. Cofano, “Design of a Logic-in-Memory architecture for massive parallel
algorithms”, Master’s thesis, Politecnico di Torino, October 2015.

[87] D. Pala, “Design of a Logic-in-Memory architecture for NanoMagnetic Logic”,
Master’s thesis, Politecnico di Torino, March 2015.

[88] Fiaz Gul Khan, Omar Usman Khan, Bartolomeo Montrucchio, and Paolo Gi-
accone, “Analysis of fast parallel sorting algorithms for gpu architectures”’,
Frontiers of Information Technology (FIT), pp. 173 – 178, December 2011.

[89] “http://www.samsung.com/semiconductor/products/dram/graphic-dram/”.

[90] M. Vacca, S. Frache, M. Graziano, and M. Zamboni, “ToPoliNano: A synthesis
and simulation tool for NML circuits ”, IEEE International Conference on
Nanotechnology, Aug. 2012.

[91] M. Vacca, S. Frache, M. Graziano, F. Riente, G. Turvani, M. Ruo Roch, and
M. Zamboni, “ToPoliNano: NanoMagnet Logic Circuits Design and Simu-
lation”, in Field-Coupled Nanocomputing, Neal G. Anderson and Sanjukta

176

Bibliography

Bhanja, Eds., Lecture Notes in Comput. Science, pp. 274–306. Springer Berlin
Heidelberg, 2014.

[92] D. MacKay, Information Theory, Inference, and Learning Algorithms, CMU-
CS. Hardback, 2003.

[93] J. Grosschadl, “A Low Power Bit-Serial Multiplier For Finite Fields GF(2m)”,
in The 2001 IEEE International Symposium on Circuits and Systems, Sydney,
NSW, May 2001, vol. 4, pp. 37–40.

[94] M. Graziano M. Vacca and M. Zamboni, “Nanomagnetic Logic Microprocessor:
Hierarchical Power Model”, IEEE Transactions on VLSI Systems, Aug. 2012.

[95] “Comsol Multiphysics”, http://www.comsol.com/.

177

	Summary
	Motivation
	Technological Background
	CMOS scaling
	Quantum-Dot Cellular Automata (QCA)
	Signal propagation and Clock

	NanoMagnet Logic
	Logic Gates
	Magnetic Clock NML
	Snake Clock Layout
	Working frequency

	Magnetoelastic Clock NML (ME-NML)
	Circuit Layout

	Intrinsic Pipeline
	Summary on NanoMagnet Logic

	I Parallel Architectures for NanoMagnet Logic
	Systolic Arrays Optimization
	Introduction to Systolic Arrays
	Systolic Arrays for NanoMagnet Logic

	Data Interleaving in Systolic Arrays
	Interleaving Technique
	Proposed SA Taxonomy
	WOIL Systolic Arrays
	WIL Systolic Arrays

	WOIL SA Optimization
	WIL SA Optimization
	Results
	WOIL Systolic Arrays results
	WIL Systolic Arrays results

	Data Interleaving in CMOS and NML

	Latency Insensitive Systolic Arrays
	Motivation
	Proposed Communication Protocol
	Latency Insensitive PE
	Algorithm Block
	I/O Blocks
	Communication Block

	Application Example: Matrix Multiplication
	Serial Booth Multiplier

	Systolic Array for the Floyd-Steinberg algorithm
	Floyd-Steinberg Algorithm
	Latency Insensitive Implementation
	Simulation

	Final Remarks

	Reconfigurable Systolic Array
	Motivation
	Limits of Systolic Arrays
	The Reconfigurable approach
	Existing Reconfigurable architectures

	Proposed Reconfigurable Systolic Array
	Architecture
	Preloading Phase
	Results in CMOS and NML

	Algorithms
	Matrix Multiplication
	Discrete Cosine Transform (DCT)
	FIR Filters
	IIR Filters
	RSA Configurator

	Final Remarks

	Logic-In-Memory
	Concept
	Limit of Von-Neumann Architecture
	Other Parallel Architectures
	Logic-In-Memory Improvements

	LIM 1.0 Architecture
	Routing Plane
	The input interface
	The selection unit
	The output interface

	Logic Plane
	Converters
	Cell Logic Plane

	Memory Plane
	Operation Set

	LIM 2.0 Architecture
	Improvement Concept
	Pyramidal Memory Design

	Results
	Test Algorithm
	Results Comparison

	Final Remarks

	II MagnetoElastic NML Circuit Design
	Design Rules for ME-NML Circuits
	Standard Cell Approach for ME-NML Circuits
	Standard Cells Library
	VHDL Model for ME-NML Circuits Design
	Generic parameters
	Logic Behavior of the Cell
	Area and Energy
	Hierarchical model

	Circuit layout

	Circuit Design Example: Galois Field Multiplier
	Galois Field Multiplier circuit
	Galois Field Multiplier scheme

	CMOS Implementation
	NML Implementation
	ME-NML Implementation
	Results
	CMOS Results
	NML Results
	ME-NML Results
	Results Comparison

	Parallel and Serial Computation in ME-NML
	Parallel MAC Unit
	Circuit Scheme
	ME-NML Implementation
	Timing Analysis

	Serial-Parallel MAC Unit
	Circuit scheme
	ME-NML implementation
	Timing analysis

	Serial MAC Unit
	Serial MAC scheme
	Serial MAC with shared Accumulator
	ME-NML implementation
	Timing analisys

	Results
	Parallel MAC Results
	Serial-Parallel MAC Results
	Serial MAC Results
	Results Comparison

	Final Remarks

	Mixed ME-NML/CMOS Circuits
	Concept
	Advantages of Mixed Circuit
	Circuit Layout
	RSA with Mixed Technology Multiplexer

	Technological Interfaces
	From CMOS to ME-NML
	From ME-NML to CMOS
	Signal Transduction
	CMOS bridge

	Final Remarks

	Conclusions
	List of Publications
	Bibliography

