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Fusion of multi-agent preference orderings in an ordinal 

semi-democratic decision-making framework 

F. Franceschini, D. Maisano† and L. Mastrogiacomo 

Politecnico di Torino, Dept. of Management and Production Engineering (DIGEP), 

Corso Duca degli Abruzzi 24, 10129, Torino, Italy 
†E-mail:domenico.maisano@polito.it  

This paper focuses on the problem of combining multi-agent preference orderings of 

different alternatives into a single fused ordering, when the agents’ importance is 

expressed through a rank-ordering and not a set of weights. An enhanced version of the 

algorithm proposed by Yager in (Fuzzy Sets and Systems, 117(1): 1-12, 2001) is 

presented. The main advantages of the new algorithm are that: (i) it better reflects the 

multi-agent preference orderings and (ii) it is more versatile, since it admits preference 

orderings with omitted or incomparable alternatives. The description of the new 

algorithm is supported by a realistic example. 

Keywords:  Decision making; Multi-agent; Preference ordering; Fusion; Ordinal semi-

democratic; Partial ordering. 

1.   Introduction 

A general problem, which may concern practical contexts of different nature, is 

to aggregate multi-agent orderings of different alternatives into a single fused 

ordering. Let us assume that there are M decision-making agents D1, D2, …, DM, 

each of which defines an ordering of n alternatives a, b, c, etc.. This decision-

making problem is fairly general [1, 2, 3] and can be applied to a variety of real-

life contexts, ranging from multi-criteria decision aiding [4] to social choice [5, 

6] and voting theory [7, 8].  

The problem becomes more specific if the importance hierarchy of agents is 

expressed through a rank-ordering and not a set of weights defined on a ratio 

scale. This decision-making framework can be denominated as ―ordinal semi-

democratic‖; the adjective ―semi-democratic‖ indicates that agents do not 

necessarily have the same importance, while ―ordinal‖ indicates that their 

hierarchy is defined by a crude ordering. The set of the possible solutions to the 

problem may range between the two extremes of (i) full dictatorship—in which 

the fused ordering coincides with the preference ordering by the most important 
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agent (dictator)—and (ii) full democracy—where all agents’ orderings are 

considered as equi-important. 

Some years ago, Yager [9] proposed an algorithm to address the problem of 

interest in a relatively simple, fast and automatable way. Unfortunately, this 

algorithm (hereafter abbreviated as YA, which stands for ―Yager’s Algorithm‖) 

has two major limitations: (i) the resulting fused ordering may sometimes not 

reflect the preference ordering for the majority of agents and (ii) it is applicable 

to linear orderings only, without incomparabilities and omissions of the 

alternatives of interest. For details, we refer the reader to [9, 10].  

The objective of this paper is to enhance the YA so as to overcome its 

limitations and adapt to less stringent preference orderings. A new algorithm, 

denominated as ―Enhanced (Yager’s) Algorithm‖ (hereafter abbreviated as 

EYA), will be proposed. 

The remainder of the paper is organized into two sections. Sec. 2 illustrates 

the EYA by presenting a realistic example. Sec. 3 summarizes the original 

contributions of the paper and its practical implications, limitations and 

suggestions for future research. 

2.   Enhanced Yager’s Algorithm (EYA) 

The EYA can be decomposed in three phases, which are individually described 

in the following sub-sections: 

 

 construction, normalization and reorganization of preference vectors; 

 definition of the reading sequence; 

 construction of the fused ordering. 

2.1.   Construction, normalization and reorganization of preference vectors 

The YA is applicable to linear orderings only, where no alternatives are omitted 

and any two alternatives are comparable [9]. A generic linear ordering can be 

diagrammed as an acyclic line or chain of elements containing the alternatives of 

interest, linked by arrows depicting the strict preference relationship. In this 

conventional representation, the most preferred alternatives are positioned at the 

top. Two generic alternatives are always comparable, since there exist a path 

from the first to the second one (or vice versa) that is directed downwards.  

The EYA is more versatile since admits orderings with omitted and/or 

incomparable alternatives, i.e., orderings that, according to the Mathematics’ 

Order theory, are classified as partial [11]. This type of ordering can be 

diagrammed as a graph with branches, which determine different possible paths 
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from the element(s) at the top to that one(s) at the bottom. If two alternatives are 

not comparable, there exists no direct path from the first to the second one (or 

viceversa). 

The first step of this phase is to transform each (partial) ordering with 

incomparabilities into a set of linear sub-orderings. Precisely, a partial ordering 

can be artificially split into p linear sub-orderings, corresponding to the possible 

paths from the top to the bottom element(s). Obviously, the number of paths 

depends on the configuration of the relevant graph (e.g., amount and position of 

the branches). For the purpose of example, let us consider the preference 

orderings illustrated in Fig. 1, in which the agents’ importance ordering is 

assumed to be D4 > (D2 ~ D3) > D1. It can be noticed that the (partial) ordering 

by agent D1 includes p = 2 possible paths (A and B); therefore, this ordering is 

turned into two linear sub-orderings, D1A and D1B. 

Each alternative in the sub-orderings is associated with a conventional 

number of occurrences, fractionalized with respect to the number of sub-

orderings where the alternative is present. E.g., for c and b, the fractional 

number of occurrences is 1/2 as these alternatives are contained in both the sub-

orderings D1A and D1B. The relative importance associated with each linear sub-

ordering is that of the relevant source (partial) ordering.  

  

linear partial Type of ordering 

Omitted alternatives 

Incomp. alternatives 

None {f} 

 
(a, d and e) with f 

 

½c
*
 

½b
*
 

a 

d, e 

 

 

½c
*
 

½b
*
 

c ~ d 

 

f 

 

(D1A) D2 D3 

b 

d 

f 

c 

path A 

path B 

Key: 

D1 

c 

b 

a 

d, e f 

 

(D1B) 

a 

b 

c 

d 

e 

a 

b 

c, d, e 

 

f 

D4 

linear linear linear linear 

None 

 

None 

 

None 

 

{a, d, e} 

 

{a, e} 

 

None {f} 

 
None 

 
None 

 

Agent 

Ordering 

(*)
 Coefficient ―½‖ means that the alternative of interest has a (fractional) number of occurrences in that vector element equals 1/2. 

 

None 

 
Fig. 1. Graphical representation of the preference orderings by four fictitious agents (D1 to D4). The 

alternatives of interest are a, b, c, d, e and f. The ordering by D1 has two paths, therefore it is turned 

into two linear sub-orderings (D1A and D1B). The agents’ importance ordering is assumed to be 

D4 > (D2 ~ D3) > D1. 
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Next, linear (sub-)orderings are turned into preference vectors, according to 

the following convention. We place the alternatives as they appear in the 

ordering, with the most preferred one(s) in the top positions. If at any point t > 1 

alternatives are tied (i.e., indifferent), we place them in the same element and 

then place the null set (―Null‖) in the next t – 1 lower positions. Although there 

are six total alternatives (a, b, c, d, e and f), some of them may be omitted in a 

certain vector; therefore the number of elements (ni) can change from a vector to 

one other. Table 1 exemplifies the construction of the preference vectors from 

the orderings in Fig. 1. Each vector element is associated with a relative-position 

indicator, which represents the cumulative relative frequency fi,j—i.e., the ratio 

between the position (j) of an element, starting from the bottom, and ni. 

Table 1. Construction of preference vectors for the linear (sub-)orderings in Fig. 1.  

Agent D1A D1B D2 D3 D4 

Orderings c>b>a>(d~e) c>b>f b>d>f>c f>a>b>(c~d~e) a>b>c>d>e 

No. of alternatives (ni) 5 3 4 6 5 
Omitted alternative(s) {f} {a, d, e} {a, e} Null {f} 

 

 
 

Preference vectors 

f1A, j  Elem. f1B, j Elem. f2, j Elem. f3, j Elem. f4, j Elem. 

1.00 
0.80 

0.60 

0.40 
0.20 

{½c} 
{½b} 

{a} 

{d, e} 
 Null 

1.00 
0.67 

0.33 

{½c} 
{½b} 

{f} 

1.00 
0.75 

0.50 

0.25 
 

{b} 
{d} 

{f} 

{c} 
 

1.00 
0.83 

0.67 

0.50 
0.33 

0.17 

{f} 
{a}  

{b} 

{c, d, e} 
Null  

Null 

1.00 
0.80 

0.60 

0.40 
0.20 

{a}  
{b} 

{c} 

{d} 
{e} 

fi,j = j/ni is the cumulative relative frequency referring to the j-th element of an i-th vector. 

 

Before being reorganized, vectors should be normalized in terms of length, 

i.e., turned into new vectors with the same number of elements. We define the 

set F
*
, given by the union of the fi,j values relating to the vectors of interest, 

sorted in ascending order: 

 













i

i

* FsortF   (1) 

in which }..., ,,{ 21 in,i,i,ii fffF   is the set of fi,j indicators relating to a 

certain i-th preference vector and the ―sort‖ operator represents the ascending 

order permutation. For example, considering the five preference vectors in Table 

1, it is obtained:  

F
* 
= {0.17, 0.20, 0.25, 0.33, 0.40, 0.50, 0.60, 0.67, 0.75, 0.80, 0.83, 1.00}.  (2) 

Being independent on a particular i-th vector, the elements in F
*
 can be 

conventionally renamed as *

jf  (without subscript ―i‖): 
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  ...,f,f F ***

21 .  (3) 

Next, we define: 

 nT
 
= card(F

*
),  (4) 

i.e., the total number of elements of F
*
; e.g., considering the ordered set in 

Eq. 2, nT = 12. Obviously, ni ≤ nT i . 

Each i-th preference vector can be now normalized by adding a ―Null‖ 

element for each *

jf  value that is included in the set F
*
 but not included in Fi, 

following a decreasing sequence. Fig. 2(a) exemplifies this mechanism for the 

preference vectors in Table 1. 

Fig. 2. (a) Normalization of the preference vectors in Table 1 (the elements highlighted in grey have 

been added to normalize the number of elements of each vector to nT = 12). (b) Construction of 

reorganized vectors; Vectors are sorted in decreasing order with respect to the agents’ importance 

and S are the relevant sequence numbers.  

 

Next, the normalized vectors are sorted in decreasing order with respect to 

the agents’ importance and (ii) the equi-important vectors (e.g., D1A, D1B 

and D2, D3 in the example) are aggregated into a single one, through a level-by-

level union of their elements. Going back to the example in Fig. 1, the resulting 

reorganized vectors are three, for simplicity denominated as D4, (D2 ~ D3) and 

(D1A ~ D1B) (see Fig. 2(b)). 

2.2.   Definition of the reading sequence 

The object of this phase is determining a sequence for the element-by-element 

reading of the reorganized vectors. Precisely, the sequence is based on a 

lexicographical order based on two dimensions: (i) *

jf  values (in increasing 

order) and (ii) relative importance of the agent (in decreasing order). Fig. 2(b) 

 
 D1A D1B D2 D3 D4 
*

jf  Elem. Elem. Elem. Elem. Elem. 

1.00 {½c} {½c} {b} {f} {a} 

0.83 Null Null Null {a} Null 

0.80 {½b} Null Null Null {b} 

0.75 Null Null {d} Null Null 

0.67 Null {½b} Null {b} Null 

0.60 {a} Null Null Null {c} 

0.50 Null Null {f} {c, d, e} Null 

0.40 {d, e} Null Null Null {d} 

0.33 Null {f} Null Null Null 

0.25 Null Null {c} Null Null 

0.20 Null Null Null Null {e} 

0.17 Null Null Null Null Null 

 

D4 (D2 ~ D3) (D1A ~ D1B) 

S Elem. S Elem. S Elem. 

34 {a} 35 {b, f} 36 {c} 
31 Null 32 {a} 33 Null 

28 {b} 29 Null 30 {½b} 

25 Null 26 {d} 27 Null 

22 Null 23 {b} 24 {½b} 

19 {c} 20 Null 21 {a} 

16 Null 17 {c, d, e, f} 18 Null 

13 {d} 14 Null 15 {d, e} 

10 Null 11 Null 12 {f} 

7 Null 8 {c} 9 Null 

4 {e} 5 Null 6 Null 

1 Null 2 Null 3 Null 

 

(a) Normalized vectors (b) Reorganized (aggregated) vectors 
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reports the full sequence numbers (S) associated with each element of the 

reorganized vectors. 

2.3.   Construction of the fused ordering 

The construction of the fused ordering is gradual: alternatives are progressively 

included into a gradual ordering, which is initially Null. A k-th alternative is 

included at the top of the gradual ordering when—during the element-by-

element reading sequence—its number of occurrences (Ok) reaches a certain 

threshold, i.e.: 

 T

kx,k OxT  ,  (5) 

being x a conventional percentage of the total number of occurrences ( T

kO ) 

in the reorganized vectors’ elements. Table 2 shows the Tk,x values related to the 

alternatives; x was conventionally set to 50%. 

Table 2. Thresholds for the selection of the alternatives; x was conventionally set to 

50%.  

Alternatives a b c d e f 
T

kO  3 4 4 4 3 3 

Tk,50% 1.5 2 2 2 1.5 1.5 

 

If the Tk,x thresholds related to multiple alternatives are reached at the same 

moment, they will be considered as indifferent. Considering the reorganized 

vectors in Fig. 2(b) and the thresholds in Table 2, the fused preference ordering 

is a > b > c > (d ~ e) > f. Table 3 shows the step-by-step results; the last columns 

contains the gradual construction of the fused ordering.  

It is worth remarking that a k-th alternative is included in the lower 

positions of the fused ordering when a predetermined portion (x) of its 

occurrences (not just a single one, as suggested by Yager [9]) are in a lower 

position of the individual preference orderings. 

3.   Concluding remarks 

This paper proposed an enhanced version of the YA, which has two main 

advantages: (i) it is more versatile, since it admits preference orderings with 

omitted or incomparable alternatives, and (ii) it better reflects the multi-agent 

preference orderings, since it is based on a gradual construction of the fused 

ordering. Also, it is automatable and can be applied to a variety of practical 

contexts. 
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 Table 3. Step-by-step construction of the fused ordering for the reorganized orderings 

in Fig. 2(b). 

Step (S) Element 
Occurrences (Ok) Residual alternatives Gradual ordering 

a b c d e f   

0 - - - - - - - {a, b, c, d, e, f} Null 

1 Null 0 0 0 0 0 0 {a, b, c, d, e, f} Null 

2 Null 0 0 0 0 0 0 {a, b, c, d, e, f} Null 
3 Null 0 0 0 0 0 0 {a, b, c, d, e, f} Null 

4 {e} 0 0 0 0 1 0 {a, b, c, d, e, f} Null 

5 Null 0 0 0 0 1 0 {a, b, c, d, e, f} Null 
6 Null 0 0 0 0 1 0 {a, b, c, d, e, f} Null 

7 Null 0 0 0 0 1 0  {a, b, c, d, e, f}   Null 

8 {f} 0 0 0 0 1 1  {a, b, c, d, e, f} Null 
9 Null 0 0 0 0 1 1  {a, b, c, d, e, f}   Null 

10 Null 0 0 0 0 1 1  {a, b, c, d, e, f}   Null 
11 Null 0 0 0 0 1 1  {a, b, c, d, e, f}   Null 

12 {f} 0 0 0 0 1 2  {a, b, c, d, e} f 

13 {d} 0 0 0 1 1 2  {a, b, c, d, e} f 
14 Null 0 0 0 1 1 2  {a, b, c, d, e} f 

15 {d, e} 0 0 0 2 2 2  {a, b, c} (d~e)>f 

16 Null 0 0 0 2 2 2  {a, b, c} (d~e)>f 
17 {c, d, e, f} 0 0 1 3 3 3  {a, b, c} (d~e)>f 

18 Null 0 0 1 3 3 3  {a, b, c} (d~e)>f 

19 {c} 0 0 2 3 3 3  {a, b} c>(d~e)>f 
20 Null 0 0 2 3 3 3  {a, b} c>(d~e)>f 

21 {a} 1 0 2 3 3 3  {a, b} c>(d~e)>f 

22 Null 1 0 2 3 3 3  {a, b} c>(d~e)>f 
23 {b} 1 1 2 3 3 3  {a, b} c>(d~e)>f 

24 {½b} 1 1.5 2 3 3 3  {a, b} c>(d~e)>f 

25 Null 1 1.5 2 3 3 3  {a, b} c>(d~e)>f 
26 {d} 1 1.5 2 4 3 3  {a, b} c>(d~e)>f 

27 Null 1 1.5 2 4 3 3  {a, b} c>(d~e)>f 

28 {b} 1 2.5 2 4 3 3  {a} b>c>(d~e)>f 
29 Null 1 2.5 2 4 3 3  {a} b>c>(d~e)>f 

30 {½b} 1 3 2 4 3 3  {a} b>c>(d~e)>f 

31 Null 1 3 2 4 3 3  {a} b>c>(d~e)>f 
32 {a} 2 3 2 4 3 3  Null a>b>c>(d~e)>f 

End - - - - - - - - - 

 

The fused ordering is constructed without overlooking the higher positions 

of the agents’ preference orderings; e.g., in the example illustrated in Table 3, 

the fused ordering is determined after having read more than the 80% of the 

non-null vector elements (i.e., fourteen out of seventeen).  

 It can be shown that the EYA provides a fused ordering which is reasonably 

consistent with the agents’ preference orderings, even in situations in which 

some alternatives are characterized by relatively large fluctuations (e.g., 

consider the alternatives c and f in the example in Fig. 1).   

A potentially controversial aspect of the new algorithm is the mechanism 

for aggregating and/or comparing elements from different preference vectors. 
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The underlying assumption is that the degree of preference of the alternatives in 

different preference vectors mainly depends on their relative position, depicted 

by fi,j indicators. 

Future research go in several directions: (i) quantitative analysis of the 

robustness of the algorithm with respect to small variations in the preference 

orderings and/or in the Tk,x thresholds, (ii) application of the algorithm to various 

decision-making frameworks [12], and (iii) revision of the logic for aggregating 

the preference vectors, introducing preference/indifference thresholds related to 

the fi,j indicators. 
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