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Analytical Method For Forces Between Current Carrying Infinite 

Bars 

 
 
ABSTRACT: 
Purpose: the calculation of forces between rectangular conductors with a uniform current density as 
can be found in the long coils as used in linear actuators and planar motors.  
Design/methodology: the proposed methodology relies on a single analytical equation that is used to 
compute all the force components. 
Findings: several comparisons with other available techniques are provided. All the comparisons 
confirm the validity of the proposed analytical method. 
Originality/value: in the literature other analytical method for the force computation can be found. 
However, the often have limitations (e.g. only adjacent conductors or only non-adjacent conductors). 
This paper adds a new compact expression the covers all the possible configurations at the same time. 
The new tool holds for all the analytical expression found in the literature. 
 

Keywords— Analytical methods, magnets forces, numerical methods. 

 

I. INTRODUCTION 

The forces acting between current carrying conductors  with a rectangular cross section and a uniform 

current density are relevant for busbar systems for electrical energy distribution and in (Dwight, 1917) 

an important relation for these forces is given about one century ago. Another application is the 

determination of forces acting between the sides of rectangular coils with a rectangular cross section. 

The approach proposed in (Dwight, 1917)  is limited to the cases of aligned conductors on the x- or y-

axis. This limitation is overcome in (Canova and Giaccone, 2009) where a method for handling non-

adjacent massive conductors is presented. This means that alignment is not needed anymore. The 

authors found a set of analytical expressions enabling a fast numerical calculation. However, there are 

still some limitations, indeed, the method only covers conductors with the same cross section.  

A lot of research directed to analytical solutions for the field and forces linked to current carrying 

conductors in free air is published. (Urankar and Laxmikant, 1982) covers solutions for conductors 

with a rectangular cross section in general, (Haas, 1976), (Babic and Akyel, 2008) and (Ravaud et al., 

2011) cover thin cylindrical coils and (Ravaud et al., 2010) treats cylindrical coils with a finite 

thickness. The forces and field of rectangular coils and magnets are described in (Akoun and Yonnet, 

1984) and (Rovers et al., 2010). This study started with the need to analyze the Lorentz and reluctance 

forces linked to the long coils in a planar motor as given in (Compter, 2004). 



This paper adds a new compact expression for the forces between straight non-adjacent rectangular 

conductors with different cross sections and the result can be considered as a new tool as holds for all 

the analytical expression found in the literature. 

II. PREVIOUS WORK 

With the laws of Ampère and Lorentz one obtains easily the force between two parallel current 

carrying conductors with infinite length. But the influence of the conductor cross section cannot always 

be neglected and one gets a surprising result even for two round wires as shown in the Appendix 1. 

The first expression found giving the force per unit length between two infinitely long rectangular 

conductors is given in (Dwight, 1917). The cross section of  the conductors is given by 2a and 2b with 

x as the center to center distance in the x direction. A condensed form of this expression is: 
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with 𝑝0 = 𝑥 + 2	𝑖	𝑎 and 	𝑞B = 𝑥 + −1 B𝑎. 

The existence of busbar systems for power delivery with two parallel 3-phase systems, with the 

second system above the first one was for the second author the reason to search for an analytical 

equation allowing also a displacement in the y-direction, leading to (Canova and Giaccone, 2009). 

During this work the authors realized that the analytical equations provided in (Canova and Giaccone, 

2009) are affected by some typographical mistakes. Therefore, the corrections summarized in 

Appendix 2, or given more detailed in (Giaccone and Canova, 2014), are needed to properly compare 

the methodology proposed in the present work. The results of (Dwight, 1917).  and (Canova and 

Giaccone, 2009) will be used as verification of the new equations. 

III. MODEL DESCRIPTION AND SOLUTION 

Fig. 1 gives the principal geometry of two parallel bars having  

- a uniform current density of 𝐽+ and 𝐽,, 

- the cross section 2𝑎×2𝑏 and 2𝐴×2𝐵, 

- an infinite length in the z-direction and 

- the relative position of the bar gravity centers x, y. 



To be determined are the forces 𝐹" and 𝐹I. The equation to be evaluated is: 

𝑭 = 𝑱,×𝑩
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𝑭	is the total force acting on the second conductors and 𝑩 is the magnetic flux density with Bx and By 

as its components. The value of Bz is equal to zero because J2 flows in the z-direction. 𝑥′ and 𝑦′ are the 

variable of integration that define the position of the integration point inside the second conductor. 

 

Fig. 1, cross-sections of two massive conductors. 

Defining S2 as the cross-section of the second conductor, one obtains as force per unit length in the z-

direction: 
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Many ways can be followed to obtain the magnetic flux density as e.g. given by (Pissanetzky, 1990). 

Here we follow the path via the magnetic vector potential A due to current 𝐽+. (Urankar, 1982)  gives 

this potential, having a z-component only, as: 
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with	𝑢0 = 𝑎 − −1 0𝑥′		and	𝑣B = 𝑏 − −1 B𝑦′. The background of the vector potential is described 

in (Hammond, 2015). 
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The magnetic flux density is obtained as: 

𝑩 𝑱+, 𝑥T, 𝑦T, 𝑎, 𝑏 = 𝑐𝑢𝑟𝑙 𝑨 =
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  (5) 

 

The attention will be given now only to the force component 𝐹"  because, by using a coordinate 

rotation, one gets easily the component 𝐹I using the results of 𝐹". One needs 𝐵I  according to eq. (3) 

and obtains this via eq. (5) : 
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with	𝑝0 = 𝑥′ + −1 0𝑎	and	𝑞B = 𝑦′ + −1 B𝑏.  

The definition of: 
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and the substitution of eq. (6) leads to: 
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The results of this double integration with the symbolic solver of Mathematica (Wolfram, 2012) are 

manually reduced to: 
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with	𝑟m = 𝑎 + (−1)m𝑥′		and	𝑠B = 𝑏 + −1 B𝑦′.	

 

Subsequently one must substitute the lower and upper boundaries of the integration to get the force, 

according: 
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Eq. (9) and eq. (10) are the solution for the x-force per unit length. As described earlier, the y-force can 



be obtained using the Fx equation. Considering a 90° rotation of Fig. 1 as shown in Fig. 2, all the 

geometrical quantities as well as the forces modify their orientation. The dimensions a, A and the 

displacement x are now aligned to the y direction. Conversely, the dimensions b, B and the y 

displacement are aligned with the x-axis. Bearing all this in mind, it is apparent that the y-force 

represented in Fig. 1 and redrawn in Fig.2 is equal and opposite to the x-force computed according to 

Fig. 2. In the end, one can compute Fy as: 

𝐹I 𝐽+, 𝐽,, 𝑥, 𝑦, 𝑎, 𝑏, 𝐴, 𝐵 = −𝐹" 𝐽+, 𝐽,, −𝑦, 𝑥, 𝑏, 𝑎, 𝐵, 𝐴 . (11) 

 

The same relation can be also expressed as: 

𝐹I 𝐽+, 𝐽,, 𝑥, 𝑦, 𝑎, 𝑏, 𝐴, 𝐵 = 𝐹" 𝐽+, 𝐽,, 𝑦, 𝑥, 𝑏, 𝑎, 𝐵, 𝐴 . (12) 

 

Fig. 2, 90° rotation of the geometry represented in Fig. 1. 

 

IV. SOLUTION VERIFICATION 

A comparison with three other methods will be described to ensure validity of the developed 

equations. 

A. Comparison with eq. (1) 

In the first verification we compare the results with eq. (1). The same cross-section for both conductors 

has to be applied consequently. The relative deviation between eq. (1) versus eq. (9) and (10) is 

analyzed with 𝑎 = 𝐴 = 0.01	m, 𝐽+ = 𝐽, = 10rA/m,, 𝑏 = 𝐵 = 0.001	⋯ 0.1	m and a displacement 𝑥 =

0.02 ∙∙∙ 0.1	𝑚. The relative deviation is 1 − 𝐹xpy/𝐹xpyz  is shown in Fig. 3 and confirms agreement. 
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Fig. 3, relative deviation eq. (1) versus eq. (10). 

B. Comparison with numerical integration 

In the second verification we compared eq. (10) with the numerical integration of eq. (8) considering 

𝑎 = 0.01	m , 	𝐴 = 0.01	m , 𝑏 = 0.04	m,  𝐵  = 0.01	m,   𝐽+ = 𝐽, = 10rA/m,.   We investigated the 

following displacement ranges 𝑥 = 𝑦 = −0.1	⋯ 0.1	m. This analysis pointed out that the calculation 

should be split in three areas as a consequence of the discontinuity of the arctan function. These areas 

are defined as at the left side (𝑥 < −𝑎), covering (−𝑎 < 𝑥 < 𝑎) and at the right side (𝑥 > 𝑎). Fig. 4 

describes the case where the integration over the second conductor has to be split in three parts because 

the second conductor covers all the regions. The arctan function in eq. (9) fails at 𝑥 = −𝑎 and 𝑥 = 𝑎 

due a denominator becoming zero and a jump in the function value. The force is computed correctly 

when 𝑥 = 𝑎  is excluded and the calculation is done per area. Consequently holds as maximum 

allowed value for region I:  𝑥 = −𝑎(1 + 𝜀), for region II: −𝑎 1 − 𝜀 < 𝑥 < 𝑎(1 − 𝜀) and for region 

III: 𝑥 > 𝑎(1 + 𝜀). The total force is then obtained summing the separate contributions. The value of ε 

is mainly determined by the accuracy of the machine accuracy; the value used here is 10-4. The position 

and width of the second conductor determines whether the calculation has to be split in 1, 2 or 3 parts. 

 



 

Fig. 4, graphical description of a case where the integration over the second conductor has to be split 

in three parts. 

 

Here after one obtains Fig. 5 and 6 for the forces. The lack of a force level near the center is because 

the conductors cannot overlap each other. The error (Fig. 7) becomes in the order 10-6 or even more 

most likely as a consequence of the numerical inaccuracy of the double integration. This is the weak 

point when one is forced to use a numerical method because alternative methods allowing any 

combination of x, y, a, b, A and B are not found. Nevertheless, the noisy character and absence of 

tendencies over the xy-plane give rise to a growing confidence. 

 

Fig. 5, force component Fx expressed in N/m. 



 

Fig. 6, force component Fy expressed in N/m. 

 

The absolute difference between the analytically obtained Fig. 5 and the numerically integrated eq. 

(8) is presented by Fig. 7.  

 

Fig. 7, difference numerical integrated eq. (8) versus eq. (10) expressed in N/m. 

 

C. Comparison with Lit (Canova and Giaccone, 2009) 

Lit. (Canova and Giaccone, 2009) offers an alternative, although we have to accept the same cross 

section for both conductors, 𝑎 = 𝐴 = 0.01	m, 𝑏 = 𝐵 = 0.04	m. The method described in (Canova and 

Giaccone, 2009) does not allow the alignment of conductor sides, so we can only investigate 𝑥 > 2𝐴	 

and 𝑦 > 2𝐵 with Fig. 8 as result. Rarely one needs a better level of agreement.  

The noisy character and the absence of a significant tendency makes it likely that numerical 



calculation accuracy has to be considered as the cause of deviation. 

 

Fig. 8, relative deviation Lit.[2] versus eq. (10) expressed in N/m. 

 

D. Comparison with 2D-FEM 

2D-FEM makes it possible to apply different dimensions for the cross section of the bars. The program 

used is FEMM (Meeker, 2013), open boundary conditions have been used to minimize the effect of the 

domain truncation (Freeman and Lowther, 1988; Lowther et al., 1989). Fig. 9 shows the results and 

difference between (10) and the FEA results with as input, 𝑎 = 𝐴 = 0.01	m, b=0.04 m, B=0.01 m and  

𝐽+ = 𝐽, = 10rA/m,. 

The differences found are less than 0.25% of the maximum force amplitude within the investigated 

xy-range. This result is considered by the authors as a confirmation of the correctness of (10) given the 

noisy character and the small differences. Finally, it is obvious that the proposed analytical method is 

faster than the other numerical techniques used for comparison. To quantify this aspect we refer to the 

results of Fig. 9. The analytical method provides the results in 3 seconds. The same results are obtained 

by means of FEMM in 43 minutes.  

 

 



 

Fig. 9, analytical result for force component Fx expressed in N/m, according to eq. (9). 

 

 

Fig. 10, difference between analytical result and FEA. Results expressed in N/m. 

 

V. CONCLUSION 

New equations for the forces between two rectangular bars, infinitely long, with a uniform current 

density are defined, compared with earlier results and verified. The profits in comparison to earlier 

publications are compactness and the options of different cross sections. 

 

 



VI. APPENDIX 1 

The force between two round conductors, infinitely long and carrying the currents 𝐼) and 𝐼 becomes 

less straight forward when the finite cross sections are taken into account. 

The straightforward rule per unit length gives as force: 

 

𝐹N 𝑑 = 𝜇)𝐼)𝐼 (2𝜋𝑑) A1.1 

 

The current in the first conductor equals 𝐼) the center to center distance between the conductors 

equals d and the second conductor carries the current 𝐼 and its radius is R. It is assumed that there is no 

overlap between the conductors. 

 

d

Rr

dr
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Fig. A.1.1, two round conductors. 

 

The integral to be solved, based on the law of Lorentz, becomes: 
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The cosine-rule yields: 

𝜑 = arccos
𝑑, + 𝑟, − 𝑅,

2𝑟𝑑
. A.1.3 

 

Substitution and use of the symbolic solver of Mathematica (Wolfram, 2012): 
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described by (Abramowitz, 1972). Substitution of the integration boundaries and further simplification 

yields: 

𝐹 𝑑 =
𝜇)𝐼)𝐼
𝜋,𝑅,

Im 𝑑 − 𝑅 E 𝑤 − E arcsin 1
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A.1.5 

Using 𝐼) = 𝐼 = 1	𝐴 and 𝑅 = 0.01	𝑚  leads to Fig. A.1.2. The deviation of the straight forward rule 

for the force between conductors is obtained with the introduction of: 

Δ 𝑑 =
𝐹 𝑑

𝜇)𝐼)𝐼 (2𝜋𝑑)
. A.1.6 

 

The result is given in Fig. A1.3 and it clearly shows that the validity of the simple rule is lost for 𝑑 <

5𝑅. The most extreme situation requires an infinitely thin conductor on the left side in Fig. A.1.1.  and 

leads at d/R=1 to about 25% more force when d/R=1. 

 

Fig. A.1.2, force F(d) in N versus d/R 

 

Fig. A.1.3, deviation Δ versus d/R 

VII. APPENDIX 2 

The following typographical errors were found during this study in (Canova and Giaccone, 2009): 
 
𝑆 = 8𝑏C − 12𝑏,

	
𝑆 = 8𝑏C − 12𝑏,ℎ A.2.1 



 
𝑇 = 8𝑏C + 12𝑏,

	
𝑇 = 8𝑏C + 12𝑏,ℎ A.2.2 

 

𝐹" = ⋯4ℎ 𝐼 + 𝐺 arctan
𝐶
𝐻

	
… 4ℎ 𝐼 + 𝐺 arctan

𝐶
ℎ
. A.2.3 
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